高中数学 第3章 导数的应用(二)同步练习 北师大版选修2-2
(易错题)高中数学高中数学选修2-2第三章《导数应用》检测(含答案解析)(1)

一、选择题1.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( ) A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞2.已知函数2()ln(1)22x x f x x -=-++,则使不等式(1)(2)f x f x +<成立的x 的取值范围是( )A .(1)(1,)-∞-⋃+∞,B .(1,+)∞C .1(,)(1,+)3-∞-⋃∞D .(,2)(1,)-∞-+∞3.已知定义在R 上的函数()y xf x '=的图象(如图所示)与x 轴分别交于原点、点(2,0)-和点(2,0),若3-和3是函数()f x 的两个零点,则不等式()0f x >的解集( )A .(-∞,2)(2-⋃,)+∞B .(-∞,3)(3-,)+∞C .(-∞,3)(0-⋃,2)D .(3-,0)(3⋃,)+∞4.直线()0x a a =>分别与曲线21y x =+,ln y x x =+相交于A ,B 两点,则AB 的最小值为() A .1B .2C 2D 35.若函数21()ln 2f x kx x x =-在区间(0,]e 上单调递增,则实数k 的取值范围是( ) A .2(,]e -∞B .(,1]-∞C .[1,)+∞D .2[,)e+∞6.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为( ) A .1,4⎛⎫-∞-⎪⎝⎭ B .1,4⎛⎫-+∞ ⎪⎝⎭ C .1,8⎛⎫-+∞ ⎪⎝⎭D .1,8⎛⎫-∞- ⎪⎝⎭7.已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x <', 且(1)y f x =+为偶函数,(2)1f =,则不等式()x f x e <的解集为( )A .4(,)e -∞B .4(,)e +∞C .(,0)-∞D .(0,)+∞8.已知f (x )=-x 3-ax 在(-∞,-1]上递减,且g (x )=2x-ax在区间(1,2]上既有最大值又有最小值,则a 的取值范围是( ) A .2a >-B .3a -≤C .32a -≤<-D .32a --≤≤9.已知函数2()cos sin 2f x x x =,若存在实数M ,对任意12,R x x ∈都有()()12f x f x M -≤成立.则M 的最小值为( )A B C D 10.已知函数()24ln f x ax ax x =--,则()f x 在()1,3上不单调的一个充分不必要条件是( ) A .1,6a ⎛⎫∈-∞ ⎪⎝⎭B .1,2a ⎛⎫∈-+∞ ⎪⎝⎭C .1,2a ⎛⎫∈+∞⎪⎝⎭D .11,26a ⎛⎫∈-⎪⎝⎭11.对*n N ∈,设n x 是关于x 的方程320nx x n +-=的实数根,[(1)](2,3,...)n n a n x n =+=,其中符号[]x 表示不超过x 的最大整数,则2320202019a a a ++=( )A .1011B .1012C .2019D .202012.已知函数()3242xx f x x x e e=-+-,其中e 是自然对数的底数,若()()2210f a f a +--≤,则实数a 的取值范围为( )A .1,12⎡⎤-⎢⎥⎣⎦B .11,2⎡⎤-⎢⎥⎣⎦C .[]2,1-D .[]1,2-二、填空题13.已知函数1()cos ,()(0)2axf x xg x e a a π==-+≠,若1x ∃、2[0,1]x ∈,使得()()12f x g x =,则实数a 的取值范围为________.14.已知()(sin )x f x e x a =+在0,2π⎡⎤⎢⎥⎣⎦上是单调增函数,则实数a 的取值范围是________.15.如果圆柱轴截面的周长l (单位:cm )为定值,则体积最大值为____________3cm . 16.现有一块边长为3的正方形铁片,在铁片的四角截去四个边长均为x 的小正方形,然后做成一个无盖方盒,则该方盒容积的最大值是______.17.已知函数()()2ln 2f x x x g x x x a ==-++,,若∀x 1,x 2∈(0,+∞),f (x 1)≥g(x 2)恒成立,则实数a 的取值范围为__________18.已知函数()xf x e =,()g x ex =,若存在12,x x R ∈,使得()()12f x g x m ==,则21x x -的最小值为______.19.设函数3()32()f x ax x x =-+∈R ,若对于任意[1,1]x ∈-,都有()0f x ≥成立,则实数a 的取值范围是_________.20.设函数()2()1xf x x e =-,当0x ≥时,()1(0)f x ax a ≤+>恒成立,则a 的取值范围是________.三、解答题21.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大. 22.