第二章 线性算子与线性泛函
1.3线性有界算子,巴拿赫空间中的几个定理

§3线性有界算子,巴拿赫空间中的几个定理一、线性赋泛空间在前一节,对集合引入距离的概念,从而定义了极限下面再引入元素的加法及数乘的代数运算。
定义1:设为一集合,如果:(一)在中定义了加法,即对中的任意元素,存在相应的元素,记,称为的和,并适合:E E ,x y u E ∈u x y =+,x y E(1)(2)()(3)在中存在唯一的元素(称为零元素),对任何中的元素,有(4)在中存在唯一的元素,使称为的负元素,记为。
(二)在中定义了元素与数(实数或复数)的乘法,即在中存在元素,x y y x+=+()()x y z x y z ++=++z E ∈E θE x x xθ+=E 'x 'x x θ+='x x x −E E v记(为任何实数或复数,),称之为与元素的数积,适合:(5)(6)(是数)(7)(8)便称为线性空间(或向量空间),称中元素为向量。
若数积运算只对实数(复数)有意义,则称是实(复)线性空间。
v ax =a a x E ∈x ()()a bx ab x =,a b ()a b x ax bx+=+()a x y ax ay+=+E E E 1x x⋅=定义2:设是线性空间,是的非空子集。
如果对任何,对于中的元素都有及,那么,按中的加法及数积也成为线性空间,称为的线性子空间(或简称子空间)。
和是的两个子空间,称为平凡子空间。
若则称是的真子空间,每个子空间都含有零元素。
E M E αM ,x y x y M +∈x M α∈M E E E E {}0E M ≠M E定义3:设是线性空间的向量是个数,称为的线性组合。
若中之集的任意的有限个向量都线性无关,则称是的线性无关子集。
若是中的线性无关子集且对于中的每个非零向量都是中向量的线性组合,则称是的一组基若中存在由(有限)个线性无关向量组成的基,就说是维(有限维)线性空间,否则说是无限维空间。
E n E M M E A E E x A A E E n E n 12,,,n x x x …12,,,n ααα…11n n x x αα++…1,,n x x …引入距离,则不难验证,满足距离公理的三个条件,于是线性赋范空间就成为距离空间,今后对线性赋范空间总是按(*)式引入距离使之成为距离空间。
线性泛函分析

线性泛函分析泛函分析的主要工作在于对积分方程而不是对变分法提供一个抽象的理论. 变分法领域里所需泛函的性质是相当特殊的,对一般的泛函并不成立.此外,这些泛函的非线性造成了困难,而这种困难对于包含在积分方程中的泛函和算子则是无关紧要的.在Schmidt ,Fischer ,Riesz 为积分方程解的理论作具体推广时,他们和其他一些人也同时开始了相应的抽象理论的研究.第一个试图建立线性泛函和算子的抽象理论的,是美国数学家E .H .Moore ,他从1906年开始这一工作. Moore 认识到,在有限多个未知数的线性方程的理论、无限多个未知数的无限多个线性方程的理论、以及线性积分方程的理论之间,有许多共同的地方.他因此着手建立一种称为“一般分析”(Generl Analysis)的抽象理论,它包含上述具体理论作为特殊情形.他用的是公理方法.我们将不叙述其细节,因为他的影响并不广,而且电没有获得很有效的方法.另外,他的符号语言很奇怪,使以后的人理解起来很困难.在建立线性泛函和算子的抽象理论的过程中,第一个有影响的步骤是由Erhard Sohmidt 和Frechet 在1907年采取的.Hilbert 在他的积分方程的工作中,曾经把一个函数看成是由它相应于某标准正交函数系的Fourier 系数给定的.这些系数以及在他的无穷多个变量的二次型理论中他所赋予这些x i 的值,都是使21n x ∑∞成为有限的序列{x n }.然而,Hilbort 并没有把这些序列看成空间中点的坐标,也没有用几何的语言,这一步是由Schmidt 和Frechet 采取的. 把每一个序列{x 。
