【2012中考真题】菏泽中考数学试卷(有答案)
中考真题数学试卷菏泽

中考真题数学试卷菏泽今天,我们来一起解析一份中考真题数学试卷,这是菏泽地区去年的中考数学试卷。
通过分析这份试卷,我们可以了解考试的难度和出题风格,为以后的备考提供一些参考。
第一部分是选择题,共25道题目,每个题目都有四个选项。
在这一部分中,有一些题目是计算题,需要运用一些常用的计算方法和公式。
而另一些题目则是运用数学思维和逻辑推理能力来解答的。
这部分题目难度适中,考察了学生在基础知识和解题能力上的掌握情况。
第二部分是填空题,共5道题目。
这部分题目要求学生填写一个数值或者一个简短的答案。
这些题目主要考察学生对概念和公式的理解和运用能力。
其中有一些题目需要运用一些较为复杂的计算方法来解答。
这部分题目难度适中,考察了学生对知识点的熟练掌握程度。
第三部分是解答题,共4道题目。
这部分题目需要学生详细写出解题过程和答案,并且要求解答准确、清晰。
这些题目主要考察学生的解题能力和逻辑思维能力。
其中有一些题目需要运用多个知识点和方法来解答,要求学生具备较强的综合运用能力。
这部分题目相对较难,考察了学生的分析和解决问题的能力。
通过解析这份试卷,我们可以看出,菏泽地区中考数学试卷注重基础知识的考查,同时也注重学生的解题思维能力和逻辑推理能力。
试卷的难度适中,既考察了学生的基础知识掌握程度,又考察了学生的学习能力和思考能力。
希望通过这篇文章的解析,大家对中考数学试卷有了更深入的了解,对备考有了更明确的方向和目标。
在备考过程中,我们要注重对基础知识的复习和巩固,同时也要注重解题方法和策略的学习。
只有全面提高自己的数学素质,才能在中考中取得优异的成绩。
让我们倍加珍惜这段备考时间,认真学习,勤做练习题,相信通过自己的努力,一定能够在中考中取得好成绩!祝愿大家考试顺利!。
2023年山东菏泽中考数学试题及答案

2023年山东菏泽中考数学试题及答案一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置.)1.剪纸文化是我国最古老的民间艺术之一,下列剪纸图案中既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】A 【解析】【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A.既是轴对称图形,也是中心对称图形,故A 符合题意;B.是轴对称图形,不是中心对称图形,故B 不符合题意;C.不是轴对称图形,也不是中心对称图形,故C 不符合题意;D.不是轴对称图形,是中心对称图形,故D 不符合题意.故选:A.【点睛】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.2.下列运算正确的是()A.632a a a ÷= B.235a a a ⋅= C.()23622a a = D.()222a b a b +=+【答案】B 【解析】【分析】利用同底数幂的乘除法、积的乘方与幂的乘方以及完全平方公式分别判断即可.【详解】解:A、633a a a ÷=,故选项错误;B、235a a a ⋅=,故选项正确;C、()23624a a =,故选项错误;D、()2222a b a ab b +=++,故选项错误;故选:B.【点睛】此题主要考查了整式的混合运算,同底数幂的乘除法、积的乘方、幂的乘方以及完全平方公式,正确掌握相关乘法公式是解题关键.3.一把直尺和一个含30︒角的直角三角板按如图方式放置,若120∠=︒,则2∠=()A.30︒B.40︒C.50︒D.60︒【答案】B 【解析】【分析】根据平行线的性质,得出3120∠=∠=︒,进而260340Ð=°-Ð=°.【详解】由图知,3120∠=∠=︒∴2603602040Ð=°-Ð=°-°=°故选:B【点睛】本题考查平行线的性质,特殊角直角三角形,由图形的位置关系推出角之间的数量关系是解题的关键.4.实数a ,b ,c 在数轴上对应点的位置如图所示,下列式子正确的是()A.()0c b a -<B.()0b c a -<C.()0a b c -> D.()0a cb +>【答案】C 【解析】【分析】根据数轴可得,0a b c <<<,再根据0a b c <<<逐项判定即可.【详解】由数轴可知0a b c <<<,∴()0c b a ->,故A 选项错误;∴()0b c a ->,故B 选项错误;∴()0a b c ->,故C 选项正确;∴()0a c b +<,故D 选项错误;故选:C.【点睛】本题考查实数与数轴,根据0a b c <<<进行判断是解题关键.5.如图所示的几何体是由5个大小相同的小正方体组成的,它的主视图是()A.B.C.D.【答案】A 【解析】【分析】根据主视图是从正面看到的图形进行求解即可.【详解】解:从正面看该几何体,有三列,第一列有2层,第二和第三列都只有一层,如图所示:故选:A.【点睛】本题主要考查了简单几何组合体的三视图,熟知三视图的定义是解题的关键.6.一元二次方程2310x x +-=的两根为12x x ,,则1211+x x 的值为()A.32B.3-C.3D.32-【答案】C【解析】【分析】先求得123x x +=-,121x x ⋅=-,再将1211+x x 变形,代入12x x +与12x x ⋅的值求解即可.【详解】解:∵一元二次方程2310x x +-=的两根为12x x 、,∴123x x +=-,121x x ⋅=-∴1211+x x 1212x x x x +=31=--3=.故选C.【点睛】本题主要考查了一元二次方程根与系数的关系,牢记12b x x a+=-,12cx x a ⋅=是解决本题的关键.7.ABC 的三边长a ,b ,c满足2()|0a b c -+-=,则ABC 是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形【答案】D 【解析】【分析】由等式可分别得到关于a 、b 、c 的等式,从而分别计算得到a 、b 、c 的值,再由222+=a b c 的关系,可推导得到ABC 为直角三角形.【详解】解∵2()|0a b c -+-=又∵()200a b c ⎧-≥≥-≥⎪⎩∴()2000a b c ⎧-==-=⎪⎩,∴02300a b a b c ⎧-=⎪--=⎨⎪-=⎩解得33a b c ⎧=⎪=⎨⎪=⎩,∴222+=a b c ,且a b =,∴ABC 为等腰直角三角形,故选:D.【点睛】本题考查了非负性和勾股定理逆定理的知识,求解的关键是熟练掌握非负数的和为0,每一个非负数均为0,和勾股定理逆定理.8.若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:(1,3),(2,6),(0,0)A B C --等都是三倍点”,在31x -<<的范围内,若二次函数2y x x c =--+的图象上至少存在一个“三倍点”,则c 的取值范围是()A.114c -≤< B.43c -≤<- C.154c -<< D.45c -≤<【答案】D 【解析】【分析】由题意可得:三倍点所在的直线为3y x =,根据二次函数2y x x c =--+的图象上至少存在一个“三倍点”转化为2y x x c =--+和3y x =至少有一个交点,求0∆≥,再根据3x =-和1x =时两个函数值大小即可求出.【详解】解:由题意可得:三倍点所在的直线为3y x =,在31x -<<的范围内,二次函数2y x x c =--+的图象上至少存在一个“三倍点”,即在31x -<<的范围内,2y x x c =--+和3y x =至少有一个交点,令23x x x c =--+,整理得:240x x c --+=,则()()22444116+40b ac c c ∆---⨯-⨯≥===,解得4c ≥-,当3x =-时,()()213312+y c c =----+-=,29y =-,∴912+c ->-,解得:3c <,当1x =时,111+y c c =--+-2=,23y =,∴3>2+c -,解得:5c <,综上:c 的取值范围是45c -≤<,故选:D.【点睛】本题考查二次函数与一次函数交点问题,熟练掌握相关性质是关键.二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内.)9.因式分解:24m m -=______.【答案】()4-m m 【解析】【分析】直接提取公因式m ,进而分解因式即可.【详解】解:m 2-4m =m (m -4).故答案为:m (m -4).【点睛】本题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10.计算:0|2|2sin 602023+︒-=___________.【答案】1【解析】【分析】根据先计算绝对值,特殊角的三角函数值,零指数幂,再进行加减计算即可.22sin 602023-+︒-2212=⨯-1=故答案为:1.【点睛】本题考查了实数的运算,掌握绝对值、特殊角的三角函数值、零指数幂的运算是解题的关键.11.用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为__________.【答案】5 9【解析】【分析】先列表得出所有的情况,再找到符合题意的情况,利用概率公式计算即可.【详解】解:0不能在最高位,而且个位数字与十位数字不同,列表如下:1230102030121312123231323一共有可以组成9个数字,偶数有10、12、20、30、32,∴是偶数的概率为5 9.故答案为:5 9.【点睛】本题考查了列表法求概率,注意0不能在最高位.12.如图,正八边形ABCDEFGH的边长为4,以顶点A为圆心,AB的长为半径画圆,则阴影部分的面积为__________(结果保留π).【答案】6π【解析】【分析】先利用正八边形求出圆心角的度数,再利用扇形的面积公式求解即可.【详解】解:由题意,()821801358HAB -⋅︒∠==︒,4AH AB ==∴213546360S ππ⋅==阴,故答案为:6π.【点睛】本题考查正多边形与圆,扇形的面积等知识,解题的关键是记住扇形的面积2360n r S π=,正多边形的每个内角度数为()2180n n-⋅︒.13.如图,点E 是正方形ABCD 内的一点,将ABE 绕点B 按顺时针方向旋转90︒得到CBF V .若55ABE ∠=︒,则EGC ∠=__________度.【答案】80【解析】【分析】先求得BEF ∠和CBE ∠的度数,再利用三角形外角的性质求解即可.【详解】解:∵四边形ABCD 是正方形,∴90ABC ∠=︒,∵55ABE ∠=︒,∴905535CBE ∠=︒-︒=︒,∵ABE 绕点B 按顺时针方向旋转90︒得到CBF V ∴90EBF ∠=︒,BE BF =,∴45BEF ∠=︒,∴EGC ∠=354580CBE BEF ∠+∠=︒+︒=︒,故答案为:80.【点睛】本题考查了正方形的性质,等腰三角形的性质,旋转图形的性质和三角形外角的性质,利用旋转图形的性质求解是解题的关键.14.如图,在四边形ABCD 中,90,5,4,ABC BAD AB AD AD BC ∠=∠=︒==<,点E 在线段BC 上运动,点F 在线段AE 上,ADF BAE =∠∠,则线段BF的最小值为__________.【答案】2-##2-+【解析】【分析】设AD 的中点为O ,以AD 为直径画圆,连接OB ,设OB 与O 的交点为点F ',证明90DFA ∠=︒,可知点F 在以AD 为直径的半圆上运动,当点F 运动到OB 与O 的交点F '时,线段BF 有最小值,据此求解即可.【详解】解:设AD 的中点为O ,以AD 为直径画圆,连接OB ,设OB 与O 的交点为点F ',∵90ABC BAD ∠=∠=︒,∴AD BC ∥,∴DAE AEB ∠=∠,∵ADF BAE =∠∠,∴90DFA ABE ==︒∠∠,∴点F 在以AD 为直径的半圆上运动,∴当点F 运动到OB 与O 的交点F '时,线段BF 有最小值,∵4=AD ,∴122AO OF AD '===,,∴BO ==,BF2-,2-.【点睛】本题考查了平行线的性质,圆周角定理的推论,勾股定理等知识,根据题意分析得到点F 的运动轨迹是解题的关键.三、解答题(本题共78分,把解答或证明过程写在答题卡的相应区域内.)15.解不等式组:()5231,32232x x x x x ⎧-<+⎪⎨--≥+⎪⎩.【答案】23x ≤【解析】【分析】分别求出各个不等式的解,再取各个解集的公共部分,即可.【详解】解:解()5231x x -<+得:52x <,解32232x x x --≥+得:23x ≤,∴不等式组的解集为23x ≤.【点睛】本题主要考查解一元一次不等式组,熟练掌握解不等式组的基本步骤,是解题的关键.16.先化简,再求值:223x x xx y x y x y⎛⎫+÷ ⎪-+-⎝⎭,其中x ,y 满足230x y +-=.【答案】42x y +,6【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时将除法变为乘法,约分得到最简结果,将230x y +-=变形整体代入计算即可求解.【详解】解:原式()()()()()()()()3x x y x x y x y x y x y x y x y x y x ⎡⎤+--+=+⨯⎢⎥-+-+⎣⎦()()()()2233x y x y x xy x xy x y x y x -+++-=⨯-+()()()()242x y x y x xy x y x y x -++=⨯-+42x y =+;由230x y +-=,得到23x y +=,则原式()226x y =+=.【点睛】此题考查分式的化简求值,解题关键熟练掌握分式混合运算的顺序以及整体代入法求解.17.如图,在ABCD Y 中,AE 平分BAD ∠,交BC 于点E ;CF 平分BCD ∠,交AD 于点F .求证:AE CF =.【答案】证明见解析【解析】【分析】由平行四边形的性质得B D ∠=∠,AB CD =,AD BC ∥,由平行线的性质和角平分线的性质得出BAE DCF ∠=∠,可证BAE DCF ≌△△,即可得出AE CF =.【详解】证明:∵四边形ABCD 是平行四边形,∴B D ∠=∠,AB CD =,BAD DCB ∠=∠,AD BC ∥,∵AE 平分BAD ∠,CF 平分BCD ∠,∴BAE DAE BCF DCF ∠=∠=∠=∠,在BAE 和DCF 中,B D AB CD BAE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA BAE DCF ≌ ∴AE CF =.【点睛】本题主要考查平行四边形的性质,平行线的性质及全等三角形的判定与性质,根据题目已知条件熟练运用平行四边形的性质,平行线的性质是解答本题的关键.18.无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC ,无人机在空中点P 处,测得点P 距地面上A 点80米,点A 处俯角为60︒,楼顶C 点处的俯角为30︒,已知点A 与大楼的距离AB 为70米(点A ,B ,C ,P 在同一平面内),求大楼的高度BC(结果保留根号)【答案】大楼的高度BC为.【解析】【分析】如图,过P 作PH AB ⊥于H ,过C 作CQ PH ⊥于Q ,而CB AB ⊥,则四边形CQHB 是矩形,可得QH BC =,BH CQ =,求解3sin 60802PH AP =︒=⨯= ,cos 6040AH AP =︒= ,可得704030CQ BH ==-=,tan 30PQ CQ =︒=得BC QH ===.【详解】解:如图,过P 作PH AB ⊥于H ,过C 作CQ PH ⊥于Q ,而CB AB ⊥,则四边形CQHB 是矩形,∴QH BC =,BH CQ =,由题意可得:80AP =,60PAH ∠=︒,30PCQ ∠=︒,70AB =,∴3sin 608032PH AP =︒=⨯= cos 6040AH AP =︒= ,∴704030CQ BH ==-=,∴tan 30103PQ CQ =︒= ∴40333BC QH ===,∴大楼的高度BC 为3.【点睛】本题考查的是矩形的判定与性质,解直角三角形的实际应用,理解仰角与俯角的含义是解本题的关键.19.某班学生以跨学科主题学习为载体,综合运用体育,数学,生物学等知识,研究体育课的运动负荷,在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x (次/分钟)分为如下五组:A 组:5075x ≤<,B 组:75100x ≤<,C 组:100125x ≤<,D 组:125150x ≤<,E 组:150175x ≤≤.其中,A 组数据为73,65,74,68,74,70,66,56.根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题:(1)A 组数据的中位数是_______,众数是_______;在统计图中B 组所对应的扇形圆心角是_______度;(2)补全学生心率频数分布直方图;(3)一般运动的适宜行为为100150x ≤<(次/分钟),学校共有2300名学生,请你依据此次跨学科项目研究结果,估计大约有多少名学生达到适宜心率?【答案】(1)69,74,54;(2)见解析(3)大约有1725名学生达到适宜心率.【解析】【分析】(1)根据中位数和众数的概念求解,先求出总人数,然后求出B 组所占的百分比,最后乘以360︒即可求出在统计图中B 组所对应的扇形圆心角;(2)根据样本估计总体的方法求解即可.【小问1详解】将A 组数据从小到大排列为:56,65,66,68,70,73,74,74,∴中位数为6870692+=;∵74出现的次数最多,∴众数是74;88%100÷=,1536054100︒⨯=︒∴在统计图中B 组所对应的扇形圆心角是54︒;故答案为:69,74,54;【小问2详解】10081545230----=∴C 组的人数为30,∴补全学生心率频数分布直方图如下:【小问3详解】304523001725100+⨯=(人),∴大约有1725名学生达到适宜心率.【点睛】本题主要考查调查与统计的相关知识,理解频数分布直方图,扇形统计图的相关信息,掌握运用样本百分比估算总体数量是解题的关键.20.如图,已知坐标轴上两点()()0,4,2,0A B ,连接AB ,过点B 作BC AB ⊥,交反比例函数k y x=在第一象限的图象于点(,1)C a .