3.2解一元一次方程(一)--合并同类项与移项
2014版新人教版七年级上3.2解一元一次方程(一)——合并同类项与移项第1课时学案配套课件

知识点 1 用合并同类项解一元一次方程
【例1】解方程:(1)-3x+0.5x=10.
(2)3y-4y=-25-20.
【思路点拨】先合并同类项,然后系数化为1,求得方程的解.
【自主解答】(1)合并同类项得-2.5x=10, 系数化为1,得x=-4. (2)合并同类项得-y=-45, 系数化为1,得y=45.
【总结提升】解“总量等于各部分量的和”问题的四个步骤 1.设:弄清问题中的总量及各分量,适当设未知数 . 2.列:根据“总量等于各部分量的和”这一相等关系正确列出 方程. 3.解:解方程,求出未知数的值. 4.答:按问题要求作答.
题组一:用合并同类项解一元一次方程 1.下列合并同类项,结果正确的是( A.3a+3b=6ab C.2y+3y+y=5y B.3m-2m=1 D. ax 1.5ax 0
2.一个水池有甲、乙两个水龙头,单独开甲水龙头2小时可把 空池灌满;单独开乙水龙头3小时可把空池灌满,若同时开放 两个水龙头,灌满水池需( A. 6 小时
5
)
B. 5 小时
6
C.2小时
D.3小时
【解析】选A.设同时开放两个水龙头,灌满水池需x小时,则
1 1 6 x x 1, 所以x . 2 3 5
(打“√”或“×”) (1)-3x+7x的结果等于10x.( × ) (2)解方程2x+x=9时,合并同类项得,3x=9.( √ ) (3)解方程 x 4 得,x=2.( × ) (4)方程x-4x=15的解是x=-5.( √ ) (5)方程-x+6x=-2-8的解是x=-1.( × )
1 2
【总结提升】合并同类项解一元一次方程的实质 合并同类项是一种恒等变形,就是利用乘法分配律把含有 未知数的项结合在一起、把常数项结合在一起 ,最终化为“ax=b (a≠0)”,再根据等式的性质2,两边同除以a,把系数化为1,
3 第1课时 利用“合并同类项”解一元一次方程

3.2解一元一次方程(一)——合并同类项与移项第1课时利用“合并同类项”解一元一次方程情景导入置疑导入归纳导入复习导入类比导入悬念激趣复习导入问题1:上节课我们学习了利用等式的性质解方程,哪位同学能叙述一下等式的性质呢?问题2:合并下列各式的同类项:(1)-x+3x-5x;(2)-6ab-5+ba+4ab-4.约公元820年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习和讨论,相信同学们一定能回答这个问题.[说明与建议] 此环节为本节课新知的学习做好铺垫,体会等式的性质和合并同类项在解方程中的作用.同时又有助于增加学生学习数学的兴趣,扩大知识面,感受数学的历史和文化的陶冶,提高数学素养.建议:学生叙述等式的性质,对于问题2找学生口答.置疑导入通过上节课的学习,同学们知道:可以利用等式的性质解方程,比如:5x-2=8.方程两边同时加上2,得5x-2+2=8+2.也就是5x=10.方程两边同时除以5,得x=2.此种解法过程比较烦琐,还有没有更加简便的方法呢?[说明与建议] 说明:本环节既回顾了上节所学:等式的性质及解方程,又引出了新的问题,为下面的学习设置了疑问,激发了学生的学习兴趣.建议:此方程的求解过程可由学生独立完成,回顾上节课所学,让学生总结此种方法的不便之处,教师适时提出问题,引出新课.教材母题——教材第87页例1解下列方程:(1)2x-x=6-8;(2)7x-2.5x+3x-1.5x=-15×4-6×3.【模型建立】合并同类项时,将一元一次方程中含有未知数的项与常数项分别合并,从而使方程转化为ax=b(a≠0)的形式.【变式变形】1.下列方程合并同类项正确的是 (D)A.由3x-x=-1+3,得2x=4B.由2x+x=-7-4,得3x=-3C.由15-2=-2x+x,得3=xD.由6x-2-4x+2=0,得2x=02.方程3x=-2+1+7的解是(D)A.x=1B.x=-1C.x=-2D.x=23.如果2x与x-3的值互为相反数,那么x等于(B)A.-1B.1C.-3D.34.如果x=m是方程x-m=1的解,那么m的值是(C)A.0B.2C.-2D.-65.解下列方程:(1)-3x+0.5x=10;(2)6m-1.5m-2.5m=3;(3)3y-4y=-25-20.[答案:(1)x=-4(2)m=(3)y=45][命题角度1] 用合并同类项解一元一次方程用合并同类项解一元一次方程的步骤:(1)合并同类项;(2)系数化为1.如素材二变式变形第5题.[命题角度2] 利用一元一次方程解决比例分配问题此类题型可根据各部分量的比例关系或各部分量在总量中所占的比例,设其中一份为x,可得表示各部分量的式子.然后利用相等关系:各部分量之和=总量,列出方程求解.例某洗衣机厂2019年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型洗衣机的数量之比为1∶2∶14,计划生产这三种洗衣机各多少台?解:设计划生产Ⅰ型洗衣机x台,则计划生产Ⅱ型洗衣机2x台,Ⅲ型洗衣机14x台.依题意,得x+2x+14x=25500.