}看成一个点,函数就被表现为无穷维空间的点.Sohmidt 不仅把实数而且把复数引入序列{x 0}中.这样的空间从此以后被称为Hilbort 空间.我们的叙述 按照Schmidt 的工作.Schmidt 的函数空间的元素是复数的无穷序列z ={z n },使得.21∞∑∞=<zp p Schmidt 引入记号;211⎭⎬⎫⎩⎨⎧∑∞=-p p p z z 来表示z ;z 后来就称为z 的范数(norm).按照Hilbert ,Sehmidt 用记号).,(,),(1-∞==∑z z z 所以z 表示z p p pωω(现在通用的记号是把)),(1p p p z 定义义z -∞=∑ωω.空间中两个元素z 和ω称为正交的,当且仅当.0,=⎪⎭⎫ ⎝⎛-ωz Schmidt ;接着证明了广义的Pythagoras 定理:如果z 1, z 2, …,z n 是空间的n 个两两正交的元素,则由∑==n p p z 1ω知 .212p n p z ∑==ω由此可推出n 个两两正交的元素是线性无关的.Schrnidt 在他的一般空间中还得到了Bessel 不等式:如果{z n }是标准正交元素的无穷序列,即ωδ而z z pq q p ,),(=-是任何一个元素,那末21,(-∞=∑p p z ω≤.2ω 此外,还证明了范数的Schwarz 不等式和三角不等式.元素序列{z n }称为强收敛于z ,如果z z n -趋向于0,而每个强Cauehy 序列,即每个使q p z z -趋于0 (当p ,q 趋于0时)的序列,可以证明都收敛于某一元素z ,从而序列空间是完备的.这是一条非常重要的性质.Schmidt 接着引进了(强)闭子空间的概念.他的空间H 的一个子集A 称为闭子空间,如果在刚才定义的收敛的意义下它是闭子集,并且是代数封闭的,后者意指,如果ω1与ω2是A 的元素,那末2211ωωa a +也是A 的元素,其中a 1,a 2是任何复数.可以证明这样的闭子空间是存在的,这只需取任何一个线性无关的元素列{z n },并取{z n }中元素的所有有限线性组合.全体这些元素的闭包就是一个代数封闭的子空间.现在,设A 是任一固定的闭子空间.Schmidt 首先证明,如果z 是空间的任一元素,则存在唯一的元素ω1和ω2,使得z =ω1+ω2,其中ω1属于A , ω2和A 正交,后者是指ω2和A 的每个元素正交(这个结果,今天称为投影定理;ω1就是z 在A 中的投影)进一步,,min 2z y -=ω 其中y 是A 的变动元素,而且极小值只在21.ωω时达到y =称为z 和A 之间的距离.在1907年,Schmidt 和Frechet 同时注意到,平方可和(Lebesgue 可积) 函数的空间有一种几何,完全类似于序列的Hilbert 空间. 这个类似性的阐明是在几个月之后,当时Riesz 运用在Lebesgue 平方可积函数与平方可和实数列之间建立一一对应的Riesz-Fischer'定理指出,在平方可和函数的集合L 2中能够定义一种距离,用它就能建立这个函数空间的一种几何. L 2中,定义在区间[a , b]上的任何两个平方可积函数之间的距离这个概念,事实上也是Frechet 定义的,他把它定义为(1) ⎰-b a dx x g x f ,)]()([2其中积分应理解为Lebesgue 意义下的;并且两个函数只在一个0测集上不同时就认为是相等的.距离的平方也称为这两个函数的平均平方偏差.f 和g 的内积定义为⎰=ba dx x g x f g f )()(),(. 使(f ,g) = 0的两个函数f 与g 称为是正交的.Schwarz 不等式 dx x g x f ba )()(⎰≤dx g dx fb a b a ⎰⎰22以及对平方可和序列空间成立的其他性质,都适用于函数空间.特别是,这类平方可和函数形成一个完备的空间.这样,平方可和函数的空间,同这些函数相应于某一固定的完备标准正交函数系的Fourier 系数所构成的平方可和序列的空间,可以认为是相同的.在提到抽象函数空间时,我们应重提一下Riesz 引入的空间L p (1<p<∞).这些空间对度量pb a p dx f f f f d 12121),(⎪⎭⎫ ⎝⎛-=⎰ 也是完备的.虽然我们很快就要考察抽象空间领域中的其他成就,但下一发展涉及泛函和算子.在刚才引述的对空间L 2的函数引进了距离的1907年的文章中,以及在同年的其他文章中, Frechet 证明了,对于定义在L 2的每一个连续线性泛函U(f),存在L 2中唯一的一个u(x),使得对L 2的每个f 都有⎰=ba dx x u x f f U .)