上海市徐汇区2022届中考数学一模试题(含解析)

合集下载

强化训练2022年上海徐汇区中考数学模拟定向训练 B卷(含详解)

强化训练2022年上海徐汇区中考数学模拟定向训练 B卷(含详解)

2022年上海徐汇区中考数学模拟定向训练 B 卷 考试时间:90分钟;命题人:教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、两个素数的积一定是( )A .素数B .奇数C .偶数D .合数 2、已知C 为线段AB 延长线上的一点,且13BC AB =,则BC 的长为AC 长的( ) A .34 B .13 C .12 D .14 3、在ABC 中,90ACB ︒∠=,1BC =,=3AC ,将ABC 以点C 为中心顺时针旋转90︒,得到DEC ,连接BE 、AD .下列说法错误的是( )A .6ABD S =B .3ADE S ∆=C .BE AD ⊥ D .135AED ︒∠= 4、x 是正整数,x 〈〉表示不超过x 的素数的个数.如:74〈〉=,不超过7的素数有2、3、5、7共4个,那么2395134188〈〈〉+〈〉+〈〉⨯〈〉⨯〈〉〉的值是( )·线○封○密○外A .9B .10C .11D .125、关于数字91,下列说法错误的是( )A .存在最大的因数B .存在最大的倍数C .存在最小的倍数D .它是一个合数6、方程231y -=的解是( )A .2y =B .1y =C .2y =或1y =D .1y =或1y =- 7、下列说法中,正确的是( )A .一个角的余角一定大于它的补角B .任何一个角都有余角C .12018'︒用度表示是120.18︒D .72.4︒化成度、分、秒是7223'60''︒ 8、下列分数中,大于14且小于13的数是( ) A .27 B .25 C .23 D .12 9、下列说法正确的是( )A .整数包括正整数和负整数B .自然数就是正整数C .若m n ÷余数为0,则n 一定能整除mD .所有的自然数都是整数10、如果(x -2)(x +3)=x 2+px +q ,那么p 、q 的值是( )A .p=5,q=6B .p=1,q=-6C .p=1,q=6D .p=5,q=-6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、挪一枚骰子,点数是素数的可能性大小是_______.2、如图,有甲、乙两个圆,它们的半径之比为3:8,每个圆又都被分割成黑、白两个扇形,其中甲圆被分成的黑、白两个扇形的面积之比为1:2,乙圆被分成的黑、白两个扇形的面积之比为1:3,那么图中两个黑色扇形的面积之和与两个白色扇形的面积之和的比是______.3、最小的合数是____________.4、将一个圆的半径扩大为原来的3倍,则它的面积将扩大为原来的_______倍.5、30分解素因数是_______. 三、解答题(5小题,每小题10分,共计50分) 1、2011年11月3日凌晨,在距离地球表面350千米的太空中,“神舟八号”飞船与“天宫一号”飞行器实现了对接,形成一个组合体,开始了为时两天的围绕地球整体飞行,飞行的轨道近似为圆形.已知地球的半径约为6400千米,求这个组合体飞行一圈约为多少千米.2、某班级共有学生36人,其中13同学报名参加乒乓球课外活动班,29的同学报名参加了羽毛球课外活动班.求参加乒乓球课外活动班的同学比参加羽毛球课外活动班的同学多几人? 3、如图,A 、B 、C 、D 四张卡片上分别写有21、98、10、25四个数,现从中任取两张卡片.(1)请写出所有等可能的结果(用字母A 、B 、C 、D 表示); (2)求取到的两个数恰好互素的概率.·线○封○密○外4、在一根木棒上画上四等分的刻度线,再画上三等分的刻度线,然后沿这些刻度线把木棒锯断:(1)木棒将被锯成多少截?(2)如果最短的一截长10厘米,问木棒原长多少厘米?5、计算:3585615+-.-参考答案-一、单选题1、D【分析】最小的素数为2,其余素数都为奇数.则2与其它素数的积一定是偶数,除了2外,其它素数相乘的积是奇数,即可得出结论.【详解】解:最小的素数为2,其余素数都为奇数.则2与其它素数的积一定是偶数,除了2外,其它素数相乘的积是奇数.即两个素数的积的因数,除了1和它本身外,还有这两个素数,即积一定是合数.故选:D.【点睛】本题考查素数与合数,掌握素数与合数的概念是解题的关键.2、D【分析】根据题意,画出图形即可得出结论.【详解】解:根据题意,画图如下∵13 BC AB=设BC=a,则AB=3a ∴AC=AB+BC=4a∴BC=14 AC故选D.【点睛】此题考查的是求线段的关系,掌握各线段的关系是解决此题的关键.3、D【分析】根据旋转的性质可得CD=AC,再根据三角形的面积公式即可对A项进行判断;先求出AE的长,进而可对B项进行判断;如图,由旋转的性质和等腰直角三角形的性质可分别得出∠1、∠2、∠3、∠4的度数,进而可对C项进行判断;由于∠CED≠45°,即可对D项进行判断.【详解】如图,延长BE交AD于点F,∵ABC以点C为中心顺时针旋转90︒,得到DEC,90ACB︒∠=,1BC=,=3AC,∴CD=AC=3,BC=EC=1,AE=2,∴BD=1+3=4,∠1=∠2=45°,∠4=∠ADC=45°,∴14362ABDS=⨯⨯=,12332ADES∆=⨯⨯=,∠3=∠2=45°,·线○封○密○外∴∠AFE =90°,即BE AD ⊥,∴A、B 、C 三项都是正确的;而∠CED ≠45°,∴135AED ︒∠≠,∴D 选项是错误的.故选D.【点睛】本题考查了旋转的性质、等腰直角三角形的性质和三角形的面积等知识,难度不大,属于常考题型,熟练掌握旋转的性质和等腰直角三角形的性质是关键.4、C【分析】根据题意所给定义新运算及素数与合数的概念直接进行求解.【详解】解:23〈〉表示不超过23的素数有2、3、5、7、11、13、17、19、23共九个,则23=9〈〉; 95〈〉表示不超过95的素数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89共24个,则有95=24〈〉,由1=0〈〉可得134188=0〈〉⨯〈〉⨯〈〉;2395134188=33=11∴〈〈〉+〈〉+〈〉⨯〈〉⨯〈〉〉〈〉;故选C .【点睛】本题主要考查素数与合数,熟练掌握素数与合数的概念是解题的关键.5、B【分析】由题意把91分解质因数,可以得到最小的因数是1,最大的因数是91;把91乘1、2、3……得到91的最小的倍数是91,倍数乘一个整数,有无穷无尽的倍数,所以存在最大的倍数的说法是错误的;据此得解. 【详解】 解:对于数字91,存在最大的因数91,存在最小的倍数91,存在最小的因数1;只有存在最大的倍数是错误的; 故选:B . 【点睛】 本题考查因数和倍数的意义,熟练掌握分解质因数方法是解题的关键. 6、C 【分析】 去绝对值符号:如果原代数式为正,去掉绝对值后,其结果为本身;如果原代数式为负,去掉绝对值后,其结果为相反数;利用绝对值的代数意义化解已知方程,转化两个一元一次方程,求出方程的解后即可解题. 【详解】 解:当230y -> 时, 231y -=, 2y =, 当230y -<时 231y -=-, 1y =, ∴2y =或1y =; ·线○封○密○外故选C.【点睛】本题主要考查了解含绝对值符号的一元一次方程,熟练掌握绝对值的代数意义是解题的关键,忘记考虑绝对值符号内的原代数式为负是本题的易错点.7、D【分析】由题意根据余角和补角的定义以及角的换算进行分析判断即可.【详解】解:A.一个角的余角一定小于它的补角;B.钝角没有余角;C.12018'120.3︒=︒;D.正确,故选:D.【点睛】本题考查余角和补角的定义以及角的换算,熟练掌握余角和补角的定义以及角的换算方法是解题的关键.8、A【分析】根据分数的大小比较直接进行求解即可.【详解】解:A、由121128224=,,484384784==得121473<<,故符合题意;B、115120224=,,460360560==得112435<<,故不符合题意;C 、由112433<<,故不符合题意; D 、由111432<<,故不符合题意; 故选A . 【点睛】 本题主要考查分数的大小比较,熟练掌握分数的大小比较是解题的关键. 9、D 【分析】 根据各选项的说法,挨个判断其正确与否,然后做出判断. 【详解】 解:选项A :因为整数包括正整数、负整数和0,所以原说法不对. 选项B :因为0是自然数,但0不是正整数,所以原说法不对. 选项C :因为整除是对整数而言,本题中m 和n 不一定是整数,所以原说法不对. 选项D :因为包括正整数、0和负整数,正整数和0即是自然数,所以原说法正确. 答:D 选项是正确的. 故选:D . 【点睛】 本题考查了整数数的意义和性质,关键分清整数和自然数的区别和联系. 10、B 【分析】 先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p 、q 的值. 【详解】 ·线○封○密○外解:∵(x-2)(x+3)=x2+x-6,又∵(x-2)(x+3)=x2+px+q,∴x2+px+q=x2+x-6,二、填空题1、12【分析】根据可能性公式即可求出结论.【详解】解:一枚骰子,有1、2、3、4、5、6共6个点数,其中点数为素数的有2、3、5所以点数是素数的可能性大小是3÷6=12.故答案为:12【点睛】此题考查的是求可能性,掌握可能性公式和素数的定义是解题关键.2、19:54【分析】设甲圆半径为3a,乙圆的半径为8a,根据圆的面积公式即可求出两个圆的面积,然后按比例分配即可分别求出两个圆中各个部分的面积,从而求出结论.【详解】解:设甲圆半径为3a,乙圆的半径为8a则甲圆的面积为(3a)2π=9πa2,乙圆的面积为(8a)2π=64πa2,∵甲圆被分成的黑、白两个扇形的面积之比为1:2,乙圆被分成的黑、白两个扇形的面积之比为1:3,∴甲圆中黑扇形的面积为11+2×9πa 2=3πa 2,甲圆中白扇形的面积为21+2×9πa 2=6πa 2, 乙圆中黑扇形的面积为11+3×64πa 2=16πa 2,乙圆中白扇形的面积为31+3×64πa 2=48πa 2, ∴图中两个黑色扇形的面积之和与两个白色扇形的面积之和的比是(3πa 2+16πa 2)÷(6πa 2+48πa 2)=19πa 2÷54πa 2=19:54故答案为:19:54.【点睛】 此题考查的是圆的面积和按比例分配,掌握圆的面积公式和按比例分配是解题关键. 3、4 【分析】 根据除了1和它本身外还有别的因数的数为合数. 【详解】 解:根据合数定义可知,最小的合数为4 故答案为:4 【点睛】 根据合数的意义确定最小值是完成本题的关键. 4、9 【分析】 设原来圆的半径为r ,则扩大后的圆的半径为3r ,利用圆的面积公式即可解决问题. 【详解】 设原来圆的半径为r ,则扩大后圆的半径为3r , 原来圆的面积为:πr 2; 扩大后圆的面积为:π(3r)2=9πr 2; ·线○封○密○外原来圆的面积:扩大后圆的面积=πr 2:9πr 2=1:9;答:它的面积将扩大为原来的9倍.故答案为:9.【点睛】本题考查了圆面积的计算,解答本题的关键是明确题意,利用圆的面积计算公式解答. 5、30235=⨯⨯【分析】根据题意直接进行分解素因数即可.【详解】30分解素因数为:30235=⨯⨯.故答案为30235=⨯⨯.【点睛】本题主要考查分解素因数,关键是根据分解素因数的方法直接分解即可.三、解答题1、42390千米【分析】由圆形的周长公式进行计算,即可得到答案.【详解】解:由题意可知,这个组合体飞行一圈的路程:2()2(6400350)42390R d ππ+=⨯+=.【点睛】本题考查了圆的周长公式,解题的关键是熟练掌握题意,正确的列出等式进行解题.2、4人【分析】先用乘法求出参加乒乓球课外活动的人数和参加羽毛球课外活动的人数,进而求得问题.【详解】 解:参加乒乓球课外活动的人数:136123⨯=(人), 参加羽毛球课外活动的人数:23689⨯=(人), 多的人数是:12-8=4(人). 【点睛】 本题考查了分数的乘法应用题,熟悉想性质和题目的意思是解题的关键. 3、(1)AB 、AC 、AD 、BC 、BD 、CD ;(2)13 【分析】 (1)直接用列举法进行求解即可; (2)由题意易得互素的数有21和10、21和25,然后根据概率公式进行求解即可. 【详解】 解:(1)所有可能的结果是:AB 、AC 、AD 、BC 、BD 、CD . (2)因为互素的数有21和10、21和25, 所以取到的两个数恰好互素就是取到卡片AC 或AD , 概率是2163P ==. 【点睛】本题主要考查概率,熟练掌握概率的求法是解题的关键.4、(1)木棒将被锯成6截;(2)木棒原长120厘米. ·线○封○密○外【分析】(1)根据把木棒四等分,有3个刻度线,把木棒三等分,有2个刻度线,即可得到结果;(2)设木棒原长x厘米,列方程求解即可;【详解】(1)∵把木棒四等分,有3个刻度线,把木棒三等分,有2个刻度线,∴木棒上共有5个刻度线,∴516+=(截),∴木棒将被锯成6截.(2)设木棒原长x厘米,则最短的一截为1134x x⎛⎫-⎪⎝⎭厘米,由题意得111034x x-=,解得120x=.答:木棒原长120厘米.【点睛】本题主要考查了一元一次方程的应用,准确计算是解题的关键.5、9 10【分析】先进行通分,然后根据同分母分数的运算法则运算即可.【详解】3585615+-=182516 303030 +-=27 30=9 10【点睛】本题主要考查了分数的加减运算,熟练掌握分数的运算法则是解题的关键. ·线○封○密·○外。

2022年上海市15区中考数学一模考点分类汇编09 几何证明(解答题23题)(讲解版)

2022年上海市15区中考数学一模考点分类汇编09  几何证明(解答题23题)(讲解版)