(1)求反比例函数k y x=和直线OC 的表达式;(2)将直线OC 向上平移32个单位,得到直线l ,求直线l 与反比例函数图象的交点坐标.【答案】(1)4y x=,14y x =(2)()2,2或18,2⎛⎫--⎪⎝⎭【解析】【分析】(1)如图,过点C 作CD x ⊥轴于点D ,证明ABO BCD ∽ ,利用相似三角形的性质得到2BD =,求出点C 的坐标,代入k y x=可得反比例函数解析式,设OC 的表达式为y mx =,将点()4,1C 代入即可得到直线OC 的表达式;(2)先求得直线l 的解析式,联立反比例函数的解析式即可求得交点坐标.【小问1详解】如图,过点C 作CD x ⊥轴于点D ,则1CD =,90CDB ∠=︒,∵BC AB ⊥,∴90ABC ∠=︒,∴90ABO CBD ∠+∠=︒,∵90CDB ∠=︒,∴90BCD CBD ∠+∠=︒,∴BCD ABO ∠=∠,∴ABO BCD ∽ ,∴OA BD OB CD=,∵()()0,4,2,0A B ,∴4OA =,2OB =,∴421BD =,∴2BD =,∴224OD =+=,∴点()4,1C ,将点C 代入k y x =中,可得4k =,∴4y x=,设OC 的表达式为y mx =,将点()4,1C 代入可得14m =,解得:14m =,∴OC 的表达式为14y x =;【小问2详解】直线l 的解析式为1342y x =+,当两函数相交时,可得13442x x +=,解得12x =,8x =-,代入反比例函数解析式,得1122x y =⎧⎨=⎩,22812x y =-⎧⎪⎨=-⎪⎩∴直线l 与反比例函数图象的交点坐标为()2,2或18,2⎛⎫-- ⎪⎝⎭【点睛】本题考查了相似三角形的判定与性质,待定系数法求函数的解析式,反比例函数与一次函数的交点问题,一次函数的平移问题,解一元二次方程等知识.21.某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A ,B 两块(如图所示),花园里种满牡丹和芍药,学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A ,B 两块内分别种植牡丹和芍药,每平方米种植2株,知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?【答案】(1)长为60米,宽为20米时,有最大面积,且最大面积为1200平方米(2)最多可以购买1400株牡丹【解析】【分析】(1)设长为x 米,面积为y 平方米,则宽为1203x -米,可以得到y 与x 的函数关系式,配成顶点式求出函数的最大值即可;(2)设种植牡丹的面积为a 平方米,则种植芍药的面积为()1200a -平方米,由题意列出不等式求得种植牡丹面积的最大值,即可解答.【小问1详解】解:设长为x 米,面积为y 平方米,则宽为1203x -米,∴()221140601200331203y x x x x x =⨯=--+-+=-,∴当60x =时,y 有最大值是1200,此时,宽为120203x -=(米)答:长为60米,宽为20米时,有最大面积,且最大面积为1200平方米.【小问2详解】解:设种植牡丹的面积为a 平方米,则种植芍药的面积为()1200a -平方米,由题意可得()252152120050000a a ⨯+⨯-≤解得:700a ≤,即牡丹最多种植700平方米,70021400⨯=(株),答:最多可以购买1400株牡丹.【点睛】本题考查二次函数的应用、一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件.22.如图,AB 为O 的直径,C 是圆上一点,D 是 BC的中点,弦DE AB ⊥,垂足为点F .(1)求证:BC DE =;(2)P 是»AE 上一点,6,2AC BF ==,求tan BPC ∠;(3)在(2)的条件下,当CP 是ACB ∠的平分线时,求CP 的长.【答案】(1)证明见解析;(2)43(3)【解析】【分析】(1)由D 是 BC的中点得 CD BD =,由垂径定理得 BE BD =,得到»»BC DE =,根据同圆中,等弧对等弦即可证明;(2)连接OD ,证明ACB OFD ∽ ,设O 的半径为r ,利用相似三角形的性质得=5r ,210AB r ==,由勾股定理求得BC ,得到84tan 63BC CAB AC ∠===,即可得到tan BPC ∠43=;(3)过点B 作BG CP ⊥交CP 于点G ,证明CBG 是等腰直角三角形,解直角三角形得到cos 45CG BG BC ==︒=,由tan BPC ∠43=得到43BG GP =,解得GP =可求解.【小问1详解】解:∵D 是 BC的中点,∴ CDBD =,∵DE AB ⊥且AB 为O 的直径,∴ BEBD =,∴»»BCDE =,∴BC DE =;【小问2详解】解:连接OD ,∵ CDBD =,∴CAB DOB ∠=∠,∵AB 为O 的直径,∴90ACB ∠=︒,∵DE AB ⊥,∴90DFO ∠=︒,∴ACB OFD ∽ ,∴AC OF AB OD=,设O 的半径为r ,则622r r r -=,解得=5r ,经检验,=5r 是方程的根,∴210AB r ==,∴8BC ==,∴84tan 63BC CAB AC ∠===,∵BPC CAB ∠=∠,∴tan BPC ∠43=;【小问3详解】解:如图,过点B 作BG CP ⊥交CP 于点G ,∴90BGC BGP ∠=∠=︒∵90ACB ∠=︒,CP 是ACB ∠的平分线,∴45ACP BCP ∠=∠=︒∴45CBG ∠=︒∴cos 45CG BG BC ==︒=∵tan BPC ∠43=∴43BG GP =,∴GP =∴CP =+=.【点睛】本题考查了相似三角形的判定与性质,垂径定理,圆周角定理及推论,解直角三角形等知识,熟练掌握以上知识并灵活运用是解题的关键.23.(1)如图1,在矩形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF ⊥,垂足为点G .求证:ADE DCF △∽△.【问题解决】(2)如图2,在正方形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF =,延长BC到点H ,使CH DE =,连接DH .求证:ADFH ∠=∠.【类比迁移】(3)如图3,在菱形ABCD 中,点E ,F 分别在边DC ,BC 上,11AE DF ==,8DE =,60AED ∠=︒,求CF 的长.【答案】(1)见解析(2)见解析(3)3【解析】【分析】(1)由矩形的性质可得90ADE DCF ∠=∠=︒,则90CDF DFC ∠+∠=︒,再由AE DF ⊥,可得90DGE ∠=︒,则90CDF AED ∠+∠=︒,根据等角的余角相等得AED DFC ∠=∠,即可得证;(2)利用“HL ”证明 ≌ADE DCF ,可得DE CF =,由CH DE =,可得CF CH =,利用“SAS ”证明DCF DCH ≌,则DHC DFC ∠=∠,由正方形的性质可得AD BC ∥,根据平行线的性质,即可得证;(3)延长BC 到点G ,使8CG DE ==,连接DG ,由菱形的性质可得AD DC =,AD BC ∥,则ADE DCG ∠=∠,推出()SAS ADE DCG △≌△,由全等的性质可得60DGC AED ∠=∠=︒,DG AE =,进而推出DFG 是等边三角形,再根据线段的和差关系计算求解即可.【详解】(1)证明: 四边形ABCD 是矩形,90ADE DCF ∴∠=∠=︒,90CDF DFC ∴∠+∠=︒,AE DF ⊥,90DGE ∴∠=︒,90CDF AED ∴∠+∠=︒,AED DFC ∴∠=∠,ADE DCF ∴△∽△;(2)证明: 四边形ABCD 是正方形,AD DC ∴=,AD BC ∥,90ADE DCF ∠=∠=︒,AE DF = ,()HL ADE DCF ∴ ≌,DE CF ∴=,又 CH DE =,∴CF CH =,点H 在BC 的延长线上,∴90DCH DCF ∠=∠=︒,DC DC = ,()SAS DCF DCH ∴ ≌,H DFC ∴∠=∠,AD BC ∥,ADF DFC H ∴∠=∠=∠;(3)解:如图,延长BC 到点G ,使8CG DE ==,连接DG ,四边形ABCD 是菱形,AD DC ∴=,AD BC ∥,ADE DCG ∴∠=∠,()SAS ADE DCG ∴ ≌,60DGC AED ∴∠=∠=︒,DG AE =,AE DF = ,DG DF ∴=,DFG ∴ 是等边三角形,11FG FC CG DF ∴=+==,111183FC CG ∴=-=-=.【点睛】本题是四边形综合题,主要考查了矩形的性质,正方形的性质,菱形的性质,相似三角形的判定,全等三角形的判定和性质,等边三角形的判定和性质,熟练掌握这些知识点并灵活运用是解题的关键.24.已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点()0,4C ,其对称轴为32x =-.(1)求抛物线的表达式;(2)如图1,点D 是线段OC 上的一动点,连接AD BD ,,将ABD △沿直线AD 翻折,得到AB D 'V ,当点B '恰好落在抛物线的对称轴上时,求点D 的坐标;(3)如图2,动点P 在直线AC 上方的抛物线上,过点P 作直线AC 的垂线,分别交直线AC ,线段BC 于点E ,F ,过点F 作FG x ⊥轴,垂足为G ,求FG 的最大值.【答案】(1)234y x x =--+(2)D ⎛ ⎝(3)496【解析】【分析】(1)由题易得c 的值,再根据对称轴求出b 的值,即可解答;(2)过B '作x 轴的垂线,垂足为H 求出A 和B 的坐标,得到5AB AB '==,52AH =,由52AB AB AH '===,推出1302DAB B AB '∠=∠=︒,解直角三角形得到OD 的长,即可解答;(3)求得BC 所在直线的解析式为144y x =-+,设()2,34P m m m --+,设PE 所在直线的解析式为:22y x b =-+,得2224y x m m =---+,令12y y =,解得223m m x +=,分别表示出FG ,再对FG 进行化简计算,配方成顶点式即可求解.【小问1详解】解:抛物线与y 轴交于点()0,4C,∴4c =,∵对称轴为32x =-,∴322b -=--,3b =-,∴抛物线的解析式为234y x x =--+;【小问2详解】如图,过B '作x 轴的垂线,垂足为H ,令2340x x --+=,解得:121,4x x ==-,∴()4,0A -,()10B ,,∴()145AB =--=,由翻折可得5AB AB '==,∵对称轴为32x =-,∴()35422AH =---=,∵52AB AB AH '===,∴30AB H '∠=︒,60B AB '∠=︒∴1302DAB B AB '∠=∠=︒,在Rt AOD 中,tan 30OD OA =︒=,∴D ⎛ ⎝;【小问3详解】设BC 所在直线的解析式为111y k x b =+,把B 、C 坐标代入得:11104k b b +=⎧⎨=⎩,解得1144k b =-⎧⎨=⎩,∴144y x =-+,∵OA OC =,∴45CAO ∠=︒,∵90AEB ∠=︒,∴直线PE 与x 轴所成夹角为45︒,设()2,34P m m m --+,设PE 所在直线的解析式为:22y x b =-+,把点P 代入得2224b m m =--+,∴2224y x m m =---+,令12y y =,则24424x x m m -+=---+,解得223m m x +=,∴()24243F m m FG y -+==+()()223F P x x m m ==-=-∴()()22422433FG m m m m FG P -++-=+=+22549326m ⎛⎫=-++ ⎪⎝⎭∵点P 在直线AC 上方,∴40m -<<,∴当52m =-时,FG +的最大值为496.【点睛】本题考查了二次函数综合问题,利用数形结合的思想是解题的关键.。
山东省菏泽市中考数学试题及答案汇编

菏泽市二○一二年初中学业水平考试数 学 试 题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中选择题24分,非选择题96分,满分120分.考试时间120分钟.2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效.3.数学考试不允许使用计算器,考试结束后,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共24分)一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.点(2,1)P -在平面直角坐标系中所在的象限是 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.在算式33()()33--的中填上运算符号,使结果最大,这个运算符号是( )A .加号B .减号C .乘号D .除号3.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是 ( )4.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为( )A .±2B . 2C .2D . 45.下列图形中是中心对称图形是 ( )ABCDA.B.C.D.6.反比例函数2y x=的两个点为11(,)x y 、22(,)x y ,且12x x >,则下式关系成立的是( ) A.12y y > B.12y y < C.12y y = D.不能确定 7.我市今年6月某日部分区县的最高气温如下表: 区县牡丹区东明 鄄城 郓城 巨野 定陶 开发区 曹县 成武 单县 最高气温(℃)32 323032303232293029则这10个区县该日最高气温的众数和中位数分别是 ( ) A.32,32 B.32,30 C.30,32 D.32,318.已知二次函数2y ax bx c =++的图像如图所示,那么一次函数y bx c =+和反比例函数ay x=在同一平面直角坐标系中的图像大致是 ( )xy Oxy Oxy OxyOxy OA. B. C. D.菏泽市二○一二年初中学业水平考试数 学 试 题第Ⅱ卷(非选择题 共96分)注意事项:1.第Ⅱ卷共8页,用蓝黑钢笔或圆珠笔直接答在试卷上.2.答卷前将密封线内的项目填写清楚.二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.) 9.已知线段8AB cm =,在直线AB 上画线段BC ,使它等于3cm ,则线段AC =________. 10.若不等式组3x x m>⎧⎨>⎩的解集是3x >,则m 的取值范围是________.11. 如图,PA ,PB 是⊙O 是切线,A ,B 为切点, AC 是 ⊙O 的直径,若∠P =46°,则∠BAC =________度.12.口袋内装有大小、质量和材质都相同的红色1号、红色2号、黄色1号、黄色2号、黄色3号的5个小球,从中摸出两球,这两球都是红色的概率是________.13.将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a b c dad bc =-,上述记号就叫做2阶行列式.若 1 181 1x x x x +-=-+,则x =________.14、一个自然数的立方,可以分裂成若干个连续奇数的和.例如:32,33和34分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即3235=+;337911=++;3413151719=+++;……;若36也按照此规律来进行“分裂”,则36“分裂”出的奇数中,最大的奇数是________.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤.) 15.(本题12分,每题6分) (1)先化简,再求代数式的值. 222()111a aa a a ++÷++-,其中2012(1)tan 60a ︒=-+.(2)解方程:(1)(1)2(3)8x x x +-++=.16. (本题12分,每题6分)(1)如图,∠DAB =∠CAE ,请补充一个条件:________, 使△ABC ∽△ADE .(2)如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,10,8OA OC ==.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求,D E 两点的坐标; EDACB17.(本题14分,每题7分) (1)如图,一次函数2y=23x -+的图像分别与x 轴、y 轴交于点A 、B ,以线段AB 为边在第一象限内作等腰Rt ABC ∆,90BAC ︒∠=.求过B 、C 两点直线的解析式.(2)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?xyOABC18.(本题10分)如图,在边长为1的小正方形组成的网格中,△ABC 和△DEF 的顶点都在格点上,P 1,P 2,P 3,P 4,P 5是△DEF 边上的5个格点,请按要求完成下列各题:(1)试证明三角形△ABC 为直角三角形;(2)判断△ABC 和△DEF 是否相似,并说明理由; (3)画一个三角形,使它的三个顶点为P 1,P 2,P 3,P 4,P 5中的3个格点并且与△ABC 相似(要求:用尺规作图,保留痕迹,不写作法与证明).A CBF ED P 1P 2 P 3 P 4P 519.(本题10分)某中学举行数学知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图.根据图中所给出的信息解答下列问题:(1)二等奖所占的比例是多少?(2)这次数学知识竞赛获得二等奖的人数是多少? (3)请讲条形统计图补充完整;(4)若给所有参赛学生每人发一张卡片,各自写上自己的名字,然后把卡片放入一个不透明的袋子里,摇匀后任意摸出一张,求摸出的卡片上是写有一等奖学生名字的概率.一等奖10%二等奖三等奖 24%纪念奖 46%人数(人) 奖项一等奖二等奖三等奖 纪念奖 020 40 60 80 10020.