()()( 这推广了Hadamard 1903年得到的一个结果.1909年Riesz 推广了这个结果,用Stieltjes 积分表示U(f),也就是⎰=ba x du x f f U ).()()(Riesz 自己还把这个结果推广到满足下面条件的线性泛函A:对L p 中所有的f)(f A ≤p ba p dx x f M /1)(⎥⎦⎤⎢⎣⎡⎰其中M 只依赖于A .这样,存在L q 中的一个函数a(x),在允许相差一个积分为0的函数的意义下是唯一的,使得对L p 中所有的f(2) ⎰=b a dx x f x a f U .)()()( 这个结果称为Riesz 表示定理。
泛函分析复习与总结

《泛函分析》复习与总结 (2014年6月26日星期四 10:20---11:50)第一部分 空间及其性质泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。
以下几点是对第一部分内容的归纳和总结。
一.空间(1)距离空间 (集合+距离)!验证距离的三个条件:(,)X ρ称为是距离空间,如果对于,,x y z X ∈(i) 【非负性】(,)0x y ρ≥,并且(,)0x y ρ=当且仅当x y =【正定性】;(ii) 【对称性】(,)(,)x y y x ρρ=;(iii) 【三角不等式】(,)(,)(,)x y x y y z ρρρ≤+。
距离空间的典型代表:s 空间、S 空间、所有的赋范线性空间、所有的内积空间。
(2)赋范线性空间 (线性空间 + 范数)!验证范数的三个条件:(,||||)X ⋅称为是赋范线性空间,如果X是数域K =¡(或K =£)上的线性空间,对于a K ∈和,x y X ∈,成立(i) 【非负性】||||0x ≥,并且||||0x =当且仅当0x =【正定性】; (ii) 【齐次性】||||||||||ax a x =⋅;(iii) 【三角不等式】||||||||||||x y x y +≤+。
赋范线性空间的典型代表:n ¡空间(1,2,3,n =L )、n £空间(1,2,3,n =L )、p l 空间(1p ≤≤∞)、([,])p L ab 空间(1p ≤≤∞)、[,]Cab 空间、[,]k C a b 空间、Banach 空间、所有的内积空间(范数是由内积导出的范数)。
(3)内积空间 (线性空间 + 内积)!验证内积的四个条件:(,(,))X ⋅⋅称为是内积空间,如果X 是数域K =¡(或K =£)上的线性空间,对于a K ∈和,,x y z X ∈,成立(i) 【非负性】(,)0x x ≥,并且(,)0x x =当且仅当0x =【正定性】;(ii) 【第一变元可加性】(,)(,)(,)x y z x z x z +=+;(iii) 【第一变元齐次性】(,)(,)ax z a x z =;(iv) 【共轭对称性】(,)(,)x z z x =。
线性泛函和对偶空间

|
a
+
1 n
x
a fn (t )dt | dx
ò ò =
a
+
1 n
n(
x
-
a
)dx
+
b
dx
a
a
+
1 n
=b-a- 1
2n
Therefore || T ||³ sup || Tfn ||L = b - a.
n
• Proposition.
Linear operator T : ( X ,|| × ||) ® (Y ,|| × ||)
Þ T : X ® X是线性算子.
•例
1
y(s) = ò k(s, t)x(t)dt, k( , ) Î C([0,1]´[0,1]) 0
定义算子 A : C[0,1] a C[0,1] 如下
1
A : x(t) a y(s) = ò k(s, t )x(t)dt, 0
满足 A(a x1 + b x2 ) = a Ax1 + b Ax2 .
=
æ
ç
A
ç ç
x1 x2 M
ö ÷ ÷ ÷
ççè yn ÷÷ø ççè an1 an2 L ann ÷÷ø ççè xn ÷÷ø
ççè xn ÷÷ø
由此可知,在有限维线性空间上,如果将基选定后,
线性算子与矩阵是相对应的.