2022年上海市15区中考数学一模考点分类汇编专题09 几何证明一.解答题(共15小题)1.(普陀区)已知:如图,在△ABC中,点D、E分别在边AC、BC上,BD=DC,BD•BC=BE•AC.(1)求证:∠ABE=∠DEB;(2)延长BA、ED交于点F,求证:.【分析】(1)由BD•BC=BE•AC得出=,BD=DC得出∠DBC=∠C,从而得出结论;(2)根据(1)的结论和已知证明△FAD∽△FDB即可.【解答】证明:(1)∵BD=DC,∴∠DBC=∠C,∵BD•BC=BE•AC,∴=,∴△ABC∽△DEB,∴∠ABC=∠DEB,即∠ABE=∠DEB;(2)如图所示:∵△ABC∽△DEB,∴∠CAB=∠BDE,∴∠FAD=∠FDB,∵∠F=∠F,∴△FAD∽△FDB,∴=,∵∠ABE=∠DEB,∴FB=FE,又∵BD=DC,∴=.【点评】本题考查相似三角形的判定和性质,关键是找到相似的三角形.2.(崇明区)已知:如图,在Rt△ACB中,∠ACB=90°,CD⊥AB,垂足为点D,E为边AC上一点,联结BE交CD于点F,并满足BC2=CD•BE.求证:(1)△BCE∽△ACB;(2)过点C作CM⊥BE,交BE于点G,交AB于点M,求证:BE•CM=AB•CF.【分析】(1)通过证明△BCD∽△EBC,可得∠CEB=∠CBD,可得结论;(2)通过证明△BCE∽△ACB,△ACB∽△CDB,△CDM∽△BDF,可得,,,可得结论.【解答】证明:(1)∵BC2=CD•BE,∴,设=k,则BC=k•CD,BE=k•BC,∴CE==×BC,BD==×CD,∴=,又∵∠ACB=∠CDB=90°,∴△BCD∽△EBC,∴∠CEB=∠CBD,又∵∠ACB=∠BCE=90°,∴△BCE∽△ACB;(2)如图,∵△BCE∽△ACB,∴,∵∠CEB=∠CBA,∴∠A=∠CBE,∵∠A+∠ABC=90°=∠DCB+∠CBD,∴∠A=∠DCB,∴∠DCB=∠EBC,∴CF=BF,∵∠A=∠DCB,∠CDB=∠ACB=90°,∴△ACB∽△CDB,∴,∵CM⊥BE,∴∠ABE+∠CMD=90°=∠CMD+∠MCD,∴∠MCD=∠ABE,又∵∠CDB=∠CDM=90°,∴△CDM∽△BDF,∴,∴,∴BE•CM=AB•CF.【点评】本题考查了相似三角形的判定和性质,直角三角形的性质,灵活运用相似三角形的性质是解题的关键.3.(嘉定区)如图,已知正方形ABCD和正方形BEFG,点E在边BC上,点G在边AB的延长线上,联结AE,并延长AE交CG于点K.(1)求证:△ABE∽△CKE;(2)如果CG与EF交于点H,求证:BE2=FH•AB.【分析】(1)由“SAS”可证△ABE≌△CBG,可得∠BAE=∠ECK,可得结论;(2)通过证明△ABE∽△GFH,可得,可得结论.【解答】证明:(1)∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵四边形BEFG是正方形,∴FG=BG=BE,∠CBG=90°,∴∠ABE=∠CBG=90°,在△ABE和△CBG中,,∴△ABE≌△CBG(SAS),∴∠BAE=∠ECK,又∵∠AEB=∠CEK,∴△ABE∽△CKE;(2)由题意,得∠CEF=∠F=∠ABE=90°,∴FG∥BC,∴∠ECK=∠FGH,∵∠BAE=∠ECK,∴∠BAE=∠FGH,∴△ABE∽△GFH,∴,∵FG=BE,∴,∴BE2=FH•AB.【点评】本题考查了相似三角形的判定和性质,正方形的性质,全等三角形的判定和性质,灵活运用这些性质解决问题是解题的关键.4.(宝山区)如图,已知△ABC和△DCE都是等边三角形,点B、C、E在同一直线上,联结BD交AC边于点F.(1)如果∠ABD=∠CAD,求证:BF2=DF•DB;(2)如果AF=2FC,S四边形ABCD=18,求S△DCE的值.【分析】(1)证明△ABF≌△CAD(ASA),由全等三角形的性质可得出BF=AD,证明△ADF∽△BDA,由相似三角形的性质得出,则可得出结论;(2)证明△DCF∽△BAF,由相似三角形的性质得出=,设S△DCF=x,则S△ADF=S△BCF=2x,S△ABF=4x,由四边形ABCD的面积可得出x+2x+2x+4x=18,求出x=2,求出三角形ABC的面积,证明△ABC∽△DCE,由相似三角形的性质得出=,则可得出结论.【解答】(1)证明:∵△ABC和△DCE都是等边三角形,∴AB=AC,∠BAC=∠DCE=∠ACB=60°,又∵∠ABD=∠CAD,∴△ABF≌△CAD(ASA),∴BF=AD,∵∠ADF=∠BDA,∠ABD=∠CAD,∴△ADF∽△BDA,∴,∴AD2=DF•BD,∴BF2=DF•BD;(2)解:∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴∠ACD=∠BAC,∴AB∥CD,∴△DCF∽△BAF,∴=,∴,,,设S△DCF=x,则S△ADF=S△BCF=2x,S△ABF=4x,∵S四边形ABCD=18,∴x+2x+2x+4x=18,解得x=2,∴S△ABF=8,S△BCF=4,∴S△ABC=S△ABF+S△BCF=8+4=12,∵△ABC和△DCE都是等边三角形,∴△ABC∽△DCE,∴=,∴S△DCE==×12=3.【点评】本题考查了等边三角形的性质,相似三角形的判定与性质,全等三角形的判定与性质,证明△DCF∽△BAF是解题的关键.5.(杨浦区)已知,如图,在四边形ABCD中,∠ABC=∠BCD,点E在边BC上,AE∥CD,DE ∥AB,过点C作CF∥AD,交线段AE于点F,联结BF.(1)求证:△ABF≌△EAD;(2)如果射线BF经过点D,求证:BE2=EC•BC.【分析】(1)先证AB=AE,DE=DC,再证四边形ADCF是平行四边形,得出AF=CD,进而得出AF=DE,再由平行线性质得∠AED=∠BAF,进而证得结论;(2)通过证明△BEF∽△BCD,△DEF∽△BAF,可得,即可得结论.【解答】证明:(1)∵AE∥CD,∴∠AEB=∠BCD,∵∠ABC=∠BCD,∴∠ABC=∠AEB,∴AB=AE,∵DE∥AB,∴∠DEC=∠ABC,∠AED=∠BAF,∵∠ABC=∠BCD,∴∠DEC=∠BCD,∴DE=DC,∵CF∥AD,AE∥CD,∴四边形ADCF是平行四边形,∴AF=CD,∴AF=DE,在△ABF和△EAD中,,∴△ABF≌△EAD(SAS);(2)如图,连接FD,∵射线BF经过点D,∴点B,点F,点D三点共线,∵AE∥DC,∴△BEF∽△BCD,∴,,∵DE∥AB,∴△DEF∽△BAF,∴,∴,∵CD=AF,∴,∴BE2=EC•BC.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,平行四边形的判定和性质,利用相似三角形的性质得到线段的关系是解题的关键.6.(松江区)已知:如图,梯形ABCD中,DC∥AB,AC=AB,过点D作BC的平行线交AC于点E.(1)如果∠DEC=∠BEC,求证:CE2=ED•CB;(2)如果AD2=AE•AC,求证:AD=BC.【分析】(1)通过证明△DEC∽△CEB,可得,可得结论;(2)通过证明△BCE∽△ACB,可得,由相似三角形的性质可得,可得,通过证明△ADE∽△ACD,可得=,可得结论.【解答】证明:(1)∵AC=AB,∴∠ACB=∠ABC,∵DC∥AB,∴∠DCE=∠CAB,∵DE∥BC,∴∠DEC=∠BCE,∵∠DEC=∠BEC,∴∠DEC=∠BCE=∠BEC=∠ABC,∴∠BAC=∠CBE=∠DCE,BE=BC,∴△DEC∽△CEB,∴,∴CE2=DE•BE=DE•CB;(2)∵∠BAC=∠CBE,∠ACB=∠BCE,∴△BCE∽△ACB,∴,∵△DEC∽△CEB,∴,∠CDE=∠BCE=∠CED=∠BEC,∴,CD=CE,∵AD2=AE•AC,∴,又∵∠DAE=∠DAC,∴△ADE∽△ACD,∴=,∴,∴AD=BC.【点评】本题考查了相似三角形的判定和性质,熟练运用相似三角形的判定是解题的关键.7.(浦东新区)如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠B=∠ADE=30°,AC 与DE相交于点F,联结CE,点D在边BC上.(1)求证:△ABD∽△ACE;(2)若=,求的值.【分析】(1)根据相似三角形的判定定理得到△BAC∽△DAE,根据相似三角形的性质得到,求得∠BAD=∠CAE,根据相似三角形的判定定理得到结论;(2)根据相似三角形的性质和直角三角形的性质即可得到结论.【解答】(1)证明:∵∠ADE=∠DAE,∠B=∠ADE,∴△BAC∽△DAE,∴,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD∽△CAE;(2)解:∵△ABD∽△ACE,∴,∵∠DAE=90°,∠ADE=30°,∴=,∴=•==3,∵△ADF∽△ECF,∴==3.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.8.(徐汇区)如图,已知△ADE的顶点E在△ABC的边BC上,DE与AB相交于点F,∠FEA=∠B,∠DAF=∠EAC.(1)求证:AE2=AF•AB;(2)求证:=.【分析】(1)利用两个角相等证明△BAE∽△EAF,得,即可证明结论;(2)首先证明△DAE∽△CAB,得,∠D=∠C,再证明△DAF∽△CAE,得,等量代换即可.【解答】证明:(1)∵∠FEA=∠B,∠BAE=∠EAF,∴△BAE∽△EAF,∴,∴AE2=AF•AB,(2)∵∠DAF=∠CAE,∠FAE=∠FAE,∴∠DAE=∠CAF,∵∠FEA=∠B,∴△DAE∽△CAB,∴,∠D=∠C,∵∠DAF=∠EAC,∴△DAF∽△CAE,∴,∴,∴.【点评】本题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.9.(金山区)已知:如图,梯形ABCD中,AD∥BC,AB=DC=6,E是对角线BD上一点,DE=4,∠BCE=∠ABD.(1)求证:△ABD∽△ECB;(2)如果AD:BC=3:5,求AD的长.【分析】(1)先由AD∥BC得到∠ADB=∠EBC,然后由∠ABD=∠ECB得证△ABD∽△ECB;(2)先由AB=DC得到∠ABC=∠BCD,再由∠∠ABD=∠BCE得到∠DBC=∠DCE,从而得到△DBC∽△DCE,然后利用相似三角形的性质求得BD的长,进而得到BE的长,再由△ABD∽△ECB得到AD的长.【解答】解:(1)∵AD∥BC,∴∠ADB=∠EBC,又∵∠BCE=∠ABD,∴△ABD∽△ECB.(2)∵梯形ABCD中,AD∥BC,AB=DC=6,∴∠ABC=∠BCD,又∵∠BCE=∠ABD,∴∠DBC=∠DCE∵∠BDC=∠CDE,∴△BDC∽△CDE,∴,∵DC=6,DE=4,∴BD=9,∴BE=5,∵△ABD∽△ECB,∴,由AD:BC=3:5,设AD=3x,BC=5x,∴,解得:x=或x=﹣(舍),∴AD=.【点评】本题考查了梯形的性质、相似三角形的判定与性质、平行线的性质,解题的关键是熟练应用等量代换得证∠DBC=∠DCE.10.(静安区)如图,边长为1的正方形ABCD中,对角线AC、BD相交于点O,点Q、R分别在边AD、DC上,BR交线段OC于点P,QP⊥BP,QP交BD于点E.(1)求证:△APQ∽△DBR;(2)当∠QED等于60°时,求的值.【分析】(1)利用正方形的性质可得∠QAP=∠BDR=45°,AC⊥BD,根据已知QP⊥BP,利用同角的余角相等可得∠APQ=∠DBR,即可解答;(2)由(1)可得△APQ∽△DBR,从而可得=,根据已知可得∠BEP=60°,设OE 为a,然后在Rt△OEP中,表示出OP=a,EP=2a,从而在Rt△BEP中求出BE=4a,进而求出OB,然后进行计算即可解答.【解答】(1)证明:∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=AC,OB=OD=BD,AC=BD,∠QAP=∠BDR=45°,∴∠BOC=∠DOC=90°,OA=OB,∴∠OBP+∠OPB=90°,∵QP⊥BP,∴∠QPB=90°,∴∠OPB+∠QPA=90°,∴∠APQ=∠DBR,∴△APQ∽△DBR;(2)解:由(1)可得△APQ∽△DBR,∴=,∵∠QED=60°,∴∠BEP=∠QED=60°,∴∠OPE=90°﹣∠BEP=30°,∴PE=2OE,OP=OE,设OE为a,则EP=2a,OP=a,在Rt△BEP中,BE===4a,∴OB=BE﹣OE=4a﹣a=3a,∴BD=2OB=6a,∵OA=3a,OP=a,∴AP=OA+OP=3a+a,∴==,∴=.【点评】本题考查了正方形的性质,相似三角形的判定与性质,全等三角形的判定与性质,根据题目的已知条件并结合图形分析是解题的关键.11.(虹口区)如图,在梯形ABCD中,∠ABC=90°,AD∥BC,BC=2AD,对角线AC与BD交于点E.点F是线段EC上一点,且∠BDF=∠BAC.(1)求证:EB2=EF•EC;(2)如果BC=6,sin∠BAC=,求FC的长.【分析】(1)先由AD∥BC得到△EAD∽△ECB,从而得到,然后由∠BDF=∠BAC、∠AEB=∠DEF得证△EAB∽△EDF,进而得到,最后得到结果;(2)先利用条件得到AC、AB的长,然后利用BC=2AD得到AD、BD的长,再结合相似三角形的性质得到EB、EC的长,进而得到EF的长和FC的长.【解答】(1)证明:∵AD∥BC,∴△EAD∽△ECB,∴,即,∵∠BDF=∠BAC,∠AEB=∠DEF,∴△EAB∽△EDF,∴,∴,∴EB2=EF•EC.(2)解:∵BC=6,sin∠BAC==,BC=2AD∴AC=9,AD=3,∵∠ABC=90°,AD∥BC,∴∠BAD=90°,∴AB===3,∴BD===3,∵△EAD∽△ECB,∴,∴EC=AC=×9=6,EB=BD=×3=2,∵EB2=EF•EC,即(2)2=6EF,∴EF=4,∴FC=EC﹣EF=6﹣4=2.【点评】本题考查了直角梯形的性质、相似三角形的判定与性质、勾股定理,解题的关键是熟知“8”字模型相似三角形的判定与性质.12.(奉贤区)根据相似形的定义可以知道,如果一个四边形的四个角与另一个四边形的四个角对应相等,且它们各有的四边对应成比例,那么这两个四边形叫做相似四边形.对应相等的角的顶点叫做这两个相似四边形的对应顶点,以对应顶点为端点的边是这两个相似四边形的对应边,对应边的比叫做这两个相似多边形的相似比.(我们研究的四边形都是指凸四边形)(1)某学习小组在探究相似四边形的判定时,得到如下两个命题,请判断它们是真命题还是假命题(直接在横线上填写“真”或“假”)①梯形的中位线将原梯形分成的两个小的梯形相似;假命题;②有一个内角对应相等的两个菱形相似;真命题.(2)已知:如图1,△ABC是以BC为斜边的等腰直角三角形,以BC为直角边作等腰直角三角形BCD,再以BD为直角边作等腰直角三角形BDE求证:四边形ABDC与四边形CBED相似.(3)已知:如图2,在△ABC中,点D、E分别在边AB、AC上,BE、CD相交于点F,点G在AF的延长线上,联结BG、CG.如果四边形ADFE与四边形ABGC相似,且点A、D、F、E分别对应A、B、G、C.求证:AF•BF=AG•EF.【分析】(1)根据相似多边形的定义,分别从对应边和对应角两个方面判断即可;(2)由等腰直角三角形的性质可知,两个四边形符合相似四边形的定义;(3)根据相似四边形对应角相等得,∠ADF=∠ABG,∠AEF=∠ACG,则CD∥BG,BE∥CG,从而证明四边形BGCF是平行四边形,有BF=CG,再证明△EAF∽△CAG,则,等量代换即可证明结论.【解答】(1)解:①梯形的中位线将原梯形分成的两个小的梯形满足四个角对应线段,但边不是对应成比例,所以原命题是假命题;②有一个内角对应相等的两个菱形满足四个角线段,对应边成比例,所以是真命题,故答案为:假,真;(2)证明:由题意知,∠A=∠CBE=90°,∠ACD=∠CDE=135°,∠ABD=∠BCD=90°.∠CDB=∠E=45°,∴四边形ABDC与四边形CBED的四个角对应相等,设AB=AC=x,则CD=x,BD=DE=2x,BE=2x,∴,∴四边形ABDC与四边形CBED的四边对应成比例,∴四边形ABDC与四边形CBED相似;(3)证明:∵四边形ADFE与四边形ABGC相似,且点A、D、F、E分别对应A、B、G、C.∴∠ADF=∠ABG,∠AEF=∠ACG,∴CD∥BG,BE∥CG,∴四边形BGCF是平行四边形,∴BF=CG,∵∠AEF=∠ACG,∠EAF=∠CAG,∴△EAF∽△CAG,∴,∴,∴AF•BF=AG•EF.【点评】本题是相似形综合题,主要考查了相似四边形的定义,等腰直角三角形的性质,平行四边形的判定与性质,相似三角形的判定与性质等知识,读懂定义,紧扣定义中从边和角两个方面进行考虑是解题的关键.13.(青浦区)已知:如图,在四边形ABCD中,AC、BD相交于点E,∠ABD=∠CBD,DC2=DE•DB.(1)求证:△AEB∽△DEC;(2)求证:BC•AD=CE•BD.【分析】(1)根据已知条件先证明△DCE∽△DBC,可得∠DCE=∠DBC,进而可以证明结论;(2)结合(1)的结论证明△AED∽△BEC,可得∠ADE=∠BCE,再证明△BDA∽△BCE,进而可得结论.【解答】证明:(1)∵DC2=DE⋅DB,∴,∵∠CDE=∠BDC,∴△DCE∽△DBC,∴∠DCE=∠DBC,∵∠ABD=∠DBC,∴∠DCE=∠ABD,∵∠AEB=∠DEC,∴△AEB∽△DEC;(2)∵△AEB∽△DEC,∴,∵∠AED=∠BEC,∴△AED∽△BEC,∴∠ADE=∠BCE,∵∠ABD=∠DBC,∴△BDA∽△BCE,∴,∴BC•AD=CE•BD.【点评】本题考查了相似三角形的判定与性质,解决本题的关键是得到△BDA∽△BCE.14.(徐汇区)如图,已知Rt△ABC中,∠ACB=90°,射线CD交AB于点D,点E是CD上一点,且∠AEC=∠ABC,联结BE.(1)求证:△ACD∽△EBD;(2)如果CD平分∠ACB,求证:AB2=2ED•EC.【分析】(1)根据已知条件先证明△ADE∽△CDB,可得,因为∠ADC=∠EDB,即可得证;(2)结合(1)证明△EAB是等腰直角三角形,进而可得结论.【解答】证明:(1)∵∠AEC=∠ABC,∠ADE=∠BDC,∴△ADE∽△CDB,∴,又∵∠ADC=∠EDB,∴△ACD∽△EBD;(2)∵△ADE∽△CDB,∴∠DCB=∠EAB,∵△ACD∽△EBD,∴∠ACD=∠EBD,∵∠ACB=90°,∴∠EAB+∠EBD=∠DCB+∠ACD=90°,∴∠AEB=90°,∵CD平分∠ACB,∴∠ACD=∠BCD=45°,∴∠EBD=∠EAB=45°,∴EA=EB,∴△EAB是等腰直角三角形,∴∠EAD=∠ACE,∠AED=∠CEA,∵△AED∽△CEA,∴=,∴AE2=ED•EC,∵AE2+EB2=AB2,∴2AE2=AB2,∴AE2=AB2,∴AB2=ED•EC,∴AB2=2ED•EC.【点评】本题考查了相似三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理,解决本题的关键是得到△EAB是等腰直角三角形.15.(黄浦区)已知:如图,在四边形ABCD中,AB∥CD,过点D作DF∥CB,分别交AC、AB点E、F,且满足AB•AF=DF•BC.(1)求证:∠AEF=∠DAF;(2)求证:=.【分析】(1)根据DF∥CB,可得∠B=∠AFD,根据AB•AF=DF•BC.证明△ABC∽△DAF,进而可以解决问题;(2)由△DCE∽△FAE,可得=,所以=,再由△AFE∽△DFA,可得AF2=EF•DF,由△AEF∽△ACB,得=,进而可得结论.【解答】(1)证明:∵AB∥CD,DF∥CB,∴四边形FBCD是平行四边形,∴DC=FB,DF=CB,∵AB•AF=DF•BC.∴=,∵DF∥CB,∴∠B=∠AFD,∴△ABC∽△DAF,∴∠ACB=∠DAF,∵DF∥CB,∴∠AEF=∠ACB,∴∠AEF=∠DAF;(2)证明:∵AB∥CD,∴△DCE∽△FAE,∴=,∴=,∴=,∵∠AEF=∠DAF,∠AFE=∠DFA,∴△AFE∽△DFA,∴=,∴AF2=EF•DF,∴====,∵DF∥CB,∴△AEF∽△ACB,∴=,∴=.【点评】本题考查了相似三角形的判定与性质,解决本题的关键是掌握相似三角形的判定与性质,得到△AEF∽△ACB.。