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R. (1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)设g (x )=f ′(x )e -x ,求函数g (x )的极值. 23.已知函数f(x)=12x 2+lnx. (1)求函数f(x)的单调区间; (2)求证:当x>1时,12 x 2+lnx<23x 3. 24.已知函数()2xf x e x a =-+,x ∈R ,曲线()y f x =的图象在点()()0,0f 处的切线方程为y bx =.(1)求,a b ,并证明()2f x x x ≥-+;(2)若()f x kx >对任意的()0,x ∈+∞恒成立,求实数k 的取值范围.25.已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R}.(1)求函数f (x )的解析式;(2)求函数g (x )=()f x x-4ln x 的零点个数. 26.已知函数:()()21ln ,12x f x x a x a g x e x =--=--. (1)当[]1,x e ∈时,求()f x 的最小值;(2)对于任意的1[0,1]x ∈都存在唯一的[]21,e x ∈使得()()12g x f x =,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln xa x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解. 【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=, ()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x∴=-()1x >,不等式()f x ax ≤对任意()1,x ∈+∞恒成立,∴2ln x ax x-≤对任意()1,x ∈+∞恒成立,即ln xa x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x =-,则()()21ln ln x g x x -=′,令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减,∴当x e =时,()g x 取得极大值,也是最大值,()()max ln eg x g e e e==-=-, a e ∴≥-,∴实数a 的取值范围是[),e -+∞.故选:D. 【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥. 2.D解析:D 【分析】先判断函数的奇偶性和单调性,由此列不等式组,解不等式组求得x 的取值范围. 【详解】由210x ->解得1x <-或1x >,故函数的定义域为{|1x x <-或}1x >,且()()f x f x -=,所以函数()f x 为偶函数,且当1x >时,令22x x y -=+,'1412ln 2ln 2022x x x x y -⎛⎫=-=⨯> ⎪⎝⎭,所以22x x y -=+在1x >时递增,根据复合函数单调性可知()2ln 1y x =-在1x >时递增,所以函数()f x 在1x >时递增,故在1x <-时递减.由(1)(2)f x f x +<可知121121x x x x ⎧+<⎪+>⎨⎪>⎩,解得(,2)(1,)x -∞-∈+∞.故选D. 【点睛】本小题主要考查函数的单调性和奇偶性,考查利用导数判断函数的单调性,考查函数不等式的解法,属于中档题.3.B【分析】根据()y xf x '=的图像可得()'f x 在R 上的正负值,进而求得原函数的单调性,再结合()f x 的零点画出()f x 的简图,进而求得不等式()0f x >的解集.【详解】由图,当(),2x ∈-∞-时()0xf x '>,故()0f x '<,()f x 为减函数; 当()2,0x ∈-时()0xf x '<,故()0f x '>,()f x 为增函数; 当()0,2x ∈时()0xf x '<,故()0f x '<,()f x 为减函数; 由图,当()2,x ∈+∞时()0xf x '>,故()0f x '>,()f x 为增函数; 又3-和3是函数()f x 的两个零点,画出()f x 的简图如下:故不等式()0f x >的解集为()(),33,-∞-+∞.故选:B 【点睛】本题主要考查了根据关于导函数的图像,分析原函数单调性从而求得不等式的问题.需要根据题意分段讨论导函数的正负,属于中档题.4.B解析:B 【分析】设A (a ,2 a+1),B (a ,a+lna ),求出|AB |,利用导数求出|AB |的最小值. 【详解】设A (a ,2a+1),B (a ,a+lna ),∴|AB |=211a a lna a lna +-+=+-(), 令y 1x lnx =+-,则y ′=11x-, ∴函数在(0,1)上单调递减,在(1,+∞)上单调递增, ∴x =1时,函数y 的最小值为20>,∴|AB |=2111a a lna a lna a lna +-+=+-=+-(),其最小值为2.故选B .