(本题9分)牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,得到如下数据:(1)把上表中x 、y 的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)菏泽市物价部门规定,该工艺品销售单价最高不能..超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?销售单价x (元∕件)…… 20 30 40 50 60 …… 每天销售量y (件)…… 500 400 300 200 100 ……21. (本题10分)如图,在平面直角坐标系中放置一直角三角板,其顶点为(0,1),(2,0),(0,0)A B O ,将此三角板绕原点O 逆时针旋转90︒,得到A B O ''∆.(1)一抛物线经过点A '、B '、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB A B ''的面积是A B O ''∆面积的4倍?若存在,请求出点P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB A B ''是哪种形状的四边形?并写出四边形PB A B ''的两条性质.xyO -1 1 2 2 1 ABA 'B '菏泽市二○一二年初中学业水平考试数学试题参考答案及评分标准阅卷须知:1. 为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2. 若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3. 评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本大题共8个小题,每小题3分,共24分.)题号 1 2 3 4 5 6 7 8 答案BDBCDDDC二、填空题(本大题共6个小题,每小题3分,共18分.)9. 511cm cm 或; 10. m ≤3; 11. 23° ; 12. 1/10 ; 13. 2 ; 14. 41 . 三、解答题(本大题共7个小题,共72分.) 15.解:(1)原式2(1)(2)1313(1)(1)(1)(1)1a a a a a a a a a a a a -++++=⨯=⨯=+-+--.-----3分 当a =2012(1)-+tan60°= 1+3时,----------5分原式33=31+313==-.------6分(2) 原方程可化为2230x x +-=------------------------------------------------------------3分 解得13x x ==-或--------------------------------------------------------------------------6分16.(1) D B AED C ∠=∠∠=∠或 -----------------------------------------------------2分 理由(略)------------------------------------------------------------------------------------6分 (2)解:(1)依题意可知,折痕AD 是四边形OAED 的对称轴, ∴在Rt ABE ∆中,10,8AE AO AB ===,22221086BE AE AB =-=-=,4CE ∴=,(4,8)E ∴. ---------------------------------------------------------------------------3分在Rt DCE ∆中,222DC CE DE +=, 又DE OD =,222(8)4OD OD ∴-+=,5OD ∴=,(0,5)D ∴.--------------------------------------------------------------------------6分17.(1)解: (5,3)C ∴. 125y x =+ (2)依题意得:1200080004x x=+,----------2分解之得:8x =,经检验8x =是方程的解,并且符合题意.412x ∴+=.-------------------------------------------------------------------------------------------3分 所以,去年购进的文学书和科普书的单价分别是8元和12元. --------------------------4分 ②设购进文学书550本后至多还能购进y 本科普书. 依题意得55081210000y ⨯+≤,解得24663y ≤, 由题意取最大整数解,466y =.所以,至多还能够进466本科普书. -------------------------------------------------------------7分 18.解:(1)根据勾股定理,得25AB =,5AC =,BC =5 ; 显然有222AB AC BC +=,根据勾股定理的逆定理得△ABC 为直角三角形 (1) △ABC 和△DEF 相似.根据勾股定理,得25AB =,5AC =,BC =5 42DE =,22DF =,210EF =.522AB AC BC DE DF EF ===, ∴△ABC ∽△DEF .(3)如图:△P 2P 4 P 5.19.解:(1)由1-10℅-24℅-46℅=20℅,所以二等奖所占的比例为20℅ (2)……40 (3)略(4)20÷200=11020.解:(1)画图如右图:由图可猜想y 与x 是一次函数关系,设这个一次函数为(0)y kx b k =+≠,这个一次函数的图象经过(20,500)、(30,400)这两点,ACBFEDP 1P 2P 3 P 4P 55002040030k bk b =+⎧∴⎨=+⎩,解得10700k b =-⎧⎨=⎩,∴函数关系式是10700y x =-+.----------3分(2)设工艺厂试销该工艺品每天获得的利润是W 元,依题意得:22(10)(10700)10800700010(40)+9000W x x x x x =--+=-+-=--,∴当40x =时,W 有最大值9000.----------6分(3)对于函数210(40)+9000W x =--,当35x ≤时,W 的值随着x 值的增大而增大, ∴销售单价定为35元∕件时,工艺厂试销该工艺品每天获得的利润最大. ----------9分21.解:(1)A B O ''∆是由ABO ∆绕原点O 逆时针旋转90︒得到的, 又(0,1),(2,0),(0,0)A B O ,(1,0),(0,2)A B ''∴-.----------1分 设抛物线的解析式为2(0)y ax bx c a =++≠, 抛物线经过点A '、B '、B , 02042a b c ca b c =-+⎧⎪∴=⎨⎪=++⎩,解之得112a b c =-⎧⎪=⎨⎪=⎩, ∴满足条件的抛物线的解析式为22y x x =-++.----------3分 (2)P 为第一象限内抛物线上的一动点,设(,)P x y ,则0,0x y >>,P 点坐标满足22y x x =-++.连结,,PB PO PB ',B OA B O OB PB A B S S S S '''''∆∆∆∴=++P P 四边形11112+2+2222x y =⋅⋅⋅⋅⋅⋅22(2)123x x x x x =+-+++=-++.----------5分假设四边形PB A B ''的面积是A B O ''∆面积的4倍,则 2234x x -++=,即2210x x -+=,解之得1x =,此时21122y =-++=,即(1,2)P .----------7分 ∴存在点(1,2)P ,使四边形PB A B ''的面积是A B O ''∆面积的4倍. ----------8分 (3)四边形PB A B ''为等腰梯形,答案不唯一,下面性质中的任意2个均可.①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等. ----------10分或用符号表示:①B A B PBA '''∠=∠或A B P BPB '''∠=∠;②PA B B ''=;③//B P A B '';④B A PB ''=.----------10分x yO -1 1 2 2 1AB A ' B 'P·。
菏泽市中考数学试卷及答案

菏泽市二O 一O 年初中学业水平考试数学试题注意事项:1.本试题分为选择题和非选择题两部分,其中选择题30分,非选择题90分,共120分.考试时间为120分钟. 2.用黑色、蓝色水笔或圆珠笔答卷,答卷前将密封线内的项目填写清楚.3.请将选择题的正确答案代号(ABCD )填写在相应的“答题栏”内,将非选择题的答案直接答在试卷上. 一、选择题:本大题共10小题,在每小题给出的四个选项A 、B 、C 、D 中,只有一项是正确的,请把正确的选项选出来并填在第三页该题相应的答题栏内,每小题选对得3分,共30分.1.2010年元月19日,山东省气象局预报我市元月20日的最高气温是4℃,最低气温是6-℃,那么我市元月20日的最大温差是℃ B.6℃ ℃ ℃ 2.负实数a 的倒数是A.a -B.1a C.1a-D.a 3.下列运算正确的是A .22()()a b b a a b +-=- B.22(2)4a a -=-C.3362a a a += D.224(3)9a a -=4.如图是一个由多个相同小正方体堆积而成的几何本的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是5.如图,直线,PQ MN C ∥是MN 上一点,CE 交PQ 于A ,CF 交PQ 于B ,且90ECF ∠=°,如果50FBQ ∠=°,则ECM ∠的度数为° B. 50° C. 40° D. 30°6.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,记与点A 重合点A ′,则△A ′BG 的面积与该矩形面积的比为A.112 B.19 C.18 D. 167.如图所示,在正方形铁皮中,剪下一个圆和一个扇形,使余料尽量少,用圆做圆锥的底面,用扇形做圆锥的侧面,正好围成一个圆锥,若圆的半径记为r ,扇形的半径记为R ,那么=2r =r =3r =4r(4题图)(5题图) (6题图) (7题图)(8题图)8.如图,菱形ABCD 中,60B ∠=°,2AB =cm ,E 、F 分别是BC 、CD 的中点,连结AE 、EF 、AF ,则△AEF 的周长为A .23cm 33 43 3 9.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa )是气球体积V (m 3)的反比例函数,其图像如图所示,当气球内的气压大于120kPa时,气球将爆炸,为了安全,气球的体积应该A.不大于54m 3 B .小于54m 3 C.不小于45m 3 D .小于45m 310.某医院决定抽调甲、乙、丙、丁4名医护人员参加抗震救灾,先随机地从这4人中抽取2人作为第一批救灾医护人员,那么丁医护人员被抽到作为第一批救灾医护人员的概率是A .12 B.13 C.14 D.34菏泽市二O 一O 年初中学业水平考试数学试题题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题:本大题共8小题,每小题3分,共24分 11.将多项式32269a a b ab -+分解因式得____________.12.月球距离地球表面约为384000000米,将这个距离用科学记数法(保留两个有效数字)表示应为____________米.13.若关于x 的不等式325m x -<的解集是2x >,则实数m 的值为____________.14.已知2是关于x 的一元二次方程240x x p +-=的一个根,则该方程的另一个根是____________.15.已知点P 的坐标为(m,n ),O 为坐标原点,连结OP ,将线段OP 绕O 点顺时针旋转90°得OP ',则点P '的坐标为____________.16.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(,)a b 进入其中时,会得到一个新的实数:21a b +-,例如把(32,-)放入其中,就会得到23(2)16+--=.现将实数对(23--,)放入其中,得到的实数是____________.17.如图,在正方形ABCD 中,O 是CD 边上的一点,以O 为圆心,OD 为半径的半圆恰好与以B 为圆心,BC 为半径的扇形的弧外切,则∠OBC 的正弦值为____________.(9题图)18.如图,三角板ABC 的两直角边AC ,BC 的长分别为40cm 和30cm ,点G 在斜边A B 上,且BG =30cm,将这个三角板以G 为中心按逆时针旋转90°至△A ′B ′C ′的位置,那么旋转前后两个三角板重叠部分(四边形EFGD )的面积为____________.三、解答题:本大题共6小题,共66分,解答要写出必要的文字说明、证明过程或演算步骤. 19.(本题满分12分,每小题4分)(1)计算:124sin 60;-π0°+(4-)(2)解不等式组3(2)8,.2x x x x +<+⎧⎪⎨⎪⎩-1≤3(3)解分式方程112.22x x x-+=--20.(本题满分8分)如图所示,在Rt 9030ABC C A ∠=︒∠=︒△中,,,BD 是ABC ∠的平分线,5CD =cm ,求AB 的长.(17题图) (18题图)(20题图)21.(本题满分10分)某中学初三(1)班、(2)班各选5名同学参加“爱我中华”演讲比赛,其预赛成绩(满分100分)如图所示:(1平均数 中位数 众数 初三(1)班 8585初三(2)班85 80(2)根据两班成绩的平均数和中位数,分析哪班成绩较好(3)如果每班各选2名同学参加决赛,你认为哪个班实力更强些请说明理由.22.(本题满分12分)如图,OAB △中,,30OA OB A O =∠=°,⊙经过AB 的中点E 分别交OA 、OB 于C 、D 两点,连接CD .(1)求证:AB 是O ⊙的切线; (2)求证:CD AB ∥;(3)若43,.CD OCED =求扇形的面积23.(本题满分12分)我市为绿化城区,计划购买甲、乙两种树苗共计500棵,甲种树苗每棵50元,乙种树苗每棵80元,调查统计得:甲、乙两种树苗的成活率分别为90%,95%.(1)如果购买两种树苗共用28000元,那么甲、乙两种树苗各买了多少棵(2)市绿化部门研究决定,购买树苗的钱数不得超过34000元,应如何选购树苗(3)要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗最低费用是多少24.(本题满分12分)如图所示,抛物线2y ax bx c =++经过原点O ,与x 轴交于另一点N ,直线4y kx =+与两坐标轴分别交于A 、D 两点,与抛物线交于(1,)B m 、(2,2)C 两点.(1)求直线与抛物线的解析式.(2)若抛物线在x 轴上方的部分有一动点(,)P x y ,设PON ∠=α,求当PON △的面积最大时tan α的值. (3)若动点P 保持(2)中的运动路线,问是否存在点P ,使得POA △的面积等于PON △面积的815若存在,请求出点P 的坐标;若不存在,请说明理由.(22题图) 24题图数学(A )参考答案及评分标准一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每题号 123 4 5 6 7 8 9 10 答案A B DDCCDBCA二、填空题:11.2(3)a a b - 12.83.810⨯ 13.3(3)m =填也可以 14.6-15.(,)n m - 16.0 317.5144三、解答题:19.解:(1)原式=323411-⨯+= ······················································· 4分 (2)解①得x <1 ······················································································ 1分 解②得x ≤-2 ························································································ 3分 所以原不等式的解集是x ≤-2 ··································································· 4分 (3)原方程两边同乘以2x -得(1)2(2)1x x --+-=解得2x = ······························································································ 2分 检验知2x =是原方程的增根 ······································································ 3分 所以原方程无解 ······················································································· 4分 20.解:Q 在Rt ABC △中,9030C A ∠=︒∠=︒,,BD 是ABC ∠的平分线,30.ABD CBD AD DB ∴∠=∠=∴=°.又Q 在Rt ,5CBD CD =△中cm.10BD ∴=cm.53BC ∴=cm,2103AB BC ==cm ························································ 8分21.解:(1)中位数填85,众数填100 ······················································· 3分 (2)因两班的平均数都相同,但初三(1)班的中位数高, 所以初三(1)班的成绩较好. ······································································ 6分(3)如果每班各选2名同学参加决赛,我认为初三(2)班实力更强些.