2022年上海市徐汇区名校中考联考数学试题含解析

2022年上海市徐汇区名校中考联考数学试题含解析

2021-2022中考数学模拟试卷含解析注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.不等式的最小整数解是()A.-3 B.-2 C.-1 D.22.如图所示的几何体的俯视图是( )A.B.C.D.3.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM =2,则线段ON的长为( )A.22B.32C.1 D.624.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个5.下列四个多项式,能因式分解的是()A.a-1 B.a2+1C.x2-4y D.x2-6x+96.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA 5,那么点C的位置可以在()A .点C 1处B .点C 2处 C .点C 3处D .点C 4处7.如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A 、C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E ,若∠AOB=3∠ADB ,则( )A .DE=EB B .2DE=EBC .3DE=DOD .DE=OB8.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2a BC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长9.如图所示,把直角三角形纸片沿过顶点B 的直线(BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得等腰△EBA ,那么结论中:①∠A=30°;②点C 与AB 的中点重合;③点E 到AB 的距离等于CE 的长,正确的个数是( )A .0B .1C .2D .310.不等式组1030x x +>⎧⎨->⎩的解集是 ( ) A .x >-1B .x >3C .-1<x <3D .x <3二、填空题(共7小题,每小题3分,满分21分)11.在一个不透明的袋子里装有除颜色外其它均相同的红、蓝小球各一个,每次从袋中摸出一个小球记下颜色后再放回,摸球三次,“仅有一次摸到红球”的概率是_____.12.利用1个a×a 的正方形,1个b×b 的正方形和2个a×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.13.如图,矩形纸片ABCD 中,AB=3,AD=5,点P 是边BC 上的动点,现将纸片折叠使点A 与点P 重合,折痕与矩形边的交点分别为E ,F ,要使折痕始终与边AB ,AD 有交点,BP 的取值范围是_____.14.若圆锥的母线长为4cm ,其侧面积212cm ,则圆锥底面半径为 cm .15.已知一元二次方程x 2-4x -3=0的两根为m ,n ,则2m -mn +2n = .16.抛物线 y =3x 2﹣6x +a 与 x 轴只有一个公共点,则 a 的值为_____.17.某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动,以下是根据调查结果绘制的统计图表的一部分那么,其中最喜欢足球的学生数占被调查总人数的百分比为____________%三、解答题(共7小题,满分69分)18.(10分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1; 以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.19.(5分)如图,已知点A(1,a)是反比例函数y1=mx的图象上一点,直线y2=﹣1122x 与反比例函数y1=mx的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.20.(8分)2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多0.5元.(1)第一批花每束的进价是多少元.(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?21.(10分)计算:30﹣|﹣3|+(﹣1)2015+(12)﹣1.22.(10分)如图,某校数学兴趣小组要测量大楼AB的高度,他们在点C处测得楼顶B的仰角为32°,再往大楼AB 方向前进至点D处测得楼顶B的仰角为48°,CD=96m,其中点A、D、C在同一直线上.求AD的长和大楼AB的高度(结果精确到2m)参考数据:sin48°≈2.74,cos48°≈2.67,tan48°≈2.223≈2.7323.(12分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2)(m﹣1﹣81m+)2269m mm m-++.24.(14分)如图1,在平面直角坐标系中,一次函数y=﹣1x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(1)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图1.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】先求出不等式的解集,然后从解集中找出最小整数即可.【详解】∵,∴,∴,∴不等式的最小整数解是x=-2.故选B.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.最后一步系数化为1时,如果未知数的系数是负数,则不等号的方向要改变,如果系数是正数,则不等号的方不变.2、D【解析】试题分析:根据俯视图的作法即可得出结论.从上往下看该几何体的俯视图是D.故选D.考点:简单几何体的三视图.3、C【解析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以222,则222+2,OC=122+1,所以2,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.【详解】试题分析:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=22AM=22×2,∵CM平分∠ACB,∴2∴2,∴2222+2,∴OC=122,CH=AC﹣2+222∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴ON OCMH CH=2222=+,∴ON=1.故选C.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.4、C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C .考点:轴对称图形.5、D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x 2-6x+9=(x-3)2.故选D .考点:2.因式分解-运用公式法;2.因式分解-提公因式法.6、D【解析】如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin 5A =, ∴545DC AC AC==,∴AC=45, ∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C =228445+=,故答案为D.7、D【解析】解:连接EO .∴∠B =∠OEB ,∵∠OEB =∠D +∠DOE ,∠AOB =3∠D ,∴∠B +∠D =3∠D ,∴∠D +∠DOE +∠D =3∠D ,∴∠DOE =∠D ,∴ED =EO =OB ,故选D.8、B【解析】【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB 的长,进而求得AD 的长,即可发现结论.【解答】用求根公式求得:12x x == ∵90,2a C BC ACb ∠=︒==,,∴AB =∴2a AD == AD 的长就是方程的正根.故选B.【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.9、D【解析】根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可.【详解】∵把直角三角形纸片沿过顶点B 的直线(BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,折叠后得等腰△EBA , ∴∠A=∠EBA ,∠CBE=∠EBA ,∴∠A=∠CBE=∠EBA ,∵∠C=90°,∴∠A+∠CBE+∠EBA=90°,∴∠A=∠CBE=∠EBA=30°,故①选项正确;∵∠A=∠EBA ,∠EDB=90°,∴AD=BD ,故②选项正确;∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,∴EC=ED (角平分线上的点到角的两边距离相等),∴点E 到AB 的距离等于CE 的长,故③选项正确,故正确的有3个.故选D .【点睛】此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键.10、B【解析】根据解不等式组的方法可以求得原不等式组的解集.【详解】1030x x +>⎧⎨->⎩①②, 解不等式①,得x >-1,解不等式②,得x >1,由①②可得,x >1,故原不等式组的解集是x >1.故选B .【点睛】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.二、填空题(共7小题,每小题3分,满分21分)11、38【解析】摸三次有可能有:红红红、红红蓝、红蓝红、红蓝蓝、蓝红红、蓝红蓝、蓝蓝红、蓝蓝蓝共计8种可能,其中仅有一个红坏的有:红蓝蓝、蓝红蓝、蓝蓝红共计3种,所以“仅有一次摸到红球”的概率是38. 故答案是:38. 12、a 1+1ab+b 1=(a+b )1【解析】试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)1,所以a1+1ab+b1=(a+b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.13、1≤x≤1【解析】此题需要运用极端原理求解;①BP最小时,F、D重合,由折叠的性质知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的长,进而可求得BP的值,即BP的最小值;②BP最大时,E、B重合,根据折叠的性质即可得到AB=BP=1,即BP的最大值为1;【详解】解:如图:①当F、D重合时,BP的值最小;根据折叠的性质知:AF=PF=5;在Rt△PFC中,PF=5,FC=1,则PC=4;∴BP=x min=1;②当E、B重合时,BP的值最大;由折叠的性质可得BP=AB=1.所以BP的取值范围是:1≤x≤1.故答案为:1≤x≤1.【点睛】此题主要考查的是图形的翻折变换,正确的判断出x的两种极值下F、E点的位置,是解决此题的关键.14、3【解析】∵圆锥的母线长是5cm,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:l=2305srπ==6π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r=622l πππ==3cm , 15、1【解析】 试题分析:由m 与n 为已知方程的解,利用根与系数的关系求出m+n=4,mn=﹣3,将所求式子利用完全平方公式变形后,即2m ﹣mn+2n =()2m n +﹣3mn=16+9=1.故答案为1.考点:根与系数的关系.16、3【解析】根据抛物线与x 轴只有一个公共交点,则判别式等于0,据此即可求解.【详解】∵抛物线y=3x 2﹣6x+a 与x 轴只有一个公共点,∴判别式Δ=36-12a=0,解得:a=3,故答案为3【点睛】本题考查了二次函数图象与x 轴的公共点的个数的判定方法,如果△>0,则抛物线与x 轴有两个不同的交点;如果△=0,与x 轴有一个交点;如果△<0,与x 轴无交点.17、1%【解析】依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比.【详解】∵被调查学生的总数为10÷20%=50人,∴最喜欢篮球的有50×32%=16人,则最喜欢足球的学生数占被调查总人数的百分比=50104166250-----×100%=1%, 故答案为:1.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.三、解答题(共7小题,满分69分)18、(1)见解析(2)10 10【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.19、(1)反比例函数的解析式为y=﹣3x;(2)D(﹣2,32);﹣2<x<0或x>3;(3)P(4,0).【解析】试题分析:(1)把点B(3,﹣1)带入反比例函数1myx=中,即可求得k的值;(2)联立直线和反比例函数的解析式构成方程组,化简为一个一元二次方程,解方程即可得到点D坐标,观察图象可得相应x的取值范围;(3)把A(1,a)是反比例函数1myx=的解析式,求得a的值,可得点A坐标,用待定系数法求得直线AB的解析式,令y=0,解得x的值,即可求得点P的坐标.试题解析:(1)∵B(3,﹣1)在反比例函数1myx=的图象上,∴-1=m3,∴反比例函数的解析式为3y x=-; (2)31122y x y x ⎧=-⎪⎪⎨⎪=-+⎪⎩, ∴3x -=1122x -+, x 2-x-6=0,(x-3)(x+2)=0,x 1=3,x 2=-2,当x=-2时,y=32, ∴D (-2,32); y 1>y 2时x 的取值范围是-2<x<0或x>32; (3)∵A (1,a )是反比例函数1m y x =的图象上一点, ∴a=-3,∴A (1,-3),设直线AB 为y=kx+b,331k b k b +=-⎧⎨+=-⎩, ∴14k b =⎧⎨=-⎩, ∴直线AB 为y=x-4,令y=0,则x=4,∴P(4,0)20、(1)2元;(2)第二批花的售价至少为3.5元;【解析】(1)设第一批花每束的进价是x 元,则第二批花每束的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购花的数量是第一批所购花数的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)由第二批花的进价比第一批的进价多0.5元可求出第二批花的进价,设第二批菊花的售价为m 元,根据利润=每束花的利润×数量结合总利润不低于1500元,即可得出关于m 的一元一次不等式,解之即可得出结论.(1)设第一批花每束的进价是x 元,则第二批花每束的进价是()0.5x +元, 根据题意得:1000250020.5x x ⨯=+, 解得:2x =,经检验:2x =是原方程的解,且符合题意.答:第一批花每束的进价是2元.(2)由()1可知第二批菊花的进价为2.5元.设第二批菊花的售价为m 元, 根据题意得:()()1000250032 2.515002 2.5m ⨯-+⨯-≥, 解得: 3.5m ≥.答:第二批花的售价至少为3.5元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.21、-1【解析】分析:根据零次幂、绝对值以及负指数次幂的计算法则求出各式的值,然后进行求和得出答案.详解:解:0﹣|﹣3|+(﹣1)2015+(12)﹣1=1﹣3+(﹣1)+2=﹣1. 点睛:本题主要考查的是实数的计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.22、AD 的长约为225m ,大楼AB 的高约为226m【解析】首先设大楼AB 的高度为xm ,在Rt △ABC 中利用正切函数的定义可求得 ,然后根据∠ADB 的正切表示出AD 的长,又由CD=96m x 961.11-= ,解此方程即可求得答案. 【详解】解:设大楼AB 的高度为xm ,在Rt △ABC 中,∵∠C=32°,∠BAC=92°,∴ABAC=tan 30== ,在Rt △ABD 中,AB tan ADB tan48AD ∠=︒=,∴AB xAD=tan48 1.11=︒,∵CD=AC-AD,CD=96m,x961.11-=,解得:x≈226,∴x116AD1051.11 1.11=≈≈答:大楼AB的高度约为226m,AD的长约为225m.【点睛】本题考查解直角三角形的应用.要求学生能借助仰角构造直角三角形并解直角三角形,注意数形结合思想与方程思想的应用.23、(1)24a;(2)233m mm+-【解析】试题分析:(1)先去括号,再合并同类项即可;(2)先计算括号里的,再将除法转换在乘法计算.试题解析:(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)=a2﹣2ab+b2﹣a2+2ab+4a2﹣b2=4a2;(2)228691)1m mmm m m-+--÷++(.=2(1)(1)8(1)1(3)m m m mm m-+-+⨯+-=229(1)1(3)m m mm m-+⨯+-=2(3)(3)(1)1(3)m m m mm m+-+⨯+-=233m mm+-.24、(1)2,3,(1)①AD=5;②P(0,1)或(0,2).【解析】(1)先确定出OA=3,OC=2,进而得出AB=2,BC=3,利用勾股定理即可得出AC;(1)A.①利用折叠的性质得出BD=2﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B.①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠APC=90°,再分情况讨论计算即可.【详解】解:(1)∵一次函数y=﹣1x+2的图象与x轴,y轴分别交于点A,点C,∴A(3,0),C(0,2),∴OA=3,OC=2.∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=2,BC=OA=3.在Rt△ABC中,根据勾股定理得,AC故答案为2,3,(1)选A.①由(1)知,BC=3,AB=2,由折叠知,CD=AD.在Rt△BCD中,BD=AB﹣AD=2﹣AD,根据勾股定理得,CD1=BC1+BD1,即:AD1=16+(2﹣AD)1,∴AD=5;②由①知,D(3,5),设P(0,y).∵A(3,0),∴AP1=16+y1,DP1=16+(y﹣5)1.∵△APD为等腰三角形,∴分三种情况讨论:Ⅰ、AP=AD,∴16+y1=15,∴y=±3,∴P(0,3)或(0,﹣3);Ⅱ、AP=DP,∴16+y1=16+(y﹣5)1,∴y =52, ∴P (0,52); Ⅲ、AD =DP ,15=16+(y ﹣5)1,∴y =1或2,∴P (0,1)或(0,2).综上所述:P (0,3)或(0,﹣3)或P (0,52)或P (0,1)或(0,2).选B .①由A ①知,AD =5,由折叠知,AE =12AC DE ⊥AC 于E .在Rt △ADE 中,DE②∵以点A ,P ,C 为顶点的三角形与△ABC 全等,∴△APC ≌△ABC ,或△CPA ≌△ABC ,∴∠APC =∠ABC =90°.∵四边形OABC 是矩形,∴△ACO ≌△CAB ,此时,符合条件,点P 和点O 重合,即:P (0,0);如图3,过点O 作ON ⊥AC 于N ,易证,△AON ∽△ACO , ∴AN OA OA AC=, ∴4AN =,∴AN , 过点N 作NH ⊥OA ,∴NH ∥OA ,∴△ANH ∽△ACO , ∴AN NH AH AC OC OA==,84NH AH ==,∴NH=85,AH=45,∴OH=165,∴N(16855,),而点P1与点O关于AC对称,∴P1(321655,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣122455,).综上所述:满足条件的点P的坐标为:(0,0),(321655,),(﹣122455,).【点睛】本题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(1)的关键是利用分类讨论的思想解决问题.。