合并同类项,得17x=25500.系数化为1,得x=1500.则2x=3000,14x=21000.答:计划生产Ⅰ型洗衣机1500台,Ⅱ型洗衣机3000台,Ⅲ型洗衣机21000台.[命题角度3] 利用一元一次方程解决和、差、倍、分问题解这类题的关键是根据题意找出题目中的和、差、倍、分的相等关系.增长量=原有量×增长率.注意:要恰当地设未知数,这样可以简化运算.题目中的相等关系可能不止一个,有时会有多个,要根据具体情况恰当地选择相等关系.解完方程后要检验,避免出现不符合实际的答案.例如果甲、乙、丙三个村合修一条水渠,计划出工60人,甲村出工人数是乙村出工人数的,丙村出工人数是乙村出工人数的2倍,求乙村出工的人数.解:设乙村出工人数为x,则甲村出工人数为x,丙村出工人数为2x.根据题意,得x+x+2x=60.合并同类项,得x=60.系数化为1,得x=18.答:乙村出工的人数为18.[命题角度4] 利用一元一次方程解决环形跑道问题环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个相等关系往往成为我们解决问题的关键.例某体育场的环形跑道长400米,甲、乙两人在跑道上练习跑步,已知甲平均每分钟跑250米,乙平均每分钟跑290米.(1)两人同时从同一地点出发,同向而行,经过多长时间两人第一次相遇?(2)两人同时从同一地点出发,相向而行,经过多少分钟两人第一次相遇?解:(1)设两人同时从同一地点出发,同向而行,经过x分钟两人第一次相遇.由题意,得290x-250x=400.合并同类项,得40x=400.系数化为1,得x=10.答:两人同时从同一地点出发,同向而行,经过10分钟两人第一次相遇.(2)设两人同时从同一地点出发,相向而行,经过y分钟两人第一次相遇.由题意,得250y+290y=400.合并同类项,得540y=400.系数化为1,得y=.答:两人同时从同一地点出发,相向而行,经过分钟两人第一次相遇.P88练习 1.解下列方程:(1)5x -2x =9; (2)x 2+3x2=7;(3)-3x +0.5x =10; (4)7x -4.5x =2.5×3-5.[答案] (1)x =3;(2)x =3.5;(3)x =-4;(4)x =1.2.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元.前年的产值是多少?解:设前年的产值是x 万元,根据题意,得 x +1.5x +1.5x ×2=550. x +1.5x +3x =550. 合并同类项得5.5x =550. 系数化为1.得x =100. 答:前年的产值是100元. P90练习 1.解下列方程:(1)6x -7=4x -5; (2)12x -6=34x .[答案] (1)x =1;(2)x =-24.2.王芳和李丽同时采摘樱桃,王芳平均每小时采摘8 kg ,李丽平均每小时采摘7 kg.采摘结束后王芳从她采摘的樱桃中取出0.25 kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多少时间?解:设她们采摘用了x 小时,根据题意,得8x -0.25=7x +0.25. 8x -7x =0.25+0.25. x =0.5.答:他们采摘用了0.5小时. P91习题3.2 复习巩固 1.解下列方程: (1)2x +3x +4x =18; (2)13x -15x +x =-3; (3)2.5y +10y -6y =15-21.5; (4)12b -23b +b =23×6-1. [答案] (1)x =2;(2)x =3;(3)y =-1;(4)b =3.6.2.举例说明解方程时怎样“移项”,你知道这样做的根据吗?[答案] 例如解方程5x +3=2x ,把2x 改变符号后移到方程左边,同时3改变符号移到方程右边,即5x -2x =-3.移项的根据是等式的基本性质.3.解下列方程: (1)x +3x =-16; (2)16y -2.5y -7.5y =5; (3)3x +5=4x +1; (4)9-3y =5y +5.[答案] (1)x =-4;(2)y =56;(3)x =4;(4)y =12.4.用方程解答下列问题:(1)x 的5倍与2的和等于x 的3倍与4的差,求x ; (2)y 与-5的积等于y 与5的和,求y . [答案] (1)x =-3;(2)y =-56.5.小新出生时父亲28岁,现在父亲的年龄是小新年龄的3倍,求现在小新的年龄. 解:设小新现在的年龄是x 岁,根据题意,得 3x -x =28;合并同类项,得2x =28. 系数化为1,得x =14. 答:现在小新的年龄是14岁.6.洗衣机厂今年计划生产洗衣机25 500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1∶2∶14,计划生产这三种洗衣机各多少台?[答案] Ⅰ型,Ⅱ型,Ⅲ型各1500台,3000台,21 000台.7.用一根长60 m 的绳子围出一个长方形,使它的长是宽的1.5倍,长和宽各应是多少? [答案] 长18 m ,宽12 m. 综合运用8.随着农业技术的现代化,节水型灌溉得到逐步推广.