高中数学选择性必修二 第四章 数列(易错点拨)单元复习全面过
高中数学选择性必修二 第四章 数列单元检测A尖子生同步培优题典(含答案)

2020-2021年高二数学选择性必修二尖子生同步培优题典第四章数列单元检测A 解析版学校:___________姓名:___________班级:___________考号:___________ 注:本检测满分150分。
其中8道单选题,4道多选题,4道填空题,6道解答题。
一、单选题1,2,,4,…,则是这个数列的()A.第8项B.第9项C.第10项D.第11项【答案】B【解析】【分析】将数列中的每一项都写成n,即可判断.【详解】,2,3,4,... ,由此可归纳该数列的通项公式为nna=,又9=,则其为该数列的第9项.故选:B.【点睛】本题考查了由数列的前几项归纳出其通项公式,属于基础题.2.记等差数列{}n a的前n项和为n S,若52a=,25468a a a a-=,则20S=()A.180B.180-C.162D.162-【答案】B【解析】【分析】先利用等差数列的通项公式,求出等差数列的首项和公差,再根据前n项和公式即可求出20S. 【详解】52a =,24628a a a-=,11114226840a da d a d a d+=⎧∴⎨+--=+⎩,解得11114226840a d a d a d a d +=⎧⎨+--=+⎩,2d ∴=-,110a =,201019228a ,()12020201802a a S +⋅∴==-.故选:B. 【点睛】本题主要考查等差数列的性质和前n 项和公式,考查学生的运算求解能力,属于基础题. 3.在数列{}n a 中,112a =,111n n a a -=-(2n ≥,n ∈+N ),则2020a =( )A .12B .1C .1-D .2【答案】A 【解析】 【分析】通过递推式求出数列前几项可得数列为周期数列,利用数列的周期性可得答案. 【详解】2111121a a =-=-=-,3211112a a =-=+=,431111122a a =-=-=, 可得数列{}n a 是以3为周期的周期数列,202036731112a a a ⨯+∴===. 故选:A. 【点睛】本题考查数列的周期性,关键是通过递推式求出前几项观察出周期,是基础题.4.等比数列{}n a 的前n 项和为n S ,若0n a >,1q >,352620,64a a a a +==,则5S =( ) A .B .C .42D .【答案】D 【解析】 【分析】根据2664a a =,利用等比数列的性质得到3564a a =,结合3520a a +=,利用根与系数的关系构造二次方程求解得到35,a a 的值,进而得到等比数列的首项和公比,然后利用求和公式计算即得所求. 【详解】由于在等比数列{}n a 中,由2664a a =可得:352664a a a a ==, 又因为3520a a +=,所以有:35,a a 是方程220640x x -+=的二实根,又0,1n a q >>,所以35a a <, 故解得:354,16a a ==,从而公比3122,1,a q a q ==== 那么55213121S -==-,故选:D . 【点睛】本题考查等比数列的通项公式,等比数列的性质,等比数列的求和,属中档题. 5.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b ++的值为( ) A .14924B .7914C .165 D .5110【答案】A 【解析】 【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯,又因为723n n S n T n +=+,所以22071514924a ab b +=+.故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题. 6.等比数列{}n a 中( ) A .若12a a <,则45a a < B .若12a a <,则34a a < C .若32S S >,则12a a < D .若32S S >,则12a a >【答案】B 【解析】 【分析】根据等比数列的通项公式及求和公式,等比数列的公比分析即可求出答案. 【详解】等比数列{}n a 中,20q >,∴当12a a <时,可得2212a q a q <,及34a a <,故B 正确;但341a a q =和352a a q =不能判断大小(3q 正负不确定),故A 错误;当32S S >时,则12312+++a a a a a >,可得30a >,即210a q >,可得10a >,由于q 不确定,不能确定12,a a 的大小,故CD 错误. 故选:B. 【点睛】本题考查等比数列通项公式和求和公式的应用,属于基础题.7.函数()2cos 2f x x x =--{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 【答案】B 【解析】 【分析】先将函数化简为()2sin 26f x x π⎛⎫=- ⎪⎝⎭再解函数零点得4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可.【详解】解:∵()2cos 22sin 26f x x x x π⎛⎫=--=- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈,∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题. 8.已知函数()cos lnxf x x x ππ=+-,若22018201920192019f f f πππ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()1009ln 0,0)a b a b π+>>(,则11a b+的最小值为( )A .2B .4C .6D .8【答案】A 【解析】 【分析】 根据()()2ln f x fx ππ+-=,采用倒序相加的方法可得2018ln S π=,从而得到2a b +=,根据基本不等式求得最小值. 【详解】由题可知:()()()()2cos lncos ln ln 2ln x xf x f x x x x xππππππππ-+-=++-+==- 令22018201920192019S f f f πππ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又20182017201920192019S f f f πππ⎛⎫⎛⎫⎛⎫=+++⎪⎪ ⎪⎝⎭⎝⎭⎝⎭于是有22ln 2ln 2ln 22018ln S ππππ=++⋅⋅⋅+=⨯ 2018ln S π⇒= 因此2a b += 所以()()11111112222222a b a b a b a b b a ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭ 当且仅当1a b ==时取等号本题正确选项:A 【点睛】本题考查倒序相加法求和、利用基本不等式求解和的最小值问题.关键是能够通过函数的规律求得a 与b 的和,从而能够构造出基本不等式的形式.二、多选题9.无穷数列{}n a 的前n 项和2n S an bn c =++,其中a ,b ,c 为实数,则( )A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列 【答案】AC 【解析】 【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴= 所以当0c 时,{}n a 是等差数列,不可能是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列. 故选:AC 【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题.10.数列{}n a 的前n 项和为n S ,若11a =,()*12n n a S n N +=∈,则有( ) A .13n n S -=B .{}n S 为等比数列C .123n n a -=⋅D .21,1,23,2n n n a n -=⎧=⎨⋅≥⎩【分析】根据,n n a S 的关系,求得n a ,结合等比数列的定义,以及已知条件,即可对每个选项进行逐一分析,即可判断选择. 【详解】由题意,数列{}n a 的前n 项和满足()*12n n a S n N +=∈,当2n ≥时,12n n a S -=,两式相减,可得112()2n n n n n a a S S a +-=-=-, 可得13n n a a +=,即13,(2)n na a n +=≥, 又由11a =,当1n =时,211222a S a ===,所以212a a =, 所以数列的通项公式为21,1232n n n a n -=⎧=⎨⋅≥⎩;当2n ≥时,11123322n n n n a S --+⋅===,又由1n =时,111S a ==,适合上式,所以数列的{}n a 的前n 项和为13n n S -=;又由11333nn n n S S +-==,所以数列{}n S 为公比为3的等比数列, 综上可得选项,,A B D 是正确的. 故选:ABD. 【点睛】本题考查利用,n n a S 关系求数列的通项公式,以及等比数例的证明和判断,属综合基础题. 11.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为n S 的最大值【分析】设等差数列{}n a 的公差为d ,依次分析选项即可求解. 【详解】根据题意,设等差数列{}n a 的公差为d ,依次分析选项:{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>, 又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的. ∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确; 故选:BD. 【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.12.将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+- 【答案】ACD 【解析】 【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a , 再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去), ∴a ij =a i 1•3j ﹣1=[2+(i ﹣1)×m ]•3j ﹣1=(3i ﹣1)•3j ﹣1,∴a 67=17×36,∴S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )11121131313131313nn n n a a a ---=+++---()()() 12=(3n ﹣1)•2312n n +-() 14=n (3n +1)(3n ﹣1) 故选:ACD. 【点睛】本题主要考查等差数列,等比数列的通项公式的求法,分组求和法,等差数列,等比数列前n 项和公式的应用,属于中档题.三、填空题13.已知数列{}n a 的通项公式是246n a n =-,那么n S 达到最小值时n 为________. 【答案】22或23. 【解析】 【分析】利用数列的单调性求得满足题意的n 即可. 【详解】246n a n =-,∴数列{}n a 是递增数列.令()1246021460n n a n a n +=-≤⎧⎨=+-≥⎩,解得:2223n ≤≤,∴22n =或23n =,则可知n S 达到最小值时n 为22或23. 故答案为:22或23. 【点睛】本题考查等差数列前n 项和最值的求法,属于基础题.14.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的底面由扇环形的石板铺成(如图),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是__________.【答案】405 【解析】 【详解】 【分析】前9圈的石板数依次组成一个首项为9,公差为9的等差数列,9989994052S ⨯=⨯+⨯= 15.在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫做该数列的一次“扩展”.将数列1,4进行“扩展”,第一次得到数列1,4,4;第二次得到数列1,4,4,16,4;……;第n 次得到数列1,1x ,2x ,…,i x ,4,并记()212log 14n i a x x x =⋅⋅⋅⋅⋅,其中21n t =-,*n ∈N .则{}n a 的通项n a =___________. 【答案】31n + 【解析】 【分析】先由()212log 14n t a x x x =⋅⋅⋅⋅,结合题意得到132n n a a +=-,再设13()n n a t a t ++=+求出1t =-,得到数列{}1n a -是首项为3,公比为3的等比数列,进而可求出结果.【详解】由题意,根据()212log 14n t a x x x =⋅⋅⋅⋅,可得()1211122log 1(1)((4)4)t t n a x x x x x x x +=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅3333312214log 324n t x x x a ⎛⎫⋅⋅⋅⋅==-⎪⎝⎭, 设13()n n a t a t ++=+,即132n n a a t +=+,可得1t =-,则数列{}1n a -是首项为2121log 413a -=-=,公比为3的等比数列,故13n n a -=,所以31,n n a n N +=+∈.故答案为:31n +.【点睛】本题主要考查数列的应用,熟记等比数列的性质以及通项公式即可,属于常考题型.16.如图,互不相同的点12,,,n A A A 和12,,,,n B B B 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设n n OA a =.若11a =,22a =,则数列{}n a 的通项公式是________.【答案】32n a n =-【解析】【分析】根据三角形相似和所有梯形11n n n n A B B A ++的面积均相等,找到与n a 相关的递推公式,再由递推公式求得通项公式.【详解】由于11//,n n n n A B A B ++ 所以11,n n n n OA B OA B ++梯形11n n n n A B B A ++ 的面积为11n n OA B ++∆的面积減去n n OA B △的面积,2222i i j j OA B i i OA B j jSOA a S OA a == 则可得 222211,n n n n a a a a +--=- 即递推公式为222112,n n n a a a +-=+故2{}n a 为等差数列,且公差d =2221a a -3=,故21(1)332n a n n =+-⨯=-,得32n a n =-故答案为: 32n a n =-【点睛】本题主要考查数列在平面几何中的应用,根据几何关系寻找递推有关系是解决问题的关键,属于中档题.四、解答题17.在①112n n a a +=-,②116n n a a +-=-,③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,若问题中的n S 存在最大值,则求出最大值;若问题中的n S 不存在最大值,请说明理由.问题:设n S 是数列{}n a 的前n 项和,且14a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值.注:如果选择多个条件分别解答,按第一个解答计分.【答案】答案见解析【解析】【分析】若选①,求出数列{}n a 是首项为4,公比为12-的等比数列,求出通项公式和前n 项和,通过讨论n 的奇偶性,求出其最大值即可;若选②,求出数列{}n a 是首项为4,公差为16-的等差数列,求出通项公式和前n 项和,求出其最大值即可; 若选③,求出217242n n n a -+=,当16n ≥时,0n a >,故n S 不存在最大值. 【详解】解:选① 因为112n n a a +=-,14a =,所以{}n a 是首项为4.公比为12-的等比数列, 所1211422n n n a --⎛⎫⎛⎫=⨯-=- ⎪ ⎪⎝⎭⎝⎭.当n 为奇数时,141281113212n n n S ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+, 因为81132n ⎛⎫+ ⎪⎝⎭随着n 的增加而减少,所以此时n S 的最大值为14S =. 当n 为偶数时,81132n n S ⎛⎫=- ⎪⎝⎭,且81814323n n S ⎛⎫=-<< ⎪⎝⎭ 综上,n S 存在最大值,且最大值为4.选② 因为116n n a a +-=-,14a =.所以{}n a 是首项为4,公差为16-的等差数列, 所以11254(1)666n a n n ⎛⎫=+--=-+ ⎪⎝⎭. 由125066n -+≥得25n ≤, 所以n S 存在最大值.且最大值为25S (或24S ), 因为25252412545026S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为50. 选③因为18n n a a n +=+-,所以18n n a a n +-=-,所以217a a -=-,326a a -=-,…19n n a a n --=-, 则2121321(79)(1)171622n n n n n n n a a a a a a a a --+---+=-+-+=-+-=, 又14a =,所以217242n n n a -+=. 当16n ≥时,0n a >,故n S 不存在最大值.【点睛】此题考查数列的通项公式和求和公式,考查等差数列和等比数列的性质,属于基础题 18.数列{}n a 的前n 项和()2=1003n S n n n N *-+∈.(1)求数列{}n a 的通项公式;(2)设n n b a =,求数列{}n b 的前n 项和n T .【答案】(1) ()()102110122n n a nn ⎧=⎪=⎨-≥⎪⎩ (2) ()()22100350100500351n n n n T n n n ⎧-++≤⎪=⎨-+≥⎪⎩【解析】【分析】(1) 当1n =时,1102a =,利用1n n n a S S -=-得到通项公式,验证1a 得到答案.(2)根据{}n a 的正负将和分为两种情况,50n ≤和51n ≥,分别计算得到答案.【详解】(1)当1n =时,11=10013=102a s =-+,当2n ≥时,()()221=10010011=1012n n n a S S n n n n n -=-------. 综上所述()()102110122n n a n n ⎧=⎪=⎨-≥⎪⎩. (2)当50n ≤时,n n b a =,所以123n n T a a a a =+++⋅⋅⋅+39997951012n =++++⋅⋅⋅+-()()991012331002n n n n +-=+=+-, 当51n ≥时,n n b a =-,123505152n n T a a a a a a a =+++⋅⋅⋅+---⋅⋅⋅-()5012312n n T a a a a a -=-+++⋅⋅⋅++()50063100n n =---21005003n n =-+.综上所述()()22100350100500351n n n n T n n n ⎧-++≤⎪=⎨-+≥⎪⎩. 【点睛】本题考查了利用1n n n a S S -=-求通项公式,数列的绝对值和,忽略1n =时的情况是容易犯的错误.19.已知数列{}n a 满足12a =,1122n n n a a ++=+.(1)证明:数列2n n a ⎧⎫⎨⎬⎩⎭为等差数列; (2)设2n n na b =,证明:122311111n n b b b b b b +++⋅⋅⋅+<. 【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由1122n n n a a ++=+变形得:11122n n n na a ++=+,可得证明. (2)由(1)知:2n n n ab n ==,∴()1111111n n b b n n n n +==-++,用裂项相消可求和,从而可证明. 【详解】 (1)由1122n n n a a ++=+变形得:11122n n n na a ++=+ 又12a =,故112a = ∴数列2n n a ⎧⎫⎨⎬⎩⎭是以1为首项1为公差的等差数列. (2)由(1)知:2n n n a b n == ∴()1111111n n b b n n n n +==-++ ∴122311111111112231n n b b b b b b n n +⎛⎫⎛⎫⎛⎫++⋅⋅⋅+=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭ 1111n =-<+ ∴122311111n n b b b b b b +++⋅⋅⋅+< 【点睛】本题考查根据数列的递推公式证明数列为等差数列,考查用裂项相消法求和,属于基础题. 20.设{}n a 是公比大于1的等比数列,12314++=a a a ,且21a +是1a ,3a 的等差中项.(1)求数列{}n a 的通项公式;(2)若21log 2n n n b a ⎛⎫= ⎪⎝⎭,求数列{}n b 的前n 项和n T . 【答案】(1)2n n a =;(2)()1122n n T n +=-⋅-.【解析】【分析】(1)设等比数列{}n a 的公比为()1q q >,根据题中条件列出方程组,求出首项和公比,即可得出通项公式;(2)先由(1)得到2nn b n =-⋅,再由错位相减法,即可得出结果.【详解】(1)设等比数列{}n a 的公比为()1q q >.依题意,有()21321a a a +=+,将()13221a a a +=+代入12314++=a a a 得()222114a a ++=,得24a =.联立1232144a a a a ++=⎧⎨=⎩得21111144a a q a q a q ⎧++=⎨=⎩ 两式两边相除消去1a 得22520q q -+=, 解得2q 或12q =(舍去), 所以1422a ==, 所以,111222n n n n a a q --==⨯=,(2)因为21log 22n n n n b a n ⎛⎫==-⋅ ⎪⎝⎭所以,231222322n n T n -=⨯+⨯+⨯++⨯①23412122232(1)22n n n T n n +-=⨯+⨯+⨯++-⨯+⨯② ①-②,得23122222n n n T n +=++++-⨯()111212222212n n n n n n +++-=-⨯=-⋅--.所以,数列{}n b 的前n 项和11222n n n T n ++=-⋅-.【点睛】 本题主要考查求等比数列的通项公式,考查错位相减法求数列的和,涉及等差中项的应用,属于常考题型.21.已知数列{}n a 的前n 项和为23122n S n n =-. (1)求数列{}n a 的通项公式;(2)数列[]lg n n b a =,[]x 表示不超过x 的最大整数,求{}n b 的前1000项和1000T .【答案】(1)32n a n =-;(2)10002631T =.【解析】【分析】(1)利用1n n n a S S -=-可求出;(2)根据数列特点采用分组求和法求解.【详解】(1)当1n =时,111a S ==,当2n ≥时,()()221313111322222n n n a S S n n n n n -⎡⎤=-=-----=-⎢⎥⎣⎦, 将1n =代入上式验证显然适合,所以32n a n =-.(2)因为410a =,34100a =,3341000a =,333410000a =,所以0,131,4332,343333,3341000n n n b n n ≤≤⎧⎪≤≤⎪=⎨≤≤⎪⎪≤≤⎩, 所以100003130230036672631T =⨯+⨯+⨯+⨯=.【点睛】本题考查n a 和n S 的关系,考查分组求和法,属于基础题.22.已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n n n n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.【答案】(Ⅰ)n a n =,12n nb -=;(Ⅱ)证明见解析;(Ⅲ)465421949n n n n +--+⨯. 【解析】【分析】(Ⅰ)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果;(Ⅱ)利用(Ⅰ)的结论首先求得数列{}n a 前n 项和,然后利用作差法证明即可;(Ⅲ)分类讨论n 为奇数和偶数时数列的通项公式,然后分别利用指数型裂项求和和错位相减求和计算211n k k c-=∑和21n k k c =∑的值,据此进一步计算数列{}n c 的前2n 项和即可.【详解】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由11a =,()5435a a a =-,可得d =1.从而{}n a 的通项公式为n a n =.由()15431,4b b b b ==-,又q ≠0,可得2440q q -+=,解得q =2,从而{}n b 的通项公式为12n nb -=. (Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=, 故21(1)(2)(3)4n n S S n n n n +=+++,()()22211124n S n n +=++, 从而2211(1)(2)02n n n S S S n n ++-=-++<, 所以221n n n S S S ++<. (Ⅲ)当n 为奇数时,()111232(32)222(2)2n n n n n n n n a b n c a a n n n n-+-+--===-++, 当n 为偶数时,1112n n n n a n c b -+-==, 对任意的正整数n ,有222221112221212121k k nn n k k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑, 和223111211352321444444n n k k n n k k k n n c-==---==+++++∑∑ ① 由①得22314111352321444444n k n n k n n c +=--=+++++∑ ②由①②得22111211312221121441444444414n n k n n n k n n c ++=⎛⎫- ⎪--⎝⎭=+++-=---∑, 由于11211121221121156544144334444123414nn n n n n n n ++⎛⎫- ⎪--+⎝⎭--=-⨯--⨯=-⨯-, 从而得:21565994n k n k n c =+=-⨯∑. 因此,2212111465421949n nn n k k k n k k k n c c c n -===+=+=--+⨯∑∑∑. 所以,数列{}n c 的前2n 项和为465421949n n n n +--+⨯. 【点睛】本题主要考查数列通项公式的求解,分组求和法,指数型裂项求和,错位相减求和等,属于中等题.。
新教材2024版高中数学第四章数列习题课数列求和课件新人教A版选择性必修第二册

(2)由(1)得 bn=(3n-2)·2n, 则 Tn=1×21+4×22+…+(3n-2)×2n, 于是 2Tn=1×22+4×23+…+(3n-5)×2n+(3n-2)×2n+1, 两 式 相 减 , 得 - Tn = 2 + 3(22+ 23 + … + 2n) - (3n - 2)·2n+1= 2 + 3·22(11--22n-1)-(3n-2)·2n+1=(5-3n)·2n+1-10,所以 Tn=(3n-5)·2n+1+10.