因为,虽然两班的平均数相同,但在前两名的高分区中初三(2)班的成绩为100分,而初三(1)班的成绩为100分和85分. ··································································································· 10分22.证明:(1)证明:连接,,,OE OA OB E AB OE AB =∴⊥Q 是的中点,.AB O ∴是⊙的切线 ····································· 4分 (2)证明:在,,,,OAB OCD COD AOB OC OD OA OB ∠=∠==△△中,.OCD OAB ∴∠=∠ .CD AB ∴∥ ·························································································· 8分 (3)解:,30CD AB A ∠=Q ∥°,,OE AB CD ⊥=,30OCD ∴∠=°,,120OE CD CF COD ⊥=∠=°,120164,3OCED OC S π====π.扇形·16360 ··············································· 12分 23.解:(1)设购买甲种树苗x 棵,则购买乙种树苗为(500-x )棵,由题意得 50x +80(500-x )=28000. 解得x =400. 所以500-x =100.答:购买甲种树苗400棵,购买乙种树苗100棵. ············································ 4分 (2)由题意得:5080(500)x x +-≤34000, 解得x ≥200,(注意x ≤500)答:购买甲种树苗不少于200棵,其余购买乙种树苗. ······································ 8分 (注意:得到购买乙种树苗不多于300棵,其余购买甲种树苗……也对) (3)由题意得90%95%(500)92%,x x x +-⨯≥500解得≤300. 设购买两种树苗的费用之和为y , 则5080(500)4000030.y x x x =+-=- 在此函数中,y 随x 的增大而减小,所以当300x =时,y 取得最小值,其最小值为400003030031000.-⨯=答:购买甲种树苗300棵,购买乙种树苗200棵,即可满足这批树苗的成活率不低于92%,又使购买树苗的费用最低,其最低费用为31000元. ······································································ 12分24.(1)将点(2,2)C 代入直线4y kx =+可得1,k =- 所以直线的解析式为 4.y x =-+当1x =时,3y =,所以B 点的坐标为(1,3),将,,B C O 三点的坐标分别代入抛物线2y ax bx c =++,可得3,422,0.a b c a b c c ++=⎧⎪++=⎨⎪=⎩解得2,5,0.a b c =-⎧⎪=⎨⎪=⎩所以所求的抛物线为225y x x =-+. ·········································· 4分(2)因ON 的长是以定值,所以当点P 为抛物线的顶点时,PON △的面积最大,又该抛物线的顶点坐标为525,48⎛⎫⎪⎝⎭,此时255tan 82y x ===54:. ······························································· 8分 (3)存在把0x =代入直线4y x =-+得4y =,所以点(0,4)A把0y =代入抛物线225y x x =-+得0x =或52x =,所以点5,02N ⎛⎫⎪⎝⎭. 设动点P 坐标为(,)x y ,其中252502y x x x ⎛⎫=-+<< ⎪⎝⎭则得:1||22OAP S OA x x ==△· 115||222ONP S ON y ==⨯△··225(25)(25)4x x x x -+=-+由8,15OAP ONP S S =△△即282=(25)15x x x -+5·4解得0x =或1x =,舍去0x =得1x =,由此得3y =所以得点P 存在,其坐标为(1,3). ·························································· 12分。
(中考精品卷)山东省菏泽市中考数学真题 (解析版)

菏泽市二〇二二年初中学业水平考试(中考)数学试题注意事项:1.本试题共24个题,满分120分,考试时间120分钟.2.请把答案写在答题卡上,选择题用2B 铅笔填涂,非选择题用0.5毫米黑色签字笔书写在答题卡的指定区域内,写在其他区域不得分.一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置.)1. 2022的相反数是( )A. 2022B. 2022-C. 12022D.12022- 【答案】B【解析】【分析】根据相反数的定义直接求解.【详解】解:实数2022的相反数是2022-,故选:B .【点睛】本题主要考查相反数的定义,解题的关键是熟练掌握相反数的定义.2. 2022年3月11日,新华社发文总结2021年中国取得的科技成就.主要包括:北斗全球卫星导航系统平均精度2~3米;中国高铁运营里程超40000000米;“奋斗者”号载人潜水器最深下潜至10909米;中国嫦娥五号带回月壤重量1731克.其中数据40000000用科学记数法表示为( )A. 80.410⨯B. 7410⨯C. 84.010⨯D. 6410⨯【答案】B【解析】【分析】把比较大的数写成a ×10n ,其中1≤a <10,n 为正整数即可得出答案.【详解】解:40000000=4×107,故选:B .【点睛】本题考查了科学记数法表示较大的数,掌握10的指数比原来的整数位数少1是解题的关键.3. 沿正方体相邻的三条棱的中点截掉一个角,得到如图所示的几何体,则他的主视图是( )A. B.C. D.【答案】D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的和看不到的棱都应表现在图中.【详解】解:从几何体的正面看可得到一个正方形,正方形的右上角处有一个看得见的小三角形画为实线,故选:D .【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图;注意看到的用实线表示,看不到的用虚线表示.4. 如图所示,将一矩形纸片沿AB 折叠,已知36ABC ∠=︒,则1D AD ∠=( )A 48° B. 66° C. 72° D. 78°【答案】C【解析】.【分析】由折叠及矩形的性质可得1,AD BC DAB D AB ∠=∠∥,再根据平行线的性质求出1144DAB D AB ∠=︒=∠,根据周角的定义求解即可.【详解】∵将一矩形纸片沿AB 折叠,∴1,AD BC DAB D AB ∠=∠∥,180DAB ABC ∴∠+∠=︒,36ABC ︒∠= ,1144DAB D AB ∴∠=︒=∠,136014414472D AD ∠=︒-︒-︒=︒∴,故选:C .【点睛】本题考查了矩形的性质,折叠的性质及平行线的性质,熟练掌握知识点是解题的关键.5. 射击比赛中,某队员的10次射击成绩如图所示,则下列结论错误的是( )A. 平均数是9环B. 中位数是9环C. 众数是9环D. 方差是0.8【答案】D【解析】 【分析】分别求出平均数,中位数,众数以及方差即可求解【详解】解:根据题意得:10次射击成绩从小到大排列为8.4,8.6,8.8,9,9,9,9.2,9.2,9.4,9.4,A 、平均数是()9.48.49.29.28.898.619199.094=+++++++++环,故本选项正确,不符合题意;B 、中位数是9992+=环,故本选项正确,不符合题意; C 、9出现次数最多,则众数是9环,故本选项正确,不符合题意;D、方差是的()()()()()()()()()(22222222218.498.698.899999999.299.299.499.10é-+-+-+-+-+-+-+-+-+êë,故本选项错误,符合题意;故选:D【点睛】本题考查了折线统计图,平均数,中位数,众数以及方差,解答本题的关键是掌握相关统计量的求法.6. 如图,在菱形ABCD 中,2,60AB ABC =∠=︒,M 是对角线BD 上的一个动点,CF BF =,则MA MF +的最小值为( )A. 1 D. 2【答案】C【解析】 【分析】连接AF ,则AF 的长就是AM +FM 的最小值,证明△ABC 是等边三角形,AF 是高线,利用三角函数即可求解.【详解】解:连接AF ,则AF 的长就是AM +FM 的最小值.∵四边形ABCD 是菱形,∴AB =BC ,又∵∠ABC =60°,∴△ABC 是等边三角形,∵CF BF =∴F 是BC 的中点,∴AF ⊥BC .则AF =AB •sin60°=2=.即MA MF +故选:C【点睛】本题考查了菱形的性质,等边三角形以及三角函数,确定AF 的长就是MA MF +的最小值是关键.7. 根据如图所示的二次函数2y ax bx c =++的图象,判断反比例函数a y x=与一次函数y bx c =+的图象大致是( )A. B. C. D.【答案】A【解析】【分析】先根据二次函数的图象,确定a 、b 、c 的符号,再根据a 、b 、c 的符号判断反比例函数y a x=与一次函数y =bx +c 的图象经过的象限即可. 【详解】解:由二次函数图象可知a >0,c <0, 由对称轴x 2b a=->0,可知b <0, 所以反比例函数y a x =的图象在一、三象限, 一次函数y =bx +c 经过二、三、四象限.故选:A .【点睛】本题主要考查二次函数图象的性质、一次函数的图象的性质、反比例函数图象的性质,关键在于通过二次函数图象推出a 、b 、c 的取值范围.8. 如图,等腰Rt ABC 与矩形DEFG 在同一水平线上,2,3AB DE DG ===,现将等腰Rt ABC 沿箭头所指方向水平平移,平移距离x 是自点C 到达DE 之时开始计算,至AB 离开GF 为止.等腰Rt ABC 与矩形DEFG 的重合部分面积记为y ,则能大致反映y 与x 的函数关系的图象为( )A. B.C. D.【答案】B【解析】【分析】根据平移过程,可分三种情况,当01x ≤<时,当13x ≤<时,当34x ≤≤时,利用直角三角形的性质及面积公式分别写出各种情况下y 与x 的函数关系式,再结合函数图象即可求解.【详解】过点C 作CM ⊥AB 于N ,3DG =,在等腰Rt ABC 中,2AB =,1CN ∴=,①当01x ≤<时,如图,CM x =,2PQ x ∴=,211222y PQ CM x x x ∴=⋅⋅=⨯⋅=, ∴01x ≤<,y 随x 的增大而增大;②当13x ≤<时,如图,12112ABC y S ∴==⨯⨯= , ∴当13x ≤<时,y 是一个定值为1;③当34x ≤≤时,如图,3CM x =-,()23PQ x ∴=-,()()2211112123132222y AB CN PQ CM x x ∴=⋅-⋅=⨯⨯-⨯⨯-=--, 当x =3,y =1,当3<x <4,y 随x 的增大而减小,当x =4,y =0,结合ABCD 选项的图象,故选:B .【点睛】本题考查了动点函数问题,涉及二次函数的图象及性质,能够准确理解题意并分情况讨论是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内.)9. 分解因式:229x y -=________.【答案】(3)(3)x y x y +-【解析】【分析】根据平方差公式分解因式即可得到答案.【详解】解:原式=22(3)(3)(3)x y x y x y -=+- ,故答案为:(3)(3)x y x y +-.【点睛】本题主要考查了利用平方差公式分解因式,熟记平方差公式是解题的关键.10. 在实数范围内有意义,则实数x 的取值范围是________. 【答案】x >3【解析】【分析】根据分式有意义条件和二次根式有意义的条件得x -3>0,求解即可.【详解】解:由题意,得030x ≠-⎪⎩…所以x -3>0,解得:x >3,故答案为:x >3.【点睛】本题考查分式有意义条件和二次根式有意义的条件,熟练掌握分式有意义条件:分母不等于0,二次根式有意义的条件:被开方数为非负数是解题的关键.11. 如果正n 边形的一个内角与一个外角的比是3:2,则n =_______.【答案】5【解析】【分析】设多边形的一个内角为3x 度,一个外角则为2x 度,求得外角的度数,然后根据多边形的外角和为360°,进而求出n 的值.【详解】解:∵正n 边形的一个内角度数与其外角度数的比是3:2,∴设多边形的一个内角为3x 度,一个外角则为2x 度,∴3x +2x =180°,解得x =36°,∴一个外角为2x =72°,360°÷72°=5,∴n =5,故答案为:5.【点睛】本题考查了多边形的内角、外角的知识和外角和定理,理解一个多边形的一个内角与它相邻外角互补是解题的关键.12. 如图,等腰Rt ABC 中,AB AC ==A 为圆心,以AB 为半径作 BDC﹔以BC 为直径作¼CAB .则图中阴影部分的面积是______.(结果保留π)【答案】2π-【解析】【分析】由图可知:阴影部分的面积=半圆CAB 的面积-△ABC 的面积+扇形ABC 的面积-△ABC 的面积,可根据各自的面积计算方法求出面积即可.【详解】解:∵等腰Rt ABC 中,AB AC ==∴BC =2∴S 扇形ACB 9023260ππ⨯==,S 半圆CAB 12=π×(1)22π=,S △ABC 12=⨯; 所以阴影部分的面积=S 半圆CAB -S △ABC +S 扇形ACB -S △ABC 21122πππ=-+-=-.故答案是:2π-. 【点睛】本题主要考查了扇形和三角形的面积计算方法.不规则图形的面积通常转化为规则图形的面积的和差.13. 若22150a a --=,则代数式2442a a a a a -⎛⎫-⋅ ⎪-⎝⎭的值是________. 【答案】15【解析】【分析】先按分式混合运算法则化简分式,再把已知变形为a 2-2a =15,整体代入即可. 【详解】解:2442a a a a a -⎛⎫-⋅ ⎪-⎝⎭ =22(2)2a a a a -⋅- =a (a -2)=a 2-2a ,∵a 2-2a -15=0,∴a 2-2a =15,∴原式=15.故答案为:15.【点睛】本题考查分式化简求值,熟练掌握分式混合运算法则是解题的关键.14. 如图,在第一象限内的直线:l y =上取点1A ,使11OA =,以1OA 为边作等边11OA B ,交x 轴于点1B ;过点1B 作x 轴的垂线交直线l 于点2A ,以2OA 为边作等边22OA B △,交x 轴于点2B ;过点2B 作x 轴的垂线交直线l 于点3A ,以3OA 为边作等边33 OA B ,交x 轴于点3B ;……,依次类推,则点2022A 的横坐标为_______.【答案】20202【解析】【分析】根据一次函数图像上点的坐标特征和等边三角形的性质及等腰三角形的三线合一性质,得出:点1A 的横坐标为12,点2A 的横坐标为1,点3A 的横坐标为2,点4A 的横坐标为4,找出规律即可求解.【详解】解:过点1A 作1A C x ⊥轴于点C ,点3B 作34B A x ⊥轴交直线l 于点4A , ∵11OA B 是等边三角形,11OA =,∴11111A B OB OA ===, ∴11122OC OB ==, ∴点1A 的横坐标为12,即12-,∵22OA B △是等边三角形,21A B x ⊥轴,11OB =,∴点2A 的横坐标为1,即02,222OA A B =∴212212OB OB ==⨯=,∵33 OA B 是等边三角形,32A B x ⊥轴,∴点3A 的横坐标为2,即12,333OA A B =∴322224OB OB ==⨯=,∵44 OA B 是等边三角形,43A B x ⊥轴,∴点4A 的横坐标为4,即22,以此类推,点n A 的横坐标为22n -,∴当2022n =时,点2022A 的横坐标为20202.故答案为:20202【点睛】本题考查一次函数图像上点的坐标特征,等边三角形的性质,等腰三角形的三线合一性质.解题的关键是找出点n A 的横坐标的变化规律.三、解答题(本题共78分,把解答或证明过程写在答题卡的相应区域内,写在其他区域不得分.)15. 计算:()1014cos 452022π2-⎛⎫+︒- ⎪⎝⎭. 【答案】3【解析】【分析】先计算乘方和化简二次根式,并把特殊三角函数值代入,再合并同类二次根式,即可求解.【详解】解:原式+1+1=3.【点睛】本题考查实数的混合运算,熟练掌握负整指数幂与零指数幂运算法则,熟记特殊角三角函数值是解题的关键.16. 解不等式组()3122,321,32x x x x ⎧-≤-⎪⎨+++>⎪⎩①②并将其解集在数轴上表示出来.【答案】x ≤1,图见解析【解析】【分析】先分别求出不等式组中每一个不等式解集,再求出其公共解集即可求解,然后把解集用数轴表示出来即可.【详解】解:解①得:x ≤1,解②得:x <6,∴x ≤1,解集在数轴上表示为:【点睛】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.也考查了用数轴表示不等式的解集.17. 如图,在Rt ABC 中,90ABC ∠=︒,E 是边AC 上一点,且BE BC =,过点A 作BE 的垂线,交BE 的延长线于点D ,求证:ADE ABC △△∽.【答案】见解析【解析】【分析】先根据等腰三角形的性质得∠C =∠BEC ,又由对顶角相等可证得∠AED =∠C ,再由∠D =∠ABC =90°,即可得出结论.【详解】证明:∵BE BC =∴∠C =∠BEC ,∵∠BEC =∠AED ,∴∠AED =∠C ,∵AD ⊥BD ,∴∠D =90°,∵90ABC ∠=︒,∴∠D =∠ABC ,∴ADE ABC △△∽.【点睛】本题考查等腰三角形的性质,相似三角形的判定,熟练掌握等腰三角形的性质和相似三角形的判定定理是解题的关键.18. 荷泽某超市计划更换安全性更高的手扶电梯,如图,把电梯坡面的坡角由原来的37°减至30°,已知原电梯坡面AB 的长为8米,更换后的电梯坡面为AD ,点B 延伸至点D ,求BD 的长.(结果精确到0.1米.