喷灌和滴灌是比漫灌节水的灌溉方式.灌溉三块同样大的实验田,第一块用漫灌方式,第二块用喷灌方式,第三块用滴灌方式.后两种方式用水量分别是漫灌的25%和15%.(1)设第一块实验田用水x t ,则另两块实验田的用水量各如何表示? (2)如果三块实验田共用水420 t ,每块实验田各用水多少吨?解:(1)设第一块实验田用水x t ,第二块实验田的用水量为0.25x t ,第三块实验田用水0.15x t;(2)根据题意,得x+0.25x+0.15x=420,1.4 x=420,x=300.300×0.25=75(t),300×0.15=45(t).答:三块实验田用水各300 t,75 t,45 t.9.某造纸厂为节约木材,大力扩大再生纸的生产.它去年10月生产再生纸2050 t,这比它前年10月再生纸产量的2倍还多150 t.它前年10月生产再生纸多少吨?[答案] 950吨.10.把一根长100 cm的木棍锯成两段,要使其中一段长比另一段长的2倍少5 cm,应该在木棍的哪个位置锯开?[答案] 35 cm处.11.几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种;如果每人种12棵,则缺6棵树苗.求参与种树的人数.[答案] 6人.拓广探索12.在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为30?如果能,这三个数分别是多少?[答案] 3,10,17.13.一个两位数的个位上的数的3倍加1是十位上的数,个位上的数与十位上的数的和等于9,这个两位数是多少?[答案] 72.[当堂检测]第1课时用合并同类项解一元一次方程1.下面由(1)到(2)的变形是合并同类项的是()A.(1)3x-2=6,(2)3x=82B.(1)-12x=8 ,(2)x=-3C.(1)2x–4x –3x = 6 ,(2)-5x = 6D.(1)2(3x+2) =4x,(2)6x+4 =4x2.下面变形正确的是()A. 由3x- x +4x= 8 得:3+4x=8B. 由2x – 4x –x = 8+2 得:-3x =10C. 由– 6x-3x = 5 得:-3x = 5D. 13x +2x -8x = -3 -5 得:7x = -23. 方程4x-m=3的解是x=m,则:m的值是()A.m=-1 B.m=1C.m=-2 D.m=24. 小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x张,根据题意,请你能帮小悦列出方程为__________________(不需要求解).5. 用合并同类项解方程:(1)4x–7x=4+2×3;(2)4x -2.5x +5x –1.5x=-8-7. 参考答案: 1. C 2. B 3. B4. x+5(12-x )=48 ;5. 解:(1)-3x=10,x=310 ; (2)5x=-15,x= -3 .第2课时 用移项、合并同类项解一元一次方程1.列变形中属于移项的是( )A .由5x -7y =2,得-2=-7y +5xB .由6x -3=x +4,得6x -3=4+xC .由8-x =x -5,得-x -x =-5-8D .由x +9=3x -1,得3x -1=x +92. 在解方程3x+5=-2x-1的过程中,移项正确的是( )C A .3x-2x=-1+5 B .-3x-2x=5-1 C .3x+2x= -1-5 D .-3x-2x=-1-53. 请把下列解方程:5x-2=7x+8的过程补完整.解:移项得:5x-7x =___合并同类项得:___=10系数化为一得:x =____4. 练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x 元,那么由题意列方程是___________ .5. 解方程:(1)3x+3-4=6x+1 ; (2)12x-4-3x+3=12x+17.参考答案:1. C ;2. C ;3. 8+2 -2x -54. 5(x-2)+3x=145.(1)x =-32 (2)x = -6[能力培优]专题一 利用合并同类项与移项解方程1.解下列方程(1)12884x x +=-; (2)233234x x +=-. 2. 已知方程4x +2m =3x +1和方程3x +2m =6x +1的解相同,求这个相同的解.3.规定新运算符号*的运算过程为b a b a 4131*-=,则求: (1)求5*(-5);(2)解方程2*(2*x )=1*x .4.关于x的方程kx+2=4x+5 ()4≠k有正整数解,求满足条件的k的正整数值.专题二列方程解和、差、倍分问题5.小明编了这样一道题:我是四月出生的,我的年龄的2倍加上8,正好是我出生那一月的总天数,那么你认为小明是几岁()A.18岁B.11岁C.19岁D.21岁6.某会议厅主席台上方有一个长12.8m的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?7.(2012·长沙)以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省外境内投资合作项目多51个.