上海市徐汇区2024届初三一模数学试题

上海市徐汇区2024届初三一模数学试题

上海市徐汇区2024届初三一模数学试题
上海市徐汇区2024届初三一模数学试题指的是在2024年上海市徐汇区初三一模考试中使用的数学科目的试卷。

这份试卷由徐汇区教育考试院组织专家进行命题,并按照初三数学课程的要求进行设计。

具体的题目示例包括:
选择题1:下列二次根式中,与√3是同类二次根式的是()
A. √9
B. √12
C. √27
D. √48
选择题2:若关于 x 的一元二次方程 ax^2 + bx + c = 0 (a ≠ 0) 的两根为x₁,x₂,则 x₁x₂ = ()
A. c/a
B. b/a
C. -c/a
D. a/c
判断题1:正六边形的每个内角都等于 60°。

判断题2:已知点 A(1, -2) 在反比例函数 y = k/x (k ≠ 0) 的图象上,则该反比例函数的解析式为 y = -2/x。

计算题1:计算:(√3 + 1)^2 - (√3 - 1)^2
计算题2:解方程:(x - 1)^2 = 4x(x - 3)
总结:上海市徐汇区2024届初三一模数学试题指的是在2024年上海市徐汇区初三一模考试中使用的数学科目的试卷。