(2)根据数列{bn}的通项可知利用错位相减法进行求和,从而可求出 数列{bn}的前n项和Tn.
素养点睛:考查数学运算和逻辑推理的核心素养.
错位相减法的适用题型及关键点 (1)如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n 项和时,可采用错位相减法.
(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对 齐”以便下一步准确写出“Sn-qSn”的表达式.
第四章 数列
习题课 数列求和
学习目标
素养要求
1.熟练掌握等差、等比数列的前n项和公式及倒 序相加求和、错位相减求和法
数学运算
2.掌握非等差、等比数列求和的几种常见方法
逻辑推理
3.能在具体的问题情境中识别数列的等差关系
或等比关系,并能用相关知识解决与前n项和 数学运算、逻辑推理
相关的问题
自学导引
分组转化求和法 一个数列的通项公式是由若干个等差数列或等比数列或可求和的数 列组成,则求和时可用分组求和法,分别求和后再相加减.
①-②,得 an=2an-1+1, 即 an+1=2(an-1+1). ∵a1+1=2≠0,∴an-1+1≠0, ∴aan-n+1+11=2, ∴{an+1}是首项为 2,公比为 2 的等比数列. ∵an+1=2·2n-1=2n,∴an=2n-1.
高中数学《第四章 数列》单元检测试卷与答案解析(共五套)

高中数学选择性必修二《第四章 数列》单元检测试卷(一) 本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{a n }中,a 3=2,a 5=7,则a 7=( )A .10B .20C .16D .12 2.在数列{a n }中,a 1=13,a n =(-1)n·2a n -1(n≥2),则a 5等于( )A .-163 D .163 C .-83 D .833.设等比数列{a n }的前n 项和为S n ,若S 10∶S 5=1∶2,则S 15∶S 5=( ) A .3∶4 B .2∶3 C .1∶2 D .1∶3 4.在等比数列{a n }中,已知前n 项和S n =5n +1+a ,则a 的值为( )A .-1B .1C .5D .-55.已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a n ,n 为正奇数,a n +1,n 为正偶数,则254是该数列的( )A .第8项B .第10项C .第12项D .第14项6.已知数列{a n }是等差数列,其前n 项和为S n ,若a 1a 2a 3=15,且3S 1S 3+15S 3S 5+5S 5S 1=35,则a 2=( )A .2 D .12 C .3 D .137.如果数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为13的等比数列,那么a n =( )A.32⎝ ⎛⎭⎪⎫1-13n D .32⎝ ⎛⎭⎪⎫1-13n -1 C.23⎝ ⎛⎭⎪⎫1-13n D .23⎝ ⎛⎭⎪⎫1-13n -18.若有穷数列a 1,a 2,…,a n (n 是正整数),满足a 1=a n ,a 2=a n -1,…,a n =a 1,即a i =a n-i +1(i 是正整数,且1≤i≤n),就称该数列为“对称数列”.已知数列{b n }是项数不超过2m(m >1,m ∈N *)的对称数列,且1,2,4,…,2m -1是数列{b n }的前m 项,则当m >1 200时,数列{b n }的前2 019项和S 2 019的值不可能为( ) A .2m-2m -2 009B .22 019-1C .2m +1-22m -2 019-1 D .3·2m -1-22m -2 020-1二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知等比数列{a n }的公比q =-23,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( )A .a 9·a 10<0B .a 9>a 10C .b 10>0D .b 9>b 1010.等差数列{a n }的前n 项和为S n ,若a 1>0,公差d≠0,则下列命题正确的是( ) A .若S 5=S 9,则必有S 14=0B .若S 5=S 9,则必有S 7是S n 中最大的项C .若S 6>S 7,则必有S 7>S 8D .若S 6>S 7,则必有S 5>S611.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第三天走了四十八里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人走的前三天路程之和是后三天路程之和的8倍12.若数列{a n }满足:对任意正整数n ,{a n +1-a n }为递减数列,则称数列{a n }为“差递减数列”.给出下列数列{a n }(n ∈N *),其中是“差递减数列”的有( ) A .a n =3n B .a n =n 2+1 C .a n =n D .a n =ln nn +1第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知数列{a n }的通项公式为a n =2 020-3n ,则使a n >0成立的最大正整数n 的值为________.14.已知{a n }是等差数列,S n 为其前n 项和,n ∈N *.若a 3=16,S 20=20,则a n =________,S 10=________.15.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则b 2a 1+a 2=________.16.设{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5=________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f(x)=3xx +3,数列{x n }的通项由x n =f(x n -1)(n≥2且x ∈N *)确定.(1)求证:⎩⎨⎧⎭⎬⎫1x n 是等差数列;(2)当x 1=12时,求x 2 020.18.(本小题满分12分)已知等比数列{a n }的前n 项和为S n ,a 1=-1,S 10S 5=3132.(1)求等比数列{a n }的公比q ; (2)求a 21+a 22+…+a 2n .19.(本小题满分12分)在等差数列{a n }中,S n 为其前n 项和(n ∈N *),且a 2=3,S 4=16. (1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .20.(本小题满分12分)已知等比数列{a n }的前n 项和为S n ,a 1=1,a n <a n +1,且S 3=2S 2+1.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =(2n -1)a n (n ∈N *),求数列{b n }的前n 项和T n . 21.(本小题满分12分)在①a n +1=a n 3a n +1,②⎩⎨⎧⎭⎬⎫1a n 为等差数列,其中1a 2,1a 3+1,1a 6成等比数列,③1a 1+1a 2+1a 3+…+1a n =3n 2-n2这三个条件中任选一个,补充到下面的问题中,然后解答补充完整的题目.已知数列{a n }中,a 1=1,________. (1)求数列{a n }的通项公式;(2)设b n =a n a n +1,T n 为数列{b n }的前n 项和,求证:T n <13.注:如果选择多个条件分别解答,则按第一个解答计分.22.(本小题满分12分)已知等差数列{a n }的前n 项和为S n ,且S 10=55,S 20=210. (1)求数列{a n }的通项公式; (2)设b n =a n a n +1,是否存在m ,k(k>m≥2,m ,k ∈N *)使得b 1,b m ,b k 成等比数列?若存在,请说明理由.答案解析一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{a n }中,a 3=2,a 5=7,则a 7=( )A .10B .20C .16D .12 解析:选D ∵{a n }是等差数列, ∴d =a 5-a 35-3=52,∴a 7=2+4×52=12.2.在数列{a n }中,a 1=13,a n =(-1)n·2a n -1(n≥2),则a 5等于( )A .-163 D .163 C .-83 D .83解析:选B ∵a 1=13,a n =(-1)n·2a n -1,∴a 2=(-1)2×2×13=23,a 3=(-1)3×2×23=-43,a 4=(-1)4×2×⎝ ⎛⎭⎪⎫-43=-83,a 5=(-1)5×2×⎝ ⎛⎭⎪⎫-83=163.3.设等比数列{a n }的前n 项和为S n ,若S 10∶S 5=1∶2,则S 15∶S 5=( ) A .3∶4 B .2∶3 C .1∶2 D .1∶3解析:选A 在等比数列{a n }中,S 5,S 10-S 5,S 15-S 10,…成等比数列,因为S 10∶S 5=1∶2,所以S 5=2S 10,S 15=34S 5,得S 15∶S 5=3∶4,故选A.4.在等比数列{a n }中,已知前n 项和S n =5n +1+a ,则a 的值为( )A .-1B .1C .5D .-5 解析:选D 因为S n =5n +1+a =5×5n+a ,由等比数列的前n 项和S n =a 1(1-q n)1-q =a 11-q-a 11-q·q n ,可知其常数项与q n的系数互为相反数,所以a =-5. 5.已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a n ,n 为正奇数,a n +1,n 为正偶数,则254是该数列的( )A .第8项B .第10项C .第12项D .第14项 解析:选D 当n 为正奇数时,a n +1=2a n ,则a 2=2a 1=2,当n 为正偶数时,a n +1=a n +1,得a 3=3,依次类推得a 4=6,a 5=7,a 6=14,a 7=15,…,归纳可得数列{a n }的通项公式a n=⎩⎪⎨⎪⎧2n +12-1,n 为正奇数,2n2+1-2,n 为正偶数,则2n2+1-2=254,n =14,故选D.6.已知数列{a n }是等差数列,其前n 项和为S n ,若a 1a 2a 3=15,且3S 1S 3+15S 3S 5+5S 5S 1=35,则a 2=( )A .2 D .12 C .3 D .13解析:选C ∵S 1=a 1,S 3=3a 2,S 5=5a 3,∴1a 1a 2+1a 2a 3+1a 1a 3=35.∵a 1a 2a 3=15,∴35=a 315+a 115+a 215=a 25,∴a 2=3.故选C. 7.如果数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为13的等比数列,那么a n =( )A.32⎝ ⎛⎭⎪⎫1-13n D .32⎝ ⎛⎭⎪⎫1-13n -1 C.23⎝ ⎛⎭⎪⎫1-13n D .23⎝ ⎛⎭⎪⎫1-13n -1解析:选A 由题知a 1=1,q =13,则a n -a n -1=1×⎝ ⎛⎭⎪⎫13n -1.设数列a 1,a 2-a 1,…,a n -a n -1的前n 项和为S n , ∴S n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a n .又∵S n =1×⎝ ⎛⎭⎪⎫1-13n 1-13=32⎝⎛⎭⎪⎫1-13n ,∴a n =32⎝⎛⎭⎪⎫1-13n .8.若有穷数列a 1,a 2,…,a n (n 是正整数),满足a 1=a n ,a 2=a n -1,…,a n =a 1,即a i =a n-i +1(i 是正整数,且1≤i≤n),就称该数列为“对称数列”.已知数列{b n }是项数不超过2m(m >1,m ∈N *)的对称数列,且1,2,4,…,2m -1是数列{b n }的前m 项,则当m >1 200时,数列{b n }的前2 019项和S 2 019的值不可能为( ) A .2m-2m -2 009B .22 019-1C .2m +1-22m -2 019-1 D .3·2m -1-22m -2 020-1解析:选A 若数列{b n }的项数为偶数,则数列可设为1,21,22,…,2m -1,2m -1, (22)2,1,当m≥2 019时, S 2 019=1×(1-22 019)1-2=22 019-1,故B 可能.当1 200<m <2 019时,S 2 019=2×1×(1-2m)1-2-1×(1-22m -2 019)1-2=2m +1-22m -2 019-1,故C 可能.若数列为奇数项,则数列可设为1,21,22,…,2m -2,2m -1,2m -2, (22)2,1,当m≥2 019时,S 2 019=1×(1-22 019)1-2=22 019-1.当1 200<m <2 019时,S 2 019=2×1×(1-2m -1)1-2-1×(1-22m -1-2 019)1-2+2m -1=3·2m -1-22m -2 020-1,故D 可能.故选A.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知等比数列{a n }的公比q =-23,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( )A .a 9·a 10<0B .a 9>a 10C .b 10>0D .b 9>b 10 解析:选AD ∵等比数列{a n }的公比q =-23,∴a 9和a 10异号,∴a 9a 10=a 29⎝ ⎛⎭⎪⎫-23<0,故A 正确; 但不能确定a 9和a 10的大小关系,故B 不正确; ∵a 9和a 10异号,且a 9>b 9且a 10>b 10, ∴b 9和b 10中至少有一个数是负数,又∵b 1=12>0,∴d<0,∴b 9>b 10,故D 正确;∴b 10一定是负数,即b 10<0,故C 不正确.故选A 、D.10.等差数列{a n }的前n 项和为S n ,若a 1>0,公差d≠0,则下列命题正确的是( ) A .若S 5=S 9,则必有S 14=0B .若S 5=S 9,则必有S 7是S n 中最大的项C .若S 6>S 7,则必有S 7>S 8D .若S 6>S 7,则必有S 5>S 6解析:选ABC ∵等差数列{a n }的前n 项和公式S n =na 1+n (n -1)d2,若S 5=S 9,则5a 1+10d =9a 1+36d ,∴2a 1+13d =0, ∴a 1=-13d2,∵a 1>0,∴d <0,∴a 1+a 14=0,∴S 14=7(a 1+a 14)=0,A 对;又∵S n =na 1+n (n -1)d 2=-13nd 2+n (n -1)d 2=d[(n -7)2-49]2,由二次函数的性质知S 7是S n中最大的项,B 对;若S 6>S 7,则a 7=a 1+6d <0,∴a 1<-6d , ∵a 1>0,∴d <0,∴a 6=a 1+5d <-6d +5d =-d ,a 8=a 7+d <a 7<0, S 7>S 8=S 7+a 8,C 对;由a 6<-d 不能确定a 6的符号,所以S 5>S 6不一定成立,D 错.故选A 、B 、C.11.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第三天走了四十八里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人走的前三天路程之和是后三天路程之和的8倍解析:选ABD 设此人第n 天走a n 里路,则{a n }是首项为a 1,公比为q =12的等比数列.所以S 6=a 1(1-q 6)1-q =a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1261-12=378,解得a 1=192.a 3=a 1q 2=192×14=48,所以A 正确,由a 1=192,则S 6-a 1=378-192=186,又192-186=6,所以B 正确. a 2=a 1q =192×12=96,而14S 6=94.5<96,所以C 不正确.a 1+a 2+a 3=a 1(1+q +q 2)=192×⎝ ⎛⎭⎪⎫1+12+14=336,则后3天走的路程为378-336=42而且42×8=336,所以D 正确. 故选A 、B 、D.12.若数列{a n }满足:对任意正整数n ,{a n +1-a n }为递减数列,则称数列{a n }为“差递减数列”.给出下列数列{a n }(n ∈N *),其中是“差递减数列”的有( ) A .a n =3n B .a n =n 2+1 C .a n =n D .a n =ln n n +1解析:选CD 对A ,若a n =3n ,则a n +1-a n =3(n +1)-3n =3,所以{a n +1-a n }不为递减数列,故A 错误;对B ,若a n =n 2+1,则a n +1-a n =(n +1)2-n 2=2n +1,所以{a n +1-a n }为递增数列,故B 错误;对C ,若a n =n ,则a n +1-a n =n +1-n =1n +1+n,所以{a n +1-a n }为递减数列,故C 正确; 对D ,若a n =lnn n +1,则a n +1-a n =ln n +1n +2-ln n n +1=ln n +1n +2·n +1n =ln ⎝ ⎛⎭⎪⎫1+1n 2+2n ,由函数y =ln ⎝ ⎛⎭⎪⎫1+1x 2+2x 在(0,+∞)递减,所以数列{a n +1-a n }为递减数列,故D 正确. 故选C 、D.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知数列{a n }的通项公式为a n =2 020-3n ,则使a n >0成立的最大正整数n 的值为________.解析:由a n =2 020-3n>0,得n<2 0203=67313,又∵n ∈N *,∴n 的最大值为673. 答案:67314.已知{a n }是等差数列,S n 为其前n 项和,n ∈N *.若a 3=16,S 20=20,则a n =________,S 10=________.解析:设{a n }的首项,公差分别是a 1,d ,则 ⎩⎪⎨⎪⎧a 1+2d =16,20a 1+20×(20-1)2×d=20,解得a 1=20,d =-2,∴a n =a 1+(n -1)d =20-2(n -1)=22-2n .S 10=10×20+10×92×(-2)=110.答案:22-2n 11015.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则b 2a 1+a 2=________.解析:因为数列1,a 1,a 2,9是等差数列,所以a 1+a 2=1+9=10.因为数列1,b 1,b 2,b 3,9是等比数列,所以b 22=1×9=9,又b 2=1×q 2>0(q 为等比数列的公比),所以b 2=3,则b 2a 1+a 2=310. 答案:31016.设{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5=________.解析:设{a n }的公比为q ,q>0,且a 23=1, ∴a 3=1.∵S 3=7,∴a 1+a 2+a 3=1q 2+1q +1=7,即6q 2-q -1=0,解得q =12或q =-13(舍去),a 1=1q2=4. ∴S 5=4×⎝ ⎛⎭⎪⎫1-1251-12=8×⎝ ⎛⎭⎪⎫1-125=314.答案:314四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f(x)=3xx +3,数列{x n }的通项由x n =f(x n -1)(n≥2且x ∈N *)确定.(1)求证:⎩⎨⎧⎭⎬⎫1x n 是等差数列;(2)当x 1=12时,求x 2 020.解:(1)证明:∵x n =f(x n -1)=3x n -1x n -1+3(n≥2且n ∈N *),∴1x n =x n -1+33x n -1=13+1x n -1, ∴1x n -1x n -1=13(n≥2且n ∈N *), ∴⎩⎨⎧⎭⎬⎫1x n 是公差为13的等差数列.(2)由(1)知1x n =1x 1+(n -1)×13=2+n -13=n +53.∴1x 2 020=2 020+53=675. ∴x 2 020=1675.18.(本小题满分12分)已知等比数列{a n }的前n 项和为S n ,a 1=-1,S 10S 5=3132.(1)求等比数列{a n }的公比q ; (2)求a 21+a 22+…+a 2n .解:(1)由S 10S 5=3132,a 1=-1,知公比q≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.(2)由(1),得a n =(-1)×⎝ ⎛⎭⎪⎫-12n -1,所以a 2n =⎝ ⎛⎭⎪⎫14n -1,所以数列{a 2n }是首项为1,公比为14的等比数列,故a 21+a 22+…+a 2n =1×⎝ ⎛⎭⎪⎫1-14n 1-14=43⎝ ⎛⎭⎪⎫1-14n .19.(本小题满分12分)在等差数列{a n }中,S n 为其前n 项和(n ∈N *),且a 2=3,S 4=16. (1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解:(1)设等差数列{a n }的公差是d ,由已知条件得⎩⎪⎨⎪⎧a 1+d =3,4a 1+6d =16,解得a 1=1,d =2,∴a n =2n -1. (2)由(1)知,a n =2n -1, ∴b n =1a n a n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1=n 2n +1.20.(本小题满分12分)已知等比数列{a n }的前n 项和为S n ,a 1=1,a n <a n +1,且S 3=2S 2+1.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =(2n -1)a n (n ∈N *),求数列{b n }的前n 项和T n .解:(1)设等比数列{a n }的公比为q ,由a n <a n +1,得q>1,又a 1=1,则a 2=q ,a 3=q 2, 因为S 3=2S 2+1,所以a 1+a 2+a 3=2(a 1+a 2)+1,则1+q +q 2=2(1+q)+1,即q 2-q -2=0,解得q =2或q =-1(舍去), 所以数列{a n }的通项公式为a n =2n -1(n ∈N *).(2)由(1)知,b n =(2n -1)·a n =(2n -1)·2n -1(n ∈N *), 则T n =1×20+3×21+5×22+…+(2n -1)×2n -1,2T n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n,两式相减,得-T n =1+2×21+2×22+…+2×2n -1-(2n -1)×2n,即-T n =1+22+23+24+ (2)-(2n -1)×2n, 化简得T n =(2n -3)×2n+3.21.(本小题满分12分)在①a n +1=a n 3a n +1,②⎩⎨⎧⎭⎬⎫1a n 为等差数列,其中1a 2,1a 3+1,1a 6成等比数列,③1a 1+1a 2+1a 3+…+1a n =3n 2-n2这三个条件中任选一个,补充到下面的问题中,然后解答补充完整的题目.已知数列{a n }中,a 1=1,________. (1)求数列{a n }的通项公式;(2)设b n =a n a n +1,T n 为数列{b n }的前n 项和,求证:T n <13.注:如果选择多个条件分别解答,则按第一个解答计分. 解:若选条件①:(1)易知a n ≠0,∵a n +1=a n 3a n +1,∴1a n +1-1a n =3.又1a 1=1, ∴数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,3为公差的等差数列,∴1a n =3n -2,∴a n =13n -2. (2)证明:由(1)可知,b n =1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,∴T n =13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1=13-19n +3<13, 故T n <13.若选条件②:(1)设数列⎩⎨⎧⎭⎬⎫1a n 的公差为d ,则1a 2=1+d ,1a 3+1=2+2d ,1a 6=1+5d ,∵1a 2,1a 3+1,1a 6成等比数列, ∴(2+2d)2=(1+d)(1+5d),解得d =3或d =-1.当d =-1时,1a 2=1+d =0,此时1a 2,1a 3+1,1a 6不能构成等比数列,∴d =3,∴1a n =1+3(n -1)=3n -2, ∴a n =13n -2. (2)由(1)可知,b n =1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,∴T n =13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1=13-19n +3<13, 故T n <13.