(1)求湖南省签订的境外、省外境内的投资合作项目分别有多少个?(2)若境外、省外境内投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道主湖南省共引进资金多少亿元?专题三列方程解盈余不足问题8.(2012·铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21-1)=6(x-1) B.5(x+21)=6(x-1)C. 5(x+21-1)=6xD. 5(x+21)=6x9.在“读书月”活动中,学校把一些图书分给某班学生阅读,若每个人分3本,则剩余20本;若每个人分4本,则还缺少25本.这个班有多少名学生?10.某学校组织学生春游,如果租用若干辆45座的客车,则有15个人没有座位,如果租用同数量的60座的客车,则多出1辆,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为300元,问租用哪种客车更合算,租几辆车?专题四日历中的方程11.如图是某月的日历表,在此日历表上可以用一个长方形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数的和为144,那么最小的一个数为()A.7 B.8 C.9 D.1012日历表中,任意圈出的同一竖列上相邻的3个数的和能否是21?如果能,请求出这三个数,如果不能,请说明理由?13.日历表中,小亮圈出同一竖列上相邻的4个数的和是50,这四天分别是几号?知识要点:1.把等式一边的某项变号后移到另一边,叫做移项.2.移项的目标:将方程中的所有含未知数的项都集中到方程的左边,常数项都集中到方程的右边,便于合并同类项.3.移项的理论依据:移项相当于利用等式性质1,方程两边同时加上或减少同一个数或式.4.“表示同一个量的两个不同的式子相等”是一个基本的相等关系,常用来列方程.方法技巧:1.两个方程同解问题解题思路:如果两个方程中只有一个方程含有参数,那么我们先求出不含参数的方程的解,然后将方程的解代入另一个方程得到一个关于参数的方程,从而求出参数的值;如果两个方程都含有参数,那么我们将参数看作已知数,分别解出这两个方程,然后根据两个解相等,列出一个关于参数的方程,从而求出参数的值.2.日历中同一竖列上相邻的两个日期之间相差7天;日历中同一横行上相邻的两个日期之间相差1天;日历中2×2个数之间交叉相加和相等.3.盈余不足问题常常利用“表示同一个量的两个不同的式子相等”来列方程.4.新定义运算的题目只要将新定义的符号按照题目指明的运算进行就ok,其他的运算不变. 答案:1. 解:(1)12884x x+=-,移项,得:12848x x-=--,合并同类项,得:412x=-,系数化为1,得:x=-3.(2)2332 34x x+=-,移项,得:2323 34x x-=--,合并同类项,得:15 12x-=-,系数化为1,得:x =60.2. 解:4x +2m =3x +1的解为:x =1-2m ,3x +2m =6x +1的解为:x =213m -, 所以1-2m =213m -, 解得m =12, 把m =12代入x =1-2m ,得x =0. 3. 解析:(1)5*(-5)=115(5)34⨯-⨯-=1235; (2)因为2*x =2134x -,所以2*(2134x -)=2121()3434x --,1*x =1134x -. 所以2121()3434x --=1134x -,解得:158-=x . 4. 解析:移项,得kx -4x =5-2,合并同类项,得(k -4)x =3,因为k -4≠0,所以系数化为1,得34x k =-. 因为34k -为正整数,所以k -4=1或者k -4=3.解得75==k k 和. 5. B 解析:设小明x 岁,由题意得2x +8=30, 解得x =11.6. 解析:设边空、字宽、字距分别为9x (cm )、6x (cm )、2x (cm ),则:9x ×2+6x ×18+2x (18﹣1)=1280,解得:x =8.答:边空为72cm ,字宽为48cm ,字距为16cm .7. 解析:(1)设湖南省签订的境外投资合作项目有个,那么省外境内投资合作项目 ()个,由题意得:,解得,=215;x 512-x 348512=-+x x 133=x 512-x(2)215×7.5+133×6=2410.5(亿元).答:(1)湖南省签订的境外、省外境内的投资合作项目分别有133个、215个.(2)在这次“中博会”中,东道主湖南省共引进资金2410.5亿元.8.A 解析:如果每隔5米栽1棵,则树苗缺21棵,故道路长为5(x +21-1);如果每隔6米栽1棵,则树苗正好用完,故道路长为6(x -1).因路长相等,所以5(x +21-1)=6(x -1).9. 解析:设这个班有x 名学生,由题意得320425x x +=-,解得45x =, 答:这个班有45名学生.10. 解析:设租45座的客车x 辆,根据题意得:45x+15=60(x-1),解得:x=5,所以租45座的客车的租金应为:250×(5+1)=1500(元),租60座的客车的租金应为:300×(5-1)=1200(元),所以租用60座的客车更合算,租4辆.11.B 解析:根据图可以得出,圈出的9个数中最大数与最小数的差为16,设最中间一个数为x ,则其他各数为x±1,x±7,x±8,x±6.