参考数据:sin 370.60,cos370.80,tan 37 1.73≈≈≈≈︒︒︒)【答案】约为1.9米【解析】【分析】根据正弦的定义求出AC ,根据余弦的定义求出BC ,根据正切的定义求出CD ,结合图形计算,得到答案.【详解】解:在Rt △ABC 中,AB =8米,∠ABC =37°,则AC =AB •sin ∠ABC ≈8×0.60=4.8(米),BC =AB •cos ∠ABC ≈8×0.80=6.40(米),在Rt △ADC 中,∠ADC =30°,则CD= 4.8tan tan 30AC ADC ==∠︒≈8.30(米), ∴BD =CD -BC =8.30-6.40≈1.9(米),答:BD 的长约为1.9米.【点睛】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义是解题的关键.19. 某健身器材店计划购买一批篮球和排球,已知每个篮球进价是每个排球进价的1.5倍,若用3600元购进篮球的数量比用3200元购进排球的数量少10个.(1)篮球、排球的进价分别为每个多少元(2)该健身器材店决定用不多于28000元购进篮球和排球共300个进行销售,最多可以购买多少个篮球?【答案】(1)每个篮球的进价为120元,每个排球的进价为80元.(2)100个【解析】【分析】(1)设每个排球的进价为x 元,则每个篮球的进价为1.5x 元,根据“用3600元购进篮球的数量比用3200元购进排球的数量少10个”得到方程;即可解得结果;(2)设健身器材店可以购进篮球a 个,则购进排球(300﹣a )个,根据题意得不等式组即可得到结果.【小问1详解】设每个排球的进价为x 元,则每个篮球的进价为1.5x 元 根据题意得36003200101.5x x=-. 解得x =80.经检验x =80是原分式方程的解.∴1.5x =120(元).∴篮球的进价为120元,排球的进价为80元答:每个篮球的进价为120元,每个排球的进价为80元.【小问2详解】设该体育用品商店可以购进篮球a 个,则购进排球(300﹣a )个,根据题意,得120a +80(300﹣a )≤28000.解得a ≤100.答:该健身器材店最多可以购进篮球100个.【点睛】本题考查了一元一次不等式的应用,分式方程的应用,找准数量关系是解题的关键.20. 如图,在平面直角坐标系xOy 中,一次函数y ax b =+的图象与反比例函数k y x=的图象都经过()()2,44,A B m --、两点.(1)求反比例函数和一次函数的表达式;(2)过O 、A 两点的直线与反比例函数图象交于另一点C ,连接BC ,求ABC 的面积.【答案】(1)反比例函数的表达式为8y x=-;一次函数的表达式为2y x =-- (2)12【解析】 【分析】(1)由点A 的坐标利用反比例函数图象上点的坐标特征即可求出k 值,从而得出反比例函数表达式,再由点B 的坐标和反比例函数表达式即可求出m 值,结合点A 、B 的坐标利用待定系数法即可求出一次函数表达式;(2)利用分解图形求面积法,利用ABC ACD BCD S S S ∆∆∆=+,求面积即可.【小问1详解】将A (2,-4)代入k y x=得到24k -=,即:8k =-. ∴反比例函数的表达式为:8y x =-. 将B (-4,m )代入8y x=-,得:824m =-=-, ()4,2B ∴-,将A ,B 代入y ax b =+,得:2442a b a b +=-⎧⎨-+=⎩,解得:12a b =-⎧⎨=-⎩∴一次函数的表达式为:2y x =--.【小问2详解】设AB 交x 轴于点D ,连接CD ,过点A 作AE ⊥CD 交CD 延长线于点E ,作BF ⊥CD 交CD 于点F .令20y x =--=,则2x =-,∴点D 的坐标为(-2,0),∵过O 、A 两点的直线与反比例函数图象交于另一点C ,∴A (2,-4)关于原点的对称性点C 坐标:(-2,4),∴点C 、点D 横坐标相同,∴CD ∥y 轴,∴ABC ACD BCD S S S ∆∆∆=+1122CD AE CD BF =⋅+⋅ ()12CD AE BF =⋅+ 12A B CD x x =⋅- 1462=⨯⨯ =12.【点睛】本题考查了反比例函数与一次函数的交点坐标、反比例函数图象上点的坐标特征以及待定系数法求函数解析式,解题的关键是:(1)利用待定系数法求函数表达式;(2)利用分割图形求面积法求出△AOB 的面积.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标利用待定系数法求出函数解析式是关键.21. 为提高学生的综合素养,某校开设了四个兴趣小组,A “健美操”、B “跳绳”、C “剪纸”、D “书法”为了了解学生对每个兴趣小组的喜爱情况,随机抽取了部分同学进行调查,并将调查结果绘制出上面不完整的统计图,请结合图中的信息解答下列问题:(1)本次共调查了______名学生;并将条形统计图补充完整;(2)C 组所对应的扇形圆心角为_______度;(3)若该校共有学生1400人,则估计该校喜欢跳绳的学生人数约是__________;(4)现选出了4名跳绳成绩最好的学生,其中有1名男生和3名女生.要从这4名学生中任意抽取2名学生去参加比赛,请用列表法或画树状图法,求刚好抽到1名男生与1名女生的概率.【答案】(1)40,图见解析(2)72(3)560(4)12【解析】【分析】(1)由A组人数及其所占百分比可得总人数,总人数减去A、B、D人数求出C 组人数即可补全图形;(2)用360°乘以C组人数所占比例即可;(3)总人数乘以样本中B组人数所占比例即可;(4)画树状图,共有12种等可能的结果,其中选出的2名学生恰好为一名男生、一名女生的结果有6种,再由概率公式求解即可.【小问1详解】÷=(名),本次调查总人数为410%40---=(名),C组人数为40416128补全图形如下:故答案为:40;【小问2详解】836072⨯︒=︒,40故答案为:72;【小问3详解】161400560⨯=(人),40故答案为:560;【小问4详解】画树状图如下:共有12种等可能的结果,其中选出的2名学生恰好是1名男生与1名女生的结果共有6种,∴选出的2名学生恰好是1名男生与1名女生的概率为61122=. 【点睛】本题考查了条形统计图和扇形统计图,用样本估计总体及用列表法或树状图法求概率,准确理解题意,熟练掌握知识点是解题的关键.22. 如图,在ABC 中,以AB 为直径作O 交AC 、BC 于点D 、E ,且D 是AC 的中点,过点D 作DG BC ⊥于点G ,交BA 的延长线于点H .(1)求证:直线HG 是O 的切线;(2)若23,cos 5HA B ==,求CG 的长. 【答案】(1)见解析(2)65【解析】 【分析】(1)连接OD ,利用三角形中位线的定义和性质可得∥OD BC ,再利用平行线的性质即可证明;(2)先通过平行线的性质得出HBG HOD ∠=∠,设OD OA OB r ===,再通过解直角三角形求出半径长度,再利用三角形中位线定理和相似三角形的判定和性质分别求出BC ,BG 的长度,即可求解.【小问1详解】连接OD ,DG BC ⊥ ,90BGH ∴∠=︒,∵D 是AC 的中点,AB 为直径,OD BC ∴∥,90BGH ODH ∴∠=∠=︒,∴直线HG 是O 的切线;【小问2详解】由(1)得∥OD BC ,∴HBG HOD ∠=∠,2cos 5HBG ∠=, 2cos 5HOD ∴∠=, 设OD OA OB r ===,3HA = ,3OH r ∴=+,在Rt HOD 中,90HDO ∠=︒,2cos 35OD r HOD OH r ∴∠===+, 解得2r =, ∴2,5,7OD OA OB OH BH =====,∵D 是AC 的中点,AB 为直径,24BC OD ∴==,90BGH ODH ∠=∠=︒ ,ODH BGH ∴ ,OH OD BH BG ∴=,即527BG=, 145BG ∴=, 146455CG BC BG ∴=-=-=. 【点睛】本题考查了切线的判定,三角形中位线的性质,平行线的判定和性质,相似三角形的判定和性质及解直角三角形,熟练掌握知识点是解题的关键.23. 如图1,在ABC 中,45,ABC AD BC ∠=︒⊥于点D ,在DA 上取点E ,使DE DC =,连接BE 、CE .(1)直接写出CE 与AB 的位置关系;(2)如图2,将BED 绕点D 旋转,得到B E D ''△(点B ',E '分别与点B ,E 对应),连接CE AB ''、,在BED 旋转的过程中CE '与AB '的位置关系与(1)中的CE 与AB 的位置关系是否一致?请说明理由;(3)如图3,当BED 绕点D 顺时针旋转30°时,射线CE '与AD 、AB '分别交于点G 、F ,若,CG FG DC ==,求AB '的长.【答案】(1)CE ⊥AB ,理由见解析(2)一致,理由见解析(3)【解析】【分析】(1)由等腰直角三角形的性质可得∠ABC =∠DAB =45°,∠DCE =∠DEC =∠AEH =45°,可得结论;(2)通过证明ADB CDE ''≅ ,可得DAB DCE ''∠=∠,由余角的性质可得结论;(3)由等腰直角的性质和直角三角形的性质可得AB '=,即可求解.【小问1详解】如图,延长CE 交AB 于H ,∵∠ABC =45°,AD ⊥BC ,∴∠ADC =∠ADB =90°,∠ABC =∠DAB =45°,∵DE =CD ,∴∠DCE =∠DEC =∠AEH =45°,∴∠BHC =∠BAD +∠AEH =90°,∴CE ⊥AB ;【小问2详解】在BED 旋转的过程中CE '与AB '的位置关系与(1)中的CE 与AB 的位置关系是一致的,理由如下:如图2,延长CE '交AB '于H ,由旋转可得:CD =DE ',B D '=AD ,∵∠ADC =∠ADB =90°,∴CDE ADB ''∠=∠, ∵1CD AD DE DB =='', ∴ADB CDE '' ,DAB DCE ''∴∠=∠,∵DCE '∠+∠DGC =90°,∠DGC =∠AGH ,∴∠DA B '+∠AGH =90°,∴∠AHC =90°,CE AB ''∴⊥;【小问3详解】如图3,过点D 作DH AB '⊥于点H ,∵△BED 绕点D 顺时针旋转30°,∴30,BDB BD BD AD ''∠=︒==,120,30ADB DAB AB D '''∴∠=︒∠=∠=︒,,DH AB AD B D ''⊥= ,∴AD =2DH ,AH =B H ',AB '∴=,由(2)可知:ADB CDE '' ,30DAB DCE ''∴∠=∠=︒,∵AD ⊥BC ,CD∴DG =1,CG =2DG =2,∴CG =FG =2,30,DAB DH AB ''∠=︒⊥ ,∴AG =2GF =4,∴AD =AG +DG =4+1=5,∴AB =='【点睛】本题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,旋转的性质,相似三角形的判定和性质等知识,证明三角形相似是解题的关键.24. 如图,抛物线2(0)y ax bx c a =++≠与x 轴交于()()2,08,0A B -、两点,与y 轴交于点()0,4C ,连接AC 、BC .(1)求抛物线的表达式;(2)将ABC 沿AC 所在直线折叠,得到ADC ,点B 的对应点为D ,直接写出点D 的坐标.并求出四边形OADC 的面积;(3)点P 是抛物线上的一动点,当PCB ABC ∠=∠时,求点P 的坐标.【答案】(1)213442y x x =-++ (2)()8,8,24D -(3)()6,4P 或34100,39⎛⎫-⎪⎝⎭ 【解析】 【分析】(1)直接利用待定系数法求抛物线解析式即可;(2)先利用勾股定理的逆定理证明ABC 为直角三角形,再根据折叠的性质得出点B 、C 、D 三点共线,继而通过证明DBE CBO ,利用相似三角形的性质即可得出点D 的坐标,根据四边形OADC 的面积ADC AOC ABC AOC S S S S =+=+ 进行求解即可; (3)分两种情况讨论:当点P 在x 轴上方时,当点P 在x 轴下方时,分别求解即可.【小问1详解】将()2,0A -,()8,0B ,()0,4C 代入抛物线2(0)y ax bx c a =++≠,得04206484a b c a b c c =-+⎧⎪=++⎨⎪=⎩,解得14324a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩, 所以,抛物线表达式为213442y x x =-++; 【小问2详解】如图,过点D 作DE ⊥x 轴于E , 90DEB COB ∴∠=∠=︒,的∵()2,0A -,()8,0B ,()0,4C ,10,8,4,2AB AC BC OB OC OA ∴========, 222AB AC BC =+ ,ABC ∴ 直角三角形且90ACB ∠=︒,将ABC 沿AC 所在直线折叠,得到ADC ,点B 的对应点为D ,此时,点B 、C 、D 三点共线,BC =DC ,ABC ADC S S =△△,DBE CBO ∠=∠ ,DBE CBO ∴ ,2DB DE BE CB OC BO∴===, 8,28OB OE DE OC ∴====,()8,8D ∴-,∴四边形OADC 的面积111124242222ADC AOC ABC AOC S S S S AC BC OA OC =+=+=⋅⋅+⋅⋅=⨯+⨯⨯= ;【小问3详解】为当点P 在x 轴上方时,∵PCB ABC ∠=∠,∴CP x ∥轴,∴点P 的纵坐标为4,即2134442x x =-++, 解得6x =或0(舍去) ()6,4P ∴;当点P 在x 轴下方时,设直线CP 交x 轴于F ,∵PCB ABC ∠=∠,∴CF BF =,设OF t =,则8CF BF t ==-,在Rt COF 中,由勾股定理得222OC OF CF +=,即()22248t t +=-,解得3t =, ()3,0F ∴,()0,4C ,∴设直线CF 解析式为4y kx =+,即034k =+,解得43k =-, ∴直线CF 的解析式为443y x =-+, 令241344342x x x -+=-++,解得343x =或0(舍去),的当343x =时,2134334100443239y ⎛⎫=-⨯+⨯+=- ⎪⎝⎭ 34100,39P ⎛⎫∴- ⎪⎝⎭; 综上,()6,4P 或34100,39⎛⎫- ⎪⎝⎭. 【点睛】本题考查了二次函数的综合题目,涉及待定系数法求二次函数解析式,勾股定理的逆定理,折叠的性质,相似三角形的判定和性质,求一次函数的解析式,等腰三角形的性质等知识,熟练掌握知识点并能够灵活运用是解题的关键。
2012年全国中考数学试题分类精编--二次根式

2012年全国各地中考数学试题精编-----二次根式一、选择题 1.(2012•烟台)的值是( ) A .4 B .2 C .﹣2 D .±2 2.(2012菏泽)在算式()□()的□中填上运算符号,使结果最大,这个运算符号是( )A .加号B .减号C .乘号D .除号3.(2012义乌)一个正方形的面积是15,估计它的边长大小在( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间 4.(2012•杭州)已知m=,则有( )A .5<m <6B .4<m <5C .﹣5<m <﹣4D .﹣6<m <﹣5 5.(2012泰安)下列运算正确的是( ) A5=- B .21()164--= C .632x x x ÷= D .325()x x =6. (2012南充)下列计算正确的是( ) (A )x 3+ x 3=x 6 (B )m 2·m 3=m 6 (C )3-2=3 (D )14×7=727. (2012南充)在函数y =2121--x x 中,x 的取值范围是( )A . x ≠ 21 B .x ≤21 C .x ﹤21 D .x ≥218.(2012•资阳)下列计算或化简正确的是( ) A . a 2+a 3=a 5B .C .D .9.(2012•德州)下列运算正确的是( ) A .B . (﹣3)2=﹣9C . 2﹣3=8D . 20=010.(2012•湘潭)下列函数中,自变量x 的取值范围是x ≥3的是( ) A . y=B . y=C . y =x ﹣3D . y =11.(2012•德阳)使代数式有意义的x 的取值范围是( ) A . x ≥0B .C .x ≥0且D . 一切实数12.(2012•黔东南州)下列等式一定成立的是( )=913. (2012湖北)若与|x ﹣y ﹣3|互为相反数,则x +y 的值为( )A .3 B .9 C .12 D .2714.(2012攀枝花)已知实数x,y 满足,则以x ,y 的值为两边长的等腰三角形的周长是( )A . 20或16 B . 20 C .16D . 以上答案均不对二、填空题1.(2012广东)若x ,y 为实数,且满足|x ﹣3|+=0,则()2012的值是 .2.(2012•杭州)已知(a ﹣)<0,若b =2﹣a ,则b 的取值范围是 . 3.(2012•梅州)使式子有意义的最小整数m 是 .4.(2012•德阳)有下列计算:①(m 2)3=m 6,②,③m 6÷m 2=m 3,④,⑤,其中正确的运算有 ①④⑤ .5.(2012•恩施州)2的平方根是 .6.(2012江西)当x =﹣4时,的值是 .7.(2012福州)若20n 是整数,则正整数n 的最小值为________________.三、解答题 1.(2012•扬州)计算:-(-1)2+(-2012)0 2.(2012•连云港)计算:-(-)0+(-1)2012.3.(2012上海).(2)241221348+⨯-÷5. 计算:(1)1231)7()2(|2|-⎪⎭⎫ ⎝⎛--+-+-π; 计算:9-(-1 5)0+(-1)2012.6、(苏州2012,21,5分)先化简,再求值:222441112a aa a a a -+++∙---,其中7、(广州2012,20,10分)8、(襄阳2012,18,6分)先化简,再求值:2222211()()b aab ba a abaab-+÷+⋅+-,其中a b ==()的值。
菏泽市二○一二年初中学业水平考试数学试题、答案