若选条件③:(1)由1a 1+1a 2+1a 3+…+1a n =3n 2-n 2知,当n≥2时,1a 1+1a 2+1a 3+…+1a n -1=3(n -1)2-(n -1)2,两式相减,得1a n =3n 2-n 2-3(n -1)2-(n -1)2=3n -2,∴a n =13n -2(n≥2),当n =1时,a 1=1也适合上式, ∴a n =13n -2. (2)由(1)可知,b n =1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,∴T n =13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1=13-19n +3<13,故T n <13.22.(本小题满分12分)已知等差数列{a n }的前n 项和为S n ,且S 10=55,S 20=210. (1)求数列{a n }的通项公式; (2)设b n =a n a n +1,是否存在m ,k(k>m≥2,m ,k ∈N *)使得b 1,b m ,b k 成等比数列?若存在,请说明理由.解:(1)设等差数列{a n }的公差为d ,则S n =na 1+n (n -1)2 d.由已知,得⎩⎪⎨⎪⎧10a 1+10×92d =55,20a 1+20×192d =210,即⎩⎪⎨⎪⎧2a 1+9d =11,2a 1+19d =21,解得⎩⎪⎨⎪⎧a 1=1,d =1.所以a n =a 1+(n -1)d =n(n ∈N *).(2)假设存在m ,k(k>m≥2,m ,k ∈N *)使得b 1,b m ,b k 成等比数列,则b 2m =b 1b k . 因为b n =a n a n +1=nn +1,所以b 1=12,b m =m m +1,b k =kk +1,所以⎝⎛⎭⎪⎫m m +12=12×k k +1. 整理,得k =2m2-m 2+2m +1.以下给出求m ,k 的方法: 因为k>0,所以-m 2+2m +1>0, 解得1-2<m<1+ 2. 因为m≥2,m ∈N *, 所以m =2,此时k =8.故存在m =2,k =8使得b 1,b m ,b k 成等比数列.高中数学选择性必修二《第四章 数列》单元检测试卷(二)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分) 1.已知数列{}n a 中,11a =,122nn n a a a +=+,则5a 等于( ) A .25 B .13 C .23D .122.等比数列{}n a 的各项均为正实数,其前n 项和为S n ,若a 3=4,a 2·a 6=64,则S 5=( )A .32B .31C .64D .63 3.在等比数列{}n a 中,5113133,4a a a a =+=,则122a a =( ) A .3 B .13- C .3或13 D .3-或13- 4.在递减等比数列{}n a 中,n S 是其前n 项和,若245a a +=,154a a ⋅=,则7S =( ). A .1278 B .212 C .638D .63325.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为( ) A .53 B .103 C .56 D .1166.已知等比数列{}n a 的前n 项和为n S ,若公比6121,24q S =-=,则数列{}n a 的前n 项积n T 的最大值为( )A .16B .64C .128D .2567.已知等差数列{}n a 的前n 项的和为n S ,且675S S S >>,有下面4个结论: ①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S ,其中正确结论的序号为( )A .②③B .①②C .①③D .①④8.已知等差数列{}n a 的前n 项和为n S ,若2415a a a ++是一个确定的常数,则数列{}n S 中是常数的项是( )A .7SB .8SC .11SD .13S二、多选题(每题有多个选项为正确答案,少选且正确得3分,每题5分,共20分) 9.设{}n a 是等差数列,n S 为其前n 项和,且78S S <,8910S S S =>,则下列结论正确的是( )A .0d <B .90a =C .117S S >D .8S 、9S 均为n S 的最大值10.已知数列{}n a 满足:13a =,当2n ≥时,)211n a =-,则关于数列{}n a 说法正确的是( )A .28a =B .数列{}n a 为递增数列C .数列{}n a 为周期数列D .22n a n n =+11.在《增减算法统宗》中有这样一则故事:三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法正确的是( ) A .此人第三天走了二十四里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人走的前三天路程之和是后三天路程之和的8倍12.已知两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且3393n n S n T n +=+,则使得nna b 为整数的正整数n 的值为( ) A .2 B .3 C .4 D .14第II 卷(非选择题)三、填空题(每题5分,共20分) 13.已知{}n a 是等比数列,14a =,412a =,则12231n n a a a a a a +++⋅⋅⋅+=______. 14.在各项都是正数的等比数列{}n a 中,2a ,312a ,1a 成等差数列,则7856a a a a ++的值是________.15.各项均为正数的等比数列{a n }的前n 项和为S n ,已知S 6=30,S 9=70,则S 3=___. 16.已知等差数列{}n a 的公差2d =,前n 项之和为n S ,若对任意正整数n 恒有2n S S ≥,则1a 的取值范围是______.四、解答题(17题10分,其余每题12分,共6题70分) 17.已知在等差数列{}n a 中,35a =,1763a a =. (1)求数列{}n a 的通项公式: (2)设2(3)n n b n a =+,求数列{}n b 的前n 项和n S .18.已知数列{}n a 的前n 项和为n S ,()()()111,11,2n n a n S nS n n n N n -+=-=+-∈≥. (1)求证:数列n S n ⎧⎫⎨⎬⎩⎭为等差数列; (2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T19.已知各项均为正数的等差数列{}n a 中,12315a a a ++=,且12a +,25a +,313a +构成等比数列{}n b 的前三项.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n T .20.已知数列{}n a 为等差数列,11a =,0n a >,其前n 项和为n S,且数列也为等差数列.(1)求数列{}n a 的通项公式; (2)设11n n n n a b S S ++=⋅,求数列{}n b 的前n 项和.21.已知等比数列{}n a 的公比1q >,且13542a a a ++=,39a +是1a ,5a 的等差中项. (1)求数列{}n a 的通项公式; (2)证明:3n n n n a b a =+,设{}n b 的前n 项的和为n S ,求证:2113nS <.22.已知数列{}n a 中,n S 是{}n a 的前n 项和且n S 是2a 与2n na -的等差中项,其中a 是不为0的常数. (1)求123,,a a a .(2)猜想n a 的表达式,并用数学归纳法进行证明. 答案解析第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分) 1.已知数列{}n a 中,11a =,122nn n a a a +=+,则5a 等于( ) A .25 B .13 C .23D .12【答案】B【解析】在数列{}n a 中,11a =,122n n n a a a +=+,则12122122123a a a ⨯===++,2322221322223a a a ⨯===++, 3431222212522a a a ⨯===++,4542221522325a a a ⨯===++.故选:B. 2.等比数列{}n a 的各项均为正实数,其前n 项和为S n ,若a 3=4,a 2·a 6=64,则S 5=( )A .32B .31C .64D .63 【答案】B【解析】依题意3264640n a a a a =⎧⎪⋅=⎨⎪>⎩,即2151114640,0a q a q a q a q ⎧⋅=⎪⋅=⎨⎪>>⎩,解得11,2a q ==,所以()551123112S ⨯-==-.故选:B3.在等比数列{}n a 中,5113133,4a a a a =+=,则122a a =( ) A .3 B .13- C .3或13 D .3-或13- 【答案】C【解析】若{}n a 的公比为q ,∵3135113a a a a ==,又由3134a a +=,即有31313a a =⎧⎨=⎩或31331a a =⎧⎨=⎩,∴1013q =或3,故有101223a q a ==或13故选:C 4.在递减等比数列{}n a 中,n S 是其前n 项和,若245a a +=,154a a ⋅=,则7S =( ). A .1278 B .212 C .638D .6332【答案】A【解析】则24152454a a a a a a +=⎧⎨==⎩,解得2414a a =⎧⎨=⎩或2441a a =⎧⎨=⎩,∵{}n a 是递减数列,则2441a a =⎧⎨=⎩, ∴24214a q a ==,12q =(12q =-舍去). ∴218a a q ==,7717181(1)21112a q S q ⎛⎫⨯- ⎪-⎝⎭==--1278=. 故选:A .5.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为( ) A .53 B .103 C .56 D .116【答案】A【解析】设5人分到的面包数量从小到大记为{}n a ,设公差为d , 依题意可得,15535()51002a a S a +===, 33451220,7()a a a a a a ∴=++=+, 6037(403)d d ∴+=-,解得556d =, 1355522033a a d ∴=-=-=. 故选:A.6.已知等比数列{}n a 的前n 项和为n S ,若公比6121,24q S =-=,则数列{}n a 的前n 项积n T 的最大值为( )A .16B .64C .128D .256 【答案】B【解析】由12q =-,6214S =,得61112211412a ⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦=⎛⎫-- ⎪⎝⎭,解得18a =, 所以数列{}n a 为8,4-,2,1-,12,14-,……,前4项乘积最大为64.故选:B.7.已知等差数列{}n a 的前n 项的和为n S ,且675S S S >>,有下面4个结论: ①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S , 其中正确结论的序号为( )A .②③B .①②C .①③D .①④ 【答案】B【解析】由675S S S >>得760S S -<,750S S ->,则70a <,670a a +>, 所以60a >,所以0d <,①正确;111116111102a a S a +=⨯=>,故②正确; 1126712126()02a aS a a +=⨯=+>,故③错误;因为60a >,70a <,故数列{}n S 中的最大项为6S ,故④错误. 故选:B.8.已知等差数列{}n a 的前n 项和为n S ,若2415a a a ++是一个确定的常数,则数列{}n S 中是常数的项是( )A .7S ;B .8S ;C .11S ;D .13S 【答案】D【解析】由于题目所给数列为等差数列,根据等差数列的性质, 有()2415117318363a a a a d a d a ++=+=+=, 故7a 为确定常数,由等差数列前n 项和公式可知()11313713132a a S a+⋅==也为确定的常数.故选:D二、多选题(每题有多个选项为正确答案,少选且正确得3分,每题5分,共20分) 9.设{}n a 是等差数列,n S 为其前n 项和,且78S S <,8910S S S =>,则下列结论正确的是( )A .0d <B .90a =C .117S S >D .8S 、9S 均为n S 的最大值 【答案】ABD【解析】由78S S <得12377812a a a a a a a a +++⋯+<++⋯++,即80a >, 又∵89S S =,1229188a a a a a a a ∴++⋯+=++⋯++,90a ∴=,故B 正确;同理由910S S >,得100a <,1090d a a =-<,故A 正确;对C ,117S S >,即8910110a a a a +++>,可得(9102)0a a +>, 由结论9100,0a a =<,显然C 是错误的;7898810,,S S S S S S <=>∴与9S 均为n S 的最大值,故D 正确;故选:ABD.10.已知数列{}n a 满足:13a =,当2n ≥时,)211n a =-,则关于数列{}n a 说法正确的是( )A .28a =B .数列{}n a 为递增数列C .数列{}n a 为周期数列D .22n a n n =+【答案】ABD【解析】)211n a =-得)211n a +=,1=,即数列2=,公差为1的等差数列,2(1)11n n =+-⨯=+,∴22n a n n =+,得28a =,由二次函数的性质得数列{}n a 为递增数列,所以易知ABD 正确, 故选:ABD.11.在《增减算法统宗》中有这样一则故事:三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法正确的是( ) A .此人第三天走了二十四里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人走的前三天路程之和是后三天路程之和的8倍 【答案】BD【解析】由题意,此人每天所走路程构成以12为公比的等比数列, 记该等比数列为{}n a ,公比为12q =,前n 项和为n S , 则16611163237813212a S a ⎛⎫- ⎪⎝⎭===-,解得1192a =,所以此人第三天走的路程为23148a a q =⋅=,故A 错;此人第一天走的路程比后五天走的路程多()1611623843786a S a a S --=-=-=里,故B 正确;此人第二天走的路程为213789694.54a a q =⋅=≠=,故C 错; 此人前三天走的路程为31231929648336S a a a =++=++=,后三天走的路程为6337833642S S -=-=,336428=⨯,即前三天路程之和是后三天路程之和的8倍,D 正确; 故选:BD.12.已知两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且3393n n S n T n +=+,则使得nna b 为整数的正整数n 的值为( ) A .2 B .3 C .4 D .14 【答案】ACD【解析】由题意可得()()()()()()12121121212121221212n n n n n n n nn a a n a S a n b b T n b b -----+-===-+-,则()()21213213931815321311n n n n n a S n b T n n n ---++====+-+++, 由于nna b 为整数,则1n +为15的正约数,则1n +的可能取值有3、5、15, 因此,正整数n 的可能取值有2、4、14. 故选:ACD.第II 卷(非选择题)三、填空题(每题5分,共20分) 13.已知{}n a 是等比数列,14a =,412a =,则12231n n a a a a a a +++⋅⋅⋅+=______. 【答案】321134n⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【解析】由题意,等比数列{}n a 中,14a =,412a =,可得34218a q a ==,解得12q =,又由2111114n n n n n n a a a q a a a ++--===,且21218a a a q ==, 即数列{}1n n a a +表示首项为8,公比为14的等比数列,所以1223118[1()]3214113414n n n n a a a a a a +⨯-⎡⎤⎛⎫++⋅⋅⋅+==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-. 故答案为:321134n⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 14.在各项都是正数的等比数列{}n a 中,2a ,312a ,1a 成等差数列,则7856a a a a ++的值是________.【解析】设等比数列{}n a 的公比为()0q q >, 由321a a a =+, 得210q q --=,解得q =(负值舍),则222278565656a a a q a q q a a a a ++====++⎝⎭故答案为:32+15.各项均为正数的等比数列{a n }的前n 项和为S n ,已知S 6=30,S 9=70,则S 3=________. 【答案】10【解析】根据等比数列的前n 项和的性质,若S n 是等比数列的和,则S n ,S 2n -S n ,S 3n -S 2n ,…仍是等比数列,得到(S 6-S 3)2=S 3(S 9-S 6), 即()()233307030S S -=⋅-. 解得S 3=10或S 3=90(舍). 故答案为:1016.已知等差数列{}n a 的公差2d =,前n 项之和为n S ,若对任意正整数n 恒有2n S S ≥,则1a 的取值范围是______.【答案】[]4,2--【解析】因为对任意正整数n 恒有2n S S ≥,所以2S 为n S 最小值, 因此230,0a a ≤≥,即111+20,+4042a a a ≤≥∴-≤≤- 故答案为:[]4,2--四、解答题(17题10分,其余每题12分,共6题70分) 17.已知在等差数列{}n a 中,35a =,1763a a =. (1)求数列{}n a 的通项公式: (2)设2(3)n n b n a =+,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =-;(2)1n n +. 【解析】设等差数列{}n a 的公差为d ,由317653a a a =⎧⎨=⎩,可得()111251635a d a d a d +=⎧⎨+=+⎩解得1a 1,d 2,所以等差数列{}n a 的通项公式可得21n a n =-; (2) 由(1)可得211(3)22(1)1n n b n a n n n n ===-+++,所以111111 (22311)n n S n n n ⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭. 18.已知数列{}n a 的前n 项和为n S ,()()()111,11,2n n a n S nS n n n N n -+=-=+-∈≥. (1)求证:数列n S n ⎧⎫⎨⎬⎩⎭为等差数列; (2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T【答案】(1)证明见解析;(2)21n nT n =+. 【解析】(1)当2n ≥时,因为()()111n n n S nS n n --=+-, 所以()1121n n S S n n n --=≥-, 即n S n ⎧⎫⎨⎬⎩⎭首项为1,公差为1的等差数列. (2)由(1)得nS n n=,2n S n =. 当2n ≥时,()22121n a n n n =--=-.当1n =时,11a =,符合题意,所以21n a n =-.所以()()111111212122121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以111111123352121n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦ 11122121n nT n n ⎛⎫=-= ⎪++⎝⎭. 19.已知各项均为正数的等差数列{}n a 中,12315a a a ++=,且12a +,25a +,313a +构成等比数列{}n b 的前三项.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n T .【答案】(1)21n a n =+,152n n b -=⋅;(2)5(21)21n n T n ⎡⎤=-+⎣⎦【解析】(1)设等差数列的公差为d ,则由已知得:1232315a a a a ++==,即25a =, 又(52)(513)100d d -+++=,解得2d =或13d =-(舍去),123a a d =-=,1(1)21n a a n d n ∴=+-⨯=+,又1125b a =+=,22510b a =+=,2q ∴=,152n n b -∴=⋅;(2)21535272(21)2n n T n -⎡⎤=+⨯+⨯+++⨯⎣⎦, 2325325272(21)2n n T n ⎡⎤=⨯+⨯+⨯+++⨯⎣⎦,两式相减得2153222222(21)25(12)21n n nn T n n -⎡⎤⎡⎤-=+⨯+⨯++⨯-+⨯=--⎣⎦⎣⎦,则5(21)21nn T n ⎡⎤=-+⎣⎦.20.已知数列{}n a 为等差数列,11a =,0n a >,其前n 项和为n S,且数列也为等差数列.(1)求数列{}n a 的通项公式; (2)设11n n n n a b S S ++=⋅,求数列{}n b 的前n 项和.【答案】(1)21n a n =-;(2)222(1)n nn ++.【解析】(1)设等差数列{}n a 的公差为(0)d d ≥,11S ===成等差数列,1∴=+2d =, 1(1)221n a n n ∴+-⨯=-=,n ==, 所以数列为等差数列,21nan ∴=-.(2)2(121)2n n n S n +-==,22222111(1)(1)n n b n n n n +∴==-⋅++,设数列{}n b 的前n 项和为n T ,则2222222221111111211223(1)(1)(1)n n n T n n n n ⎛⎫+⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭.21.已知等比数列{}n a 的公比1q >,且13542a a a ++=,39a +是1a ,5a 的等差中项. (1)求数列{}n a 的通项公式; (2)证明:3n n n n a b a =+,设{}n b 的前n 项的和为n S ,求证:2113nS <. 【答案】(1)2nn a =;(2)证明见解析.【解析】(1)由39a +是1a ,5a 的等差中项得153218a a a +=+, 所以135a a a ++331842a =+=,解得38a =, 由1534a a +=,得228834q q +=,解得24q =或214q =, 因为1q >,所以2q.所以2n n a =.(2)112()333()1()22nn n n b =<=+, 3412324222()()()513333n n n S b b b b ∴=++++<++++24688221()6599313n -=+-⋅≤在3n ≥成立,又有1222146215136513S S =<=<,, 2113n S ∴<.22.已知数列{}n a 中,n S 是{}n a 的前n 项和且n S 是2a 与2n na -的等差中项,其中a 是不为0的常数. (1)求123,,a a a .(2)猜想n a 的表达式,并用数学归纳法进行证明.【答案】(1)12a a =;26a a =;312a a =(2)猜想:()()*1na a n N n n =∈+;证明见解析【解析】(1)由题意知:222n n S a na =-即n n S a na =-,当1n =时,111S a a a ==-,解得12a a =. 当2n =时,21222S a a a a =+=-,解得26a a =. 当3n =时,312333S a a a a a =++=-,解得312a a =. (2)猜想:()()*1n aa n N n n =∈+ 证明:①当1n =时,由(1)知等式成立. ②假设当()*1,n k k k N=≥∈时等式成立,即()1k aa k k =+,则当1n k =+时,又n n S a na =- 则k k S a ka =-,11k k S a ka ++=-,∴()()1111k k k k k a S S a k a a ka +++=-=-+--, 即()()1211k k a ak a ka k k k k ++==⨯=++所以()()()()112111k aaa k k k k +==+++++⎡⎤⎣⎦,即当1n k =+时,等式成立. 结合①②得()1n aa n n =+对任意*n N ∈均成立.高中数学选择性必修二《第四章 数列》单元检测试卷(三)注:本检测满分150分。
2024-2025学年高二数学选择性必修第二册(北师版)教学课件第一章-§1数列

按项的变
化趋势
常数列
摆动数列
相等
各项________的数列
大于
从第 2 项起,有些项________它的前一项,有些项小于
它的前一项的数列
高中数学
选择性必修第二册
北师大版
谢 谢!