这9个数的和为9x,由题意得9x=144,所以x=16,所以最小的数是16-8=8.12. 解:设圈出的三个数中中间日期为x 号,由题意得:(x-7)+x+(x+7)=21.解得x=7,x-7=7-7=0,x+7=7+7=14.因为日历中最小日期为0号,所以不符合题意,不存在这样的情况.答:不可能存在三天日期和为21的情况.13. 解:设从前面数第二个日期是x 号,则另三个日期为(x-7)、(x+7)、(x+14)号,由题意得:(x-7)+x+(x+7)+(x+14)=50,解得x=9, x-7=9-7=2,x+7=9+7=16,x+14=9+14=23.答:这四天分别是2号,9号,16号,23号.。
3.2 合并同类项与移项教案

教案反思一元一次方程的解法是在学生已经具备了代数初步知识、系统学习了整式加减的基础上安排的,是对整式运算的进一步深化和认识。
本节课是在教授了一元一次方程解法第一课时因此尤为重要。
同时着力培养学生积极思维的优良品格,逐步形成具体问题具体分析的哲学思想,养成正确思考,善于思考的良好习惯,从而提高分析问题,解决问题的能力。
教学过程方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。
移项法则:把等式一边的某项变号后移到另一边,叫做移项.新课例1.某校三年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:设前年这个学校购买了x 台计算机,已知去年购买数量是前年的2倍,那么去年购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;题目中的相等关系为:三年共购买计算机140台,即前年购买量+去年购买量+今年购买量=140列方程:_____________如何解这个方程呢?根据分配律,x+2x+4x=(______)x=7x ;这样就可以把含x 的项合并为一项,合并时要注意x 的系数是1,不是0;下面的框图表示了解这个方程的具体过程:x+2x+4x=140↓合并同类项7x=140↓系数化为1x=20由上可知,前年这个学校购买了20台计算机.上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b 的形式,其中a 、b 是常数.练习:1.合并:x+3x-6x,z+0.5z-1.8z,5y+4y-y2.解方程:5x-2x=9 -3x+0.5x=10例2.某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.思路:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60•人分成___份,甲组人数占___份,乙组人数占___份,丙组人数占___份,如果知道每一份是多少,•那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.关键:本题中相等关系是什么?_____________________________________.解:设每一份为x人,则甲组人数为__人,乙组人数为___人,丙组为___人,•列方程:_______________合并,得________系数化为1,得x=___所以2x=____,3x=_____,5x=______答:甲组_____人,乙组___人,丙组______人.请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,•且这三组人数之和是否等于60;【要点归纳】:列一元一次方程解决实际问题的一般步骤中,找等量关系是关键也是难点,本节课的两个问题的相等关系都是:“各部分量的和=总量”;这是一个基本的相等关系;合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0;例3.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?解:设每份为_____个,则黑色皮块有_____个,白色皮块有_______个列方程_________合并,得_________系数化为1,得x=_____黑色皮块为___×___=____(个),白色皮块有____×___=____(个)例4. 某学生读一本书,第一天读了全书的三分之一多2页,第二天读了全书的二分之一少1页,还剩23页没读,问全书共有多少页?解:设全书共有____页,那么第一天读了()页,第二天读了()页.本问题的相等关系是:_____________+_______________+_____________=全书页数;列方程:_______________________。
人教版初一数学七年级上同步课件第三章 3-2解一元一次方程(一)——合并同类项与移项 第2课时

天运进 25 吨,__3__天后两仓库存煤相等.