菏泽市二○一二年初中学业水平考试数 学 试 题注意事项:.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中选择题分,非选择题分,满分分.考试时间分钟..选择题选出答案后,用铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效..数学考试不允许使用计算器,考试结束后,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共分)一、选择题(本大题共个小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的.).点在平面直角坐标系中所在的象限是 ( ).第一象限.第二象限.第三象限.第四象限 .在算式的中填上运算符号,使结果最大,这个运算符号是( ).加号 .减号 .乘号 .除号.如果用□表示个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由个立方体叠成的几何体,从正前方观察,可画出的平面图形是 ().已知是二元一次方程组的解,则的算术平方根为().±.. ..下列图形中是中心对称图形是 ( ).反比例函数的两个点为、,且,则下式关系成立的是( ) .. ..不能确定.我市今年月某日部分区县的最高气温如下表: 区县牡丹东明 鄄城 郓城 巨野 定陶 开发曹县 成武 单县ABCD....区区 最高气温(℃)则这个区县该日最高气温的众数和中位数分别是 ( ).....已知二次函数的图像如图所示,那么一次函数和反比例函数在同一平面直角坐标系中的图像大致是 ( )菏泽市二○一二年初中学业水平考试数 学 试 题 第Ⅱ卷(非选择题 共分)注意事项:.第Ⅱ卷共页,用蓝黑钢笔或圆珠笔直接答在试卷上. .答卷前将密封线内的项目填写清楚.二、填空题(本大题共个小题,每小题分,共分.把答案填在题中的横线上.) .已知线段,在直线上画线段,使它等于,则线段..若不等式组的解集是,则的取值范围是..如图,,是⊙是切线,,为切点,是 ⊙的直径,若∠ °,则∠度..口袋内装有大小、质量和材质都相同的红色号、红色号、黄色号、黄色号、黄色号的个小球,从中摸出两球,这两球都是红色的概率是..将个数排成行、列,两边各加一条竖直线记成,定义,上述记号就叫做阶行列式.若,则.、一个自然数的立方,可以分裂成若干个连续奇数的和.例如:,和分别可以按如图所示的方式“分裂”成个、个和个连续奇数的和,即;;....;……;若也按照此规律来进行“分裂”,则“分裂”出的奇数中,最大的奇数是.三、解答题(本大题共个小题,共分.解答应写出文字说明、证明过程或演算步骤.).(本题分,每题分)()先化简,再求代数式的值.,其中.()解方程:..(本题分,每题分)()如图,∠=∠,请补充一个条件:,使△∽△.()如图,是一张放在平面直角坐标系中的矩形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,.在边上取一点,将纸片沿翻折,使点落在边上的点处,求两点的坐标;.(本题分,每题分)()如图,一次函数的图像分别与轴、轴交于点、,以线段为边在第一象限内作等腰,.求过、两点直线的解析式.()我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多元,用元购进的科普书与用元购进的文学书本数相等.今年文学书和科普书的单价和去年相比保持不变,该校打算用元再购进一批文学书和科普书,问购进文学书本后至多还能购进多少本科普书?.(本题分)如图,在边长为的小正方形组成的网格中,△和△的顶点都在格点上,,,,,是△边上的个格点,请按要求完成下列各题:()试证明三角形△为直角三角形;()判断△和△是否相似,并说明理由;()画一个三角形,使它的三个顶点为,,,,中的个格点并且与△相似(要求:用尺规作图,保留痕迹,不写作法与证明)..(本题分)某中学举行数学知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图.根据图中所给出的信息解答下列问题:()二等奖所占的比例是多少?()这次数学知识竞赛获得二等奖的人数是多少? ()请讲条形统计图补充完整;()若给所有参赛学生每人发一张卡片,各自写上自己的名字,然后把卡片放入一个不透明的袋子里,摇匀后任意摸出一张,求摸出的卡片上是写有一等奖学生名字的概率..(本题分) 牡丹花会前夕,我市某工艺厂设计了一款成本为元件的工艺品投放市场进行试销.经过调查,得到如下数据:()把上表中、的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想与的函数关系,并求出函数关系式;()当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润销售总价成本总价)()菏泽市物价部门规定,该工艺品销售单价最高不能..超过元件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?.(本题分)如图,在平面直角坐标系中放置一直角三角板,其顶点为,将此三角板绕原点逆时针旋转,得到.()一抛物线经过点、、,求该抛物线的解析式;()设点是在第一象限内抛物线上的一动点,是否存在点,使四边形的面积是面积的倍?若存在,请求出点的坐标;若不存在,请说明理由. ()在()的条件下,试指出四边形是哪种形状的四边形?并写出四边形的两条性质.销售单价(元∕件)…… ……每天销售量(件)…… ……一等奖二等奖 三等奖纪念奖人数(人) 奖项 一等奖 二等奖 三等奖 纪念奖菏泽市二○一二年初中学业水平考试数学试题参考答案及评分标准阅卷须知:. 为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.. 若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.. 评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、选择题(本大题共个小题,每小题分,共分.)题号答案二、填空题(本大题共个小题,每小题分,共分.). ; . ≤; . °;. ; . ;. .三、解答题(本大题共个小题,共分.).解:()原式.分当=°时,分原式.分() 原方程可化为分解得分.()分理由(略)分()解:()依题意可知,折痕是四边形的对称轴,在中,,,,. 分在中,,又,,分.()解:.()依题意得:,分解之得:,经检验是方程的解,并且符合题意.分所以,去年购进的文学书和科普书的单价分别是元和元分②设购进文学书本后至多还能购进本科普书.依题意得,解得,由题意取最大整数解,.所以,至多还能够进本科普书分.解:()根据勾股定理,得,,;显然有,根据勾股定理的逆定理得△为直角三角形(1)△和△相似.根据勾股定理,得,,,,.,∴△∽△.()如图:△..解:()由℅℅℅℅,所以二等奖所占的比例为℅()……()略()÷.解:()画图如右图:由图可猜想与是一次函数关系,设这个一次函数为,这个一次函数的图象经过、这两点,,解得,函数关系式是分()设工艺厂试销该工艺品每天获得的利润是元,依题意得:,当时,有最大值分()对于函数,当时,的值随着值的增大而增大,销售单价定为元∕件时,工艺厂试销该工艺品每天获得的利润最大分.解:()是由绕原点逆时针旋转得到的,又,分设抛物线的解析式为,抛物线经过点、、,,解之得,满足条件的抛物线的解析式为分()为第一象限内抛物线上的一动点,设,则,点坐标满足.连结,分假设四边形的面积是面积的倍,则,即,解之得,此时,即分存在点,使四边形的面积是面积的倍分()四边形为等腰梯形,答案不唯一,下面性质中的任意个均可.①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等分或用符号表示:①或;②;③;④分·。
2024年山东菏泽中考数学试题及答案
2024年山东菏泽中考数学试题及答案本试卷共8页.满分120分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号和座号填写在答题卡规定的位置上,并在本页上方空白处写上姓名和准考证号.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1. 下列实数中,平方最大的数是( )A. 3B. 12C. 1-D. 2-2. 用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形是( )A.B. C. D.3. 2023年山东省扎实落实民生实事,全年新增城乡公益性岗位61.9万个,将61.9万用科学记数法表示应为( )A. 30.61910´B. 461.910´C. 56.1910´D. 66.1910´4. 下列几何体中,主视图是如图的是( )的A. B. C. D.5. 下列运算正确的是( )A. 437a a a += B. ()2211a a -=-C. ()2332a ba b = D. ()2212a a a a +=+6.为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( )A. 200B. 300C. 400D. 5007.如图,已知AB ,BC ,CD 是正n 边形三条边,在同一平面内,以BC 为边在该正n 边形的外部作正方形BCMN .若120ABN Ð=°,则n 的值为( )A. 12B. 10C. 8D. 68. 某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( )A 19 B. 29 C. 13 D. 239. 如图,点E 为ABCD Y 的对角线AC 上一点,5AC =,1CE =,连接DE 并延长至点F ,使得EF DE =,连接BF ,则BF 为( )A. 52 B.3 C. 72 D. 410. 根据以下对话,的.给出下列三个结论:①1班学生的最高身高为180cm ;②1班学生的最低身高小于150cm ;③2班学生的最高身高大于或等于170cm .上述结论中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③二、填空题:本题共6小题,每小题3分,共18分.11. 因式分解:22x y xy +=________.12. 写出满足不等式组21215x x +³ìí-<î的一个整数解________.13. 若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为________.14. 如图,ABC V 是O e 的内接三角形,若OA CB ∥,25ACB Ð=°,则CAB Ð=________.15.如图,已知MAN Ð,以点A 为圆心,以适当长为半径作弧,分别与AM 、AN 相交于点B ,C ;分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧在MAN Ð内部相交于点P ,作射线AP .分别以A ,B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点D ,E ,作直线DE 分别与AB ,AP 相交于点F ,Q .若4AB =,67.5PQE Ð=°,则F 到AN 的距离为________.16.任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy 中,将点(),x y 中的x ,y 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x ,y 均为正整数.例如,点()6,3经过第1次运算得到点()3,10,经过第2次运算得到点()10,5,以此类推.则点()1,4经过2024次运算后得到点________.三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.17. (11122-æö+--ç÷èø;(2)先化简,再求值:212139a a a +æö-¸ç÷+-èø,其中1a =.18. 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及ÐPAB 和PBA Ð,测量三次取平均值,得到数据:60AB =米,79PAB Ð=°,64PBA Ð=°.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90°»,sin790.98°»,cos790.19°»,sin370.60°»,tan370.75°»)【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案:如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP Ð=Ð,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号)①解直角三角形 ②三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.19.某学校开展了“校园科技节”活动,活动包含模型设计、科技小论文两个项目.为了解学生的模型设计水x 表示),并将其分成如下四组:6070x £<,7080x £<,8090x £<,90100x ££.下面给出了部分信息:8090x £<的成绩为:81,81,82,82,83,83,84,84,84,85,86,86,86,87,88,88,88,89,89,89.根据以上信息解决下列问题:(1)请补全频数分布直方图;(2)所抽取学生模型设计成绩的中位数是________分;的(3)请估计全校1000名学生的模型设计成绩不低于80分的人数;(4)根据活动要求,学校将模型设计成绩、科技小论文成绩按3:2的比例确定这次活动各人的综合成绩.某班甲、乙两位学生的模型设计成绩与科技小论文成绩(单位:分)如下:模型设计科技小论文甲的成绩9490乙的成绩9095通过计算,甲、乙哪位学生的综合成绩更高?20.列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与k y x=部分自变量与函数值的对应关系:(1)求a 、b 的值,并补全表格;(2)结合表格,当2y x b =+图像在k y x=的图像上方时,直接写出x 的取值范围.21. 如图,在四边形ABCD 中,AD BC ∥,60DAB Ð=°,22AB BC AD ===.以点A 为圆心,以AD 为半径作»DE交AB 于点E ,以点B 为圆心,以BE 为半径作»E F 所交BC 于点F ,连接FD 交»E F 于另一点G ,连接CG .的(1)求证:CG 为»EF 所在圆的切线;(2)求图中阴影部分面积.(结果保留p )22. 一副三角板分别记作ABC V 和DEF V ,其中90ABC DEF Ð=Ð=°,45BAC Ð=°,30EDF Ð=°,AC DE =.作BM AC ^于点M ,EN DF ^于点N ,如图1.(1)求证:BM EN =;(2)在同一平面内,将图1中的两个三角形按如图2所示的方式放置,点C 与点E 重合记为C ,点A 与点D 重合,将图2中的DCF V 绕C 按顺时针方向旋转a 后,延长BM 交直线DF 于点P .①当30a =°时,如图3,求证:四边形CNPM 为正方形;②当3060a °<<°时,写出线段MP ,DP ,CD 的数量关系,并证明;当60120a °<<°时,直接写出线段MP ,DP ,CD 的数量关系.23.在平面直角坐标系xOy 中,点()2,3P -在二次函数()230y ax bx a =+->的图像上,记该二次函数图像的对称轴为直线x m =.(1)求m 的值;(2)若点(),4Q m -在23y ax bx =+-的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ££时,求新的二次函数的最大值与最小值的和;(3)设23y ax bx =+-的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <-<,求a 的取值范围.参考答案本试卷共8页.满分120分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号和座号填写在答题卡规定的位置上,并在本页上方空白处写上姓名和准考证号.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】C【9题答案】【答案】B【10题答案】【答案】D二、填空题:本题共6小题,每小题3分,共18分.【11题答案】【答案】()2xy x +【12题答案】【答案】1-(答案不唯一)【13题答案】【答案】14##0.25【14题答案】【答案】40°##40度【15题答案】【16题答案】【答案】()2,1三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.【17题答案】【答案】(1)3 (2)3a - 2-【18题答案】【答案】(1)A ,P 两点间的距离为89.8米;(2)②【19题答案】【答案】(1)画图见解析(2)83(3)600人(4)甲的综合成绩比乙高.【20题答案】【答案】(1)25a b =-ìí=î,补全表格见解析 (2)x 的取值范围为702x -<<或1x >;【21题答案】【答案】(1)见解析 (23p -【22题答案】【答案】(1)证明见解析(2)①证明见解析;②当3060a °<<°时,线段MP ,DP ,CD 的数量关系为DP MP CD +=;当60120a °<<°时,线段MP ,DP ,CD 的数量关系为MP DP CD -=;【23题答案】【答案】(1)1m =(2)新的二次函数的最大值与最小值的和为11;(3)318a <<2024年山东菏泽中考数学试题及答案本试卷共8页.满分120分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号和座号填写在答题卡规定的位置上,并在本页上方空白处写上姓名和准考证号.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1. 下列实数中,平方最大的数是( )A. 3B. 12C. 1-D. 2-2. 用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形是( )A.B. C. D.3. 2023年山东省扎实落实民生实事,全年新增城乡公益性岗位61.9万个,将61.9万用科学记数法表示应为( )A. 30.61910´B. 461.910´C. 56.1910´D. 66.1910´4. 