这份试卷旨在测试学生对数学基础知识的掌握程度和应用能力,通过选择题、判断题和计算题等多种题型进行考查。

考生需要通过系统的学习和复习,掌握基础知识和应试技巧,以提高自己的数学水平,应对这份试卷的挑战。

2023年上海市15区中考一模数学试题知识点汇编 图形的变化,新定义含详解

2023年上海市15区中考一模数学试题知识点汇编 图形的变化,新定义含详解

2023年上海市15区中考数学一模汇编专题06图形的变化,新定义(27题)一.选择题(共1小题)1.(2022秋•徐汇区期末)阅读理解:我们知道,引进了无理数后,有理数集就扩展到实数集:同样,如果引进“虚数”实数集就扩展到“复数集”现在我们定义:“虚数单位”,其运算规则是:i1=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,则i2019=()A.1B.﹣1C.i D.﹣i二.填空题(共26小题)2.(2022秋•黄浦区校级期末)如图,图中提供了一种求cot15°的方法.作Rt△ABC,使∠C=90°,∠ABC=30°,再延长CB到点D,使BD=BA,联结AD,即可得∠D=15°.如果设AC=t,则可得CD=(2+)t,则cot15°=cot D==2+.用以上方法,则cot22.5°=.3.(2022秋•黄浦区校级期末)如图,已知在△ABC中,∠C=90°,BC=8,cos B=,点P是斜边AB上一点,过点P作PM⊥AB交边AC于点M,过点P作AC的平行线,与过点M作AB的平行线交于点Q.如果点Q恰好在∠ABC的平分线上,那么AP的长为.4.(2022秋•嘉定区校级期末)点A、B分别在△DEF的边DE、EF上,且∠DEF=90°,,∠EBA=45°(如图),△ABE沿直线AB翻折,翻折后的点E落在△DEF内部的点C,直线DC与边EF相交于点H,如果FH=AD,那么cot D=.5.(2022秋•徐汇区校级期末)在同一平面直角坐标系中,如果两个二次函数y1=a1(x+h1)2+k1与y2=a2(x+h2)2+k2的图象的形状相同,并且对称轴关于y轴对称,那么我们称这两个二次函数互为梦函数.如二次函数y=(x+1)2﹣1与y=(x﹣1)2+3互为梦函数,写出二次函数y=2(x+2)2+1的其中一个梦函数.6.(2022秋•徐汇区校级期末)在Rt△ABC中,∠C=90°,M为AB的中点,将Rt△ABC绕点M旋转,使点C与点B重合得到△DEB,设边BE交边CA于点N.若BC=2,AC=3,则AN=.7.(2022秋•浦东新区校级期末)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,点D是AC的中点,点E在边AB上,将△ADE沿DE翻折,使得点A落在点A'处,当A'E⊥AB时,那么AE的长为.8.(2022秋•杨浦区校级期末)已知y是关于x的函数,若该函数的图象经过点P(t,﹣t),则称点P为函数图象上的“相反点”,例如:直线y=2x﹣3上存在“相反点”P(1,﹣1).若二次函数y=x2+2mx+m+2的图象上存在唯一“相反点”,则m=.9.(2022秋•杨浦区校级期末)在Rt△ABC中,∠C=90°,AB=5,,点D在斜边AB上,把△ACD沿直线CD翻折,使得点A落在同一平面内的点A'处,当A'D平行Rt△ABC的直角边时,AD的长为.10.(2022秋•浦东新区期末)如图,点E、F分别在边长为1的正方形ABCD的边AB、AD上,BE=2AE、AF=2FD,正方形A'B'C'D'的四边分别经过正方形ABCD的四个顶点,已知A'D'∥EF,那么正方形A'B'C'D'的边长是.11.(2022秋•浦东新区期末)如图,正方形ABCD的边长为5,点E是边CD上的一点,将正方形ABCD沿直线AE 翻折后,点D的对应点是点D',联结CD'交正方形ABCD的边AB于点F,如果AF=CE,那么AF的长是.12.(2022秋•闵行区期末)如图,在Rt△ABC中,∠ACB=90°,AB=9,cot A=2,点D在边AB上,点E在边AC上,将△ABC沿着折痕DE翻折后,点A恰好落在线段BC的延长线上的点P处,如果∠BPD=∠A,那么折痕DE的长为.13.(2022秋•闵行区期末)阅读:对于线段MN与点O(点O与MN不在同一直线上),如果同一平面内点P满足:射线OP与线段MN交于点Q,且=,那么称点P为点O关于线段MN的“准射点”.问题:如图,矩形ABCD中,AB=4,AD=5,点E在边AD上,且AE=2,联结BE.设点F是点A关于线段BE的“准射点”,且点F在矩形ABCD的内部或边上,如果点C与点F之间距离为d,那么d的取值范围为.14.(2022秋•徐汇区期末)如图,在等边三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,若△ABC的面积为48,则△DEF的面积为.15.(2022秋•徐汇区期末)如图,在Rt△ABC中,∠A=90°,AB=AC=2,将线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,且AD∥BC,则AD=.16.(2022秋•青浦区校级期末)如图,在Rt△ABC中,∠ACB=90°,AC=1,tan∠CAB=2,将△ABC绕点A旋转后,点B落在AC的延长线上的点D,点C落在点E,DE与直线BC相交于点F,那么CF=.17.(2022秋•黄浦区期末)如图,在矩形ABCD中,过点D作对角线AC的垂线,垂足为E,过点E作BE的垂线,交边AD于点F,如果AB=3,BC=5,那么DF的长是.18.(2022秋•黄浦区期末)将一张直角三角形纸片沿一条直线剪开,将其分成一张三角形纸片与一张四边形纸片,如果所得四边形纸片ABCD如图5所示,其中∠A=∠C=90°,AB=7厘米,BC=9厘米,CD=2厘米,那么原来的直角三角形纸片的面积是平方厘米.19.(2022秋•徐汇区期末)在Rt△ABC中,∠B=90°,∠BAC=30°,BC=1,以AC为边在△ABC外作等边△ACD,设点E、F分别是△ABC和△ACD的重心,则两重心E与F之间的距离是.20.(2022秋•徐汇区期末)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC的中点,点E在边AB 上,将△ADE沿DE翻折,使得点A落在点A′处,当A′E⊥AB时,则A′A=.21.(2022秋•杨浦区期末)如图,已知在Rt△ABC中,∠C=90°,AC=BC=1,点D在边BC上,将△ABC沿直线AD翻折,使点C落在点C′处,联结AC′,直线AC′与边CB的延长线相交于点F.如果∠DAB=∠BAF,那么BF=.22.(2022秋•青浦区校级期末)如图,已知在△ABC中,∠C=90°,AB=21,,正方形DEFG的顶点G、F分别在AC、BC上,点D、E在斜边AB上,那么正方形DEFG的边长为.23.(2022秋•青浦区校级期末)新定义:有一组对角互余的凸四边形称为对余四边形,如图,已知在对余四边形ABCD中,AB=10,BC=12,CD=5,tan B=,那么边AD的长为.24.(2022秋•金山区校级期末)如果梯形的一条对角线把梯形分成的两个三角形相似,那么我们称该梯形为“优美梯形”.如果一个直角梯形是“优美梯形”,它的上底等于2,下底等于4,那么它的周长为.25.(2022秋•金山区校级期末)如图,已知在△ABC中,∠C=90°,BC=8,cos B=,点P是斜边AB上一点,过点P作PM⊥AB交边AC于点M,过点P作AC的平行线,与过点M作AB的平行线交于点Q.如果直线CQ ⊥AB,那么AP的长为.26.(2022秋•静安区期末)如图,△ABC绕点C逆时针旋转90°后得△DEC,如果点B、D、E在一直线上,且∠BDC=60°,BE=3,那么A、D两点间的距离是.27.(2022秋•静安区期末)定义:把二次函数y=a(x+m)2+n与y=﹣a(x﹣m)2﹣n(a≠0,m、n是常数)称作互为“旋转函数”.如果二次函数y=x2+bx﹣2与y=﹣x2﹣cx+c(b、c是常数)互为“旋转函数”,写出点P (b,c)的坐标.2023年上海市15区中考数学一模汇编专题06图形的变化,新定义(27题)一.选择题(共1小题)1.(2022秋•徐汇区期末)阅读理解:我们知道,引进了无理数后,有理数集就扩展到实数集:同样,如果引进“虚数”实数集就扩展到“复数集”现在我们定义:“虚数单位”,其运算规则是:i1=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,则i2019=()A.1B.﹣1C.i D.﹣i【分析】根据已知得出变化规律进而求出答案.【解答】解:∵i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,∴每4个数据一循环,∵2019÷4=504…3,∴i2019=i3=﹣i.故选:D.【点评】此题主要考查了新定义,正确理解题意是解题关键.二.填空题(共26小题)2.(2022秋•黄浦区校级期末)如图,图中提供了一种求cot15°的方法.作Rt△ABC,使∠C=90°,∠ABC=30°,再延长CB到点D,使BD=BA,联结AD,即可得∠D=15°.如果设AC=t,则可得CD=(2+)t,则cot15°=cot D==2+.用以上方法,则cot22.5°=+2.【分析】利用题中的方法构建一个Rt△ADC,使∠D=15°,然后利用余切的定义求解.【解答】解:作Rt△ABC,使∠C=90°,∠ABC=45°,再延长CB到点D,使BD=BA,联结AD,∵AB=BD,∴∠BAD=∠D,∵∠ABC=∠BAD+∠D,∴∠D=∠ABC=15°,设AC=t,则BC=t,AB=2t,∴CD=BC+BD=2t+t=(+2)t,在Rt△ADC中,cot D==+2,∴cot15°=+2.故答案为:+2.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.灵活应用勾股定理和锐角三角函数的定义是解决此类问题的关键.3.(2022秋•黄浦区校级期末)如图,已知在△ABC中,∠C=90°,BC=8,cos B=,点P是斜边AB上一点,过点P作PM⊥AB交边AC于点M,过点P作AC的平行线,与过点M作AB的平行线交于点Q.如果点Q恰好在∠ABC的平分线上,那么AP的长为.【分析】根据直角三角形的边角关系可求出AB,AC,再根据相似三角形,用含有AP的代数式表示MC、NC、MN,再根据角平分线的定义以及等腰三角形的判定得出BN=NQ,进而列方程求出AP即可.【解答】解:在△ABC中,∠C=90°,BC=8,cos B=,∴AB==10,AC==6,∵PM⊥AB,∴∠APM=90°=∠C,∵∠A=∠A,∴△APM∽△ACB,∴==,设AP=3x,则PM=4x,AM=5x,∴MC=6﹣5x,∵MN∥AB,∴==,∴CN=8﹣x,MN=10﹣x,∵BQ平分∠ABC,MN∥AB,∴∠QBN=∠BQN,∴NQ=BN=BC﹣CN=x,∵MN∥AB,PQ∥AC,∴四边形APQM是平行四边形,∴QM=AP=3x,∴MN=NQ+MQ=x+3x=x,∴x=10﹣x,解得x=,∴AP=3x=,故答案为:.【点评】本题考查直角三角形的边角关系,角平分线的定义,相似三角形的判定和性质以及平行四边形的性质,掌握直角三角形的边角关系以及相似三角形的判定和性质是解决问题的前提,用含有AP的代数式表示MC、NC、MN是正确解答的关键.4.(2022秋•嘉定区校级期末)点A、B分别在△DEF的边DE、EF上,且∠DEF=90°,,∠EBA=45°(如图),△ABE沿直线AB翻折,翻折后的点E落在△DEF内部的点C,直线DC与边EF相交于点H,如果FH=AD,那么cot D=.【分析】根据题意和翻折的性质可得△ABE是等腰直角三角形,△ABC是等腰直角三角形,所以AC∥BE,得==,设AC=AE=2x,则HE=3x,AD=4x,所以FE=7x,DE=6x,然后根据锐角三角函数即可解决问题.【解答】解:如图所示:∵∠DEF=90°,∠EBA=45°,∴△ABE是等腰直角三角形,∴AE=BE,∵△ABE沿直线AB翻折,翻折后的点E落在△DEF内部的点C,∴△ABC是等腰直角三角形,∴AC∥BE,∴==,∵FH=AD,设AC=AE=2x,则HE=3x,AD=4x,∴FE=7x,DE=6x,∴=,∴cot D==.故答案为:.【点评】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质.5.(2022秋•徐汇区校级期末)在同一平面直角坐标系中,如果两个二次函数y1=a1(x+h1)2+k1与y2=a2(x+h2)2+k2的图象的形状相同,并且对称轴关于y轴对称,那么我们称这两个二次函数互为梦函数.如二次函数y=(x+1)2﹣1与y=(x﹣1)2+3互为梦函数,写出二次函数y=2(x+2)2+1的其中一个梦函数y=2(x﹣2)2+2(答案为不唯一).【分析】由一对梦函数的图象的形状相同,并且对称铀关于y轴对称,可|a1|=a2,h1与h2互为相反数;【解答】解:二次函数y=2(x+2)2+1的一个梦函数是y=2(x﹣2)2+2;故答案为:y=2(x﹣2)2+2(答案为不唯一).【点评】本题主要考查的是二次函数的图象与几何变换,得出变换的规律是解题的关键.6.(2022秋•徐汇区校级期末)在Rt△ABC中,∠C=90°,M为AB的中点,将Rt△ABC绕点M旋转,使点C与点B重合得到△DEB,设边BE交边CA于点N.若BC=2,AC=3,则AN=.【分析】根据旋转的性质用同一个未知数表示出有关的边,根据勾股定理列方程计算.【解答】解:∵MA=MB=ME,∴∠ABE=∠E,又∵∠E=∠A,∴∠ABE=∠A,∴AN=NB,设CN=x,则AN=NB=3﹣x,在Rt△CAN中,AN2=AC2+CN2,即(3﹣x)2=4+x2,解得x=,即CN=.∴AN=3﹣=故答案为:.【点评】本题考查旋转变换,等腰三角形的判定和性质等知识,根据旋转的性质得到对应角和对应边之间的关系是解题的关键.7.(2022秋•浦东新区校级期末)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,点D是AC的中点,点E 在边AB上,将△ADE沿DE翻折,使得点A落在点A'处,当A'E⊥AB时,那么AE的长为或.【分析】分两种情形分别求解,作DF⊥AB于F.证明△AFD∽△ACB,由相似三角形的性质及勾股定理可求出答案.【解答】解:如图,作DF⊥AB于F.在Rt△ACB中,BC===6,∵∠DAF=∠BAC,∠AFD=∠C=90°,∴△AFD∽△ACB,∴,∴,∴DF=,AF=,∵A′E⊥AB,∴∠AEA′=90°,由翻折不变性可知:∠AED=45°,∴EF=DF=,∴AE=A′E=+=,如图,作DF⊥AB于F,当EA′⊥AB时,同法可得AE=A'E==.故答案为:或.【点评】本题考查翻折变换,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.8.(2022秋•杨浦区校级期末)已知y是关于x的函数,若该函数的图象经过点P(t,﹣t),则称点P为函数图象上的“相反点”,例如:直线y=2x﹣3上存在“相反点”P(1,﹣1).若二次函数y=x2+2mx+m+2的图象上存在唯一“相反点”,则m=.【分析】将P(t,﹣t)代入y=x2+2mx+m+2中得t2+2mt+m+2=﹣t,即t2+(2m+1)t+m+2=0,将二次函数y=x2+2mx+m+2的图象上存在唯一“相反点”,转化为方程有两个相等的实数根,Δ=0,求解即可.【解答】解:将P(t,﹣t)代入y=x2+2mx+m+2中,得t2+2mt+m+2=﹣t,即t2+(2m+1)t+m+2=0,∵二次函数y=x2+2mx+m+2的图象上存在唯一“相反点”,∴方程有两个相等的实数根,∴Δ=(2m+1)2﹣4×1×(m+2)=0,解得,故答案为:.【点评】本题考查了二次函数、一元二次方程根的判别式,解题的关键是将函数问题转化为方程问题.9.(2022秋•杨浦区校级期末)在Rt△ABC中,∠C=90°,AB=5,,点D在斜边AB上,把△ACD沿直线CD翻折,使得点A落在同一平面内的点A'处,当A'D平行Rt△ABC的直角边时,AD的长为1或3.【分析】如图,当A'D∥BC,根据平行线的性质得到∠A′DB=∠B,根据折叠的性质得到A′D=AD,∠A′=∠A,根据三角形的面积公式得到,由相似三角形的性质即可得到结论;如图2,当A'D∥AC,根据折叠的性质得到AD=A′D,AC=A′C,∠ACD=∠A′CD,根据平行线的性质得到∠A′DC=∠ACD,于是得到∠A′DC=∠A′CD,推出A′D=A′C,于是得到AD=AC=8.