本题考查导数知识的运用,考查学生分析解决问题的能力及转化思想,利用求导得到函数的单调性进而求得最值是关键.5.C解析:C 【分析】求出函数导数,由题意知()0f x '≥即ln 1x k x+≥在(0,]e 上恒成立,利用导数求出函数ln 1()x g x x+=在(0,]e 上的最大值即可求得k 的范围. 【详解】()ln 1f x kx x '=--,由题意知()0f x '≥在(0,]e 上恒成立,即ln 1x k x +≥在(0,]e 上恒成立,令ln 1()x g x x+=,则2ln ()x g x x -'=, 当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,]x e ∈时,()0g x '<,()g x 单调递减,所以max ()(1)1g x g ==,故1k .故选C 【点睛】本题考查导数在研究函数中的应用,涉及已知函数的单调区间求参数的取值范围、利用导数求函数的最值,属于基础题.6.C解析:C 【分析】先假设函数()f x 不存在增区间,则()f x 单调递减,利用()f x 的导数恒小于零列不等式,将不等式分离常数后,利用配方法求得常数a 的取值范围,再取这个取值范围的补集,求得题目所求实数a 的取值范围. 【详解】若函数()f x 不存在增区间,则函数()f x 单调递减, 此时()1210f x ax x'=+-≤在区间()0,∞+恒成立, 可得2112a x x ≤-,则22111111244x x x ⎛⎫-=--≥- ⎪⎝⎭,可得18a ≤-,故函数存在增区间时实数a 的取值范围为1,8⎛⎫-+∞ ⎪⎝⎭.故选C. 【点睛】本小题主要考查利用导数研究函数的单调性,考查不等式恒成立问题的求解策略,属于中档题.7.D解析:D 【详解】()()()()()0()x xf x f x f xg x g x g x e e '-'=∴=<∴单调递减(1)(1)(0)(2)1f x f x f f +=-+∴==因此()g()(0)0x f x e x g x <⇔<⇔> 故选:D8.C解析:C 【分析】利用()f x 导数小于等于零恒成立,求出a 的范围,再由()2'2ag x x x=+在(]1,2上有零点,求出a 的范围,综合两种情况可得结果. 【详解】因为函数()3f x x ax =--在(],1-∞-上单调递减,所以()2'30f x x a =--≤对于一切(],1x ∈-∞-恒成立,得23,3x a a -≤∴≥-, 又因为()2ag x x x=-在区间(]1,2上既有最大值,又有最小值, 所以,可知()2'2ag x x x=+在(]1,2上有零点, 也就是极值点,即有解220ax x+=,在(]1,2上解得32a x =-, 可得82,32a a -≤<-∴-≤<-,故选C. 【点睛】本题主要考查“分离常数”在解题中的应用以及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间[],a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围. 9.C解析:C 【分析】令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()f x h t =,利用导数可求()max 27256h t =,从而得到()f x 的最值,故可得M 的取值范围,从而得到正确的选项. 【详解】3()2cos sin f x x x =,故622()4cos sin f x x x =,令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()4f x h t =,又()()()()()322131114h t t t t t t '=---=--, 若10,4t ⎛⎫∈ ⎪⎝⎭,则()0h t '>,故()h t '在10,4⎡⎤⎢⎥⎣⎦为增函数;若1,14t ⎛⎫∈ ⎪⎝⎭,则()0h t '<,故()h t '在1,14⎛⎤⎥⎝⎦为减函数; 故()max 27256h t =,故2max 27()64f x =,所以max ()8f x =,min ()8f x =-,当且仅当1sin 4cos 4x x ⎧=⎪⎪⎨⎪=⎪⎩时取最大值,当且仅当1sin 4cos 4x x ⎧=-⎪⎪⎨⎪=-⎪⎩时取最小值,故M ≥M故选:C. 【点睛】本题考查与三角函数有关的函数的最值,注意通过换元法把与三角函数有关的函数问题转化为多项式函数,后者可以利用导数来讨论,本题属于中档题.10.C解析:C 【分析】本题首先可根据题意得出2241ax ax fxx,令2241g xax ax ,然后根据()f x 在()1,3上不单调得出函数()g x 与x 轴在()1,3上有交点,最后分为0a =、0a ≠两种情况进行讨论,即可得出结果. 