下列几何体中,主视图是如图的是( )的A. B. C. D.5. 下列运算正确的是( )A. 437a a a += B. ()2211a a -=-C. ()2332a ba b = D. ()2212a a a a +=+6.为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( )A. 200B. 300C. 400D. 5007.如图,已知AB ,BC ,CD 是正n 边形三条边,在同一平面内,以BC 为边在该正n 边形的外部作正方形BCMN .若120ABN Ð=°,则n 的值为( )A. 12B. 10C. 8D. 68. 某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( )A 19 B. 29 C. 13 D. 239. 如图,点E 为ABCD Y 的对角线AC 上一点,5AC =,1CE =,连接DE 并延长至点F ,使得EF DE =,连接BF ,则BF 为( )A. 52 B.3 C. 72 D. 410. 根据以下对话,的.给出下列三个结论:①1班学生的最高身高为180cm ;②1班学生的最低身高小于150cm ;③2班学生的最高身高大于或等于170cm .上述结论中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③二、填空题:本题共6小题,每小题3分,共18分.11. 因式分解:22x y xy +=________.12. 写出满足不等式组21215x x +³ìí-<î的一个整数解________.13. 若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为________.14. 如图,ABC V 是O e 的内接三角形,若OA CB ∥,25ACB Ð=°,则CAB Ð=________.15.如图,已知MAN Ð,以点A 为圆心,以适当长为半径作弧,分别与AM 、AN 相交于点B ,C ;分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧在MAN Ð内部相交于点P ,作射线AP .分别以A ,B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点D ,E ,作直线DE 分别与AB ,AP 相交于点F ,Q .若4AB =,67.5PQE Ð=°,则F 到AN 的距离为________.16.任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy 中,将点(),x y 中的x ,y 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x ,y 均为正整数.例如,点()6,3经过第1次运算得到点()3,10,经过第2次运算得到点()10,5,以此类推.则点()1,4经过2024次运算后得到点________.三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.17. (11122-æö+--ç÷èø;(2)先化简,再求值:212139a a a +æö-¸ç÷+-èø,其中1a =.18. 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及ÐPAB 和PBA Ð,测量三次取平均值,得到数据:60AB =米,79PAB Ð=°,64PBA Ð=°.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90°»,sin790.98°»,cos790.19°»,sin370.60°»,tan370.75°»)【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案:如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP Ð=Ð,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号)①解直角三角形 ②三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.19.某学校开展了“校园科技节”活动,活动包含模型设计、科技小论文两个项目.为了解学生的模型设计水x 表示),并将其分成如下四组:6070x £<,7080x £<,8090x £<,90100x ££.下面给出了部分信息:8090x £<的成绩为:81,81,82,82,83,83,84,84,84,85,86,86,86,87,88,88,88,89,89,89.根据以上信息解决下列问题:(1)请补全频数分布直方图;(2)所抽取学生模型设计成绩的中位数是________分;的(3)请估计全校1000名学生的模型设计成绩不低于80分的人数;(4)根据活动要求,学校将模型设计成绩、科技小论文成绩按3:2的比例确定这次活动各人的综合成绩.某班甲、乙两位学生的模型设计成绩与科技小论文成绩(单位:分)如下:模型设计科技小论文甲的成绩9490乙的成绩9095通过计算,甲、乙哪位学生的综合成绩更高?20.列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与k y x=部分自变量与函数值的对应关系:(1)求a 、b 的值,并补全表格;(2)结合表格,当2y x b =+图像在k y x=的图像上方时,直接写出x 的取值范围.21. 如图,在四边形ABCD 中,AD BC ∥,60DAB Ð=°,22AB BC AD ===.以点A 为圆心,以AD 为半径作»DE交AB 于点E ,以点B 为圆心,以BE 为半径作»E F 所交BC 于点F ,连接FD 交»E F 于另一点G ,连接CG .的(1)求证:CG 为»EF 所在圆的切线;(2)求图中阴影部分面积.(结果保留p )22. 一副三角板分别记作ABC V 和DEF V ,其中90ABC DEF Ð=Ð=°,45BAC Ð=°,30EDF Ð=°,AC DE =.作BM AC ^于点M ,EN DF ^于点N ,如图1.(1)求证:BM EN =;(2)在同一平面内,将图1中的两个三角形按如图2所示的方式放置,点C 与点E 重合记为C ,点A 与点D 重合,将图2中的DCF V 绕C 按顺时针方向旋转a 后,延长BM 交直线DF 于点P .①当30a =°时,如图3,求证:四边形CNPM 为正方形;②当3060a °<<°时,写出线段MP ,DP ,CD 的数量关系,并证明;当60120a °<<°时,直接写出线段MP ,DP ,CD 的数量关系.23.在平面直角坐标系xOy 中,点()2,3P -在二次函数()230y ax bx a =+->的图像上,记该二次函数图像的对称轴为直线x m =.(1)求m 的值;(2)若点(),4Q m -在23y ax bx =+-的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ££时,求新的二次函数的最大值与最小值的和;(3)设23y ax bx =+-的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <-<,求a 的取值范围.参考答案本试卷共8页.满分120分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号和座号填写在答题卡规定的位置上,并在本页上方空白处写上姓名和准考证号.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】C【9题答案】【答案】B【答案】D二、填空题:本题共6小题,每小题3分,共18分.【11题答案】【答案】()2xy x +【12题答案】【答案】1-(答案不唯一)【13题答案】【答案】14##0.25【14题答案】【答案】40°##40度【15题答案】【16题答案】【答案】()2,1三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.【17题答案】【答案】(1)3 (2)3a - 2-【18题答案】【答案】(1)A ,P 两点间的距离为89.8米;(2)②【19题答案】【答案】(1)画图见解析(2)83(3)600人(4)甲的综合成绩比乙高.【20题答案】【答案】(1)25a b =-ìí=î,补全表格见解析 (2)x 的取值范围为702x -<<或1x >;【答案】(1)见解析 (23p -【22题答案】【答案】(1)证明见解析(2)①证明见解析;②当3060a °<<°时,线段MP ,DP ,CD 的数量关系为DP MP CD +=;当60120a °<<°时,线段MP ,DP ,CD 的数量关系为MP DP CD -=;【23题答案】【答案】(1)1m =(2)新的二次函数的最大值与最小值的和为11;(3)318a <<。
2023年菏泽市中考数学试卷附答案
2023年山东省菏泽市中考数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置.)1. 剪纸文化是我国最古老的民间艺术之一,下列剪纸图案中既是轴对称图形又是中心对称图形的是( )A. B. C. D. 2. 下列运算正确的是( )A. 632a a a ÷=B. 235a a a ⋅=C. ()23622a a =D. ()222a b a b +=+ 3. 一把直尺和一个含30︒角的直角三角板按如图方式放置,若120∠=︒,则2∠=( )A. 30︒B. 40︒C. 50︒D. 60︒4. 实数a ,b ,c 在数轴上对应点的位置如图所示,下列式子正确的是( )A. ()0c b a -<B. ()0b c a -<C. ()0a b c ->D. ()0a c b +> 5. 如图所示的几何体是由5个大小相同的小正方体组成的,它的主视图是( )A. B. C. D. 6. 一元二次方程2310x x +-=的两根为12x x ,,则1211+x x 的值为( ) A. 32 B. 3- C. 3 D. 32- 7. ABC ∆的三边长a ,b ,c满足2()|0a b c --=,则ABC ∆是( )A. 等腰三角形B. 直角三角形C. 锐角三角形D. 等腰直角三角形 8. 若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:(1,3),(2,6),(0,0)A B C --等都是三倍点”.在31x -<<的范围内,若二次函数2y x x c =--+的图象上至少存在一个“三倍点”,则c 的取值范围是( ) A. 114c -≤< B. 43c -≤<- C. 154c -<< D. 45c -≤<二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内.)9. 因式分解:24m m -=______.10. 计算:0|2|2sin 602023+︒-=___________.11. 用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为__________.12. 如图,正八边形ABCDEFGH 的边长为4,以顶点A 为圆心,AB 的长为半径画圆,则阴影部分的面积为__________(结果保留π).13. 如图,点E 是正方形ABCD 内的一点,将ABE ∆绕点B 按顺时针方向旋转90︒得到CBF ∆.若55ABE ∠=︒,则EGC ∠=__________度.14. 如图,在四边形ABCD 中,90,5,4,ABC BAD AB AD AD BC ∠=∠=︒==<,点E 在线段BC 上运动,点F 在线段AE 上,ADF BAE =∠∠,则线段BF 的最小值为__________.三、解答题(本题共78分,把解答或证明过程写在答题卡的相应区域内.)15. 解不等式组:()5231,32232x x x x x ⎧-<+⎪⎨--≥+⎪⎩. 16. 先化简,再求值:223x x x x y x y x y ⎛⎫+÷ ⎪-+-⎝⎭,其中x ,y 满足230x y +-=. 17. 如图,在▱ABCD 中,AE 平分BAD ∠,交BC 于点E ;CF 平分BCD ∠,交AD 于点F .求证:AE CF =.18. 无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC ,无人机在空中点P 处,测得点P 距地面上A 点80米,点A 处俯角为60︒,楼顶C 点处的俯角为30︒,已知点A 与大楼的距离AB 为70米(点A ,B ,C ,P 在同一平面内),求大楼的高度BC (结果保留根号)19. 某班学生以跨学科主题学习为载体,综合运用体育,数学,生物学等知识,研究体育课的运动负荷,在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x (次/分钟)分为如下五组:A 组:5075x ≤<,B组:75100x ≤<,C 组:100125x ≤<,D 组:125150x ≤<,E 组:150175x ≤≤.其中,A 组数据为73,65,74,68,74,70,66,56.根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题:(1)A 组数据的中位数是_______,众数是_______;在统计图中B 组所对应的扇形圆心角是_______度; (2)补全学生心率频数分布直方图;(3)一般运动的适宜行为为100150x ≤<(次/分钟),学校共有2300名学生,请你依据此次跨学科项目研究结果,估计大约有多少名学生达到适宜心率?20. 如图,已知坐标轴上两点()()0,4,2,0A B ,连接AB ,过点B 作BC AB ⊥,交反比例函数k y x=在第一象限的图象于点(,1)C a .(1)求反比例函数k y x=和直线OC 的表达式; (2)将直线OC 向上平移32个单位,得到直线l ,求直线l 与反比例函数图象的交点坐标. 21. 某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A ,B 两块(如图所示),花园里种满牡丹和芍药,学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A ,B 两块内分别种植牡丹和芍药,每平方米种植2株,知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?22. 如图,AB 为O 的直径,C 是圆上一点,D 是BC 的中点,弦DE AB ⊥,垂足为点F .(1)求证:BC DE =;(2)P 是⌒AE上一点,6,2AC BF ==,求tan BPC ∠;(3)在(2)的条件下,当CP 是ACB ∠的平分线时,求CP 的长.23. (1)如图1,在矩形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF ⊥,垂足为点G .求证:ADE DCF △∽△.【问题解决】(2)如图2,在正方形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF =,延长BC 到点H ,使CH DE =.连接DH .求证:ADFH ∠=∠.【类比迁移】(3)如图3,在菱形ABCD 中,点E ,F 分别在边DC ,BC 上,11AE DF ==,8DE =,60AED ∠=︒.求CF 的长.24. 已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点()0,4C ,其对称轴为32x =-.(1)求抛物线的表达式;(2)如图1,点D 是线段OC 上的一动点,连接AD BD ,,将ABD △沿直线AD 翻折,得到D AB '∆.当点B '恰好落在抛物线的对称轴上时,求点D 的坐标;(3)如图2,动点P 在直线AC 上方的抛物线上,过点P 作直线AC 的垂线,分别交直线AC ,线段BC 于点E ,F ,过点F 作FG x ⊥轴,垂足为G ,求FG +的最大值.2023年山东省菏泽市中考数学试卷答案一、选择题.1. A2. B3. B4. C5.A6. C7. D解∵2()|0a b c --=又∵()2000a b c ⎧-≥-≥⎪⎩∵()2000a b c ⎧-==-=⎪⎩.∵02300a b a b c ⎧-=⎪--=⎨⎪-=⎩解得33a b c ⎧=⎪=⎨⎪=⎩ .∵222+=a b c ,且a b =.∵ABC 为等腰直角三角形.故选:D .8. D解:由题意可得:三倍点所在的直线为3y x =.在31x -<<的范围内,二次函数2y x x c =--+的图象上至少存在一个“三倍点”.即在31x -<<的范围内,2y x x c =--+和3y x =至少有一个交点.令23x x x c =--+,整理得:240x x c --+=.则()()22444116+40b ac c c ∆---⨯-⨯≥===,解得4c ≥-.x ==.∵12x =-22x =-∵321-<-+<或321-<-<当321-<-<时,13-<<,即03≤<,解得45c -≤<.当321-<-时,31-<<,即01≤<,解得43c -≤<-.综上,c 的取值范围是45c -≤<.故选:D . 二、填空题. 9. ()4-m m10. 1 11. 5912. 6π解:由题意,()821801358HAB -⋅︒∠==︒. 4AH AB ==∵213546360S ππ⋅==阴. 故答案为:6π.13. 80解:∵四边形ABCD 是正方形.∵90ABC ∠=︒.∵55ABE ∠=︒. ∵905535CBE ∠=︒-︒=︒.∵ABE ∆绕点B 按顺时针方向旋转90︒得到CBF ∆.∵90EBF ∠=︒,BE BF =.∵45BEF ∠=︒.∵EGC ∠=354580CBE BEF ∠+∠=︒+︒=︒.故答案为:80.14. 2解:设AD 的中点为O ,以AD 为直径画圆,连接OB ,设OB 与O 的交点为点F '.∵90ABC BAD ∠=∠=︒.∵AD BC ∥.∵DAE AEB ∠=∠.∵ADF BAE =∠∠.∵90DFA ABE ==︒∠∠.