8.(教材 P91 习题 T11 变式)《九章算术》中有这样一个问题,原文如下:“今有 共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?” 大意为: 几个人一起去购买某物品,如果每人出 8 钱则多了 3 钱;如果每人出 7 钱,则少 了 4 钱.问有多少人?物品的价格是多少钱?(注:“钱”为中国古代的货币单位) 请解答上述问题. 【解析】设有 x 人,依题意,得:8x-3=7x+4, 解得:x=7,所以 8x-3=53. 答:有 7 人,物品的价格是 53 钱.
m 的值是_-__4_.
4.解方程:
(1)5x-21=11x-3;
(2)2.5m+10m-15=6m-21.5;
4 (3)3
+121
y=3+8y.
【解析】(1)移项得:5x-11x=-3+21, (3)移项得:121 y-8y=3-43 ,
合并同类项得:-6x=18,
系数化为 1 得:x=-3.
小红: 50
= 55
.
[其中“□”表示运算符号,“( )”表示数字]
(1)小明所列的方程中,x 表示的意义是:______;小红所列的方程中,y 表示的 意义是:______. (2)请你把小明、小红所列的方程补充完整. (3)解小明所列的方程.
【解析】(1) 该校租的客车辆数该校七年级的学生人数 y-12 y+8
【解析】设该电饭煲的进价为 x 元,则标价为(1+50%)x 元,售价为 80%×(1+50%)x 元, 根据题意,得 80%×(1+50%)x-128=568,解得 x=580. 答:该电饭煲的进价为 580 元.
3-2解一元一次方程(一)—合并同类项与移项巩固练习2022-2023学年人教版七年级数学上册

3.2解一元一次方程(一)—合并同类项与移项一、单选题1.下列变形中,属于移项的是( )A .由32x =-,得23x =-B .由32x=,得6x =C .由570x -=,得57x =D .由520x -+=,得250x -=2.定义“*”运算为a *b =ab +2a ,若(3*x )+(x *3)=14,则x =() A .﹣1 B .1 C .﹣2 D .2 3.解方程335362+---=x x x,去分母所得结论正确的是( )A .3115+-+=-x x xB .263153+-+=-x x xC .6115+--=-x x xD .31153+-+=-x x x4.下列通过移项变形错误的是( )A .由227x x +=-,得272x x -=--B .由324y y +=-,得423y y +=-C .由2324t t t -+=-,得2243t t t ++=-+D .由123m -=,得213m =-5.关于x 的方程2x+5a =3的解与方程2x+2=0的解相同,则a 的值是( ) A .1 B .4 C .15 D .﹣16.已知单项式13m a b +与12n b a --可以合并同类项,则m ,n 分别为( )A .1,2B .3,2C .1,0D .3,0 7.在把方程-2x=3的系数化为1的过程中,最恰当的叙述是( )A.方程两边同时乘以-2B.方程两边同时除以-2C.方程两边同时除以2D.方程两边同时减38.若关于x的方程kx﹣2x=14的解是正整数,则k的整数值有()个.A.1个B.2个C.3个D.4个二、填空题9.若代数式4x8-与3x22+的值互为相反数,则x的值是____.10.为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价元,凭卡购书可享受折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了元.若此次小慧同学不买卡直接购书,则她需付款11.对于两个互不相等的有理数a,b我们规定符号max{a,b}表示a,b两个数中最大的数,例如max{2,4}=4.按照这个规定则方程max{﹣x,0}=3x+4的解为.12.若x=1是方程2x+a=7的解,则a=_______.13.若2x-3=0且|3y-2|=0,则xy= 。
【七年级数学上册】《3.2 解一元一次方程(1)-合并同类项与移项》导学案 新人教版