•例
X :[a, b]上全体多项式所成的线性空间,
定义微分算子 Tx(t) = x¢(t), x Î X
Tx关于这个基的坐标是(y1, y2 , ..., yn ).
n
n
å å x = xkek , Tx = ykek :
泛函分析第2章度量空间与赋范线性空间

泛函分析第2章度量空间与赋范线性空间泛函分析是数学中的一个重要分支,研究函数空间上的函数和运算的性质。
在泛函分析中,度量空间和赋范线性空间是两个基本的概念。
本文将介绍这两个概念以及它们的性质。
度量空间是一个集合X,其中定义了一个度量函数d:X×X→R,满足以下条件:1.非负性:对于任意的x,y∈X,有d(x,y)≥0,且当且仅当x=y时,d(x,y)=0;2.对称性:对于任意的x,y∈X,有d(x,y)=d(y,x);3.三角不等式:对于任意的x,y,z∈X,有d(x,y)≤d(x,z)+d(z,y)。
度量函数d可以看作是度量空间X中点之间的距离,由其性质可以推导出许多重要结论。
例如,由三角不等式的性质可以得出X中点列的收敛性质,即对于度量空间X中的点列{x_n},如果存在x∈X,使得对于任意的ε>0,存在正整数N,当n≥N时,有d(x_n,x)<ε,那么称{x_n}收敛于x。
赋范线性空间是一个向量空间V,其中定义了一个范数函数∥·∥:V→R,满足以下条件:1.非负性:对于任意的x∈V,有∥x∥≥0,且当且仅当x=0时,∥x∥=0;2. 齐次性:对于任意的x∈V和实数a,有∥ax∥=,a,∥x∥;3.三角不等式:对于任意的x,y∈V,有∥x+y∥≤∥x∥+∥y∥。
范数函数∥·∥可以看作是赋范线性空间V中向量的长度或大小,具有度量空间的部分性质,如非负性和齐次性。
范数函数还满足一条重要的性质,即∥x+y∥≥,∥x∥-∥y∥,这被称为三角不等式强化定理。
度量空间和赋范线性空间都具有一些不同的性质和概念。
例如,度量空间中存在序列的收敛性质,而赋范线性空间中存在序列的收敛性质以及序列的Cauchy性质。
同时,度量空间和赋范线性空间都可以构建拓扑结构,使其成为一个拓扑空间。
在拓扑空间中,点列的收敛性质和序列的Cauchy性质是等价的。
此外,度量空间和赋范线性空间都是完备的,即满足序列的Cauchy 性质的序列都收敛于空间中的一些点。
泛函分析知识总结

泛函分析知识总结泛函分析知识总结与举例、应⽤学习泛函分析主要学习了五⼤主要内容:⼀、度量空间和赋范线性空间;⼆、有界线性算⼦和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算⼦的谱。
本⽂主要对前⾯两⼤内容进⾏总结、举例、应⽤。
⼀、度量空间和赋范线性空间(⼀)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧⽒空间n R (有限维空间)的推⼴,所以学好它有助于后⾯知识的学习和理解。
1.度量定义:设X 是⼀个集合,若对于X 中任意两个元素x ,y,都有唯⼀确定的实数d(x,y)与之对应,⽽且这⼀对应关系满⾜下列条件: 1°d(x,y)≥0 ,d(x,y)=0 ? x=y (⾮负性) 2°d(x,y)= d(y,x) (对称性)3°对?z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常⽤的⽅法)注意:⑴定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满⾜1°、2°、3°都称为度量。
这⾥“度量”这个名称已由现实⽣活中的意义引申到⼀般情况,它⽤来描述X 中两个事物接近的程度,⽽条件1°、2°、3°被认为是作为⼀个度量所必须满⾜的最本质的性质。