【解答】解:Rt△ABC中,∠C=90°,AB=5,,∴AC=3,,①如图,当A'D∥BC,∴∠A′DB=∠B,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴A′D=AD,∴∠A′=∠A,∴∠A′+∠A′DB=90°,∴A′C⊥AB,∴,∴,∵A'D∥BC,∴△A′DE∽△CBE,∴,即,∴A′D=1,∴AD=1;②如图,当A'D∥AC,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴AD=A′D,AC=A′C,∠ACD=∠A′CD,∵∠A′DC=∠ACD,∴∠A′DC=∠A′CD,∴A′D=A′C,∴AD=AC=3,综上所述:AD的长为:1或3,故答案为:1或3.【点评】本题考查了翻折变换﹣折叠问题,直角三角形的性质,熟练掌握折叠的性质是解题的关键.10.(2022秋•浦东新区期末)如图,点E、F分别在边长为1的正方形ABCD的边AB、AD上,BE=2AE、AF=2FD,正方形A'B'C'D'的四边分别经过正方形ABCD的四个顶点,已知A'D'∥EF,那么正方形A'B'C'D'的边长是.【分析】通过证明△AEF∽△A'AB,可求AA'的长,同理可求AD'的长,即可求解.【解答】解:∵BE=2AE、AF=2FD,AB=AD=1,∴BE=,AE=,AF=,DF=,∴EF==,∵A'D'∥EF,∴∠A'AB=∠AEF,又∵∠A'=∠EAF=90°,∴△AEF∽△A'AB,∴,∴AA'==,同理可求:AD'=,∴A'D'=,∴正方形A'B'C'D'的边长为,故答案为:.【点评】本题考查了正方形的性质,相似三角形的判定和性质,证明三角形相似是解题的关键.11.(2022秋•浦东新区期末)如图,正方形ABCD的边长为5,点E是边CD上的一点,将正方形ABCD沿直线AE 翻折后,点D的对应点是点D',联结CD'交正方形ABCD的边AB于点F,如果AF=CE,那么AF的长是.【分析】根据翻折的性质得AE⊥DD′,DE=D′E,可得∠EDD′=∠ED′D,证明四边形AECF是平行四边形,则AF=CE,AE∥CF,可得CF⊥DD′,根据等角的余角相等可得∠ED′C=∠D′CE,则D′E=CE=DE,即可求解.【解答】解:如图:连接DD′,由翻折得AE⊥DD′,DE=D′E,∴∠EDD′=∠ED′D,∵四边形ABCD是正方形,∴AB∥CD,∵AF=CE,∴四边形AECF是平行四边形,∴AF=CE,AE∥CF,∴CF⊥DD′,∴∠EDD′+∠D′CE=∠ED′D+ED′C=90°,∴∠ED′C=∠D′CE,∴D′E=CE=DE,∵正方形ABCD的边长为5,∴CE=CD=AB=,∴AF=,故答案为:.【点评】本题是考查了翻折变换的性质、正方形的性质、等腰三角形的判定和性质,平行四边形的判定与性质等知识,解决问题的关键是作辅助线,构造直角三角形解决问题.12.(2022秋•闵行区期末)如图,在Rt△ABC中,∠ACB=90°,AB=9,cot A=2,点D在边AB上,点E在边AC上,将△ABC沿着折痕DE翻折后,点A恰好落在线段BC的延长线上的点P处,如果∠BPD=∠A,那么折痕DE的长为2.【分析】先求出∠ADE=45°,由等腰直角三角形的性质可得DE=DH,由锐角三角函数可求DH的长,即可求解.【解答】解:如图,过点E作EH⊥AB于H,∵将△ABC沿着折痕DE翻折,∴AD=DP,∠ADE=∠PDE,∵∠BPD=∠A,∠A+∠B=90°,∴∠BPD+∠B=90°,∴∠BDP=90°=∠ADP,∴∠ADE=45°,∵EH⊥AB,∴∠DEH=∠EDH=45°,∴DH=EH,∴DE=DH,∵cot A=2==cot∠BPD=,∴AH=2HE,DP=2BD,∴AD=DP=3DH,∴BD=DH,∵AB=9=BD+AD=DH+3DH,∴DH=2,∴DE=2,故答案为:2.【点评】本题考查了翻折变换,锐角三角函数,等腰直角三角形的性质,添加恰当辅助线构造直角三角形是解题的关键.13.(2022秋•闵行区期末)阅读:对于线段MN与点O(点O与MN不在同一直线上),如果同一平面内点P满足:射线OP与线段MN交于点Q,且=,那么称点P为点O关于线段MN的“准射点”.问题:如图,矩形ABCD中,AB=4,AD=5,点E在边AD上,且AE=2,联结BE.设点F是点A关于线段BE的“准射点”,且点F在矩形ABCD的内部或边上,如果点C与点F之间距离为d,那么d的取值范围为≤d≤.【分析】设AF交BE于点Q,根据点F是点A关于线段BE的“准射点”,可得=,所以AQ=FQ,过点F作GH∥BE交AD,BC于点G,H,根据平行线分线段成比例定理可得AE=EG=2,AQ′=Q′F′,所以点F在线段GH上,连接CG,根据勾股定理求出CG的长,可得点F在AD上时与点G重合,此时CG的长即为d的最大值,过点C作CM⊥GH于点M,根据三角形面积求出CM的长,此时CM的长即为d的最小值,进而可得d的取值范围.【解答】解:如图,设AF交BE于点Q,∵点F是点A关于线段BE的“准射点”,∴=,∴AQ=FQ,过点F作GH∥BE交AD,BC于点G,H,∴AE=EG=2,AQ′=Q′F′,∴点F在线段GH上,连接CG,∵DG=AD﹣AG=5﹣4=1,CD=AB=4,∴CG===,过点C作CM⊥GH于点M,∵EG∥BH,BE∥GH,∴四边形BHGE是平行四边形,∴BH=EG=2,∴HC=BC﹣BH=5﹣2=3,∵BE=HG===2,∴S△GHC=HG•CM=CH•DC,∴2CM=3×4,∴CM=,∵点F在矩形ABCD的内部或边上,点C与点F之间距离为d,∴d的取值范围为≤d≤.故答案为:≤d≤.【点评】本题考查了相似三角形的判定与性质,平行线分线段成比例定理,勾股定理,平行四边形的判定与性质,矩形的性质,三角形面积,解决本题的关键是熟知垂线段最短.14.(2022秋•徐汇区期末)如图,在等边三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,若△ABC的面积为48,则△DEF的面积为16.【分析】利用等边三角形的性质可得∠A=∠B=∠C=60°,根据垂直定义可得∠AFE=∠BDF=∠DEC=90°,从而利用直角三角形的两个锐角互余可得∠AEF=∠BFD=∠EDC=30°,然后利用平角定义可得∠DFE=∠FDE=∠DEF=60°,从而可得△DFE是等边三角形,进而可得DF=EF,△ABC∽△DEF,最后在Rt△BDF和Rt△AFE中,利用含30度角的直角三角形的性质可得AF:DF:BF=1::2,从而可得=,进而利用相似三角形的性质,进行计算即可解答.【解答】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠AFE=∠BDF=∠DEC=90°,∴∠AEF=90°﹣∠A=30°,∠BFD=90°﹣∠B=30°,∠EDC=90°﹣∠C=30°,∴∠DFE=180°﹣∠AFE﹣∠BFD=60°,∠FDE=180°﹣∠BDF﹣∠EDC=60°,∠DEF=180°﹣∠DEC﹣∠AEF=60°,∴∠DFE=∠FDE=∠DEF=60°,∴△DFE是等边三角形,∴DF=EF,△ABC∽△DEF,在Rt△BDF和Rt△AFE中,∠BFD=∠AEF==30°,∴BD:DF:BF=1::2,AF:EF=1:,∴AF:DF:BF=1::2,∴=,∵△ABC∽△DEF,∴=()2=()2=,∵△ABC的面积为48,∴△DEF的面积=16,故答案为:16.【点评】本题考查了相似三角形的判定与性质,等边三角形的性质,熟练掌握相似三角形的判定与性质是解题的关键.15.(2022秋•徐汇区期末)如图,在Rt△ABC中,∠A=90°,AB=AC=2,将线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,且AD∥BC,则AD=或.【分析】根据要求画出图形,分两种情形分别解直角三角形求出BE,BF即可解决问题.【解答】解:满足条件的点D和D′如图所示,作AF⊥BC于F,DE⊥BC于E.则四边形AFED是矩形.∴AF=DE,∠DEB=90°,∵AB=AC,∠BAC=90°,AF⊥BC,∴BF=CF,∴AF=BC,∵BC=BD,AF=DE,∴DE=BD,∴∠DBE=30°,∵BD=BD′,∴∠BDD′=∠BD′D=30°,∴∠D′B′D=120°,∴∠D′BC=∠D′BD+∠DBE=120°+30°=150°,∴满足条件的α的值为30°或150°.∵AB=AC=2,∴BC=2,∴AF=BF=DE=,∴BE=DE=,∴AD=,AD′=2﹣()=.故答案为:或.【点评】本题考查旋转变换,等腰直角三角形的性质等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题.16.(2022秋•青浦区校级期末)如图,在Rt△ABC中,∠ACB=90°,AC=1,tan∠CAB=2,将△ABC绕点A旋转后,点B落在AC的延长线上的点D,点C落在点E,DE与直线BC相交于点F,那么CF=.【分析】根据已知条件得到BC=AC•tan∠CAB=2,根据勾股定理得到AB==,根据旋转的性质得到AD=AB=,∠D=∠B,根据三角函数的定义即可得到结论.【解答】解:如图,∵在Rt△ABC中,∠ACB=90°,AC=1,tan∠CAB=2,∴BC=AC•tan∠CAB=2,∴AB==,∵将△ABC绕点A旋转后,点B落在AC的延长线上的点D,∴AD=AB=,∠D=∠B,∵AC=1,∴CD=﹣1,∵∠FCD=∠ACB=90°,∴tan D=tan∠CAB==2,∴CF=,故答案为:.【点评】本题考查了旋转的性质,解直角三角形,正确的画出图形是解题的关键.17.(2022秋•黄浦区期末)如图,在矩形ABCD中,过点D作对角线AC的垂线,垂足为E,过点E作BE的垂线,交边AD于点F,如果AB=3,BC=5,那么DF的长是.【分析】利用矩形的性质求出AC,利用三角形的面积、勾股定理求出DE、CE的长,再利用等角的余角相等说明∠BAE=∠ADE、∠AEB=∠DEF,得△DEF∽△BEA,最后利用相似三角形的性质得结论.【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠ADC=90°,AB=CD=3,BC=AD=5,AB∥CD,∴AC===.∵S△ADC=AD•CD=AC•DE,∴DE=.∵DE⊥AC,∴CE===.∴AE=AC﹣CE=.∵AB∥CD,∴∠BAE=∠DCA.∵∠DCA+∠CDE=∠CDE+∠ADE=90°,∴∠BAE=∠ADE.∵BE⊥FE,DE⊥AC,∴∠FEA+∠AEB=∠DEF+∠FEA=90°.∴∠AEB=∠DEF.∴△DEF∽△BEA.∴==.∴DF=×3=.故答案为:.【点评】本题主要考查了相似三角形,掌握相似三角形的性质与判定、三角形的内角和定理及勾股定理是解决本题的关键.18.(2022秋•黄浦区期末)将一张直角三角形纸片沿一条直线剪开,将其分成一张三角形纸片与一张四边形纸片,如果所得四边形纸片ABCD如图5所示,其中∠A=∠C=90°,AB=7厘米,BC=9厘米,CD=2厘米,那么原来的直角三角形纸片的面积是54或平方厘米.【分析】分两种情况讨论,由勾股定理求出AD长,由三角形面积公式求出四边形ABCD的面积,由相似三角形的性质,即可解决问题.【解答】解:(1)分别延长CD,BA交于M,连接BD,设△MBC的面积是S(cm2),∵∠C=∠DAB=90°,∴DC2+BC2=AB2+AD2=BD2,∴22+92=72+AD2,∴AD=6(cm),∴△ADB的面积=AD•AB=×6×7=21(cm2),△DCB的面积=DC•BC=×2×9=9(cm2),∴四边形ABCD的面积=21+9=30(cm2),∴△DMA的面积=(S﹣30)(cm2),∵∠M=∠M,∠MAD=∠MCB,∴△MDA∽△MBC,∴===,∴=,∴S=54(cm2).(2)分别延长AD,BC交于N,设△NAB的面积是S′(cm2),由(1)知四边形ABCD的面积=30(cm2),∵∠N=∠N,∠NCD=∠A=90°,∴△NCD∽△NAB,∴===,∴=,∴S′=(cm2),∴原来的直角三角形纸片的面积是54cm2或cm2.故答案为:54或.【点评】本题考查相似三角形的应用,关键是应用相似三角形的性质,分两种情况讨论.19.(2022秋•徐汇区期末)在Rt△ABC中,∠B=90°,∠BAC=30°,BC=1,以AC为边在△ABC外作等边△ACD,设点E、F分别是△ABC和△ACD的重心,则两重心E与F之间的距离是.【分析】取AC中点O,连接OB、OD、BD、EF.根据含30度角的直角三角形的性质求出AC=2BC=2,利用勾股定理得出AB=,根据等边三角形的性质得出CD=AD=AC=2,∠CAD=60°,那么∠BAD=∠BAC+∠CAD=90°,利用勾股定理求出BD=.然后证明△EOF∽△BOD,得出EF=BD=.【解答】解:如图,取AC中点O,连接OB、OD、BD、EF.在Rt△ABC中,∠B=90°,∠BAC=30°,BC=1,∴AC=2BC=2,AB===,∵△ACD是等边三角形,∴CD=AD=AC=2,∴∠CAD=60°,∴∠BAD=∠BAC+∠CAD=90°,∴BD===.∵点E、F分别是△ABC和△ACD的重心,∴==,又∠EOF=∠BOD,∴△EOF∽△BOD,∴===,∴EF=BD=.故答案为:.【点评】本题考查了相似三角形的判定与性质,含30度角的直角三角形的性质,等边三角形的性质,三角形重心的定义与性质,掌握重心到顶点的距离与重心到对边中点的距离之比为2:1是解题的关键.20.(2022秋•徐汇区期末)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC的中点,点E在边AB 上,将△ADE沿DE翻折,使得点A落在点A′处,当A′E⊥AB时,则A′A=或.【分析】分两种情形分别求解,作DF⊥AB于F,连接AA′.想办法求出AE,利用等腰直角三角形的性质求出AA′即可.【解答】解:如图,作DF⊥AB于F,连接AA′.在Rt△ACB中,BC==6,∵∠DAF=∠BAC,∠AFD=∠C=90°,∴△AFD∽△ACB,∴==,∴==,∴DF=,AF=,∵A′E⊥AB,∴∠AEA′=90°,由翻折不变性可知:∠AED=45°,∴EF=DF=,∴AE=A′E=+=,∴AA′=,如图,作DF⊥AB于F,当EA′⊥AB时,同法可得AE=﹣=,AA′=AE=.故答案为或.【点评】本题考查翻折变换,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.21.(2022秋•杨浦区期末)如图,已知在Rt△ABC中,∠C=90°,AC=BC=1,点D在边BC上,将△ABC沿直线AD翻折,使点C落在点C′处,联结AC′,直线AC′与边CB的延长线相交于点F.如果∠DAB=∠BAF,那么BF=﹣1.【分析】在Rt△ABC中,∠C=90°,AC=BC=1,得到∠CAB=∠ABC=45°,由△ADC′是将△ABC沿直线AD翻折得到的,求出∠CAD=∠C′AD,于是得到∠ABF=135°,求得∠F=30°,根据直角三角形的性质即可得到结果.【解答】解:∵在Rt△ABC中,∠C=90°,AC=BC=1,∴∠CAB=∠ABC=45°,∵△ADC′是将△ABC沿直线AD翻折得到的,∴∠CAD=∠C′AD,∵∠DAB=∠BAF,∴∠BAD=∠DAC=∠BAC=15°,∵∠ABF=135°,∴∠F=30°,∴CF==,∴BF=CF﹣BC=﹣1,故答案为:﹣1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,锐角三角函数,正确的作出图形是解题的关键.22.(2022秋•青浦区校级期末)如图,已知在△ABC中,∠C=90°,AB=21,,正方形DEFG的顶点G、F分别在AC、BC上,点D、E在斜边AB上,那么正方形DEFG的边长为6.【分析】根据AB=21,,结合勾股定理求出AC和BC的长度,过点C作CM⊥AB于点M,交GF于点N,根据相似三角形高的比等于相似比即可进行解答.【解答】解:∵∠C=90°,,∴,设BC=x,则AC=2x,∵AB=21,∴根据勾股定理可得:BC2+AC2=AB2,即x2+(2x)2=212,解得:,(舍),∴,,过点C作CM⊥AB于点M,交GF于点N,∵CM⊥AB,∴CM⋅AB=AC⋅BC,即,解得:,∵四边形DEFG为正方形,∴GF∥DE,即GF∥AB,∴∠CGF=∠A,∠CFG=∠B,∴△CGF∽△CAB,设正方形DEFG边长为y,∵CM⊥AB,GD⊥AB,GF∥AB,∴CN⊥GF,MN=GD=y,∴,即,∴,解得:y=6,∴正方形DEFG的边长为6.