该数列从第2项起,第项与第-1项的差为(2-12)-[(-1)2-12(-1)]=2-13,所以
该数列的前6项单调递减,从第6项往后单调递增,故选D.
答案 D
高中数学
选择性必修第二册
北师大版
(2)已知下列数列:
①1,2,22,23,…,260;②1,0.5,0.52 ,0.53,…;③-2,2,-2,2,…;④3,3,3,3,…;
即+1 < .所以数列{}为递减数列.
反思感悟用作差法判断数列的单调性关键是判断符号,为此,一般要对差式进行通分,因式分解等变
形;若用作商法则要特别注意分母的符号.
高中数学
选择性必修第二册
北师大版
跟踪训练
2
∗
已知数列{}的第项可以表示为3+1, ∈ ,试判断数列的增减性.
递增数列;如果从第2项起,每一项都小于它的前一项,即
+1 < ,那么这个数列叫作递减数列;
如果数列 的各项都相等,那么这个数列叫作常数列.
名师点拨
(1)数列1,2,3,4,5和数列5,3,2,4,1为两个不同的数列,因为二者的元素顺序不同,而集合{1,2,3,4,5}与这两
个数列也不相同,一方面形式上不一致,另一方面,集合中的元素具有无序性.
(3)数列的函数特性.
2. 常见误区:
忽视数列中的条件: ∈ 版
类别
含义
人教版数学选择性必修二考点复习:等差数列和等比数列课件

等差数列和等比数列
考情分析
202X年
202X年
202X年
Ⅰ卷 Ⅱ卷 Ⅲ卷 Ⅰ卷 Ⅱ卷 Ⅲ卷 Ⅰ卷 Ⅱ卷 Ⅲ卷
等差数列
和
T4
T17 T17 T9,T14 T19 T5,T14 T17 T4,T6
新高考Ⅰ
卷
T14,T18
等比数列 高考试题中数列一般是以两个小题或一个解答题的情势出现,难度
(2)列、解方程组:把条件转化为关于a1和d(q)的方程(组), 然后求解,
注意整体计算, 以减少运算量.
对点训练
1.(202X北京高三一模)设等差数列{an}的前n项和为Sn, 若a3=2,
a1+a4=5, 则S6=( B )
A.10
B.9
C.8
3 = 1 + 2 = 2
由题意得, ቊ
,
1 + 4 = 21 + 3 = 5
由题设得4(an+1-bn+1)=4(an-bn)+8,即an+1-bn+1=an-bn+2.
又因为a1-b1=1,所以{an-bn}是首项为1,公差为2的等差数列.
(2)由(1)知, an+bn=
所以an=
1
2
1
2−1
, an-bn=2n-1.
1
1
[(an+bn)+(an-bn)]=
2
2
bn= [(an+bn)-(an-bn)]=
第n环扇面形石板块数为等差数列{an},其前n项和满
足S3n-S2n=S2n-Sn=729,解方程即可得到n,进一步得到S3n
易错分析
高中数学选择性必修二 精讲精炼 第4章 列 章末测试(基础)(含答案)

第4章 数 列 章末测试(基础)一、单选题(每题只有一个选项为正确答案。
每题5分,8题共40分) 1.(2021·河南高二月考)设数列{}n a 满足11n n a a n++=,12a =,则3a =( ) A .1- B .12C .2D .32【答案】D【解析】因为121a a +=,12a =,2312a a +=,所以332a =.故选:D . 2.(2021·河南高二月考)设等比数列{}n a 的前n 项和为147258,9,18,n S a a a a a a ++=++=则9S =( ) A .27 B .36 C .63 D .72【答案】C【解析由题意,设等比数列{}n a 的公比为q 258147()a a a a a a q ∴++=++ 2q ∴=,又369258()36a a a a a a q ++=++=91472583699183663S a a a a a a a a a ∴=++++++++=++=故选:C3.(2021·河南高二月考)设等差数列{}n a 的前n 项和为n S ,若235,,S S S 成等差数列,且110a =,则{}n a 的公差d =( ) A .2 B .1 C .1- D .2-【答案】D 【解析235,,S S S 成等差数列,3252S S S ∴=+,即()1112332510a d a d a d +=+++,110a =,可解得2d =-.故选:D.4.(2021·河南高二月考)猜想数列282680,,,,3579--⋅⋅⋅的一个通项公式为n a =( )A .()31121nn n --+ B .()12121n nn +-+ C .()121121n n n +--+ D .()31121n nn --+【答案】D【解析根据数列可得,分母3,5,7,9,…满足21n , 分子2,8,26,80,…满足31n -,又数列的奇数项为负,偶数项为正,所以可得()31121n nn a n -=-+. 故选:D.5.(2021·江苏省阜宁中学高二月考)在数列{}n a 中,22293n a n n =-++,则此数列最大项的值是( ) A .107 B .9658C .9178D .108【答案】D【解析22298172293248n a n n n ⎛⎫=-++=--+ ⎪⎝⎭,因为n ∈+N ,且78108,107a a ==, 所以此数列最大项为7108a =. 故选:D.6.(2021·全国高二课时练习)数列{}n a 中,11a =,对所有的2n ≥,*n ∈N ,都有2123····n a a a a n ⋯=,则35a a +等于( ) A .259B .2516 C .6116D .3115【答案】C【解析当2n =时,2122a a =;当3n =时,21233a a a =;当4n =时,212344a a a a =;当5n =时,2123455a a a a a =;则212331229=243a a a a a a ==,21231245524325=4165a a a a a a a a a a ==; 所以356116a a +=. 故选:C.7.(2021·全国高二课时练习)一弹球从100米高处自由落下,每次着地后又跳回到原来高度的一半再落下,则第10次着地时所经过的路程和是(结果保留到个位)( ) A .300米B .299米C .199米D .166米【答案】A【解析由题意,可得小球10次着地共经过的路程为: 828111110010050100()100100[1()()]2222++++⨯=+++++ 9911()12100100300200()3001212-=+⨯=-⨯≈-米 故选:A.8.(2021·上海市大同中学高二月考)有一个三人报数游戏:首先A 报数字1,然后B 报两个数字2、3,接下来C 报三个数字4、5、6,然后轮到A 报四个数字7、8、9、10,依次循环,直到报出10000,则A 报出的第2021个数字为( ) A .5979 B .5980 C .5981 D .以上都不对【答案】C【解析由题可得A 第n *()n N ∈次报数的个数为32n -, 则A 第n 次报完数后总共报数的个数为[1(32)](31)22n n n n n T +--==,再代入正整数n ,使2020,n T n ≥的最小值为37,得372035T =, 而A 第37次报时,3人总共报数为3631109⨯+=次, 当A 第109次报完数3人总的报数个数为109(1091)12310959952m S +=++++==, 即A 报出的第2035个数字为5995, 故A 报出的第2021个数字为5981. 故选:C二、多选题(每题不止一个选项为正确答案,每题5分,4题共20分)9.(2021·全国高二课时练习)已知数列{}n a 是公比为q 的等比数列,且1a ,3a ,2a 成等差数列,则q 的值可能为( ) A .12 B .1C .12-D .-2【答案】BC【解析由题意,可知3122a a a =+,即21112a q a a q =+.又10a ≠,∴221q q =+,∴1q =或12-.故选:BC .10.(2021·全国高二课时练习)(多选)在《增删算法统宗》中有如下问题:“三百七十八里关,初行健步不为难;次日脚痛减一半,六朝才得到其关”其意思是:“某人到某地需走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天才到达目的地”则下列说法正确的是( ) A .此人第二天走了96里路B .此人第三天走的路程占全程的18C .此人第一天走的路程比后五天走的路程多6里D .此人第五天和第六天共走了30里路 【答案】AC【解析设此人第n 天走了n a 里路,则数列{}n a 是首项为1a ,公比q 为12的等比数列,其前n 项和为S n ,因6378S =,即1661(1)2378112a S -==-,解得1192a =,11192(),N ,62n na n n -*=⋅∈≤,由于21192962a =⋅=,即此人第二天走了96里路,A 正确;由于31192484a =⋅=,4813788>,B 错误; 后五天走的路程为378192186-=(里),1921866-=(里),此人第一天走的路程比后五天走的路程多6里,C 正确;由于5611192192181632a a +=⋅+⋅=,D 错误. 故选:AC11.(2021·全国高二课时练习)(多选)已知数列{}n a 的通项公式为2n a n n =+,则下列是该数列中的项的是( ) A .18 B .12 C .25 D .30【答案】BD【解析】因为2n a n n =+,所以n 越大,n a 越大.当3n =时,233312a =+=;当4n =时,244420a =+=;当5n =时,255530a =+=;当6n =时,266642a =+=.故选:BD .12.(2021·全国高二课时练习)已知数列{}n a 的前n 项和为n S 且满足()1302n n n a S S n -+=≥,113a =,则下列命题中正确的是( )A .1n S ⎧⎫⎨⎬⎩⎭是等差数列B .13n S n=C .()131n a n n =--D .{}3n S 是等比数列【答案】ABD【解析】因为()12n n n a S S n -=-≥,()1302n n n a S S n -+=≥, 所以1130n n n n S S S S ---+=,所以1113n n S S --=, 所以1n S ⎧⎫⎨⎬⎩⎭是公差为3的等差数列,A 正确;因为11113S a ==, 所以()13313n n n S =+-=,13n S n =,B 正确;2n ≥时,由1n n n a S S -=-,得()131n a n n =--,但113a =不满足此式,因此C 错误;由13n S n =得1311333n n n S +==⨯,所以{}3n S 是等比数列,D 正确. 故选:ABD .三、填空题(每题5分,4题共20分)13.(2021·河南高二月考 )设等差数列{}n a 的前n 项和为n S ,若4683315a a a -+=,则11S =______. 【答案】33 【解析】{}n a 是等差数列,由4683315a a a -+=可得()486315a a a +-=,即66615a a -=,可得63a =,则()1111161111332a a S a +===. 故答案为:33.14.(2021·全国高二课时练习)已知1x >,1y >,且lg x ,2,lg y 成等差数列,则x y +有最小值_____ 【答案】200【解析】因为lg x ,2,lg y 成等差数列,所以lg lg 22x y +=⨯,即410xy =所以200x y +≥,当且仅当100x y ==时等号成立, 所以x y +的最小值为200, 故答案为:200.15.(2021·全国高二课时练习)已知ABC 的一个内角为120︒,并且三边长构成公差为4的等差数列,则ABC 最长边的边长等于________. 【答案】14 【解析】ABC 三边长构成公差为4的等差数列,∴设处于中间长度的一条边长为x ,则最大的边长为4x +,最小的边长为4x -,ABC 的一个内角为120︒,即为最大角,则它对应的边的长度最长,即为4x +,则()()()222441cos120242x x x x x +--+︒==--, 化简得:164x x -=-,解得10x =, 所以三角形的三边分别为:6,10,14,最长边为14, 故答案为:14.16.(2021·全国高二课时练习)根据下列5个图形及相应点的个数的变化规律,可以得出第n 个图中有________个点.【答案】n 2-n +1【解析】图(1)只有1个点,无分支;图(2)除中间1个点外,有2个分支,每个分支有1个点; 图(3)除中间1个点外,有3个分支,每个分支有2个点; 图(4)除中间1个点外,有4个分支,每个分支有3个点;…猜想第n 个图中除中间一个点外,有n 个分支,每个分支有(n -1)个点, 故第n 个图中点的个数为1+n (n -1)=n 2-n +1. 故答案为:n 2-n +1四、解答题(17题10分,其余每题12分,共6题70分)17.(2021·河南高二月考 )在等差数列{}n a 中,36787,3a a a a =-++=. (1)求{}n a 的通项公式;(2)求{}n a 的前n 项和n S 及n S 的最小值.【答案】(1)213n a n =-;(2)212n n S n =-,-36.【解析】(1)设{}n a 的公差为d ,根据题意得31678127,3183?a a d a a a a d =+=-⎧⎨++=+=⎩ 解得11,2a d =-⎧⎨=⎩,所以()1121213n a n n =-+-=-.(2)根据等差数列的前n 项和公式得()21112122n n n S n n -=-+⨯=- 则当6n =时,n S 取得最小值36-.18.(2021·全国高二课时练习)已知数列{a n }中,a 1=1,前n 项和S n =23n +a n . (1)求a 2,a 3; (2)求{a n }的通项公式.【答案】(1)a 2=3,a 3=6 ;(2)a n =(1)2n n +. 【解析】(1)由S 2=43a 2,得(a 1+a 2)=43a 2,又a 1=1,∴a 2=3a 1=3.由S 3=53a 3,得3(a 1+a 2+a 3)=5a 3,∴a 3=32(a 1+a 2)=6.(2)∴当n ≥2时,a n =S n -S n -1=23n +a n -13n +a n -1, ∴a n =11n n +-a n -1,即1n n a a -=11n n +-.∴a n =1n n a a -·12n n a a --·…·32a a ·21a a ·a 1=11n n +-·2nn -·…·42·31·1 =(1)2n n +. 又a 1=1满足上式, ∴a n =(1)2n n +. 19.(2021·全国高二课时练习)已知数列{a n }满足a 1=76,S n 是{a n }的前n 项和,点(2S n +a n ,S n +1)在()1123f x x =+的图象上. (1)求数列{a n }的通项公式;(2)若c n =2()3n a -n ,T n 为c n 的前n 项和,n ∴N *,求T n .【答案】(1)2132n n a =+;(2)222n n n T +=-. 【解析】(1)∴点(2S n +a n ,S n +1)在()1123f x x =+的图象上,∴()111223n n n S S a +=++, ∴11123n n a a +=+.∴1212323n n a a +⎛⎫-=- ⎪⎝⎭, ∴数列23n a ⎧⎫-⎨⎬⎩⎭是以12132a -=为首项,以12为公比的等比数列,∴121113222n n na -⎛⎫-=⨯=⎪⎝⎭,即2132nn a =+, (2)∴232n n n n c a n ⎛⎫=-= ⎪⎝⎭,∴23111232222n n nT =+⨯+⨯++,∴∴234111112322222n n nT +=+⨯+⨯++,∴ ∴-∴得23111111222222n n n n T +=++++-, ∴222n nnT +=-. 20.(2021·全国高二课时练习)已知数列{}n a 的前n 项和是n S ,且112n n S a +=.(1)证明数列{}n a 是等比数列,并求其通项公式;(2)设31log (1)n n b S +=-,求满足方程122311112551n n b b b b b b ++++=的n 的值. 【答案】(1)证明见解析;23n na =;(2)100. 【解析】(1)证明:由112n n S a +=得,11112S a +=,又因为11a S =,所以123a =,因为112n n S a =- ∴,所以当2n ≥时,11112n n S a --=- ∴,由∴-∴得,111122n n n n n a S S a a --=-=-+即113n n a a -=, 故{}n a 是以23为首项,13为公比的等比数列,从而1212()333n n n a -=⨯=.(2)由(1)中可知,11111223n n n n n S a S a =-⇒-==所以31311log (1)log 13n n n b S n ++=-==--, 从而11111(1)(2)12n n b b n n n n +==-++++, 故1223111111111111252334122251n n b b b b b b n n n ++++=-+-++-=-=+++, 解得,100n =.21.(2021·全国高二专题练习)已知{a n }是等差数列,公差为d ,首项a 1=3,前n 项和为S n ,令c n =(-1)n S n (n ∴N *),{c n }的前20项和T 20=330.数列{b n }满足212(2)2n n n b a d --=-+,a ∴R . (1)求数列{a n }的通项公式;(2)若b n +1≤b n ,n ∴N *,求a 的取值范围. 【答案】(1)a n =3n ;(2)54a ≤. 【解析】(1)设等差数列的公差为d ,因为(1)nn n c S =-,所以20123420330T S S S S S =-+-++⋯+=, 则24620330a a a a +++⋯+=, 则10910(3)23302d d ⨯++⨯=, 解得3d =,所以33(1)3n a n n =+-=;(2)由(1)知212(2)32n n n b a --=-+,则12112(2)32[2(2)32]n n n n n n b b a a ---+-=-+--+2122124(2)3243[(2)()]23n n n n a a ----=-+=-+由1n n b b +≤⇔221212(2)()02()2323n n a a ---+≤⇔≤- 因为2122()23n --随着n 的增大而增大, 所以1n =时,2122()23n --最小值为54,所以54a ≤. 22.(2021·全国高二专题练习)某学校实验室有浓度为2 g/ml 和0.2 g/ml 的两种K 溶液.在使用之前需要重新配制溶液,具体操作方法为取浓度为2 g/ml 和0.2 g/ml 的两种K 溶液各300 ml 分别装入两个容积都为500 ml 的锥形瓶A ,B 中,先从瓶A 中取出100 ml 溶液放入B 瓶中,充分混合后,再从B 瓶中取出100 ml 溶液放入A 瓶中,再充分混合.以上两次混合过程完成后算完成一次操作.设在完成第n 次操作后,A 瓶中溶液浓度为a n g/ml ,B 瓶中溶液浓度为b n g/ml.(lg 2≈0.301,lg 3≈0.477)(1)请计算a 1,b 1,并判定数列{a n -b n }是否为等比数列?若是,求出其通项公式;若不是,请说明理由; (2)若要使得A ,B 两个瓶中的溶液浓度之差小于0.01 g/ml ,则至少要经过几次? 【答案】(1)是,a n -b n =0.9·(12)n -1;(2)8次. 【【解析】 (1)由题意,得b 1=0.23002100300100⨯+⨯+=0.65 g /ml ,a 1=0.651002200200100⨯+⨯+=1.55 g /ml .当n ≥2时,b n =1400(300b n -1+100a n -1)=14(3b n -1+a n -1),a n =1300(200a n -1+100b n )=14(3a n -1+b n -1),∴a n -b n =12(a n -1-b n -1), ∴等比数列{a n -b n }的公比为12, 其首项a 1-b 1=1.55-0.65=0.9, ∴a n -b n =0.9·(12)n -1.(2)由题意可知,问题转化为解不等式0.9·(12)n -1<10-2,∴n>1+12lg3lg2≈7.49,∴至少要操作8次才能达到要求.。
人教A版高中数学选择性必修第二册精品-第四章-数列-4.1-第2课时-数列的递推公式
解 (1)由题意知
1
a1=2,an+1=2an,
1
1
所以 a2=2a1=2×2=1,
1
1
1
a3=2a2=2×1=2,
1
1 1
1
a4= a3= × = ,
2
2 2
4
1
1 1
1
a5= a4= × = ,
2
2 4
8
1
1
1
综上所述,a1=2,a2=1,a3=2,a4=4,a5=8.