⑵度量空间中由集合X 和度量函数d 所组成,在同⼀个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶集合X 不⼀定是数集,也不⼀定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷在称呼度量空间(X,d)时可以省略度量函数d ,⽽称“度量空间X ” 。
泛函分析课程总结
泛函分析课程总结数学与计算科学学院 09数本5班 符翠艳 2009224524 序号:26 一.知识总结 第七章 度量空间和赋范线性空间 1. 度量空间的定义:设X 是一个集合,若对于X 中任意两个元素,x y ,都有唯一确定的实数(),d x y 与之相对应,而且满足()()()()()()()1,0,,0=;2,,;3,,,,d x y d x y x y d x y d y x d x y d x z d z y z ≥=⎧⎫⎪⎪=⎨⎬⎪⎪≤+⎩⎭、的充要条件是、、对任意都成立。
则称d 为X 上的一个度量函数,(d X ,)为度量空间,),(y x d 为y x ,两点间的度量。
2. 度量空间的例子①离散的度量空间(),X d设X 是任意的非空集合,对X 中任意两点,x y X ∈,令()1,,0,x y d x y x y ≠⎧⎫=⎨⎬=⎩⎭当当②序列空间S令S 表示实数列(或复数列)的全体,对S 中任意两点()()12n 12,,...,,...,,...,,...n x y ξξξηηη==及,令()11,21i ii i i i d x y ξηξη∞=-=+-∑③有界函数空间B (A )设A 是一给定的集合,令B (A )表示A 上有界实值(或复值)函数全体,对B (A )中任意两点,x y ,定义(),()()sup t Ad x y x t y t ∈=-④可测函数空间m(X)设m(X)为X 上实值(或复值)的L 可测函数全体,m 为L 测度,若()m X ≤∞,对任意两个可测函数()()f t g t 及,令()()(),1()()Xf tg t d f g dt f t g t -=+-⎰⑤[],C a b 空间令[],C a b 表示闭区间[],a b 上实值(或复值)连续函数的全体,对[],C a b 中任意两点,x y ,定义(),max ()()a t bd x y x t y t ≤≤=-⑥2l 空间 记{}12k k k x x x l ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭∞===<∞∑,设2k x x l ⎧⎫⎨⎬⎩⎭∈=,2y k y l ⎧⎫⎨⎬⎩⎭∈=,定义 ()1221,()k k k d x y y x ∞=⎡⎤=-⎢⎥⎣⎦∑注:度量空间中距离的定义是关键。
(完整)泛函分析知识总结,推荐文档
泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
第三章 线性算子与线性泛函
∫
b
a
x(t )t ≈
0≤ k ≤ n
∑
Ak x(tk )(a ≤ t0 < t1 < < tn = b) (3)
需要讨论的是什么条件下,当n → ∞时,上式的误差趋于0? 现在可证公式(3)对每个连续函数x ∈ C[a, b]都收敛,即
0≤ k ≤ n
∑
Ak x(tk ) → ∫ x(t )dt
1, x = x1 1 || F ||= , F ( x) = inf{|| x1 m ||: m ∈ M } 0, x ∈ M
定理3的证明:由于f 是M 的有界线性泛函,那么 | f ( x) |≤|| f ||M || x ||, 这里 || f ||M = sup{| f (m) |; m ∈ M }.