故答案为:6.【点评】本题考查的是相似三角形的判定和性质、正方形的性质、勾股定理和解直角三角形等知识;正确作出辅助线、灵活运用相似三角形的判定定理和性质定理是解题的关键.23.(2022秋•青浦区校级期末)新定义:有一组对角互余的凸四边形称为对余四边形,如图,已知在对余四边形ABCD中,AB=10,BC=12,CD=5,tan B=,那么边AD的长为9.【分析】如图,过点A作AH⊥BC于H,过点C作CE⊥AD于E,连接AC.解直角三角形求出AE,DE即可解决问题【解答】解:如图,过点A作AH⊥BC于H,过点C作CE⊥AD于E,连接AC.在Rt△ABH中,tan B==,∴可以假设AH=3k,BH=4k,则AB=5k=10,∴k=2,∴AH=6,BH=8,∵BC=12,∴CH=BC﹣BH=12﹣8=4,∴AC===2,∵∠B+∠D=90°,∠D+∠ECD=90°,∴∠ECD=∠B,在Rt△CED中,tan∠ECD==,∵CD=5,∴DE=3,CE=4,∴AE===6,∴AD=AE+DE=9.故答案为:9.【点评】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.24.(2022秋•金山区校级期末)如果梯形的一条对角线把梯形分成的两个三角形相似,那么我们称该梯形为“优美梯形”.如果一个直角梯形是“优美梯形”,它的上底等于2,下底等于4,那么它的周长为8+2.【分析】过D作DE⊥BC于E,根据矩形的性质得到BE=AD=2,求得BD=CD,根据相似三角形的性质即可得到结论.【解答】解:如图,过D作DE⊥BC于E,∵梯形是直角梯形,∴∠A=∠ABC=∠DEB=90°,∴四边形ABED是矩形,∴BE=AD=2,∵BC=4,∴CE=BE=2,∴BD=CD,∵梯形的一条对角线把梯形分成的两个三角形相似,∴△ABD∽△DBC,∴=,∴==1,∴AB=AD=2,∴BD=CD=AD=2,∴它的周长为2+2+4+2=8+2,故答案为:8+2.【点评】本题考查了相似三角形的判定和性质,直角梯形,熟练掌握相似三角形的判定和性质是解题的关键,25.(2022秋•金山区校级期末)如图,已知在△ABC中,∠C=90°,BC=8,cos B=,点P是斜边AB上一点,过点P作PM⊥AB交边AC于点M,过点P作AC的平行线,与过点M作AB的平行线交于点Q.如果直线CQ ⊥AB,那么AP的长为.【分析】如图,设AP=m.证明AP=MQ=m,根据cos∠A=cos∠CMQ=,构建方程求解.【解答】解:如图,设AP=m.∵PQ∥ACMQ∥AB,∴四边形APQM是平行四边形,∠A=∠CMN,∴AP=MQ=m,在△ABC中,∠C=90°,BC=8,cos B=,∴AB==10,AC==6,∵PM⊥AB,∴AM=P A÷cos A=m,∴CM=AC﹣AM=6﹣m,∵CQ⊥AB,AB∥MN,∴CQ⊥MN,∴cos∠CMQ=cos A==,∴=,∴m=,经检验m=是分式方程的解,∴AP=.故答案为:.【点评】本题考查直解直角三角形,平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.26.(2022秋•静安区期末)如图,△ABC绕点C逆时针旋转90°后得△DEC,如果点B、D、E在一直线上,且∠BDC=60°,BE=3,那么A、D两点间的距离是.【分析】过点C作CF⊥BE于F,由旋转的性质得出∠ACD=∠BCE=90°,AC=CD,BC=CE,由直角三角形的性质可得出答案.【解答】解:过点C作CF⊥BE于F,∵△ABC绕点C逆时针旋转90°后得△DEC,∴∠ACD=∠BCE=90°,AC=CD,BC=CE,∴CF=BE=,∵∠BDC=60°,∴∠FCD=30°,∴DF=CF=,∴CD=2DF=,∴AD=CD==,故答案为:.【点评】本题考查了旋转的性质,等腰直角三角形的性质,熟练掌握旋转的性质是解题的关键.27.(2022秋•静安区期末)定义:把二次函数y=a(x+m)2+n与y=﹣a(x﹣m)2﹣n(a≠0,m、n是常数)称作互为“旋转函数”.如果二次函数y=x2+bx﹣2与y=﹣x2﹣cx+c(b、c是常数)互为“旋转函数”,写出点P(b,c)的坐标(﹣,2).【分析】根据旋转函数的定义得到:,从而解得b=﹣,c=2.【解答】解:根据题意得,解得.∴点P的坐标为(﹣,2),故答案为:(﹣,2).【点评】本题考查了二次函数的图象与系数的关系,二次函数图象与几何变换,正确理解新定义是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022年上海市徐汇区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.如果2x=3y,那么下列各式中正确的是()A. =B. =3 C. = D. =2.如果一斜坡的坡比是1:2.4,那么该斜坡坡角的余弦值是()A.B.C.D.3.如果将某一抛物线向右平移2个单位,再向上平移2各单位后所得新抛物线的表达式是y=2(x ﹣1)2,那么原抛物线的表达式是()A.y=2(x﹣3)2﹣2 B.y=2(x﹣3)2+2 C.y=2(x+1)2﹣2 D.y=2(x+1)2+24.在△ABC中,点D、E分别在边AB、AC上,联结DE,那么下列条件中不能判断△ADE和△ABC相似的是()A.DE∥BC B.∠AED=∠B C.AE:AD=AB:AC D.AE:DE=AC:BC5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是60°,那么此时飞机与监测点的距离是()A.6000米B.1000米C.2022米D.3000米6.已知二次函数y=﹣2x2+4x﹣3,如果y随x的增大而减小,那么x的取值范围是()A.x≥1 B.x≥0 C.x≥﹣1 D.x≥﹣2二、填空题:(本大题共12题,每题4分,满分48分)7.已知线段a=9,c=4,如果线段b是a、c的比例中项,那么b= .8.点C是线段AB延长线的点,已知=, =,那么= .9.如图,AB∥CD∥EF,如果AC=2,AE=5.5,DF=3,那么BD= .10.如果两个相似三角形的对应中线比是:2,那么它们的周长比是.11.如果点P是线段AB的黄金分割点(AP>BP),那么请你写出一个关于线段AP、BP、AB之间的数量关系的等式,你的结论是:.12.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,如果CD=4,BD=3,那么∠A的正弦值是.13.正方形ABCD的边长为3,点E在边CD的延长线上,连接BE交边AD于F,如果DE=1,那么AF= .14.已知抛物线y=ax2﹣4ax与x轴交于点A、B,顶点C的纵坐标是﹣2,那么a= .15.如图,矩形ABCD的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果AB:BC=3:4,那么AB的长是.16.在梯形ABCD中,AD∥BC,AC、BD相交于O,如果△BOC、△ACD的面积分别是9和4,那么梯形ABCD的面积是.17.在Rt△ABC中,∠ABC=90°,AC=5,BC=3,CD是∠ACB的平分线,将△ABC沿直线CD翻折,点A落在点E处,那么AE的长是.18.如图,在▱ABCD中,AB:BC=2:3,点E、F分别在边CD、BC上,点E是边CD的中点,CF=2BF,∠A=120°,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,那么的值为.三、解答题:(本大题共7题,第19-22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.计算:2sin60°﹣|cot30°﹣cot45°|+.20.将抛物线y=x2﹣4x+4沿y轴向下平移9个单位,所得新抛物线与x轴正半轴交于点B,与y轴交于点C,顶点为D.求:(1)点B、C、D坐标;(2)△BCD的面积.21.如图,已知梯形ABCD中,AD∥BC,AB=4,AD=3,AB⊥AC,AC平分∠DCB,过点DE∥AB,分别交AC、BC于F、E,设=, =.求:(1)向量(用向量、表示);(2)tanB的值.22.如图,一艘海轮位于小岛C的南偏东60°方向,距离小岛120海里的A处,该海轮从A处正北方向航行一段距离后,到达位于小岛C北偏东45°方向的B处.(1)求该海轮从A处到B处的航行过程中与小岛C之间的最短距离(记过保留根号);(2)如果该海轮以每小时20海里的速度从B处沿BC方向行驶,求它从B处到达小岛C的航行时间(结果精确到0.1小时).(参考数据: =1.41, =1.73)23.如图,已知△ABC中,点D在边BC上,∠DAB=∠B,点E在边AC上,满足AE•CD=AD•CE.(1)求证:DE∥AB;(2)如果点F是DE延长线上一点,且BD是DF和AB的比例中项,联结AF.求证:DF=AF.24.如图,已知抛物线y=﹣x2+bx+3与x轴相交于点A和点B(点A在点B的左侧),与y轴交于点C,且OB=OC,点D是抛物线的顶点,直线AC和BD交于点E.(1)求点D的坐标;(2)联结CD、BC,求∠DBC余切值;(3)设点M在线段CA延长线,如果△EBM和△ABC相似,求点M的坐标.25.如图,已知△ABC中,AB=AC=3,BC=2,点D是边AB上的动点,过点D作DE∥BC,交边AC于点E,点Q是线段DE上的点,且QE=2DQ,连接BQ并延长,交边AC于点P.设BD=x,AP=y.(1)求y关于x的函数解析式及定义域;(2)当△PQE是等腰三角形时,求BD的长;(3)连接CQ,当∠CQB和∠CBD互补时,求x的值.2022年上海市徐汇区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.如果2x=3y,那么下列各式中正确的是()A. =B. =3 C. = D. =【考点】比例的性质.【专题】推理填空题.【分析】根据比例的性质逐项判断,判断出各式中正确的是哪个即可.【解答】解:∵2x=3y,∴=,∴选项A不正确;∵2x=3y,∴=,∴==3,∴选项B正确;∵2x=3y,∴=,∴==,∴选项C不正确;∵2x=3y,∴=,∴==,∴∴选项D不正确.故选:B.【点评】此题主要考查了比例的性质和应用,要熟练掌握.2.如果一斜坡的坡比是1:2.4,那么该斜坡坡角的余弦值是()A.B.C.D.【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比=坡角的正切值,设竖直直角边为5x,水平直角边为12x,由勾股定理求出斜边,进而可求出斜坡坡角的余弦值.【解答】解:如图所示:由题意,得:tanα=i==,设竖直直角边为5x,水平直角边为12x,则斜边==13x,则cosα==.故选D.【点评】此题主要考查坡比、坡角的关系以及勾股定理;熟记坡角的正切等于坡比是解决问题的关键.3.如果将某一抛物线向右平移2个单位,再向上平移2各单位后所得新抛物线的表达式是y=2(x ﹣1)2,那么原抛物线的表达式是()A.y=2(x﹣3)2﹣2 B.y=2(x﹣3)2+2 C.y=2(x+1)2﹣2 D.y=2(x+1)2+2【考点】二次函数图象与几何变换.【分析】根据图象反向平移,可得原函数图象,根据图象左加右减,上加下减,可得答案.【解答】解:一条抛物线向右平移2个单位,再向上平移2个单位后所得抛物线的表达式为y=2(x ﹣1)2,抛物线的表达式为y=2(x﹣1)2,左移2个单位,下移2个单位得原函数解析式y=2(x+1)2﹣2,故选:C.【点评】本题考查了二次函数图象与几何变换,利用了图象左加右减,上加下减的规律.4.在△ABC中,点D、E分别在边AB、AC上,联结DE,那么下列条件中不能判断△ADE和△ABC相似的是()A.DE∥BC B.∠AED=∠B C.AE:AD=AB:AC D.AE:DE=AC:BC【考点】相似三角形的判定.【分析】根据题意画出图形,再由相似三角形的判定定理进行解答即可.【解答】解:如图,A、∵DE∥BC,∴△ADE∽△ABC,故本选项错误;B、∵∠AED=∠B,∠A=∠A,∴△ADE∽△ACB,故本选项错误;C、∵AE:AD=AB:AC,∠A=∠A,∴△ADE∽△ACB,故本选项错误;D、AE:DE=AC:BC不能使△ADE和△ABC相似,故本选项正确.故选D.【点评】此题考查了相似三角形的判定,属于基础题,关键是掌握相似三角形的几种判定定理.5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是60°,那么此时飞机与监测点的距离是()A.6000米B.1000米C.2022米D.3000米【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意可构造直角三角形,利用所给角的正弦函数即可求解.【解答】解:如图所示:由题意得,∠CAB=60°,BC=3000米,在Rt△ABC中,∵sin∠A=,∴AC===2022米.故选C.【点评】本题考查了解直角三角形的应用,解答本题的关键是借助俯角构造直角三角形,并结合三角函数解直角三角形.6.已知二次函数y=﹣2x2+4x﹣3,如果y随x的增大而减小,那么x的取值范围是()A.x≥1 B.x≥0 C.x≥﹣1 D.x≥﹣2【考点】二次函数的性质.【分析】把抛物线化为顶点式可求得开口方向及对称轴,再利用增减性可得到关于x的不等式,可求得答案.【解答】解:∵y=﹣2x2+4x﹣3=﹣2(x﹣1)2﹣1,∴抛物线开口向下,对称轴为x=1,∴当x≥1时,y随x的增大而减小,故选A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k 中,对称轴为x=h,顶点坐标为(h,k).二、填空题:(本大题共12题,每题4分,满分48分)7.已知线段a=9,c=4,如果线段b是a、c的比例中项,那么b= 6 .【考点】比例线段.【分析】根据比例中项的定义,若b是a,c的比例中项,即b2=ac.即可求解.【解答】解:若b是a、c的比例中项,即b2=ac.则b===6.故答案为:6.【点评】本题主要考查了线段的比例中项的定义,注意线段不能为负.8.点C是线段AB延长线的点,已知=, =,那么= ﹣.【考点】*平面向量.【分析】根据向量、的方向相反进行解答.【解答】解:如图,向量、的方向相反,且=, =,所以=+=﹣.故答案是:﹣.【点评】本题考查了平面向量,注意向量既有大小,又有方向.9.如图,AB∥CD∥EF,如果AC=2,AE=5.5,DF=3,那么BD= .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可得到结论.【解答】解:∵AC=2,AE=5.5,∴CE=3.5,AB∥CD∥EF,∴,∴BD=,故答案为:.【点评】本题考查平行线分线段成比例定理,用到的知识点是平行线分线段成比例定理,关键是找准对应关系,列出比例式.10.如果两个相似三角形的对应中线比是:2,那么它们的周长比是:2 .【考点】相似三角形的性质.【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵两个相似三角形的对应中线比是:2,∴它们的周长比为:2.故答案为::2.【点评】本题考查的是相似三角形的性质,熟知相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比等于相似比是解答此题的关键.11.如果点P是线段AB的黄金分割点(AP>BP),那么请你写出一个关于线段AP、BP、AB之间的数量关系的等式,你的结论是:AP2=BP•AB.【考点】黄金分割.【分析】根据黄金分割的概念解答即可.【解答】解:∵点P是线段AB的黄金分割点,∴AP2=BP•AB,故答案为:AP2=BP•AB.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.12.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,如果CD=4,BD=3,那么∠A的正弦值是.【考点】锐角三角函数的定义.【分析】求出∠A=∠BCD,根据锐角三角函数的定义求出tan∠BCD即可.