(2)由题意知a1=3,an+1=an+2,
A.-1
解析 因为 a1=2,an+
1
-1
5
D.2
C.2
=1(n≥2 且 n∈N ),所以
1
1
1
1
,a3=1- =-1,a4=1- =2,a5=1-
D.a1=2,an=2an-1(n≥2)
解析 A,B中没有说明第一项,无法递推;D中a1=2,a2=4,a3=8,不合题意.
1 2 3 4 5
3.[2024 福建龙岩高二校考阶段练习]设数列{an}中,a1=2,an+
1
-1
=1(n≥2 且 n
∈N*),则 a2 023=( C )
1
B.2
当 an 不易消去,或消去 Sn 后 an 不易求,可先求
S1 ,n = 1,
Sn,再由 an=
求 an
Sn -Sn-1 ,n ≥ 2
[提醒]应重视分类讨论的思想,分n=1和n≥2两种情况讨论.当n=1时,a1不适
合an的情况要分开写,即an= 1 , = 1,
--1 , ≥ 2.
高中数学选择性必修二 第四章 数列(章末测试)(含答案)
第四章 数 列 章末测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·山东泗水·期中(文))已知数列{}n a 中,11a =,122nn n a a a +=+,则5a 等于( ) A .25B .13C .23D .12【答案】B【解析】在数列{}n a 中,11a =,122n n n a a a +=+,则12122122123a a a ⨯===++,2322221322223a a a ⨯===++, 3431222212522a a a ⨯===++,4542221522325a a a ⨯===++.故选:B. 2.(2020·四川阆中中学月考(理))等比数列{}n a 的各项均为正实数,其前n 项和为S n ,若a 3=4,a 2·a 6=64,则S 5=( ) A .32 B .31C .64D .63【答案】B【解析】依题意3264640n a a a a =⎧⎪⋅=⎨⎪>⎩,即2151114640,0a q a q a q a q ⎧⋅=⎪⋅=⎨⎪>>⎩,解得11,2a q ==,所以()551123112S ⨯-==-.故选:B3.(2020·湖南武陵·常德市一中月考)在等比数列{}n a 中,5113133,4a a a a =+=,则122a a =( ) A .3 B .13-C .3或13D .3-或13-【答案】C【解析】若{}n a 的公比为q ,∵3135113a a a a ==,又由3134a a +=,即有31313a a =⎧⎨=⎩或31331a a =⎧⎨=⎩, ∴1013q =或3,故有101223a q a ==或13故选:C 4.(2021·黑龙江哈尔滨市第六中学校月考(理))在递减等比数列{}n a 中,n S 是其前n 项和,若245a a +=,154a a ⋅=,则7S =( ).A .1278B .212C .638D .6332【答案】A【解析】则24152454a a a a a a +=⎧⎨==⎩,解得2414a a =⎧⎨=⎩或2441a a =⎧⎨=⎩,∵{}n a 是递减数列,则2441a a =⎧⎨=⎩,∴24214a q a ==,12q =(12q =-舍去).∴218a a q ==,7717181(1)21112a q S q ⎛⎫⨯- ⎪-⎝⎭==--1278=. 故选:A .5.(2020·重庆高一期末)《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为( )A .53B .103C .56D .116【答案】A【解析】设5人分到的面包数量从小到大记为{}n a ,设公差为d ,依题意可得,15535()51002a a S a +===, 33451220,7()a a a a a a ∴=++=+, 6037(403)d d ∴+=-,解得556d =, 1355522033a a d ∴=-=-=. 故选:A.6.(2020·贵州贵阳·为明国际学校其他(理))已知等比数列{}n a 的前n 项和为n S ,若公比6121,24q S =-=,则数列{}n a 的前n 项积n T 的最大值为( ) A .16 B .64C .128D .256【答案】B【解析】由12q =-,6214S =,得61112211412a ⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦=⎛⎫-- ⎪⎝⎭,解得18a =, 所以数列{}n a 为8,4-,2,1-,12,14-,……,前4项乘积最大为64. 故选:B .7.(2020·吉林市第二中学月考)已知等差数列{}n a 的前n 项的和为n S ,且675S S S >>,有下面4个结论: ①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S , 其中正确结论的序号为( ) A .②③ B .①②C .①③D .①④【答案】B【解析】由675S S S >>得760S S -<,750S S ->,则70a <,670a a +>,所以60a >,所以0d <,①正确;111116111102a a S a +=⨯=>,故②正确; 1126712126()02a a S a a +=⨯=+>,故③错误; 因为60a >,70a <,故数列{}n S 中的最大项为6S ,故④错误. 故选:B.8.(2020·上海市市西中学月考)已知等差数列{}n a 的前n 项和为n S ,若2415a a a ++是一个确定的常数,则数列{}n S 中是常数的项是( )A .7S ;B .8S ;C .11S ;D .13S【解析】由于题目所给数列为等差数列,根据等差数列的性质, 有()2415117318363a a a a d a d a ++=+=+=, 故7a 为确定常数,由等差数列前n 项和公式可知()11313713132a a S a+⋅==也为确定的常数.故选:D二、多选题(每题有多个选项为正确答案,少选且正确得3分,每题5分,共20分)9.(2020·鱼台县第一中学月考)设{}n a 是等差数列,n S 为其前n 项和,且78S S <,8910S S S =>,则下列结论正确的是( ) A .0d < B .90a =C .117S S >D .8S 、9S 均为n S 的最大值【答案】ABD【解析】由78S S <得12377812a a a a a a a a +++⋯+<++⋯++,即80a >, 又∵89S S =,1229188a a a a a a a ∴++⋯+=++⋯++,90a ∴=,故B 正确;同理由910S S >,得100a <,1090d a a =-<,故A 正确;对C ,117S S >,即8910110a a a a +++>,可得(9102)0a a +>, 由结论9100,0a a =<,显然C 是错误的;7898810,,S S S S S S <=>∴与9S 均为n S 的最大值,故D 正确;10.(2020·河北邯郸·高三月考)已知数列{}n a 满足:13a =,当2n ≥时,)211n a =-,则关于数列{}n a 说法正确的是( ) A .28a =B .数列{}n a 为递增数列C .数列{}n a 为周期数列D .22n a n n =+【答案】ABD【解析】)211n a =-得)211n a +=,1=,即数列2=,公差为1的等差数列,2(1)11n n =+-⨯=+,∴22n a n n =+,得28a =,由二次函数的性质得数列{}n a 为递增数列,所以易知ABD 正确, 故选:ABD.11.(2020·湖南雁峰·衡阳市八中高二月考)在《增减算法统宗》中有这样一则故事:三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法正确的是( ) A .此人第三天走了二十四里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人走的前三天路程之和是后三天路程之和的8倍【解析】由题意,此人每天所走路程构成以12为公比的等比数列, 记该等比数列为{}n a ,公比为12q =,前n 项和为n S , 则16611163237813212a S a ⎛⎫- ⎪⎝⎭===-,解得1192a =,所以此人第三天走的路程为23148a a q =⋅=,故A 错;此人第一天走的路程比后五天走的路程多()1611623843786a S a a S --=-=-=里,故B 正确;此人第二天走的路程为213789694.54a a q =⋅=≠=,故C 错; 此人前三天走的路程为31231929648336S a a a =++=++=,后三天走的路程为6337833642S S -=-=,336428=⨯,即前三天路程之和是后三天路程之和的8倍,D 正确;故选:BD.12.(2019·山东省招远第一中学高二期中)已知两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且3393n n S n T n +=+,则使得n na b 为整数的正整数n 的值为( ) A .2 B .3C .4D .14【答案】ACD【解析】由题意可得()()()()()()12121121212121221212n n n n n n n nn a a n a S a n b b T n b b -----+-===-+-,则()()21213213931815321311n n n n n a S n b T n n n ---++====+-+++,由于nna b 为整数,则1n +为15的正约数,则1n +的可能取值有3、5、15, 因此,正整数n 的可能取值有2、4、14. 故选:ACD.第II 卷(非选择题)三、填空题(每题5分,共20分)13.(2020·山东泗水·期中(文))已知{}n a 是等比数列,14a =,412a =,则12231n n a a a a a a +++⋅⋅⋅+=______. 【答案】321134n⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【解析】由题意,等比数列{}n a 中,14a =,412a =,可得34218a q a ==,解得12q =,又由2111114n n n n n n a a a q a a a ++--===,且21218a a a q ==, 即数列{}1n n a a +表示首项为8,公比为14的等比数列, 所以1223118[1()]3214113414n n n n a a a a a a +⨯-⎡⎤⎛⎫++⋅⋅⋅+==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-. 故答案为:321134n⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.14.(2021·黑龙江哈尔滨市第六中学校月考(理))在各项都是正数的等比数列{}n a 中,2a ,312a ,1a 成等差数列,则7856a a a a ++的值是________.【答案】32+【解析】设等比数列{}n a 的公比为()0q q >, 由321a a a =+, 得210q q --=,解得12q +=(负值舍),则222278565656a a a q a q q a a a a ++====++⎝⎭.15.(2020·吉林市第二中学月考)各项均为正数的等比数列{a n }的前n 项和为S n ,已知S 6=30,S 9=70,则S 3=________. 【答案】10【解析】根据等比数列的前n 项和的性质,若S n 是等比数列的和,则S n ,S 2n -S n ,S 3n -S 2n ,…仍是等比数列,得到(S 6-S 3)2=S 3(S 9-S 6), 即()()233307030S S -=⋅-. 解得S 3=10或S 3=90(舍). 故答案为:1016.(2020·四川武侯·成都七中月考)已知等差数列{}n a 的公差2d =,前n 项之和为n S ,若对任意正整数n 恒有2n S S ≥,则1a 的取值范围是______.【答案】[]4,2--【解析】因为对任意正整数n 恒有2n S S ≥,所以2S 为n S 最小值,因此230,0a a ≤≥,即111+20,+4042a a a ≤≥∴-≤≤- 故答案为:[]4,2--四、解答题(17题10分,其余每题12分,共6题70分)17.(2020·安徽省舒城中学月考(文))已知在等差数列{}n a 中,35a =,1763a a =. (1)求数列{}n a 的通项公式:(2)设2(3)n n b n a =+,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =-;(2)1n n +. 【解析】设等差数列{}n a 的公差为d ,由317653a a a =⎧⎨=⎩,可得()111251635a d a d a d +=⎧⎨+=+⎩ 解得1a 1,d 2,所以等差数列{}n a 的通项公式可得21n a n =-;(2) 由(1)可得211(3)22(1)1n n b n a n n n n ===-+++,所以111111 (22311)n n S n n n ⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭. 18.(2020·湖南武陵·常德市一中月考)已知数列{}n a 的前n 项和为n S ,()()()111,11,2n n a n S nS n n n N n -+=-=+-∈≥.(1)求证:数列n S n ⎧⎫⎨⎬⎩⎭为等差数列; (2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T 【答案】(1)证明见解析;(2)21n n T n =+. 【解析】(1)当2n ≥时,因为()()111n n n S nS n n --=+-, 所以()1121n n S S n n n --=≥-, 即n S n ⎧⎫⎨⎬⎩⎭首项为1,公差为1的等差数列. (2)由(1)得n S n n=,2n S n =. 当2n ≥时,()22121n a n n n =--=-.当1n =时,11a =,符合题意,所以21n a n =-. 所以()()111111212122121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以111111123352121n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦ 11122121n n T n n ⎛⎫=-= ⎪++⎝⎭. 19.(2021·黑龙江鹤岗一中月考(理))已知各项均为正数的等差数列{}n a 中,12315a a a ++=,且12a +,25a +,313a +构成等比数列{}n b 的前三项.(1)求数列{}n a ,{}n b 的通项公式;(2)求数列{}n n a b 的前n 项和n T .【答案】(1)21n a n =+,152n n b -=⋅;(2)5(21)21n n T n ⎡⎤=-+⎣⎦【解析】(1)设等差数列的公差为d ,则由已知得:1232315a a a a ++==,即25a =, 又(52)(513)100d d -+++=,解得2d =或13d =-(舍去),123a a d =-=,1(1)21n a a n d n ∴=+-⨯=+,又1125b a =+=,22510b a =+=,2q ∴=,152n n b -∴=⋅;(2)21535272(21)2n n T n -⎡⎤=+⨯+⨯+++⨯⎣⎦,2325325272(21)2n n T n ⎡⎤=⨯+⨯+⨯+++⨯⎣⎦,两式相减得2153222222(21)25(12)21n n n n T n n -⎡⎤⎡⎤-=+⨯+⨯++⨯-+⨯=--⎣⎦⎣⎦, 则5(21)21n n T n ⎡⎤=-+⎣⎦.20.(2020·四川省绵阳南山中学月考(理))已知数列{}n a 为等差数列,11a =,0n a >,其前n 项和为n S ,且数列也为等差数列. (1)求数列{}n a 的通项公式;(2)设11n n n n a b S S ++=⋅,求数列{}n b 的前n 项和.【答案】(1)21n a n =-;(2)222(1)n n n ++. 【解析】(1)设等差数列{}n a 的公差为(0)d d ≥, 11S ===1∴=+2d =,1(1)221n a n n ∴+-⨯=-=,n ==, 所以数列为等差数列,21na n ∴=-. (2)2(121)2n n n S n +-==,22222111(1)(1)n nb n n n n +∴==-⋅++, 设数列{}n b 的前n 项和为n T ,则2222222221111111211223(1)(1)(1)n n n T n n n n ⎛⎫+⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭. 21.(2020·浙江月考)已知等比数列{}n a 的公比1q >,且13542a a a ++=,39a +是1a ,5a 的等差中项. (1)求数列{}n a 的通项公式;(2)证明:3n n n n a b a =+,设{}n b 的前n 项的和为n S ,求证:2113n S <. 【答案】(1)2n n a =;(2)证明见解析.【解析】(1)由39a +是1a ,5a 的等差中项得153218a a a +=+,所以135a a a ++331842a =+=,解得38a =,由1534a a +=,得228834q q +=,解得24q =或214q =, 因为1q >,所以2q. 所以2n n a =.(2)112()333()1()22n n n nb =<=+, 3412324222()()()513333n n n S b b b b ∴=++++<++++24688221()6599313n -=+-⋅≤在3n ≥成立, 又有1222146215136513S S =<=<,, 2113n S ∴<. 22.(2020·黑龙江让胡路·铁人中学高二期中(理))已知数列{}n a 中,n S 是{}n a 的前n 项和且n S 是2a 与2n na -的等差中项,其中a 是不为0的常数.(1)求123,,a a a .(2)猜想n a 的表达式,并用数学归纳法进行证明.【答案】(1)12a a =;26a a =;312a a =(2)猜想:()()*1n a a n N n n =∈+;证明见解析 【解析】(1)由题意知:222n n S a na =-即n n S a na =-,当1n =时,111S a a a ==-,解得12a a =.当2n =时,21222S a a a a =+=-,解得26a a =. 当3n =时,312333S a a a a a =++=-,解得312a a =. (2)猜想:()()*1n a a n N n n =∈+ 证明:①当1n =时,由(1)知等式成立.②假设当()*1,n k k k N =≥∈时等式成立,即()1k a a k k =+, 则当1n k =+时,又n n S a na =-则k k S a ka =-,11k k S a ka ++=-, ∴()()1111k k k k k a S S a k a a ka +++=-=-+--, 即()()1211k k a a k a ka k k k k ++==⨯=++ 所以()()()()112111k aa a k k k k +==+++++⎡⎤⎣⎦, 即当1n k =+时,等式成立.结合①②得()1n a a n n =+对任意*n N ∈均成立.。
高中数学选择性必修二 专题4 1 数列的概念与简单表示法(含答案)同步培优专练
专题4.1 数列的概念与简单表示法知识储备知识点一数列及其有关概念思考1数列1,2,3与数列3,2,1是同一个数列吗?【答案】不是.顺序不一样.思考2根据你对于数列的定义的理解,看看能不能回答下面的问题:(1)按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,……,排在第n位的数称为这个数列的第n项.(2) 数列的一般形式可以写成a1,a2,…,a n,…,简记为{a n}.思考3数列的记法和集合有些相似,那么数列与集合的区别在哪儿?【答案】数列中的数讲究顺序,集合中的元素具有无序性;数列中可以出现相同的数,集合中的元素具有互异性.知识点二通项公式思考1数列1,2,3,4,…的第100项是多少?你是如何猜的?【答案】100.由前四项与它们的序号相同,猜第n项a n=n,从而第100项应为100.思考2上例中的a n=n当序号n取不同的值,就可得到不同的项,所以可以把a n=n当作数列1,2,3,4,…的项的通用公式,这个公式就叫通项公式.你能把通项公式推广到一般数列吗?【答案】如果数列{a n}的第n项a n与序号n之间的关系可以用一个式子a n=f(n)来表示,那么这个公式叫做这个数列的通项公式.思考3数列的通项公式a n=f(n)与函数解析式y=f(x)有什么异同?【答案】如图,数列可以看成以正整数集N*(或它的有限子集{1,2,3,…,n})为定义域的函数a n=f(n)当自变量按照从小到大的顺序依次取值时所对应的一列函数值.不同之处是定义域,数列中的n必须是从1开始且连续的正整数,函数的定义域可以是任意非空数集.知识点三数列的分类(1)按项数分类,项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列.(2)按项的增减趋势分类,从第二项起,每一项都大于它的前一项的数列叫做递增数列;从第二项起,每一项都小于它的前一项的数列叫做递减数列;各项相等的数列叫做常数列;从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列. 知识点四 递推公式思考1 (1)已知数列{a n }的首项a 1=1,且有a n =3a n -1+2(n >1),则a 4=________. (2) 已知数列{a n }中,a 1=a 2=1,且有a n +2=a n +a n +1(n ∈N *),则a 4=________. 【答案】(1)53 (2)3思考2 上例是一种给出数列的方法,叫递推公式.你能概括一下什么叫递推公式吗?【答案】如果数列{a n }的第1项或前几项已知,并且数列{a n }的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,那么这个式子就叫做这个数列的递推公式.思考3 我们已经知道通项公式和递推公式都能给出数列.那么通项公式和递推公式有什么不同? 【答案】通项公式和递推公式都是给出数列的方法.已知数列的通项公式,可以直接求出任意一项;已知递推公式,要求某一项,则必须依次求出该项前面所有的项. 知识点五 数列的表示方法思考1 以数列2,4,6,8,10,12,…为例,你能用几种方法表示这个数列? 【答案】(1)解析法、列表法、图象法.数列可以用通项公式、图象、列表等方法来表示. (2)对数列2,4,6,8,10,12,…可用以下几种方法表示: ①通项公式法:a n =2n .②递推公式法:⎩⎪⎨⎪⎧a 1=2,a n +1=a n +2,n ∈N *.③列表法:④图象法:思考2 归纳一下数列的表示方法.【答案】数列的表示方法有通项公式法、图象法、列表法、递推公式法.能力检测注意事项:本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、单选题1.下列说法正确的是( )A .数列1,3,5,7与数集{1,3,5,7}是一样的B .数列1,2,3与数列3,2,1是相同的C .数列11n ⎧⎫+⎨⎬⎩⎭是递增数列 D .