y ′′∈M y ′∈M
2 做出f 满足以下条件的全部延拓; f |M = f f ( x ) ≤ p ( x ) ,x ∈ X 记这些延拓的全体为Γ . 那么我们有 g |M = f Γ = g | g是D ( g ) 上的线性泛函, . g ( x ) ≤ p ( x ) ,x ∈ D ( g ) M
推论2:设 x1 ∈ X 且x1 ≠ θ ,则存在X上的有界 线性泛函满足 F ( x1 ) =|| x1 || 且 || F ||= 1。
注:这表明只要X多有一点,则X上必存在非零的 连续线性泛函。
高等数学系列教材目录
高等数学系列教材目录第一册:微积分基础1.数集与函数1.1 数集的表示与运算1.2 函数的定义与性质1.3 常用函数及其图像2.极限与连续2.1 数列与极限2.2 函数的极限2.3 连续函数与间断点3.导数与微分3.1 导数的定义与计算3.2 微分的概念与应用3.3 高阶导数与高阶微分4.一元函数的应用4.1 函数的单调性与极值4.2 函数的凹凸性与拐点4.3 泰勒公式及其应用第二册:多元函数微积分1.二元函数与偏导数1.1 二元函数的定义与性质1.2 偏导数与全微分1.3 隐函数与参数方程求导2.多元函数的极值与条件极值2.1 多元函数的极值2.2 隐函数极值与参数方程极值2.3 条件极值与拉格朗日乘子法3.重积分3.1 二重积分的计算3.2 三重积分的计算3.3 积分次序与坐标变换4.曲线与曲面积分4.1 曲线积分的计算4.2 曲面积分的计算4.3 斯托克斯定理与高斯公式第三册:级数与常微分方程1.级数的收敛性与性质1.1 数项级数的概念与性质1.2 正项级数的审敛法1.3 交错级数与绝对收敛2.幂级数与函数展开2.1 幂级数的收敛域与收敛半径 2.2 幂级数的运算与逐项求导2.3 函数的泰勒级数展开3.常微分方程基础3.1 微分方程的基本概念3.2 一阶线性微分方程3.3 高阶线性微分方程4.常微分方程应用4.1 古典物理问题的建模与求解 4.2 生物、经济与工程领域的应用4.3 相图与稳定性分析第四册:向量与解析几何1.向量代数基础1.1 向量的定义与运算1.2 向量的线性相关性与线性无关性1.3 向量的内积与外积2.空间直线与平面2.1 三维空间的点、直线与平面2.2 直线的方向向量与法向量2.3 空间直线与平面的位置关系3.空间曲线与曲面3.1 曲面的参数方程与一阶偏导数 3.2 流形与曲率3.3 空间曲线、曲面与切线法向第五册:数学分析基础1.度量空间与拓扑1.1 度量空间的定义与性质1.2 拓扑空间的概念与特征1.3 开集、闭集与连通性2.泛函分析2.1 功能空间与泛函空间2.2 线性算子与线性泛函2.3 无穷维空间与紧性理论3.微分流形3.1 流形的定义与性质3.2 曲线与曲面的切空间3.3 切向量场与流形上的积分4.测度论基础4.1 测度空间的定义与测度函数4.2 测度的可测性与测度的完备性4.3 测度函数与积分运算这是《高等数学系列教材》的目录,详细介绍了每一册的章节内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 线性算子与线性泛函第一节 有界线性算子一、线性算子本段中只需假设,,X Y Z 等是K 上的向量空间。
定义: 若一个映射:T X Y →满足()(,,,)T x y Tx Tyx y X αβαβαβ+=+∈∈K ,则称T 为从X 到Y 的线性算子。
容易看出,上述等式可推广到更一般的情形:()i iiiiiT x Tx αα=∑∑。
命题2.1.1 设:T X Y →是一线性算子,则以下结论成立:(1)任给子空间A X ⊂与子空间B Y ⊂,TA 与1T B -分别为Y 与X 的子空间。
特别,(0)0T =与()R T TX =(值域)是Y 的子空间;1()(0)N T T -是X 的子空间(称为T 的核或零空间)。
(2)若向量组{}i x X ⊂线性相关,则{}i Tx 亦线性相关;若A 是X 的子空间且dim A <∞,则dim dim TA A <。
(3)T 是单射(){0}N T ⇔=。
说明:若0()Tx Y x X ≡∈∈,则称T 为零算子,就记为0;若(),Tx x x X αα≡∈∈K 为常数,则称T 为纯量算子(或相似变换,若0α≠),记作I α,当0α=与1时,I α分别是零算子和单位算子。
对线性算子可定义两种自然的运算:线性运算与乘法。