《3.2 解一元一次方程(1)─合并同类项与移项》导学案【学习目标】1.会列一元一次方程解决实际问题,•并会合并同类项解一元一次方程;2.培养学生观察、分析、概括的能力;3.初步渗透特殊—一般—特殊的辩证唯物主义思想【学习重点】:会合并同类项解一元一次方程;【学习难点】:会列一元一次方程解决实际问题;【使用说明与学法指导】1、先认真阅读学习目标;2、再认真阅读86—87页内容,并用红笔标注重点;3、阅读教材后认真完成导学案.预习案【预习自学】1.等式性质 1:2:2.解方程:(1)x-9=8;(2) 3x+1=4;3.下列各题中的两个项是不是同类项?(1)3x y与-3x y (2)0.2a b与0.2ab(3)11abc与9bc (4)3m n 与-n m(5)4xy z与4 x yz (6)6 与x4.能把上题中的同类型合并成一项吗?如何合并?5.合并同类型的法则是什么?依据是什么【我的疑惑】________________________________________________________探究案探究点:合并解一元一次方程问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,•今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;题目中的相等关系为:三年共购买计算机140台,即前年购买量+去年购买量+今年购买量=140列方程:_____________如何解这个方程呢?根据分配律,x+2x+4x=(______)x=7x;这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0;下面的框图表示了解这个方程的具体过程:x+2x+4x=140↓合并同类项7x=140↓系数化为1x=20由上可知,前年这个学校购买了20台计算机.上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.2.自己试着完成例1 解下列方程:(1)2x-5/2x=6-8; (2)7x-2.5x+3x-1.5x=-15×4-6×3合并同类项,得系数化为1,得所以-3x= ,9x=答:这三个数是、、讨论:以上列方程解决实际问题的关键。
解一元一次方程(一)——合并同类项与移项

慧眼识金
判断下列移项是否正确,看谁又快又准 (1)若x-4=8,则x=8-4× x=8+4
(2)若3a=2a+5,则-3a-2a=5
×
3a-2a=5
(3)若5s-2=4s+1,则5s-4s=1+2
√
动手做一做 请你来给下列一元一次方程移项 (1)9-3y=5y+5 (2) 0.5x-0.7=6.5-1.3x (3)3x+5=4x+1 (4)6x-7=4x-5
解一元一次方程(一)—— 合并同类项与移项
第1课时 合并同类项
约公元820年,中亚细亚数学 家阿尔-花拉子米写了一本代 数书,重点论述怎样解方程. 这本书的拉丁文译本取名为 《对消与还原》.“对消”与 “还原”是什么意思呢?
某校三年共购买计算机140台,去 年购买数量是前年的2倍,今年购买的 数量又是去年的2倍.前年这个学校购 买了多少台计算机?
练习1 解下列方程: (1)6x – 7 = 4x – 5 (2)6 – 3x = 7x – 14
例4 把一些图书分给某班学生阅读,如果每 人分3本,则剩余20本;如果每人分4本, 则还缺25本.这个班有多少学生?
解;设这个班有x名学生 分析:
每人分3本,共分出3x本,加上剩余的20本,这批书共 (3x+20)本. 每人分4本,需要4x本,减去缺的25本,这批书共(4x25)本.
3x + 20 = 4x - 25
2. 对于方程– 3x – 7=12x+6,下列移项正确的是 A ()
A. – 3x – 12x=6+7
B. – 3x+12x= – 7+6
初中数学人教七年级上册第三章一元一次方程-合并同类项

x
9
x
x
1701
93
x
.3
依题意可列方程
并求出所列方程的解.
x = -2187
巩固练习
练习 解下列方程: (1)5x - 2x = 9
解:合并同类项,得 3x = 9
系数化为1,得 x= 3
(2)x 3 x 7 22
解:合并同类项,得
2 x=7
系数化为1,得
x= 7 2
(3)-3x + 0.5x = 10 解:合并同类项,得
名为《对消与还原》. “对消”与 阿尔-花拉子米
“还原”是什么意思呢?
(约780—约850)
某校三年共购买计算机140台,去年购买数 量是前年的2倍,今年购买数量又是去年的2倍. 前年这个学校购买了多少台计算机? 方法一:
设前年这个学校购买了计算机x台,则去年 购买计算机 2x台,今年购买计算机4x台.
3
即这三个相邻的数的和不能等于84.
课堂小结
x+2x+4x=140 合并同类项
7x=140 系数化为1
x=20
等式的性质2
理论依据 ?