数列()11nn ⎧⎫-⎪⎪+⎨⎬⎪⎪⎩⎭是摆动数列【答案】D【解析】数列是有序的,而数集是无序的,所以A ,B 不正确;选项C 中的数列是递减数列;选项D 中的数列是摆动数列. 2.已知数列12,23,34,…,1n n +,则0.96是该数列的( ) A .第20项 B .第22项 C .第24项 D .第26项【答案】C 【解析】由1nn +=0.96,解得n =24. 3.在数列1,1,2,3,5,8,x,21,34,55中,x 等于( ) A .11 B .12 C .13 D .14 【答案】C【解析】观察数列可知,后一项是前两项的和,故x =5+8=13.4.已知数列{a n }的通项公式a n =log (n +1)(n +2),则它的前30项之积是( ) A.15B .5C .6D .231log 3log 325+【答案】B【解析】a1·a2·a3·…·a30=log23×log34×log45×…×log3132=log232=log225=5. 5.已知递减数列{a n}中,a n=kn(k为常数),则实数k的取值范围是() A.R B.(0,+∞)C.(-∞,0) D.(-∞,0]【答案】C【解析】a n+1-a n=k(n+1)-kn=k<0.6.数列{a n}中,a n=-n2+11n,则此数列最大项是()A.第4项B.第6项C.第5项D.第5项和第6项【答案】D【解析】a n=-n2+11n=-2112n⎛⎫-⎪⎝⎭+1214,∵n∈N+,∴当n=5或n=6时,a n取最大值.故选D.7.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列1,12,13,14,…,1n.①第二步:将数列①的各项乘n,得到数列(记为)a1,a2,a3,…,a n.则n≥2时,a1a2+a2a3+…+a n-1a n=()A.n2B.(n-1)2 C.n(n-1) D.n(n+1)【答案】C【解析】由题意得a k=nk.k≥2时,a k-1a k=2211(1)1nnk k k k⎛⎫=-⎪--⎝⎭.∴n≥2时,a1a2+a2a3+…+a n-1a n=n21111112231n n⎡⎤⎛⎫⎛⎫⎛⎫-+-++-⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎣⎦=n211n⎛⎫-⎪⎝⎭=n(n-1).故选C.8.由1,3,5,…,2n-1,…构成数列{a n},数列{b n}满足b1=2,当n≥2时,b n=a b n-1,则b6的值是()A.9 B.17C.33 D.65【答案】C【解析】∵b n=a b n-1,∴b2=a b1=a2=3,b3=a b2=a3=5,b4=a b3=a5=9,b5=a b4=a9=17,b6=a b5=a17=33.二、多选题9.(多选)一个无穷数列{a n }的前三项是1,2,3,下列可以作为其通项公式的是( ) A .a n =nB .a n =n 3-6n 2-12n -6C .a n =12n 2-12n +1 D .a n =26611n n -+ 【答案】AD【解析】对于A ,若a n =n ,则a 1=1,a 2=2,a 3=3,符合题意;对于B ,若a n =n 3-6n 2-12n +6,则a 1=-11,不符合题意;对于C ,若a n =12n 2-12n +1,当n =3时,a 3=4≠3,不符合题意;对于D ,若a n =26611n n -+,则a 1=1,a 2=2,a 3=3,符合题意.故选A 、D. 10.(多选)数列{F n }:1,1,2,3,5,8,13,21,34,…称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入的,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.记数列{F n }的前n 项和为S n ,则下列结论正确的是( ) A .S 5=F 7-1 B .S 5=S 6-1 C .S 2 019=F 2 021-1 D .S 2 019=F 2 020-1【答案】AC【解析】根据题意有F n =F n -1+F n -2(n ≥3),所以S 3=F 1+F 2+F 3=1+F 1+F 2+F 3-1=F 3+F 2+F 3-1=F 4+F 3-1=F 5-1,S 4=F 4+S 3=F 4+F 5-1=F 6-1,S 5=F 5+S 4=F 5+F 6-1=F 7-1,…,所以S 2 019=F 2 021-1.故选A 、C.11.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin 2n n a π= D .cos(1)1n a n π=-+【答案】BD【解析】因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin22a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD.12.“太极生两仪,两仪生四象,四象生八卦……”大衍数列,来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,是中华传统文化中隐藏着的世界数学史上第一道数列题.大衍数列中的每一项都代表太极衍生过程中,曾经经历过的两仪数量总和,从第一项起依次为0,2,4,8,12,18,24,32,40,50,…….记大衍数列为{}n a ,其前n 项和为*,n S n ∈N ,则( )A .20220a =B .357202111115051011a a a a ++++=C .232156S =D .246489800a a a a ++++=【答案】BCD【解析】根据数列前10项依次是0,2,4,8,12,18,24,32,40,50,,则奇数项为:2112-,2312-,2512-,2712-,2912-,,偶数项为:222,242,262,282,2102,,所以通项公式为221,(2,(2n n n a n n ⎧-⎪⎪=⎨⎪⎪⎩为奇数)为偶数),对于A , 22020020==2a ,故A 错误;对于B ,35720211111a a a a ++++22222222=++++31517120211----1111224466820202022⎛⎫=++++⎪⨯⨯⨯⨯⎝⎭111111*********20202505100222202211⎛⎫=⨯-+-++-=-= ⎪⎝⎭,故B 正确; 对于C ,()()2313232422S a a a a a a =++++++222212323122+++-=,由()()22221211236n n n n +++++=,所以()()2323231461112215626S ++⎛⎫=-= ⎪⎝⎭,故C 正确;对于D ,24648a a a a ++++()222221242922421224=⨯+⨯+⨯++⨯=++()()242412241298006+⨯+=⋅=,故D 正确.故选:BCD三、填空题13.已知数列{a n }的通项公式a n =19-2n ,则使a n >0成立的最大正整数n 的值为________. 【答案】9【解析】由a n =19-2n >0,得n <192.∵n ∈N *,∴n ≤9.14.已知数列{a n }的通项公式a n =1nn +,则a n ·a n +1·a n +2=________. 【答案】3n n + 【解析】a n ·a n +1·a n +2=1n n +·12n n ++·23n n ++=3n n +. 15.数列{a n }的前n 项和为S n ,若S n +S n -1=2n -1(n ≥2),且S 2=3,则a 1+a 3的值为________. 【答案】-1【解析】∵S n +S n -1=2n -1(n ≥2),令n =2, 得S 2+S 1=3,由S 2=3得a 1=S 1=0, 令n =3,得S 3+S 2=5,所以S 3=2,则a 3=S 3-S 2=-1,所以a 1+a 3=0+(-1)=-1.16.如图(1)是第七届国际数学教育大会(简称ICME7)的会徽图案,会徽的主体图案是由如图(2)的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图(2)中的直角三角形继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列的通项公式为a n =________.【解析】因为OA 1=1,OA 2,OA 3…,OA n ,…,所以a 1=1,a 2,a 3…,a n . 四、解答题17.已知数列{}n a 的前n 项和2321n S n n =-+,(1)求数列{}n a 的通项公式; (2)求数列{}n a 的前多少项和最大.【解析】(1)当1n =时,11321132a S ==-+=;当2n ≥时,()()()22132132111n n n a S S n n n n -⎡⎤=-=-+----+⎣⎦332n =-;所以:32,1332,2n n a n n =⎧=⎨-≥⎩;(2)因为()22321321n S n n n n =-+=--+()216257n =--+;所以前16项的和最大.18.在数列{}n a 中,2293n a n n =-++.(1)-107是不是该数列中的某一项?若是,其为第几项? (2)求数列中的最大项.【解析】(1)令22107,293107,291100n a n n n n =--++=---=,解得10n =或112n =-(舍去).所以10107a =- (2)229105293248n a n n n ⎛⎫=-++=--+ ⎪⎝⎭, 由于*n ∈N ,所以最大项为213a = 19.数列{a n }满足a 1= 1 ,a n +1 +2a n a n +1- a n =0. (1)写出数列的前5项;(2)由(1)写出数列{a n }的一个通项公式;(3)实数199是否为这个数列中的一项?若是,应为第几项? 【答案】(1)见解析(2)121n a n =-(3)50【解析】(1)由已知可得11a =,213a =,315a =,417a =,519a =.(2)由(1)可得数列的每一项的分子均为1,分母分别为1,3,5,7,9,…,所以它的一个通项公式为121n a n =-. (3)令119921n =-,解得50n =,故199是这个数列的第50项.20.已知数列2299291n n n ⎧⎫-+⎨⎬-⎩⎭. (1)求这个数列的第10项; (2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内;(4)在区间1233⎛⎫ ⎪⎝⎭,内有无数列中的项?若有,是第几项?若没有,说明理由.【解析】(1)设a n =f (n )=2299291n n n -+-=(31)(32)(31)(31)n n n n ---+=3231n n -+.令n =10,得第10项a 10=f (10)=2831. (2)令3231n n -+=98101,得9n =300. 此方程无正整数解,所以98101不是该数列中的项. (3)证明:∵a n =3231n n -+=1-331n +, 且n ∈N *,∴0<1-331n +<1, ∴0<a n <1.∴数列中的各项都在区间(0,1)内. (4)令13<a n =3231n n -+<23, ∴3196,9662,n n n n +<-⎧⎨-<+⎩∴7,68,3n n ⎧>⎪⎪⎨⎪<⎪⎩∴当且仅当n =2时,上式成立,故在区间1233⎛⎫⎪⎝⎭,内有数列中的项,且只有一项为a 2=47. 21.已知函数f (x )=x -1x.数列{a n }满足f (a n )=-2n ,且a n >0.求数列{a n }的通项公式. 【解析】∵f (x )=x -1x,∴f (a n )=a n -1n a ,∵f (a n )=-2n .∴a n -1na =-2n ,即2n a +2na n -1=0. ∴a n =-n.∵a n >0,∴a n-n .22.已知数列{a n }的通项公式为a n =22n n (n ∈N *),则这个数列是否存在最大项?若存在,请求出最大项;若不存在,请说明理由.【解析】存在最大项.理由:a 1=12,a 2=2222=1,a 3=2332=98,a 4=2442=1,a 5=2552=2532,….∵当n≥3时,221122(1)2(1)22nnnna n na n n++++=⨯==1211n⎛⎫+⎪⎝⎭2<1,∴a n+1<a n,即n≥3时,{a n}是递减数列.又∵a1<a3,a2<a3,∴a n≤a3=9 8 .∴当n=3时,a3=98为这个数列的最大项.。
高二数学复习考点知识精讲与练习14 数列求和常考方法归纳
高二数学《考点•题型 •技巧》精讲与精练高分突破系列(人教A 版选择性必修第二册)第四章:数列专题强化训练二:数列求和常考方法归纳【考点梳理】数列求和的几种常用方法1.公式法直接利用等差数列、等比数列的前n 项和公式求和. (1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.分组求和法与并项求和法(1)若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减. (2)形如a n =(-1)n ·f (n )类型,常采用两项合并求解.3.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (2)常见的裂项技巧 ①1n (n +1)=1n -1n +1.②1n (n +2)=12⎝⎛⎭⎫1n -1n +2.③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.④1n +n +1=n +1-n .⑤log a ⎝⎛⎭⎫1+1n =log a (n +1)-log a n (n >0).4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.【题型精练】题型一、公式法求和1.(2022·全国·高二课时练习)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15.(1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.2.(2022·四川成都·高三月考(文))已知数列{}n a 满足:11a =,且121n n a a n +-=-,其中n *∈N ; (1)证明数列{}n a n +是等比数列,并求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S .3.(2022·河南·郑州市第一〇六高级中学高二月考)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式; (2)求和:b 1+b 3+b 5+…+b 2n -1.题型二、分组转化法求和4.(2022·全国·高三专题练习)已知数列{}n a 是等差数列,且81a =,1624S =.(1)求数列{}n a 的通项公式n a ;(2)若数列{}n b 是递增的等比数列,且149b b +=,238b b =,求1133552121()()()()n n a b a b a b a b --++++++⋯++.5.(2022·黑龙江·鹤岗一中高三月考(理))已知数列{a n }的前n 项和S n =n 2+n ,等比数列{b n }的公比为q (q >1),且b 3+b 4+b 5=28,b 4+2是b 3和b 5的等差中项. (1)求{a n }和{b n }的通项公式; (2)令c n =b n +211n a -,{c n }的前n 项和记为T n ,若2T n ≥m 对一切n ∈N *成立,求实数m 的最大值. 6.(2022·全国·高三专题练习)设数列{}n a 满足132(2)n n a a n -=+≥,且12a =,3log (1)n n b a =+. (1)求2a ,3a 的值;(2)已知数列{}n a 的通项公式是:31nn a =-,3n n a =,32n a n =+中的一个,判断{}n a 的通项公式,并求数列{}n n a b +的前n 项和n S .题型三、倒序相加法求和7.(2020·河南大学附属中学高二月考)已知函数()21x f x x =+,设数列{}n a 满足1()n n a f a +=,且112a =. (1)求数列{}n a 的通项公式;(2)若记((21))(1i n b f i a i =--⨯=,2,3,⋯,)n ,求数列{}i b 的前n 项和n T .8.(2020·江苏·高三专题练习)已知数列{}n a 满足121,3a a ==,且对任意*n N ∈,都有()01211231212n n n n n n n n a C a C a C a C a -+++++⋯+=-⋅成立.(1)求3a 的值;(2)证明:数列{}n a 是等差数列.9.(2019·四川·成都外国语学校高一期中(文))数列{}n a 的前n 项和为n S (1)若{}n a 为等差数列,求证:1()2n n n a a S +=; (2)若1()2n n n a a S +=,求证:{}n a 为等差数列.题型四、裂项相消法求和10.(2022·浙江绍兴·高二期末)已知等差数列{}n a 满足11a =,2435a a a +=+,*n N ∈. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11b =,*12()n n n n b a b a n N ++⋅=⋅∈,求数列{}n b 的前n 项和.11.(2022·广东·金山中学高二期中)已知数列{}n a 满足13a =,121n n a a n +=-+,数列{}n b 满足12b =,1n n n b b a n +=+-.(1)证明数列{}n a n -为等比数列并求数列{}n a 的通项公式; (2)数列{}n c 满足1(1)(1)n n n n a n c b b +-=++,设数列{}n c 的前n 项和n T ,证明:13n T <.12.(2022·广东·广州市番禺区象贤中学高二期中)已知数列{}n a 的前n 项和为n S ,且满足*2()n n a S n n N =+∈. (1)求证:数列{1}n a +是等比数列;(2)记2221log (1)log (1)n n n c a a +=+⋅+,求数列{}n c 的前n 项和n T .题型五、错位相减法求和13.(2022·西藏·拉萨中学高二月考)已知数列{}n a 中,11a =,*1(N )3nn n a a n a +=∈+. (1)求证:数列112n a ⎧⎫+⎨⎬⎩⎭为等比数列,并求出{}n a 的通项公式n a ;(2)数列{}n b 满足(31)2nn n n nb a =-⋅⋅,设n T 为数列{}n b 的前n 项和,求使n k T >恒成立的最小的整数k .14.(2022·全国·高二专题练习)已知数列{a n }的前n 项和为S n ,a 1=5,nS n +1-(n +1)S n =n 2+n . (1)求证:数列n S n ⎧⎫⎨⎬⎩⎭为等差数列;(2)令b n =2n a n ,求数列{b n }的前n 项和T n .15.(2022·河南洛阳·高二期中(文))已知正项数列{}n a 的前n 项和为n S ,且11a =,211n n n S S a +++=.(1)求数列{}n a 的通项公式; (2)求证:12122222nna a a a a a +++<.专题强化训练一、单选题16.(2022·河南·高二期中(文))已知数列{}n a 的前n 项和2n S n =,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前99项和为( )A .1168B .1134C .198199D .9919917.(2022·河南·高二期中(理))已知数列{}n a 中,11a =,12123n n a a n +⎛⎫=- ⎪+⎝⎭,则数列{}1n n a a +的前99项和为( ) A .9967B .29767C .3367D .1986718.(2022·江西·九江一中高二期中)已知数列{}n a 满足112a =,213a =,()1223111n n n a a a a a a n a a n N ++++++=⋅⋅∈,记数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则2021S =( )A .202120212⋅B .202220212⋅C .202120222⋅D .202220222⋅19.(2022·河南南阳·高二期中)已知数列{}n a 满足11a =,221(1)nn n a a -=+-,()*2123n n n a a n +=+∈N ,则数列{}n a 的前2022项的和为( )A .101132022-B .101032022-C .101132020-D .101032020-20.(2022·西藏·拉萨中学高二月考)数列{}n a 满足()()121nn a n =--,则它的前20项和20S 等于( )A .-10B .-20C .10D .2021.(2022·河北省唐县第一中学高二期中)若数列{}n a 满足1222a a ==,且21n n n a a a ++=-,则{}n a 的前100项和为( )A .67B .68C .134D .16722.(2022·全国·高二课时练习)已知函数()()221f x x R x=∈+,若等比数列{}n a 满足120201a a =,则()()()()1232020f a f a f a f a ++++=( ).A .2020B .20202C .2D .1223.(2022·全国·高二课时练习)已知数列{}n a 满足12a =,()1221n n n a a n ++=+,则20001232019a a a a a =+++⋅⋅⋅+( ) A .20212019B .20202019C .20192018D .2021201824.(2022·全国·高二单元测试)已知数列{}n a 满足13a =,()111n n a a n n +=++,则n a =( ) A .14n+B .14n -C .12n +D .12n -25.(2022·全国·高二单元测试)某公园免费开放一天,假设早晨6时30分有2人进公园,接下来的第一个30分钟内有4人进去并出来1人,第二个30分钟内进去8人并出来2人,第三个30分钟内进去16人并出来3人,第四个30分钟内进去32人并出来4人,……,按照这种规律进行下去,那么到上午11时30分公园内的人数是( ) A .11247-B .12257-C .13268-D .14280-二、多选题26.(2022·全国·高二单元测试)已知数列{}n a 满足2212352222nn n na a a +++⋅⋅⋅+=,数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .1a 的值为2B .数列{}n a 的通项公式为()312nn a n =+⨯C .数列{}n a 为递减数列D .3772n nn S +=-27.(2022·江苏·高二单元测试)设数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,11S =,12n n n S S n++=,且212n n n n a b a a ++=,则下列结论正确的是( )A .20212021a =B .()12n n n S +=C .()112n b n n =-+D .1334n T n ≤-<28.(2022·全国·高二单元测试)已知数列{}n a 满足11a =,()*1N 23nn na a n a +=∈+,则下列结论正确的是( ) A .13n a ⎧⎫+⎨⎬⎩⎭为等比数列B .