若,:T S X Y →是线性算子,,αβ∈K ,则:T S X Y αβ+→是一个线性算子,它定义为()().(2.1.2)T S x Tx Sx x X αβαβ+=+∈若:R Y Z →是另一个算子,则由()()().(2.1.3)RT x R Tx x X =∈定义出一个线性算子:RT X Z →,称它为R 与T 的乘积。
实际上,线性算子的乘积就是它们的复合。
容易原子能正验证,如上定义的运算有以下性质:11(),()();R T S RT RS R R T RT R T +=+⎧⎨+=+⎩分配律()();()Q RT QR T =结合律()()(),()RT R T R T αααα==∈K只要以上等式的一端有意义。
若线性算子:T X Y →为双射,则称它为线性同构,此时其逆映射1:T Y X -→亦为线性算子。
T 是线性同构的充要条件是,存在线性算子:S Y X →,使得,(2.1.4)X YST I TS I ==二、有界线性算子定义2.1.2 设:T X Y →是一个线性算子。
令sup /(2.1.5)x T Tx x≠=若T <∞,则称T 为从X 到Y 的有界线性算子,且称T 为T 的算子范数,简称为范数。
若T =∞,则称T 为无界算子。
约定以(,)L X Y 记从X 到Y 的有界线性算子之全体,(,)L X X 简写为()L X 。
注1::T X Y →的有界的等价刻画: (1)0,k x X ∃>∀∈,有;Tx k x ≤或 (2)T 映X 中的有界集为Y 中的有界集。
注2:若(,)T L X Y ∈,则对任给的x X ∈有(2.1.6)Tx T x≤注3:范数定义的几种等价形式 (1)1sup (2.1.7)x T Tx== (2)1sup (2.1.8)x T Tx≤=(3)inf{0:().(2.1.9)T k Tx k x x X =≥≤∀∈例2.1.3 设[,]()J a b a b =<,给定()C J ϕ∈。
定义()()()(,()),Tu x x u x x J u C J ϕ=∈∈T 是从()C J 到自身的线性算子。
求T 。
命题2.1.4 设:T X Y →是一个线性算子,则T 有界T ⇔连续。
推论:(1)T 是拓扑同构T ⇔与1T -皆连续(即T 为同胚); (2)若(,),{}n T L X Y x X ∈⊂,nx∑收敛,则有111()(lim )lim ()lim n n nn k k k n n n n nk k k nT x T x T x Tx Tx →∞→∞→∞=======∑∑∑∑∑。
例2.1.5:设[0,]J π=,在1()C J 与()C J 中均采用sup 范数。
显然1:()(),(2.1.10)dT C J C J u u dx'=→→是一线性算子。
令()sin n u x nx =,则01nu =,而0n u n '=,可见T 是无界算子。
三、有界线性算子的运算与扩张命题2.1.6:(,)L X Y 依算子范数是一个赋范空间;当空间Y 完备时,(,)L X Y 是Banach 空间。
定理 2.1.7(扩张定理):设D 是X 的稠密子空间,(,)T L D Y ∈,Y 完备,则T 可保持范数惟一地扩张到X 上。
若线性算子:T X Y →是单射(即(){0}N T =),则1:()T R T X -→是一确定的线性算子,当它有界时称为T 的有界逆,并说T 有有界逆。
命题2.1.8线性算子:T X Y →有有界逆的充要条件是存在0k >,使得().(2.1.14)Tx k xx X ≥∈。
第二节 常用有界线性算子一、矩阵设,X Y 是有限维赋范空间,dim ,dim ,(,)X n Y m T L X Y ==∈。
分别取X 的基{}j e 与Y 的基{}i ε。
设(1),j ij iiTe a j n ε=≤≤∑则T 完全由矩阵[]m nij A a ⨯=∈K所确定。
若,(,)T S L X Y ∈分别对应矩阵,,,m n A B αβ⨯∈∈K K ,则算子T S αβ+恰好对应矩阵A B αβ+。
这样,线性算子空间(,)L X Y 线性同构于矩阵空间m n ⨯K ,因而对(,)L X Y 的研究可代之以对m n ⨯K 的研究。
任给[]m nij A a ⨯=∈K,依矩阵乘法自然地定义一个线性算子:,,(2.2.1)n m x Ax →→K K其中x 当作1n ⨯阶矩阵。