∵点F 在以AD 为直径的半圆上运动.∵当点F 运动到OB 与O 的交点F '时,线段BF 有最小值. ∵4=AD . ∵122AO OF AD '===.∵BO ==BF 2.2.三、解答题. 15. 23x ≤ 16. 42x y +,617. 证明:∵四边形ABCD 是平行四边形.∵B D ∠=∠,AB CD =,BAD DCB ∠=∠,AD BC ∥.∵AE 平分BAD ∠,CF 平分BCD ∠.∵BAE DAE BCF DCF ∠=∠=∠=∠.在BAE 和DCF 中.B D AB CDBAE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∵()ASA BAE DCF ≌∵AE CF =.18. 大楼的高度BC为. 解:如图,过P 作PH AB ⊥于H ,过C 作CQ PH ⊥于Q ,而CB AB ⊥.则四边形CQHB 是矩形.∵QH BC =,BH CQ =.由题意可得:80AP =,60PAH ∠=︒,30PCQ ∠=︒,70AB =.∵sin 6080PH AP =︒==cos6040AH AP =︒=. ∵704030CQ BH ==-=.∵tan 30PQ CQ =︒=∵BC QH === ∵大楼的高度BC为. 19. (1)69,74,54;(2)见解析(3)大约有1725名学生达到适宜心率.【小问1详解】将A 组数据从小到大排列为:56,65,66,68,70,73,74,74. ∵中位数为6870692+=;∵74出现的次数最多.∵众数是74;88%100÷=.1536054100︒⨯=︒ ∵在统计图中B 组所对应的扇形圆心角是54︒; 故答案为:69,74,54;【小问2详解】10081545230----=∵C 组的人数为30.∵补全学生心率频数分布直方图如下:【小问3详解】304523001725100+⨯=(人).∵大约有1725名学生达到适宜心率. 20.(1)4y x =,14y x =(2)()2,2或18,2⎛⎫-- ⎪⎝⎭【小问1详解】如图,过点C 作CD x ⊥轴于点D .则1CD =,90CDB ∠=︒.∵BC AB ⊥.∵90ABC ∠=︒.∵90ABO CBD ∠+∠=︒.∵90CDB ∠=︒.∵90BCD CBD ∠+∠=︒.∵BCD ABO ∠=∠.∵ABO BCD ∽. ∵OA BDOB CD =.∵()()0,4,2,0A B .∵4OA =,2OB =. ∵421BD=.∵2BD =.∵224OD =+=.∵点()4,1C .将点C 代入ky x =中.可得4k =. ∵4y x =.设OC 的表达式为y mx =.将点()4,1C 代入可得14m =. 解得:14m =.∵OC 的表达式为14y x =;【小问2详解】直线l 的解析式为1342y x =+.当两函数相交时,可得13442x x +=.解得12x =,8x =-,代入反比例函数解析式.得1122x y =⎧⎨=⎩,22812x y =-⎧⎪⎨=-⎪⎩∵直线l 与反比例函数图象的交点坐标为()2,2或18,2⎛⎫-- ⎪⎝⎭21.(1)长为60米,宽为20米时,有最大面积,且最大面积为1200平方米 (2)最多可以购买1400株牡丹【小问1详解】解:设长为x 米,面积为y 平方米,则宽为1203x -米. ∵()221140601200331203y x x x x x =⨯=--+-+=-. ∵当60x =时,y 有最大值是1200. 此时,宽为120203x -=(米) 答:长为60米,宽为20米时,有最大面积,且最大面积为1200平方米.【小问2详解】解:设种植牡丹的面积为a 平方米,则种植芍药的面积为()1200a -平方米. 由题意可得()252152120050000a a ⨯+⨯-≤解得:700a ≤.即牡丹最多种植700平方米.70021400⨯=(株).答:最多可以购买1400株牡丹.22. (1)证明见解析;(2)43(3)【小问1详解】解:∵D 是BC 的中点.∵CD BD =.∵DE AB ⊥且AB 为O 的直径.∵BE BD =.∵⌒BC =⌒DE∵BC DE =;【小问2详解】解:连接OD .∵CD BD =.∵CAB DOB ∠=∠.∵AB 为O 的直径.∵90ACB ∠=︒.∵DE AB ⊥.∵90DFO ∠=︒.∵ACB OFD ∽. ∵AC OFAB OD =.设O 的半径为r . 则622rr r -=.解得=5r ,经检验,=5r 是方程的根.∵210AB r ==.∵8BC ==. ∵84tan 63BCCAB AC ∠===.∵BPC CAB ∠=∠.∵tan BPC ∠43=;【小问3详解】解:如图,过点B 作BG CP ⊥交CP 于点G .∵90BGC BGP ∠=∠=︒∵90ACB ∠=︒,CP 是ACB ∠的平分线.∵45ACP BCP ∠=∠=︒∵45CBG ∠=︒∵cos 45CG BG BC ==︒=∵tan BPC ∠43=∵43BG GP =.∵GP =∵CP ==23. (1)见解析 (2)见解析 (3)3【详解】(1)证明:四边形ABCD 是矩形. 90ADE DCF ∴∠=∠=︒.90CDF DFC ∴∠+∠=︒.AE DF ⊥.90DGE ∴∠=︒.90CDF AED ∴∠+∠=︒.AED DFC ∴∠=∠.ADE DCF ∴△∽△;(2)证明:四边形ABCD 是正方形.AD DC ∴=,AD BC ∥,90ADE DCF ∠=∠=︒. AE DF =.()HL ADE DCF ∴≌.DE CF ∴=.又CH DE =.∴CF CH =.点H 在BC 的延长线上.∴90DCH DCF ∠=∠=︒.DC DC =.()SAS DCF DCH ∴≌.H DFC ∴∠=∠.AD BC ∥.ADF DFC H ∴∠=∠=∠;(3)解:如图,延长BC 到点G ,使8CG DE ==,连接DG .四边形ABCD 是菱形.AD DC ∴=,AD BC ∥.ADE DCG ∴∠=∠.()SAS ADE DCG ∴≌.60DGC AED ∴∠=∠=︒,DG AE =.AE DF =.DG DF ∴=.DFG ∴是等边三角形.11FG FC CG DF ∴=+==.111183FC CG ∴=-=-=.24.( 1)234y x x =--+(2)D ⎛ ⎝ (3)496【小问1详解】解:抛物线与y 轴交于点()0,4C . ∵4c =.∵对称轴为32x =-. ∵322b-=--,3b =-.∵抛物线的解析式为234y x x =--+;【小问2详解】如图,过B '作x 轴的垂线,垂足为H .令2340x x --+=.解得:121,4x x ==-. ∵()4,0A -,()10B ,.∵()145AB =--=.由翻折可得5AB AB '==. ∵对称轴为32x =-. ∵()35422AH =---=.∵52AB AB AH '===.∵30AB H '∠=︒,60B AB '∠=︒ ∵1302DAB B AB '∠=∠=︒.在Rt AOD 中,tan 30OD OA =︒=.∵D ⎛ ⎝;【小问3详解】设BC 所在直线的解析式为111y k x b =+. 把B ,C 坐标代入得:11104k b b +=⎧⎨=⎩. 解得1144k b =-⎧⎨=⎩. ∵144y x =-+.∵OA OC =.∵45CAO ∠=︒.∵90AEB ∠=︒.∵直线PE 与x 轴所成夹角为45︒. 设()2,34P m m m --+. 设PE 所在直线的解析式为:22y x b =-+.把点P 代入得2224b m m =--+.∵2224y x m m =---+. 令12y y =,则24424x x m m -+=---+. 解得223m m x +=. ∵()24243F m m FG y -+==+()()223F P x x m m ==-=-∵()()22422433m mm mFG -+-=++22549326m ⎛⎫=-++ ⎪⎝⎭ ∵点P 在直线AC 上方. ∵40m -<<.∵当52m =-时,FG 的最大值为496.。
2012中考数学试题及答案分类汇编
2012中考数学试题及答案分类汇编:四边形
一、选择题
1. (北京4分)如图,在梯形ABCD中,AD∥BC,对角线
AC,BD相交于点O,若AD=1,BC=3,则的A O
C O
错误!未
找到引用源。
值为
A、1
2
错误!未找到引用源。
B、错误!未找到引用源。
C、错误!
未找到引用源。
D、错误!未找到引用源。
【考点】梯形的性质,相似三角形的判定和性质。
2.(天津3分)如图.将正方形纸片ABCD折叠,使边AB、CB均
落在对角线BD上,得折痕BE、BF,则∠EBF的大小为
(A) 15°(B) 30°(C) 45°(D) 60°
【考点】折叠对称,正方形的性质。
3.(内蒙古包头3分)已知菱形ABCD中,对角线AC与BD
交于点O,∠BAD=120°,AC=4,则该菱形的面积是
A.16 3 B.16 C.8 3 D.8
【考点】菱形的性质,含30°角直角三角形的性质,勾股定理。
4.(内蒙古呼和浩特3分)下列判断正确的有
①顺次连接对角线互相垂直且相等的四边形的各边中点一定构成正方形;
②中心投影的投影线彼此平行;
③在周长为定值的扇形中,当半径为错误!未找到引用源。
时扇形的面积最大;
④相等的角是对顶角的逆命题是真命题.
A、4个
B、3个
C、2个
D、1个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 - 2012年山东省菏泽市中考数学试卷 一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.(2012菏泽)点P(﹣2,1)在平面直角坐标系中所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 考点:点的坐标。 解答:解:点P(﹣2,1)在第二象限. 故选B.
2.(2012菏泽)在算式()□()的□中填上运算符号,使结果最大,这个运算符号是( ) A.加号 B.减号 C.乘号 D.除号 考点:实数的运算;实数大小比较。
解答:解:当填入加号时:()+()=﹣;
当填入减号时:()﹣()=0; 当填入乘号时:()×()=; 当填入除号时:()÷()=1. ∵1>>0>﹣, ∴这个运算符号是除号. 故选D. 3.(2012菏泽)如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )
A. B. C. D. 考点:简单组合体的三视图。 解答:解:从正前方观察,应看到长有三个立方体,且中间的为三个立方体叠加;高为两个立方体,在中间且有两个立方体叠加. 故选B.
4.(2012菏泽)已知12yx是二元一次方程组81mxnynxmy的解,则nm2的算术平方根为( ) A.±2 B.2 C.2 D. 4 考点:二元一次方程组的解;算术平方根。
解答:解:∵12yx是二元一次方程组18mynxnymx的解,
∴2821mnnm, - 2 -
解得:32mn, ∴2m﹣n=4, ∴nm2的算术平方根为2. 故选C. 5.(2012菏泽)下列图形中是中心对称图形是( )
A. B. C. D. 考点:中心对称图形。 解答:解:A、不是中心对称图形,故本选项错误; B、不是中心对称图形,故本选项错误; C、不是中心对称图形,故本选项错误; D、是中心对称图形,故本选项正确. 故选D.
6.(2012菏泽)反比例函数2yx的两个点为11(,)xy、22(,)xy,且12xx,则下式关系成立的是( ) A.12yy B.12yy C.12yy D.不能确定 考点:反比例函数图象上点的坐标特征。
解答:解:反比例函数2yx中,k=2>0, ①两点在同一象限内,y2>y1; ②A,B两点不在同一象限内,y2<y1. 故选D. 7.(2012菏泽)我市今年6月某日部分区县的最高气温如下表: 区县 牡丹区 东明 鄄城 郓城 巨野 定陶 开发区 曹县 成武 单县 最高气温(℃) 32 32 30 32 30 32 32 32 30 29
则这10个区县该日最高气温的众数和中位数分别是( ) A.32,32 B.32,30 C.30,32 D.32,31 考点:众数;中位数。 解答:解:在这一组数据中32是出现次数最多的,故众数是32; 处于这组数据中间位置的数是32、32,那么由中位数的定义可知,这组数据的中位数是32. 故选A.
8.(2012菏泽)已知二次函数2yaxbxc的图像如图所示,那么一次函数ybxc和反比例函数ayx
在同一平面直角坐标系中的图像大致是( )
A. B. C. D. - 3 -
考点:二次函数的图象;一次函数的图象;反比例函数的图象。 解答:解:∵二次函数图象开口向下, ∴a<0,
∵对称轴x=﹣<0, ∴b<0, ∵二次函数图象经过坐标原点, ∴c=0,
∴一次函数y=bx+c过第二四象限且经过原点,反比例函数ayx位于第二四象限, 纵观各选项,只有C选项符合. 故选C. 二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在题中的横线上.) 9.(2012菏泽)已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC= cm. 考点:两点间的距离。 解答:解:根据题意,点C可能在线段BC上,也可能在BC的延长线上. 若点C在线段BC上,则AC=AB﹣BC=8﹣3=5(cm); 若点C在BC的延长线上,则AC=AB+BC=8+3=11(cm). 故答案为 5或11.
10.(2012菏泽)若不等式组3xxm的解集是3x,则m的取值范围是 . 考点:不等式的解集。 解答:解:∵不等式组的解集是3x, ∴m≤3. 故答案为:m≤3. 11.(2012菏泽)如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= 度.
考点:切线的性质。 解答:解:∵PA,PB是⊙O是切线, ∴PA=PB,又∠P=46°,
∴∠PAB=∠PBA==67°, 又PA是⊙O是切线,AO为半径, ∴OA⊥AP, ∴∠OAP=90°, ∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=23°. 故答案为:23 12.(2012菏泽)口袋内装有大小、质量和材质都相同的红色1号、红色2号、黄色1号、黄色2号、黄色3号的5个小球,从中摸出两球,这两球都是红色的概率是 . 考点:列表法与树状图法。 解答:解:列表得: 红1,黄3 红2,黄3 黄1,黄3 黄2,黄3 ﹣ - 4 -
红1,黄2 红2,黄2 黄1,黄2 ﹣ 黄3,黄2 红1,黄1 红2,黄1 ﹣ 黄2,黄1 黄3,黄1 红1,红2 ﹣ 黄1,红2 黄2,红2 黄3,红2 ﹣ 红2,红1 黄1,红1 黄2,红1 黄3,红1 ∵共有20种等可能的结果,这两球都是红色的有2种情况,
∴从中摸出两球,这两球都是红色的概率是:=.
故答案为:.
13.(2012菏泽)将4个数abcd,,,排成2行、2列,两边各加一条竖直线记成abcd ,定义abcd
adbc,上述记号就叫做2阶行列式.若1 181 1xxxx,则x .
考点:整式的混合运算;解一元一次方程。 解答:解:根据题意化简1 181 1xxxx,得:22(1)(1)8xx , 整理得:2221(12)8xxxx ,即48x, 解得:2x . 故答案为:2 14.(2012菏泽)一个自然数的立方,可以分裂成若干个连续奇数的和.例如:32,33和34分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即3235;337911;3413151719
;……;
若36也按照此规律来进行“分裂”,则36“分裂”出的奇数中,最大的奇数是 .
考点:规律型:数字的变化类。 解答:解:由23=3+5,分裂中的第一个数是:3=2×1+1, 33=7+9+11,分裂中的第一个数是:7=3×2+1, 43=13+15+17+19,分裂中的第一个数是:13=4×3+1, 53=21+23+25+27+29,分裂中的第一个数是:21=5×4+1, 63=31+33+35+37+39+41,分裂中的第一个数是:31=6×5+1, 所以63“分裂”出的奇数中最大的是6×5+1+2×(6﹣1)=41. 故答案为:41. 三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤.)
15.(2012菏泽)(1)先化简,再求代数式的值.222()111aaaaa,其中2012(1)tan60a. 考点:分式的化简求值;特殊角的三角函数值。 解答:解:原式2(1)(2)1313(1)(1)(1)(1)1aaaaaaaaaaaa.
当a=2012(1)+tan60°= 1+3时, 原式33=31+313. (2)解方程:(1)(1)2(3)8xxx. - 5 -
考点:解一元二次方程-因式分解法。 解答:解:原方程可化为2230xx. ∴(x+3)(x﹣1)=0, ∴x1=﹣3,x2=1. 16.(2012菏泽)(1)如图,∠DAB=∠CAE,请补充一个条件: ,使△ABC∽△ADE.
考点:相似三角形的判定。 解答:解:∠D=∠B或∠AED=∠C. (2)如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.
考点:翻折变换(折叠问题);坐标与图形性质;勾股定理; 解答:解:依题意可知,折痕AD是四边形OAED的对称轴,
∴在Rt△ABE中,AE=AO=10,AB=8,22221086BEAEAB, ∴CE=4, ∴E(4,8). 在Rt△DCE中,DC2+CE2=DE2, 又∵DE=OD, ∴(8﹣OD)2+42=OD2,, ∴OD=5, ∴D(0,5).
17.(2012菏泽)(1)如图,一次函数2y=23x的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.求过B、C两点直线的解析式. 考点:一次函数综合题。
解答:解:一次函数2y=23x中,令x=0得:y=2; 令y=0,解得x=3. 则A的坐标是(0,2),C的坐标是(3,0). 作CD⊥x轴于点D. ∵∠BAC=90°, ∴∠OAB+∠CAD=90°, 又∵∠CAD+∠ACD=90°, ∴∠ACD=∠BAO 又∵AB=AC,∠BOA=∠CDA=90° ∴△ABO≌△CAD, ∴AD=OB=2,CD=OA=3,OD=OA+AD=5.