{}n a 的通项公式为1123n n a -=-C .{}n a 为递增数列D .1n a ⎧⎫⎨⎬⎩⎭的前n 项和2234n n T n +=--29.(2022·全国·高二课时练习)(多选题)已知数列{}n a 的前n 项和为n S ,11a =,121n n n S S a +=++,数列12{}nn n a a +⋅的前n 项和为*,n T n N ∈,则下列选项正确的为( )A .数列{1}n a +是等差数列B .数列{1}n a +是等比数列C .数列{}n a 的通项公式为21nn a =-D .1n T <三、填空题30.(2022·上海市行知中学高二期中)已知数列{}n b 的前n 项和22n S n n =-,设数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和为n K ,则20K 的值为 ___.31.(2022·上海市复兴高级中学高二期中)设数列{}n a 的前n 项和为n S ,且21log 1n a n ⎛⎫=+ ⎪⎝⎭,则满足10n S >的n 最小值为___________32.(2022·河南南阳·高二月考(文))已知等差数列{}n a 的前n 项和为34,3,10n S a S ==,则12111nS S S ++⋯+=___________. 33.(2022·河南郑州·高二期中(文))数列{}n a 的前n 项和21n n S =-,n *∈N .设()1nn n n b a a =+-,则数列{}n b 的前2n项和2n T =___________.34.(2022·河南郑州·高二月考(理))已知数列{}n a 满足11n n a a ++=,且246a a +=,当12020n ≤≤,*n ∈N 时,记12n n S a a a =++⋅⋅⋅+,则1220S S S ++⋅⋅⋅+=________.(备用公式()()222121126n n n n ++++⋅⋅⋅+=)四、解答题35.(2020·全国·高二课时练习)已知等差数列{}n a 满足36a =,前7项和为749.S =(Ⅰ)求{}n a 的通项公式(Ⅱ)设数列{}n b 满足(3)3nn n b a =-⋅,求{}n b 的前n 项和n T .36.(2022·全国·高二专题练习)已知等差数列{}n a 满足:37a =,5726a a +=.{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令211n n b a =-(n N +∈),求数列{}n b 的前n 项和n T .37.(2022·全国·高二课时练习)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n . (Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式.38.(2022·全国·高二专题练习)正项数列{}n a 的前n 项和Sn 满足:222(1)()0n n S n n S n n -+--+=(1)求数列{}n a 的通项公式n a ; (2)令221(2)n n n b n a +=+,数列{bn}的前n 项和为Tn ,证明:对于任意的n ∈N*,都有Tn <564.39.(2022·全国·高二课时练习)已知数列{}n a 是递增的等比数列,且14239,8.a a a a +==(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .40.(2022·江苏省苏州实验中学高二月考)已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满足()()1126n n n S a a =++,并且2a ,4a ,9a 成等比数列. (1)求数列{}n a 的通项公式; (2)设()111n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .41.(2022·河南·高二期中(理))等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==.(1)求数列{}n a 的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .42.(2022·吉林·延边二中高二期中(理))已知数列{}n a 的前n 项和为n S ,且22n S n n =+,*n N ∈,数列{}n b 满足24log 3n n a b =+,*n N ∈.(1)求n a 和n b 的通项公式; (2)求数列{n n a b ⋅}的前n 项和n T .43.(2019·全国全国·高二课时练习)已知数列{}n a 满足212()*,1,2n n a qa q q n N a a +=≠∈==为实数,且1,,且233445,,a a a a a a 成等差数列.(Ⅰ)求q 的值和{}n a 的通项公式; (Ⅱ)设*2221log ,nn n a b n a -=∈N ,求数列{}n b 的前n 项和. 44.(2019·江西上饶·高二月考)已知数列{}n a 满足1220n n a a +-+=,且18a =. (1)证明:数列{2}n a -为等比数列;(2)设1(1)(21)(21)n nn n n a b +-=++,记数列{}n b 的前n 项和为n T ,若对任意的*n N ∈,n m T ≥恒成立,求m 的取值范围.45.(2020·广东广雅中学高二月考)已知数列{}n a 的前n 项和为n S ,()2*n S n n N =∈,数列{}n b 为等比数列,且21a +,41a +分别为数列{}n b 第二项和第三项. (1)求数列{}n a 与数列{}n b 的通项公式; (2)若数列11n n n n n c a b a a +=+,求数列{}n c 的前n 项和n T .10 / 38参考答案1.(1)a n =2n -9;(2)S n = (n -4)2-16;-16. (1)设数列{a n }的公差为d ,由题意得a 1=-7,3S =3a 1+3d =-15. 所以d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得()1722n n n S n -=-+⨯=n 2-8n =(n -4)2-16. 所以当n =4时,S n 取得最小值,最小值为-16. 2.(1)证明见解析,2nn a n =-(2)n S 1(1)222n n n ++=--【分析】(1)由121n n a a n +-=-,化简得到1(1)2()n n a a n n ++++=,结合等比数列的定义和通项公式,即可求解;(2)由(1)知:2nn a n =-,结合等差数列、等比数列的求和公式,即可求解.(1)解:由题意,数列{}n a 满足:11a =,且121n n a a n +-=-, 可得1(1)2()n n a a n n ++++=,且112a +=,所以{}n a n +是首项、公比均为2的等比数列,所以2nn a n +=,即2n n a n =-.(2)解:由(1)知:2nn a n =-,则12n n S a a a =++⋅⋅⋅+12(21)(22)(2)n n =-+-+⋅⋅⋅+-12(222)(12)nn =++⋅⋅⋅+-++⋅⋅⋅+2(12)(1)122n n n⋅-+=--1(1)222n n n ++=--. 3.(1)a n =2n -1. (2)312n -【分析】(1)直接利用基本量代换,列方程组即可求出通项公式; (2)先求出公比q ,即可利用等比数列前n 项和公式直接求和. (1)设等差数列{a n }的公差为d ,因为a 1=1,a 2+a 4=10,即1+d +1+3d =10, 解得:d =2,所以a n = a 1+(n -1)d=2n -1. (2)设等比数列{b n }的公比为q ,因为b 1=1,,b 2b 4=a 5=9,所以q 4=9,解得:q 2=3. 所以b 1+b 3+b 5+…+b 2n -1 211131313n -=+++++1113313n --⨯=- 312n -=. 4.(1)7n a n =-;(2)24173n n n --+. 【分析】(1)设数列{}n a 的公差为d ,根据已知条件列关于1a 和d 的方程组,解方程可得1a 和d 的值,即可得{}n a 的通项公式n a ;(2)由等比数列的性质求得1b 和4b 的值,进而可得数列{}n b 的公比和通项公式,再由分组求和即可求解. 【详解】(1)设等差数列{}n a 的公差为d ,由题意可知:1171161516242a d a d +=⎧⎪⎨⨯+=⎪⎩,解得161a d =-⎧⎨=⎩, 所以6(1)7n a n n =-+-=-,(2)因为数列{}n b 是递增的等比数列,由已知可得14142398b b b b b b +=⎧⎨==⎩,解得:1418b b =⎧⎨=⎩,所以3418b q b ==,可得:2q 所以11122n n n b --=⋅=,所以1133552121()()()()n n a b a b a b a b --++++++⋯++,1352113521()()n n a a a a b b b b --=+++⋯+++++⋯+,(628)14214nn n -+--=+-, 24173n n n -=-+. 5.(1)a n =2n (n ∈N *),b n =2n -1,n ∈N *;(2)83.【分析】(1)根据n a 与n S 的关系即可求得数列{}n a 的通项,根据已知条件求出等比数列{b n }的首项和公比,即可求得数列{}n b 的通项;(2)求出数列{c n }的通项,再利用分组求和及裂项相消求和法求出T n ,从而可求得T n 的最小值,从而可得答案. 【详解】解:(1)当n =1时,a 1=S 1=2.当n ≥2时a n =S n -S n -1=2n ,a 1=2也符合上式, ∴a n =2n (n ∈N *).又b 3+b 4+b 5=28,2(b 4+2)=b 3+b 5, 得b 4=8,q =2或q =12. ∵q >1,∴q =2, ∴b n =2n -1,n ∈N *.(2)∵c n =b n +211n a -=2n -1+2141n -=2n -1+11122121n n ⎛⎫- ⎪-+⎝⎭, ∴T n =1212n--+111111123352121n n ⎛⎫-+-++- ⎪-+⎝⎭=2n -1+111221n ⎛⎫- ⎪+⎝⎭=2n -11422n -+, 易知T n 随着n 的增大而增大,∴2T n ≥2T 1=83,故m 的最大值为83.6.(1)28a =,326a =;(2)31n n a =-,121(33)2n n S n n +=+--.【分析】(1)由递推公式得1(3(1)1)n n a a -++=,结合已知{1}n a +是首项为3,公比为3的等比数列,写出n a 的通项公式,进而求2a ,3a 的值;(2)由(1)得31n n c n =+-,再应用分组求和及等差、等比前n 项和公式求n S . 【详解】(1)∵132(2)n n a a n -=+≥,即1(3(1)1)n n a a -++=且12a =, ∴{1}n a +是首项为3,公比为3的等比数列,即13n n a +=, ∴31n n a =-,则22318a =-=,333126a =-=.(2)设n n n c a b =+,由(1)知31nn a =-,又3log (1)n n b a n =+=.∴31n n c n =+-,2(33...3)(12...1)nn S n =+++++++-3(13)(1)(11)132n n n --+-=+-121(33)2n n n +=+--. 7.(1)12n a n=;(2)2n nT =.【分析】(1)由1()n n a f a +=得到121n n n a a a +=+,然后变形为1112n n a a +-=,利用等差数列的定义求解. (2)由(1)得到121221i i b n i -+=⨯-+,由112112211221221i n i i n i b b n i n i -+-+-++=⨯+⨯=-+-+,利用倒序相加法求解. 【详解】(1)因为()21xf x x =+,所以由1()n n a f a +=得121n n n a a a +=+,所以121112n n n na a a a ++==+,∴1112n n a a +-=, 所以1{}n a 是首项为2,公差为2的等差数列,所以12(1)22n n n a =+-⨯=,所以12n a n=. (2)由(1)知21()(1,2,3,,)2i i b f i n n-=-=⋯, 则21(21)1212212[(21)]22212()12i i i i n b i i n n i -----+===⨯-⨯--+-+⨯-+,{}12(1)1[2(1)1]22(1)12[2(1)1]22[]12n i n i n i n b n i n i n n-+-+----+-==-+-⨯--+-+⨯-+,12(1)112212[2(1)1]221n i n i n i n n i -+--+=⨯=⨯-+---+, 所以112112211(1,2,3,,)221221i n i i n i b b i n n i n i -+-+-++=⨯+⨯==⋯-+-+,123n n T b b b b =+++⋯+, 121n n n n T b b b b --=+++⋯+,两式相加,得:121321112()()()()()nn n n n n i n i i T b b b b b b b b b b n ---+==++++++⋯++=+=∑,所以2n n T =. 【点睛】本题主要考查数列的递推关系,等差数列的定义及通项公式以及倒序相加求和,话考查了运算求解的能力,属于中等题.8.(1)5(2)答案见解析 【分析】(1)根据()01211231212n n n n n n n n a C a C a C a C a -+++++⋯+=-⋅,令1n =时,即可求出35a =;(2)假设123n a a a a ⋯,,,,是公差为2的等差数列,则21n a n =-,利用数学归纳法证明,即可求得答案. 【详解】 (1)()01211231212nn n n n n n n a C a C a C a C a -+++++⋯+=-⋅令1n =,则01112131a C a C a +=-由121,3a a ==,则31311a +⨯=- 解得:35a =(2)若123,,,,k a a a a ⋯是等差数列,则公差为2,即21k a k =- ①当3n =时,由(1)知1231,3,5a a a ===,此时结论成立.②假设当(3)n k k =≥时,结论成立,即123,,,,k a a a a ⋯是等差数列,则公差为2.由()0121211213111 12,3k k k k k k k k a C a C a C a C a k ------++++⋯+=-⋅≥ 对该式倒序相加,得()()12112212k k k k a a a --++=-⋅∴1112k k a a a +-=+=,即1212(1)1k a k k +=+=+- ∴当1n k =+时,结论成立.根据①②,可知数列{}n a 是等差数列. 【点睛】本题考查了求数列中的项和证明数列是等差数列,解题关键是掌握数学归纳法的证明方法和等差数列的基础知识,考查了分析能力和计算能力,属于中档题. 9.(1)见解析;(2)见解析 【分析】(1)利用倒序相加法即可证明.(2)利用n a 与n S 的关系分别求出n a 与1n a +,然后作差1n n a a +-,化简即可证明其满足112n n n a a a -+=+,即可证明{}n a 为等差数列. 【详解】(1)证明:已知数列{}n a 为等差数列,设其公差为d ,有()11n a a n d +-= 则123n n S a a a a =++++于是()()()111121n S a a d a d a n d ⎡⎤=+++++++-⎣⎦……① 又()()()21n n n n n S a a d a d a n d ⎡⎤=+-+-++--⎣⎦……②由①②相加有()12n n S n a a =+即()12n n n a a S += (2)证明:由()12n n n a a S +=,有当2n ≥时,()()11112n n n a a S ---+=,所以()()()1111122n n n n n n a a n a a a S S --+-+=-=-, ③()()()1111122n n n n a a n a a a +++++=-, ④④-③并整理,得()112n n n n a a a a n +--=-≥,即112n n n a a a -+=+ 所以数列{}n a 是等差数列. 【点睛】主要考查了倒序相加法,以及等差数列的证明,属于中档题.等差数列的证明常常运用以下两种方法:(1)定义法,通过证明1n n a a d --=(d 为常数,2n ≥)即可;(2)等差中项法:通过证明其满足112n n n a a a -+=+即可. 10.(1)21n a n =-;(2)321nn +. 【分析】(1)设等差数列{}n a 的公差为d ,根据题意列出方程即可解出d ,从而得到数列{}n a 的通项公式;(2)根据题意可得12n nn n b a b a ++=,再根据累乘法求得3(21)(21)n b n n =-+,然后根据裂项相消法即可求出数列{}n b 的前n 项和. 【详解】(1)设等差数列{}n a 的公差为d ,则21a d =+,312a d =+,413a d =+.因为2435a a a +=+,所以24125d d +=++, 解得2d =.所以数列{}n a 的通项公式为1(1)21n a a n d n =+-=-. (2)因为12n n n n b a b a ++⋅=⋅,所以12n n n n b ab a ++=. 所以,当2n ≥时,312121121341n n n n n bb aba ab b b b b a a a --+=⨯⨯⨯⋅⋅⋅⨯=⨯⨯⨯,即1213(2)(21)(21)n n n a a b n a a n n +⋅==≥⋅-+.又11b =适合上式,所以3(21)(21)n b n n =-+.因为3311()(21)(21)22121n b n n n n ==--+-+, 数列{}n b 的前n 项和为123111113[(1)()()]2335212121n n nS b b b n n n =+++=-+-+⋅⋅⋅+-=-++.11. 【详解】解:(1)证明:当*n N ∈时,1(1)(21)(1)2n n n n a n a n n a n a n+-+-+-+==--, 又112a -=,∴数列{}n a n -是首项为2,公比为2的等比数列,∴11(1)22n n n a n a --=-⋅=,∴*2()n n a n n N =+∈;(2)证明:122n n n n n n n b b a n b n n b +=+-=++-=+,∴12n n n b b +-=,当1n =时12b =,当2n 时112n n n b b ---=,∴111121121()()22222221n n n n n n b b b b b b ----=-++-+=+++=⨯+=-,当1n =时符合,∴2nn b =,∴111211(1)(1)(21)(21)2121n n n n n n n n n a n c b b +++-===-++++++,1212231111111111111()()()()2121212121212121321n n n n n n n n T c c c c --++∴=++++=-+-++-+-=-+++++++++.又11021n +>+,∴13n T <.12.【详解】(1)证明:由*2()n n a S n n N =+∈, 可得111211a S a =+=+,解得11a =,2n 时,11221n n n n n a S S a n a n --=-=--+-,可得121n n a a -=+, 则112(1)n n a a -+=+,所以数列{1}n a +是首项和公比均为2的等比数列; (2)由(1)可得12nn a +=,则222222111111()log (1)log (1)2log 2(2)22log n n n n n c a a n n n n ++====-+⋅+⋅++,所以1111111111(1...)232435112n T n n n n =-+-+-++-+--++ 1111323(1)221242(1)(2)n n n n n +=+--=-++++. 13. 【详解】 (1)由*1(N )3nn n a a n a +=∈+,得13131n n n na a a a ++==+, 令1113n n a a λλ+⎛⎫+=+ ⎪⎝⎭,所以21λ=,解得12λ=,所以11111322n n a a +⎛⎫+=+ ⎪⎝⎭, 由等比数列的定义可知:数列112n a ⎧⎫+⎨⎬⎩⎭是以3为公比,以111322a +=为首项的等比数列,所以1113322n na -+=⨯,即231n n a =-,(2)由题意得1(31)2(31)21223nnn n n n n n n n n b a -=-=-⋅⋅=-⋅⋅, 0122111111123(1)22222n n n T n n --=⨯+⨯+⨯+⋅⋅⋅+-⨯+⨯, 121111112(1)22222n n n T n n -=⨯+⨯+⋅⋅⋅+-⨯+⨯, 两式相减得:0121111111122212222222212n n n n n nT n n n --+=+++⋅⋅⋅+-⨯=-=--,所以12442n n n T -+=-<, 所以4k ≥,所以使n k T >恒成立的最小的整数k 为4. 14. 【详解】(1)证明:由nS n +1-(n +1)S n =n 2+n 得111n n S S n n +-=+,又11S=5, 所以数列n S n ⎧⎫⎨⎬⎩⎭是首项为5,公差为1的等差数列.(2)由(1)可知n Sn=5+(n -1)=n +4,所以S n =n 2+4n .当n ≥2时,a n =S n -S n -1=n 2+4n -(n -1)2-4(n -1)=2n +3. 又a 1=5也符合上式,所以a n =2n +3(n ∈N *), 所以b n =(2n +3)2n ,所以T n =5×2+7×22+9×23+…+(2n +3)2n ,① 2T n =5×22+7×23+9×24+…+(2n +1)2n +(2n +3)·2n +1,② 所以②-①得T n =(2n +3)2n +1-10-(23+24+…+2n +1) =(2n +3)2n +1-10-()3121212n ---=(2n +3)2n +1-10-(2n +2-8) =(2n +1)2n +1-2. 15.