不妨用同一字母A 表示算子(2.2.1),它也可表成:,(),(),(2.2.1),1,2,,.n m j i i ij j j y Ax x x y y y a x i m ⎧==∈=∈⎪'⎨==⎪⎩∑K K若在n K 中使用范数1(),1,(2.2.2)max ,,p p jj pj jx p xx p ⎧≤<∞⎪=⎨⎪=∞⎩∑则n K 可看作pl 的子空间,只需将()n j x x =∈K 等同于pl 中的元1(,,,0,0,)T n x x 。
通常称范数(2.2.2)为p 范数,采用p 范数的nK 也记作p n l 。
相应地,算子:p p n m A l l →(定义见(2.2.1))的范数记作p A ,即1sup .(2.2.3)p p p x A Ax ≤=p A 也称为A 的p 范数。
命题2.2.1 设[]m nij A a ⨯=∈K,则1max ;(2.2.4)ij jiA a =∑。
1max ;(2.2.5)T ij ijA a A ∞==∑2}j jA λ=是T A A 的特征值的全体。
(2.2.6)以[](,1,2,)ij A a i j ==记一个无穷矩阵,其中ij a ∈K 。
仿照(2.2.1)',形式地定义一个算子x Ax →:,(),(),(2.2.7),1,2,,.j i i ij j j y Ax x x y y y a x i ===⎧⎪⎨==⎪⎩∑仍将式(2.2.7)所定义的算子记作A 。
命题2.2.2 设算子A 定义如式(2.2.7),p A 依式(2.2.3)(但假定其中px l ∈)。
(1)若sup ij jia β<∞∑,则1()A L l ∈且1A β=。
(2)若sup ij ija β<∞∑,则()A L l ∞∈且A β∞=。
(3)若122,()ij i ja β<∞∑,则2()A L l ∈且2A β≤。
二、积分算子设[,]()J a b a b =<,函数(,)K x y 为定义在J J ⨯上的Lebesgue 可测函数。
定义积分算子()(,)()().(2.2.8)baTu x K x y u y dyx J =∈⎰要求上述积分对几乎所有x J ∈存在,函数(,)K x y 称为积分算子T 的核或核函数。
命题2.2.3 设(,)K x y 是J J ⨯上的Lebesgue 可测函数,算子T 依式(2.2.8)定义,约定sup ()xess x ϕϕ∞=(L ∞范数又称为本性上确界)。
1、若sup (,),bay Jess K x y dx β∈<∞⎰则1(())T L L J ∈且T β=。
2、若sup (,),bax Jess K x y dy β∈<∞⎰则(())T L L J ∞∈且T β=。
3、若122((,)),bbaaK x y dxdy β<∞⎰⎰则2(())T L L J ∈且T β≤。
例子 考虑积分算子:()().()(2.2.9)xaTu x u y dy x J =∈⎰取1,,(,)0,,y x K x y y x ≤⎧=⎨>⎩可将(2.2.9)写成(2.2.8)的标准形式。
由命题2.2.3得:1sup ;byy JT ess dx b a ∈==-⎰sup ;xax JTess dy b a ∞∈==-⎰122()bxaaTdx dy ≤=⎰⎰。
命题2.2.4 设(,)K x y 在J J ⨯上连续,积分算子T 定义如式(2.2.8),则(())T L C J ∈,且sup (,).(2.2.10)bax JT K x y dy ∈=⎰下面考虑几个具有特殊形式核的积分算子。
(一)给定函数ϕ,以(,)()K x y x y ϕ=-为核。
此时,积分算子为()()()()(2.2.11)n n RT u x x y u y dyx R ϕϕ=-∈⎰通常将式(2.2.11)右端的积分记作u ϕ*,并称它为函数ϕ与u 的卷积。
算子T ϕ显然是在其有定义的集合上的线性算子,其定义域与性质则取决于ϕ的选择。
命题2.2.5 设1/(1)p q q ≤=-≤∞。
(1)若1()n L ϕ∈R ,则(())p n T L L ϕ∈R ,且1T ϕϕ≤。
(2)若()pnL ϕ∈R ,则((),())q n n b T L L C ϕ∈R R ,且p T ϕϕ≤,此处()()()n n n b C C B =R R R ,采用sup 范数。
(3)若2()nL ϕ∈R ,则2((),())n n b T L L C ϕ∈R R ,且2T ϕϕ≤。
定理的证明需要如下引理:引理 2.2.6 设()(1)p n L p ϕ∈≤<∞R ,()()x y x y ϕϕ=+,则当,0nx x ∈→R 时有0x pϕϕ-→。