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题.
教学反思
本课时作为解一元一次方程方法的讲解课,首先以 学生喜闻乐见的实际问题展开讨论,突出体现了数学与 现实的联系;然后让学生利用合并同类项的方法来解方 程,来感受方法的简洁性,并通过练习来提高学生的熟 练程度.本课时在结合实际问题讨论一元一次方程的解法 时,注重算理,创设未知向已知转化的条件,并通过画 框图、标箭头的方式辅助学生分析.本课时教学应采用引 导的方法,让学生自主探究与交流,以达到教学效果.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2 解一元一次方程(一)-----合并同类项与移项
一、知识要点
1、简单的一元一次方程的解法的步骤:
(1)移项:把等式一边的某项变号后移到另一边,叫做移项;
(2)合并同类项:解方程时,将等号同侧的含有未知数的项和常数项分别合并成一项的过程,叫做合并同类项; (3)系数化1:将形如)0(≠=a b ax 的方程化成a
b x =的形式,也就是求出方程的解a
b x =的过程,叫做系数化1.
2、用一元一次方程分析和解决实际问题的基本步骤:
审题→找相等关系→设出未知数→列方程→解方程→检验(看所得结果是否符合实际)→写出答案 二、例题导航
例1 解方程:1352+=-x x
分析:先移项,再合并同类项,最后把未知数的系数化1. 解:
☆列一元一次方程解决倍分类问题
例2 学校开展植树活动,甲班和乙班共植树31棵,其中甲班植树比乙班植树的2倍多1棵,求两班各植树多少棵? 分析:根据甲班比乙班植树的2倍多1棵,可设乙班植树x 棵,则甲班植树)12(+x 棵,等量关系是甲、乙两班植树的和是31棵。
解:
☆列一元一次方程解决数字类应用问题
例3 有四个数,其中每三个数的和分别为15,22,23,24, 这四个数。
分析:本题有四个未知数,若直接设,需列出四个方程,显然解起来不方便,不如间接设这四个数的总和为x 。
解:
移项,将x 由等式右边移到等式左边,-3由等式左边移到等式右边,同时改变它们的符号,x
由“+”变为“-”,3由“-”变为“+”
合并同类项,将x 的一次项合并成一项,将常数项合并成一项
系数化1,等号两边同时除以3
(或同时乘以
3
1)
634+=-x x
x 4 +
=-)(x 3 + 6
9)14(=-x
93=x
3=x
☆用一元一次方程解决折扣类应用题
例4 小华的妈妈为了爸爸买了一件衣服和一条裤子,共用306元,其中衣服按标价打7折,裤子按标价打8折,若衣服的标价为300元,则裤子的标价为多少元?
分析:设裤子的标价x 元,则打8折为x 8.0元,再加上衣服的卖价就等于总共花的钱数。
解:
三、基础过关
1、下列解方程的过程中,移项错误的是( )
A 方程362-=+x 变形为632+-=x
B 方程362-=-x 变形为632+-=x
C 方程x x -=43变形为43=+x x
D 方程x x 34=-变形为43=+x x 2、下列语句中,正确的是( )
A 53
1=-
x 的解是5
3-
=x B 47-=x 的解是4
7=
x
C 0=-x 的解是1-=x
D 010
=-x 的解是0=x
3、123-x 的值与3
1-
互为倒数,则x 的值为( )
A 3
B -3
C 5
D -5 4、关于x 的方程053=+x 与133=+k x 的解相同,则k 的值为( )
A -2 B
3
4 C 2 D 3
4-
5、甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买此种商品更合算( )
A 甲
B 乙
C 同样
D 与商品价格相关 6、方程062=-x 的解为________________.
7、(1)方程2332-=+x x ,利用________________可变形为3232--=-x x ,这种变形叫______________;
(2)方程53=-x ,利用________________,把方程两边都____________,把x 的系数化为1,得x =___________. 8、已知某数比它的相反数大1,那么这个数是______________; 9、若0)3(232
=-++b b a ,则
.________2
1=b
a
10、一件衣服标价132元,若以9折出售仍可获利10%,则这件衣服的进价是____________; 11、某商场今年五月份的销售额是200万元,比去年五月份销售额的2倍少40万元,那么去年五月份的销售额是________万元.
12、解下列方程
(1)x x 61132-=+ (2)7512-=-x x (3)317192+=-x x
(4)1220-=-x x (5)x x 1010019-=- (6)
632521-=
+x x。