解:因为正项数列{}n a 的前n 项和为n S ,且11a =,211n n n S S a +++=,所以当1n =时,2212S S a +=,即22122a a a +=,即2222a a +=,解得22a =或21a =-(舍去)当2n ≥时,21n n n S S a -+=,两式相减可得()22111n n n n n n S S S S a a +-++-+=-,即()()111n n n n n n a a a a a a ++++=+-,所以11n n a a +-=,又211a a -=,所以{}n a 是以1为首项,1为公差的等差数列,所以n a n = (2)解:由(1)可得22n n n a a n =,令1212222nn na a a a a a T =+++,所以231232222n nn T ①,所以2341112322222n n n T +=++++②;①-②得,23111111222222n nn nT +=++++- 1111221212n n n +⎛⎫-⎪⎝⎭=--1212n n ++=-,所以2222nn n T +=-<,所以12122222nna a a a a a +++< 16.D解:因为数列{}n a 的前n 项和2n S n =,2121n S n n -=-+,两式作差得到21(2)n a n n =-≥,又当1n =时,21111a S ===,符合上式,所以21n a n =-,111111(21)(21)22121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以12233411111n n a a a a a a a a +++++=111111111111233557212122121n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 所以12233499100111199992991199a a a a a a a a ++++==⨯+. 故选:D. 17.A 【详解】因为12123n n a a n +⎛⎫=- ⎪+⎝⎭,即1(21)23n n n a a n ++=+,1[2(1)1](21)n n n a n a +++=+, 所以数列{}(21)n n a +是常数列, 所以1(21)33n n a a +=⋅=, 所以321n a n =+,19911(21)(23)22123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭,所以122334*********1235577921239113232323n n a a a a a a a a n n nn n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫=-= ⎪++⎝⎭于是1223349910039999299367a a a a a a a a ⨯++++==⨯+,故选:A 18.B 【分析】降标相减可得()()()111122n n n n a a na n a n ++=--≥,从而可得()1122n n n n n a a+-=-≥,再降标相减得出1n a ⎧⎫⎨⎬⎩⎭是等差数列,再利用错位相减法即可求解. 【详解】降标相减可得()()()111122n n n n a a na n a n ++=--≥ 即()()11212n n n n a a na n a n ++=--≥ 变形得:()1122n n n n n a a +-=-≥, 降标相减可得()112113n n n n a a a -+=+≥可算得112a =,213a =,314a =即1n a ⎧⎫⎨⎬⎩⎭是等差数列,可得()12112nn n n n n a a =+⇒=+, 所以()12223212n n S n =⋅+⋅++⋅, 所以()2312223212n n S n +=⋅+⋅++⋅错位相减可得12n n S n +=⋅.所以2022202120212S =⋅.故选:B 19.A 【分析】利用累加法得到()12113122n nn a ---=+-,带入得到231(1122)n nn a =-+-,再利用分组求和法计算得到答案.【详解】212213(1)3n n n n n n a a a +-+-==++,即2121(1)3n n n n a a +---+=.()()()2121232325131n n n n n a a a a a a a a -----=-+-+⋅⋅⋅+-+[]()1121211331(31)3(11221)3n n n n n n --------⎡⎤⎡⎤=++⋅⋅⋅+-++=-+⎣⎦⎣⎦-+-+()()11311311222n n n n --+--=-=+-.()12211331112(1)(1)(12)22nnn n n n n n a a ---==+---+-+=+-.故()()2021132021242020S a a a a a a =++⋅⋅⋅+++⋅⋅⋅()()()0110101210111113331111222222⎛⎫---=++-++-+⋅⋅⋅++- ⎪ ⎪⎝⎭2101021010(1)(1)(3131311112222221)⎛⎫++-++-+⋅⋅--⋅++- ⎪⎝⎭-1010101110111331132021*********-=++--=--.故选:A. 20.D 【分析】根据()()121nn a n =--,利用并项求和法即可得出答案. 【详解】解:因为()()121nn a n =--, 所以2012341920S a a a a a a =+++++()()()13573739=-++-+++-+ ()()()13573739=-++-+++-+21020=⨯=.故选:D. 21.B 【分析】由题意得122,1a a ==,根据21n n n a a a ++=-,列举数列的项,得到数列从第2项起,3项一个循环求解. 【详解】因为1222a a ==, 所以122,1a a ==, 因为21n n n a a a ++=-,所以数列的项依次为2,1,1,0,1,1,0,…, 所以从第2项起,3项一个循环,所以{}n a 的前100项的和为233(110)68+⨯++=, 故选:B .【分析】由函数解析式可知,()12f x f x ⎛⎫+= ⎪⎝⎭,而根据等比数列的性质120202201932018202011a a a a a a a a ===== 恰好满足两两互为倒数.因此可以利用函数特征代入,利用倒序求和解决求和问题 【详解】∵()()221f x x R x =∈+,∴()2222212222211111x f x f x x x x x ⎛⎫+=+=+= ⎪+++⎝⎭⎛⎫+ ⎪⎝⎭. ∵数列{}n a 为等比数列,且120201a a ⋅=,∴120202201932018202011a a a a a a a a =====.∴()()()()()()()()120202201932018202012f a f a f a f a f a f a f a f a +=+=+==+=,∴由倒序求和可得()()()()12320202020f a f a f a f a ++++=.故选:A . 23.A解:由()1221n n n a a n ++=+,得1221n n a an n +=++,所以数列1n a n ⎧⎫⎨⎬+⎩⎭是以1111a =+为首项,2为公比的等比数列,所以121n n a n -=+,所以()112n n a n -=+⋅.设{}n a 的前n 项和为n S ,则()012122324212n n S n -=⨯+⨯+⨯+⋅⋅⋅++⋅, 两边同乘2,得()12122232212n nn S n n -=⨯+⨯+⋅⋅⋅+⋅++⋅,两式相减得()()()()101212122222212212212n n nn n n S n n n ----=⨯+++⋅⋅⋅+-+⋅=+-+⋅=-⋅-,所以2nn S n =⋅,所以2019202020191232019202122021201922019a a a a a ⨯==+++⋅⋅⋅+⨯.故选:A. 24.B 【分析】 由1111n n a a n n +-=-+,利用累加法得出n a .由题意可得()111111n n a a n n n n +-==-++,所以21112a a -=-,321123a a -=-,…,1111n n a a n n--=--, 上式累加可得()()()121321--=-+-++-n n n a a a a a a a a111111112231=-+-++-=--n n n, 又13a =,所以14=-n a n.故选:B . 25.B 【详解】由题意,可知从早晨6时30分开始,接下来的每个30分钟内, 进入的人数构成以4为首项,2为公比的等比数列, 出来的人数构成以1为首项,1为公差的等差数列, 记第n 个30分钟内进入公园的人数为n a ,出来的人数为n b ,则142n n a -=⨯,n b n =,则上午11时30分公园内的人数为()()1012412101102257122S -+=+-=--.故选:B. 26.ACD 【分析】对于A ,令1n =直接求解1a ,对于B ,当2n ≥时,()()22112131512222n n n n a a a ---+-++⋅⋅⋅+=,然后与已知的式子相减可求出n a ,对于C ,利用1n n a a +-进行判断,对于D ,利用错位相减法求解即可 【详解】当1n =时,124a =,∴12a =,∴A 正确;当2n ≥时,()()22112131512222n n n n a a a ---+-++⋅⋅⋅+=,∴()()2231513523122n n n n n n a n -+-+=-=+,∴312n nn a +=,∵上式对1n =也成立,∴312n n n a +=(N n *∈),∴B 错误; ∵1111343134623202222n n n n n n n n n n n a a +++++++---+-=-==<, ∴数列{}n a 为递减数列,∴C 正确;∵234710312222n n n S +=+++⋅⋅⋅+,∴2341147103122222n n n S ++=+++⋅⋅⋅+,两式相减得, ∴23111111131113173123232222222222n n n n n n n n n S ++++++⎛⎫⎛⎫=+++⋅⋅⋅+-=+--=- ⎪ ⎪⎝⎭⎝⎭, ∴3772n nn S +=-.∴D 正确. 故选:ACD . 27.ABD 【分析】对于AB ,通过累乘法求出{}n S 的通项公式,进而求出{}n a 的通项公式,即可求解; 对于CD ,通过{}n a 的通项公式求出{}n b 的通项公式,再通过裂项相消求n T ,进而求解. 【详解】 由题意,得12n n S n S n++=, ∴当2n ≥时,()12112111311212n n n n n n n S S S n n S S S S S n n ---++=⨯⨯⋅⋅⋅⨯⨯=⨯⨯⋅⋅⋅⨯⨯=--, 又当1n =时11S =也符合上式, ∴()12n n n S +=,易得n a n =,∴20212021a =, 故A ,B 正确;()()()221211111112222n n n n n a b a a n n n n n n +++⎛⎫===+=+- ⎪+++⎝⎭,∴11111111111111112324351122212n T n n n n n n n n ⎛⎫⎛⎫=+-+-+-+⋅⋅⋅+-+-=++-- ⎪ ⎪-++++⎝⎭⎝⎭3111342124n n n n ⎛⎫=+-+<+ ⎪++⎝⎭, 易知{}n T n -单调递增, ∴1113n T n T -≥-=,∴1334n T n ≤-<,故C 错误,D 正确.故选:ABD . 28.AD因为123nn n a a a +=+,所以112323n nn n a a a a ++==+, 所以111323n n a a +⎛⎫+=+ ⎪⎝⎭,且11340a +=≠,所以13n a ⎧⎫+⎨⎬⎩⎭是以4为首项,2为公比的等比数列,即11342n na -+=⨯,所以1231n n a +=-,可得1123n n a +=-,故选项A 正确,选项B 不正确;因为1231n n a +=-单调递增,所以1123n n a +=-单调递减,即{}n a 为递减数列,故选项C 不正确;1n a ⎧⎫⎨⎬⎩⎭的前n 项和()()()()2312132323232223n n n T n ++=-+-+⋅⋅⋅+-=++⋅⋅⋅+- 22122323412nn n n +-=⨯-=---.故选项D 正确;故选:AD . 29.BCD 【分析】根据n a 与n S 的关系及121n n n S S a +=++,可得112(1)n n a a ++=+,再根据等比数列和等差数列的定义即可判断AB ;从而可求的数列{}n a 的通项公式,即可判断C ;利用裂项相消求和法求得数列12{}nn n a a +⋅的前n 项和为n T ,即可判断D. 【详解】解:由121n n n S S a +=++即为1121n n n n a S S a ++=-=+,可化为112(1)n n a a ++=+,由111S a ==,可得数列{1}n a +是首项为2,公比为2的等比数列,故A 错误,B 正确;则12n n a +=,即21nn a =-,故C 正确;又1112211(21)(21)2121n n n n n n n n a a +++==-----,可得22311111111111212*********n n n n T ++=-+-+⋯+-=-<------, 故D 正确.故选:BCD . 30.2081当1n =时,11b =,当2n ≥时,1n n n b S S -=-可得{}n b 的通项公式,再利用裂项求和即可求解. 【详解】当1n =时,2112111b S ==⨯-=,当2n ≥时,()221221143n n n b S S n n n n n -=-=---+-=-, 因为11b =满足上式,所以43n b n =-,所以()()111111434144341n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭所以20111111111120114559913778148181K ⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪⎝⎭⎝⎭, 故答案为:2081.31.1024 【分析】先求得n S ()2=log 1n +,由10n S >,可得()2log 110n +>,由此即可求解 【详解】因为2211log 1=log n n a n n +⎛⎫=+ ⎪⎝⎭,所以22222341=log log log log 123n n nS +++++ ()222331=log =log 1122n n n +⎛⎫⨯⨯⨯⨯+ ⎪⎝⎭,由10n S >,可得()2log 110n +>,解得1023n >, 所以满足10n S >的n 最小值为1024, 故答案为:1024 32.21nn + 【详解】解:设公差为d ,因为343,10a S ==,所以11234610a d a d +=⎧⎨+=⎩,解得111a d =⎧⎨=⎩,所以n a n =,所以()12n n n S +=,所以()1211211n n n n S n ⎛⎫==- ⎪++⎝⎭, 所以121111111121222231n S S S n n ⎛⎫⎛⎫⎛⎫++⋯+=-+-++- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭11111122121223111n n n n n ⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪+++⎝⎭⎝⎭ 故答案为:21n n + 33.4(41)3n -【分析】 项和转换可得12n n a ,故**2,2,0,21,n n n k k N b n k k N ⎧=∈=⎨=-∈⎩,按照奇数项、偶数项分组求和,即得解 【详解】由题意,1111,22,22,11,1n n n n n S S n n a S n n ----≥⎧⎧≥===⎨⎨==⎩⎩()****2,2,2,2,10,21,0,21,n nn n n n a n k k N n k k N b a a n k k N n k k N ⎧⎧=∈=∈∴=+-==⎨⎨=-∈=-∈⎩⎩21321242(...)(...)n n n T b b b b b b -∴=+++++++24224(14)4(41)22...244 (4143)n n nn--=+++=+++==- 故答案为:4(41)3n - 34.1540 【分析】由数列{}n a 满足11n n a a ++=,得数列{}n a 是以1为公差的等差数列,再根据246a a +=,可得11a =,从而求得n a n =,再利用等差数列前n 项和的公式求得n S ,再结合()()222121126n n n n ++++⋅⋅⋅+=即可得出答案.【详解】解:数列{}n a 满足11n n a a ++=,所以数列{}n a 是以1为公差的等差数列, 又246a a +=,则313,1a a ==, 所以n a n =,所以()1212n n n n S a a a +=++⋅⋅⋅+=, 所以22212201232012202S S S +++⋅⋅⋅++++⋅⋅⋅+++⋅⋅⋅+=由()()222121126n n n n ++++⋅⋅⋅+=,可得222202141122028706⨯⨯++⋅⋅⋅==,()20120123202102++++⋅⋅⋅+==,所以12201540S S S ++⋅⋅⋅+=. 故答案为:1540. 35.(1) 3.n a n =+ (2) 1(21)334n n n T +-⨯+=.【详解】试题分析:(1)根据等差数列的求和公式可得()17747=7=492a a S a ⨯+=,得4=7a ,然后由已知36a =可得公差,进而求出通项;(2)先明确()33n n n b a =-⋅= 3n n ⋅,为等差乘等比型通项故只需用错位相减法即可求得结论.解析: (Ⅰ)由()17747=7=492a a S a ⨯+=,得4=7a因为36a =所以1d = 14,3n a a n ==+所以(Ⅱ)()33=3n n n n b a n =-⋅⋅()12313233331n n T n =⨯+⨯+⨯+⋯+⨯所以 ()234+1313233332n n T n =⨯+⨯+⨯+⋯+⨯()()123+1+13312233333=313n nn n n T n n +---=++++-⨯-⨯-由得: ()+121334n nn T -⨯+=所以 36.(Ⅰ)21,(2)n n a n S n n =+=+; (Ⅱ)4(1)nn +.【详解】试题分析:(1)设等差数列{}n a 的公差为d ,由已知3577,26a a a =+=可得1127{21026a d a d +=+= 解得1,a d ,则n a 及n S 可求;(2)由(1)可得111()41n b n n =-+,裂项求和即可 试题解析:(1)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有1127{21026a d a d +=+=,解得13,2a d==,所以32(1)21n a n n =+-=+,2(1)3222n n n S n n n -=+⨯=+. (2)由(1)知,21n a n =+,所以22111111()1(21)14(1)41n n b a n n n n n ====--+-++, 所以11111111(1)(1)42231414(1)n nT n n n n =-+-++-=-=+++, 即数列{}n b 的前n 项和4(1)n nT n =+.考点:等差数列的通项公式,前n 项和公式.裂项求和 37.(Ⅰ)2q ;(Ⅱ)2115(43)()2n n b n -=-+⋅.【分析】分析:(Ⅰ)根据条件、等差数列的性质及等比数列的通项公式即可求解公比;(Ⅱ)先根据数列1{()}n n n b b a +-前n 项和求通项,解得1n n b b +-,再通过叠加法以及错位相减法求n b . 【详解】详解:(Ⅰ)由42a +是35,a a 的等差中项得35424a a a +=+, 所以34543428a a a a ++=+=, 解得48a =.由3520a a +=得1820q q ⎛⎫+= ⎪⎝⎭,因为1q >,所以2q.(Ⅱ)设()1n n n n c b b a +=-,数列{}n c 前n 项和为n S .由11,1,, 2.n nn S n c S S n -=⎧=⎨-≥⎩解得41n c n =-.由(Ⅰ)可知12n na ,所以()111412n n n b b n -+⎛⎫-=-⋅ ⎪⎝⎭,故()21145,22n n n b b n n --⎛⎫-=-⋅≥ ⎪⎝⎭,()()()()11123221n n n n n b b b b b b b b b b ----=-+-++-+-()()23111454973222n n n n --⎛⎫⎛⎫=-⋅+-⋅++⋅+ ⎪⎪⎝⎭⎝⎭.设()22111371145,2222n n T n n -⎛⎫⎛⎫=+⋅+⋅++-⋅≥ ⎪ ⎪⎝⎭⎝⎭,()()2211111137494522222n n n T n n --⎛⎫⎛⎫⎛⎫=⋅+⋅++-⋅+-⋅ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
易错点1:已知 求 时, 易忽略 致错.
例1】已知数列 的前项和为 = n2+ n+1,求 的通项公式.
【错解】an=Sn-Sn-1= n2+ n+1- (n-1)2- (n-1)-1=n,所以 .
【正解】 .
易错点3:忽略数列与函数的区别致错.
【例3】已知函数 ,数列 满足 ( ),且数列 是单调递增数列,则的取值范围是_______.
【错解】由题有 ,得 .
【错因】忽略数列与函数的区别致错,实际上,数列是一串离散的点,不能直接将 带入到分段函数的两个部分进行比较
知识点:利用函数的性质研究数列时,需明确数列是一串离散的点,只能去正整数.
当n=1时不符合上式,所以 .
易错点2:利用等比数列前n项和公式时,忽略公比 致错.
【例2】求数列 的前n项和.
【错解】由于 ,
两式相减得
=
.
【错因】上述解法只适合 的情形.
事实上,当 时,
知识点:在研究等比数列时,切记等比数列中的任何一项都不为0,且公比q≠0.在利用等比数列求和时,如果含有参数,根据公比是否为1,需分类讨论.
【错解】 ,
是以2为公比的等比数列 .
【错因】新数列的首项是 ,不是 .
知识点:构造新数列后,新数列的公比也发生变化,不要盲目认为
是数列的首项.
【正解】 ,
是以 为首项,2为公比的等比数列
即
知识点:在求解数列基本量问题中主要使用的是方程思想,要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷
【正解】设 ,则 , ,其中 , .
所以 4:3.
易错点6:数列加绝对值后,认为其还是等差数列
【例6】在等差数列 中, ,记 ,求数列 的前30项和.
【错解】依题意, 也是等差数列, , ,
所以 .
【错因】这里易错点是 也为等差数列,而解题的关键是绝对值号内的 的正负号进行讨论,当 时, 时,
知识点:含绝对值这类数列求和,要先去绝对值,那就要弄清各项的符号,利用分段求和
【正解】
=755.
易错点7:使用构造法求数列通项公式时,弄错首项致错.
【例7】已知数列{an}满足 , ,求 的通项公式.
【错因】 成立的Biblioteka 件是 ,当 要单独验证.知识点:由 求 时,数列通项公式an求出后,还需要验证数列首项a1是否也满足通项公式,即“通项求出莫疏忽,验证首项满足否”,这一步容易忘记,切记!
【正解】当n=1时,a1=S1= + +1=2;
当n≥2时,an=Sn-Sn-1= n2+ n+1- (n-1)2- (n-1)-1=n.
【正解】由题有 ,得 .
易错点4:数列的定义域是全体的正整数
【例4】已知数列 ,其前项和为 ,则 的最大值是________.
【错解】由题意, , ,
当 时, 的最大,最大值是为 .
【错因】数列的自变量是正整数,不能取非正数.
知识点:用求函数最值的方法来求前n项和的最值,这里应由n∈N*及二次函数图象的对称性来确定n的值.
【正解】方法1:由题意, , ,
当 时,离二次函数对称轴最近,所以 的最大值是为 .
方法2:令 ,解得 ,即 前4项为正数,后面项均为负数,所以 的最大值为 .
易错点5:乱设常量致错.
【例5】数列 与 的前项和分别为 ,
且 ,则 _______
【错解】 ,则 , ,所以 .
【错因】从 可知,比值 = : 随着项数的变化而变化,不能设为常数,这里忽略了项数的可变性而致错.