【解答】解:∵CD⊥AB,∴∠CDB=90°,∵∠ACB=90°,∴∠A+∠B=90°,∠BCD+∠B=90°,∴∠A=∠BCD,∴tanA=tan∠BCD==,故答案为:.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt△ACB中,∠ACB=90°,则sinA=,cosA=,tanA=.13.正方形ABCD的边长为3,点E在边CD的延长线上,连接BE交边AD于F,如果DE=1,那么AF= .【考点】相似三角形的判定与性质;正方形的性质.【分析】由四边形ABCD为正方形即可得出∠A=∠ADC=90°、AB∥CD,根据平行线的性质以及邻补角即可得出∠EDF=∠A、∠ABF=∠DEF,从而得出△ABF∽△DEF,再根据相似三角形的性质即可得出==3,结合AF+DF=AD=3即可求出AF的长度,此题得解.【解答】解:依照题意画出图形,如图所示.∵四边形ABCD为正方形,∴∠A=∠ADC=90°,AB∥CD,∴∠EDF=180°﹣∠ADC=90°=∠A,∠ABF=∠DEF,∴△ABF∽△DEF,∴==3,∵AF+DF=AD=3,∴AF=AD=.故答案为:.【点评】本题考查了相似三角形的判定与性质、正方形的性质、平行线的性质以及邻补角,通过两组相等的角证出△ABF∽△DEF是解题的关键.14.已知抛物线y=ax2﹣4ax与x轴交于点A、B,顶点C的纵坐标是﹣2,那么a= .【考点】抛物线与x轴的交点.【分析】首先利用配方法确定函数的顶点坐标,根据顶点C的纵坐标是﹣2,即可列方程求得a的值.【解答】解:y=ax2﹣4ax=a(x2﹣4x+4)﹣4a=a(x﹣2)2﹣4a,则顶点坐标是(2,﹣4a),则﹣4a=﹣2,解得a=.故答案是:.【点评】本题考查了配方法确定函数的顶点坐标,正确进行配方是关键.15.如图,矩形ABCD的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果AB:BC=3:4,那么AB的长是.【考点】相似三角形的判定与性质;平行线之间的距离;矩形的性质.【分析】作辅助线,构建相似三角形,证明△ABE∽△BCF,列比例式求BE的长,利用勾股定理可以求AB的长.【解答】解:过A作AE⊥BM于E,过C作CF⊥BM于F,则CF=1,AE=2,∴∠AEB=∠BFC=90°,∴∠ABE+∠BAE=90°,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠BAE=∠CBE,∴△ABE∽△BCF,∴,∴,∴BE=,在Rt△ABE中,AB==,故答案为:.【点评】本题考查了矩形的性质、相似三角形的判定与性质、两平行线的距离以及勾股定理;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.16.在梯形ABCD中,AD∥BC,AC、BD相交于O,如果△BOC、△ACD的面积分别是9和4,那么梯形ABCD的面积是16 .【考点】相似三角形的判定与性质;梯形.【分析】如图,设△AOD的面积为x,则△ODC的面积为4﹣x.由AD∥BC,推出△AOD∽△COB,可得=()2,因为=,得到=()2,解方程即可.【解答】解:如图,设△AOD的面积为x,则△ODC的面积为4﹣x.∵AD∥BC,∴△AOD∽△COB,∴=()2,∵=,∴=()2,解得x=1或16(舍弃),∵S△ABD=S△ADC=1,∴S△AOB=S△DOC=3,∴梯形ABCD的面积=1+3+3+9=16,故答案为16.【点评】本题考查相似三角形的判定和性质、梯形的性质等知识,解题的关键是熟练掌握相似三角形的性质,学会用方程的思想思考问题,属于中考常考题型.17.在Rt△ABC中,∠ABC=90°,AC=5,BC=3,CD是∠ACB的平分线,将△ABC沿直线CD翻折,点A落在点E处,那么AE的长是2.【考点】翻折变换(折叠问题);勾股定理.【分析】由勾股定理求AB=4,再根据旋转的性持和角平分线可知:点A的对应点E在直线CB上,BE=2,利用勾股定理可求AE的长.【解答】解:∵CD是∠ACB的平分线,∴将△ABC沿直线CD翻折,点A的对应点E在直线CB上,∵∠ABC=90°,AC=5,BC=3,∴AB=4,由旋转得:EC=AC=5,∴BE=5﹣3=2,在Rt△ABE中,由勾股定理得:AE===2,故答案为:2.【点评】本题考查了翻折变换的性质、勾股定理,明确折叠前后的两个角相等,两边相等;在图形中确定直角三角形,如果知道了一个直角三角形的两条边,可以利用勾股定理求第三边.18.如图,在▱ABCD中,AB:BC=2:3,点E、F分别在边CD、BC上,点E是边CD的中点,CF=2BF,∠A=120°,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,那么的值为.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】如图,连接AE、AF,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,作DH⊥BC于H,EG⊥BC于G,设AB=2a.BC=3a.根据•AP•BE=•DF•AQ,利用勾股定理求出BE、DF即可解决问题.【解答】解:如图,连接AE、AF,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,作DH⊥BC于H,EG⊥BC于G,设AB=2a.BC=3a.∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∠BAD=∠BCD=120°,∴S△ABE=S△ADF=S平行四边形ABCD,在Rt△CDH中,∵∠H=90°,CD=AB=2a,∠DCH=60°,∴CH=a,DH=a,在Rt△DFH中,DF===2a,在Rt△ECG中,∵CE=a,∴CG=a,GE=a,在Rt△BEG中,BE===a,∴•AP•BE=•DF•AQ,∴==,故答案为.【点评】本题考查平行四边形的性质、勾股定理,三角形的面积等知识,解题的关键是利用面积法求线段的长,学会添加常用辅助线,学会利用参数解决问题,属于中考常考题型.三、解答题:(本大题共7题,第19-22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.计算:2sin60°﹣|cot30°﹣cot45°|+.【考点】实数的运算;特殊角的三角函数值.【分析】首先根据特殊角的三角函数进行代入,然后再根据绝对值的性质计算绝对值,然后合并同类二次根式即可.【解答】解:原式=2×﹣|1|+,=+1+,=﹣2﹣3.【点评】此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.20.将抛物线y=x2﹣4x+4沿y轴向下平移9个单位,所得新抛物线与x轴正半轴交于点B,与y轴交于点C,顶点为D.求:(1)点B、C、D坐标;(2)△BCD的面积.【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)首先求得抛物线y=x2﹣4x+4沿y轴向下平移9个单位后解析式,利用配方法求得D的坐标,令y=0求得C的横坐标,令y=0,解方程求得B的横坐标;(2)过D作DA⊥y轴于点A,然后根据S△BCD=S梯形AOBD﹣S△BOC﹣S△ADC求解.【解答】解:(1)抛物线y=x2﹣4x+4沿y轴向下平移9个单位后解析式是y=x2﹣4x+4﹣9,即y=x2﹣4x﹣5.y=x2﹣4x﹣5=(x﹣2)2﹣9,则D的坐标是(2,﹣9).在y=x2﹣4x﹣5中令x=0,则y=﹣5,则C的坐标是(0,﹣5),令y=0,则x2﹣4x﹣5=0,解得x=﹣1或5,则B的坐标是(5,0);(2)过D作DA⊥y轴于点A.则S△BCD=S梯形AOBD﹣S△BOC﹣S△ADC=(2+5)×9﹣×2×4﹣×5×5=15.【点评】本题考查了配方法确定二次函数的顶点坐标,以及函数与x轴、y轴的交点的求法,正确求得抛物线y=x2﹣4x+4沿y轴向下平移9个单位后解析式是关键.21.如图,已知梯形ABCD中,AD∥BC,AB=4,AD=3,AB⊥AC,AC平分∠DCB,过点DE∥AB,分别交AC、BC于F、E,设=, =.求:(1)向量(用向量、表示);(2)tanB的值.【考点】*平面向量;梯形;解直角三角形.【分析】(1)首先证明四边形ABED是平行四边形,推出DE=AB,推出==, ==, =+.(2)由△DFC∽△BAC,推出==,求出BC,在Rt△BAC中,∠BAC=90°,根据AC===2,由tanB=,即可解决问题.【解答】解:∵AD∥BC,∴∠DAC=∠ACB,∴AC平分∠DCB,∴∠DCA=∠ACB,∴∠DAC=∠DCA,∴AD=DC,∵DE∥AB,AB⊥AC,∴DE⊥AC,∴AF=CF,∴BE=CE,∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形,∴DE=AB,∴==, ==,∴=+.(2)∵∠DCF=∠ACB,∠DFC=∠BAC=90°,∴△DFC∽△BAC,∴==,∵CD=AD=3,∴BC=6,在Rt△BAC中,∠BAC=90°,∴AC===2,∴tanB===.【点评】本题考查平面向量、梯形、解直角三角形、平行四边形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识,属于基础题.22.如图,一艘海轮位于小岛C的南偏东60°方向,距离小岛120海里的A处,该海轮从A处正北方向航行一段距离后,到达位于小岛C北偏东45°方向的B处.(1)求该海轮从A处到B处的航行过程中与小岛C之间的最短距离(记过保留根号);(2)如果该海轮以每小时20海里的速度从B处沿BC方向行驶,求它从B处到达小岛C的航行时间(结果精确到0.1小时).(参考数据: =1.41, =1.73)【考点】解直角三角形的应用-方向角问题.【分析】(1)首先过点C作CD⊥AB于D,构建直角△ACD,通过解该直角三角形得到CD的长度即可;(2)通过解直角△BCD来求BC的长度.【解答】解:(1)如图,过点C作CD⊥AB于D,由题意,得∠ACD=30°.在直角△ACD中,∠ADC=90°,∴cos∠ACD=,∴CD=AC•cos30°=120×=60(海里);(2)在直角△BCD中,∠BDC=90°,∠DCA=45°,∴cos∠BCD=,∴BC===60≈60×2.44=146.4(海里),∴146.4÷20=7.32≈7.3(小时).答:(1)求该海轮从A处到B处的航行过程中与小岛C之间的最短距离是60海里;(2)如果该海轮以每小时20海里的速度从B处沿BC方向行驶,求它从B处到达小岛C的航行时间约为7.3小时.【点评】此题考查了方向角问题.此题难度适中,注意将方向角问题转化为解直角三角形的知识求解是解此题的关键,注意数形结合思想的应用.23.如图,已知△ABC中,点D在边BC上,∠DAB=∠B,点E在边AC上,满足AE•CD=AD•CE.(1)求证:DE∥AB;(2)如果点F是DE延长线上一点,且BD是DF和AB的比例中项,联结AF.求证:DF=AF.【考点】相似三角形的判定与性质.【分析】(1)根据已知条件得到,根据等腰三角形的判定定理得到AD=BD,等量代换即可得到结论;(2)由BD是DF和AB的比例中项,得到BD2=DF•AB,等量代换得到AD2=DF•AB,推出=,根据相似三角形的性质得到==1,于是得到结论.【解答】证明:(1)∵AE•CD=AD•CE,∴,∵∠DAB=∠B,∴AD=BD,∴,∴DE∥AB;(2)∵BD是DF和AB的比例中项,∴BD2=DF•AB,∵AD=BD,∴AD2=DF•AB,∴=,∵DE∥AB,∴∠ADF=∠BAD,∴△ADF∽△DBA,∴==1,∴DF=AF.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.24.如图,已知抛物线y=﹣x2+bx+3与x轴相交于点A和点B(点A在点B的左侧),与y轴交于点C,且OB=OC,点D是抛物线的顶点,直线AC和BD交于点E.(1)求点D的坐标;(2)联结CD、BC,求∠DBC余切值;(3)设点M在线段CA延长线,如果△EBM和△ABC相似,求点M的坐标.【考点】二次函数综合题.【分析】(1)根据题意求出点C的坐标、点B的坐标,利用待定系数法求出抛物线的解析式,根据二次函数的性质求出顶点坐标;(2)根据等腰直角三角形的性质得到∠DCB=90°,根据余切的定义计算即可;(3)运用待定系数法求出直线CA的解析式,设点M的坐标为(x,3x+3),根据相似三角形的性质得到∠ACB=∠BME,根据等腰三角形的性质得到BM=BC,根据勾股定理列出方程,解方程即可.【解答】解:(1)∵已知抛物线y=﹣x2+bx+3与y轴交于点C,∴点C的坐标为:(0,3),∵OB=OC,∴点B的坐标为:(3,0),∴﹣9+3b+3=0,解得,b=2,∴抛物线的解析式为:y=﹣x2+2x+3,y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)如图1,作DH⊥y轴于H,则CH=DH=1,∴∠HCD=∠HDC=45°,∵OB=OC,∴∠OCB=∠OBC=45°,∴∠DCB=90°,∴cot∠DBC===3;(3)﹣x2+2x+3=0,解得,x1=﹣1,x2=3,∴点A的坐标为:(﹣1,0),∴=,又=,∴=,∴Rt△AOC∽Rt△DCB,∴∠ACO=∠DBC,∵∠ACB=∠ACO+45°=∠DBC+∠E,∴∠E=45°,∵△EBM和△ABC相似,∠E=∠ABC=45°,∴∠ACB=∠BME,∴BM=BC,设直线CA的解析式为:y=kx+b,则,解得,,则直线CA的解析式为:y=3x+3,设点M的坐标为(x,3x+3),则(x﹣3)2+(3x+3)2=18,解得,x1=0(舍去),x2=﹣,x2=﹣时,y=﹣,∴点M的坐标为(﹣,﹣).【点评】本题考查的是二次函数的综合运用、相似三角形的判定和性质,掌握二次函数的性质、待定系数法求函数解析式的一般步骤是解题的关键.25.如图,已知△ABC中,AB=AC=3,BC=2,点D是边AB上的动点,过点D作DE∥BC,交边AC于点E,点Q是线段DE上的点,且QE=2DQ,连接BQ并延长,交边AC于点P.设BD=x,AP=y.(1)求y关于x的函数解析式及定义域;(2)当△PQE是等腰三角形时,求BD的长;(3)连接CQ,当∠CQB和∠CBD互补时,求x的值.【考点】三角形综合题;等腰梯形的性质;平行线分线段成比例;相似三角形的判定与性质.【专题】压轴题.【分析】(1)过点D作DF∥AC,交BP于F,根据平行线分线段成比例定理,可得EC=BD=x,PE=3﹣x﹣y,DF=,进而根据DF∥AC,求得y=,定义域为:0<x<3;(2)当△PEQ为等腰三角形时,△PBC也为等腰三角形,分三种情况讨论:①当PB=BC时,②当PC=BC=2时,③当PC=PB时,分别求得BD的长即可;(3)先根据已知条件判定四边形BCED是等腰梯形,判定△BDQ∽△QEC,得出=,即2DQ2=x2,再根据DE∥BC,得出=,即=,求得x的值即可.【解答】解:(1)如图所示,过点D作DF∥AC,交BP于F,则根据QE=2DQ,可得==,又∵DE∥BC,∴==1,∴EC=BD=x,PE=3﹣x﹣y,DF=,∵DF∥AC,∴=,即=,∴y=,定义域为:0<x<3;(2)∵DE∥BC,∴△PEQ∽△PBC,∴当△PEQ为等腰三角形时,△PBC也为等腰三角形,①当PB=BC时,△ABC∽△BPC,∴BC2=CP•AC,即4=3(3﹣y),解得y=,∴=,解得x==BD;②当PC=BC=2时,AP=y=1,∴=1,解得x==BD;③当PC=PB时,点P与点A重合,不合题意;(3)∵DE∥BC,∴∠BDQ+∠CBD=180°,又∵∠CQB和∠CBD互补,∴∠CQB+∠CBD=180°,∴∠CQB=∠BDQ,∵BD=CE,∴四边形BCED是等腰梯形,∴∠BDE=∠CED,∴∠CQB=∠CED,又∵∠DQB+∠CQB=∠ECQ+∠CED,∴∠DQB=∠ECQ,∴△BDQ∽△QEC,∴=,即2DQ2=x2,∴DQ=,DE=,∵DE∥BC,∴=,即=,解得x=.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰梯形的判定与性质的综合应用,解决问题的关键是作辅助线构造相似三角形,运用相似三角形的对应边成比例进行求解.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.。

相关文档
最新文档