【详解】()2124124ax ax f x ax a x x--'=--=, 若()f x 在()1,3上不单调, 令2241g xax ax ,对称轴为1x =,则函数2241g xax ax 与x 轴在()1,3上有交点,当0a =时,显然不成立;当0a ≠时,则()()21680130a a g g ⎧∆=+>⎪⎨⋅<⎪⎩,解得16a >或12a <-,易知()f x 在()1,3上不单调的一个充分不必要条件是1,2a ⎛⎫∈+∞ ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查函数单调性问题,若函数在否个区间内不单调,则函数的导函数在这个区间内有零点且穿过x 轴,考查二次函数性质的应用,考查充分条件与必要条件的判定,是中档题.11.A解析:A 【分析】根据条件构造函数()32f x nx x n =+-,求得函数的导数,判断函数的导数,求出方程根的取值范围,进而结合等差数列的求和公式,即可求解. 【详解】设函数()32f x nx x n =+-,则()232f x nx '=+,当n 时正整数时,可得()0f x '>,则()f x 为增函数, 因为当2n ≥时,()323()()2()(1)01111n n n n f n n n n n n n n =⨯+⨯-=⋅-++<++++, 且()120f =>,所以当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n nx n ∈+, 所以(1)1,[(1)]n n n n n x n a n x n <+<+=+=, 因此2320201(2342020)101120192019a a a ++=++++=.故选:A. 【点睛】方法点睛:构造新函数()32f x nx x n =+-,结合导数和零点的存在定理,求得当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n nx n ∈+是解答的关键. 12.A解析:A 【分析】先求得函数()f x 是R 上的奇函数,把不等式转化为()22(1)f a f a ≤+,再利用导数求得函数的单调性,在把不等式转化为221a a ≤+,即可求解.【详解】 由题意,函数32()42x x f x x x e e =-+-的定义域为R , 又由3322()42e (42)()e x x x x f x x x x x e f x e-=-++-=--+-=-, 所以()f x 是R 上的奇函数,又因为2222()3423430x x f x x e x x e '=-++≥-+=≥, 当且仅当0x =时取等号,所以()f x 在其定义域R 上的单调递增函数,因为()22(1)0f a f a +--≤,可得()22(1)(1)f a f a f a ≤---=+, 所以221a a ≤+,解得112a ≤≤, 故实数a 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.故选:A【点睛】利用函数的基本性质求解与函数有关的不等式的方法及策略:1、求解函数不等式的依据是函数的单调性的定义.具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解. 二、填空题13.【分析】根据余弦型函数的性质求出当时函数的值域分类讨论利用指数型函数的性质求出函数在时的值域然后根据存在的定义进行求解即可【详解】因为所以因此在时单调递减所以有当时函数是单调递增函数当时即因为使得所 解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】根据余弦型函数的性质求出当1[0,1]x ∈时,函数()1y f x =的值域,分类讨论利用指数型函数的性质,求出函数()2y g x =在2[0,1]x ∈时的值域,然后根据存在的定义进行求解即可.【详解】因为1[0,1]x ∈,所以1[0,]x ππ∈,因此1()f x 在1[0,1]x ∈时,单调递减,所以有11(1)()(0)1()1f f x f f x ≤≤⇒-≤≤.当0a >时,函数1()2ax g x e a =-+是单调递增函数,当2[0,1]x ∈时, ()2(0)(1)g g x g ≤≤,即231()22a a g x e a -≤≤-+, 因为1x ∃、2[0,1]x ∈,使得()()12f x g x =, 所以有:()3121112a a e a ⎧-≤⎪⎪⎨⎪-+≥-⎪⎩, 令'1()(0)()12a a h a e a a h a e =-+>⇒=-, 因为0a >,所以'()0h a >,因此函数 ()h a 单调递增, 所以有3()(0)2h a h >=,因此不等式组(1)的解集为:12a ≥,而0a >,所以12a ≥; 当0a <时,函数1()2ax g x e a =-+是单调递减函数,当2[0,1]x ∈时, ()2(1)(0)g g x g ≤≤,即213()22a e a g x a -+≤≤-, 因为1x ∃、2[0,1]x ∈,使得()()12f x g x =, 所以有()1122312a e a a ⎧-+≤⎪⎪⎨⎪-≥-⎪⎩:, 令'1()(0)()12a a h a e a a h a e =-+<⇒=-, 因为0a <,所以'()0h a <,因此函数 ()h a 单调递减, 所以有3()(0)2h a h >=,因此不等式组 (2)的解集为空集, 综上所述:12a ≥. 故答案为:1,2⎡⎫+∞⎪⎢⎣⎭【点睛】关键点睛:根据不等式112a e a -+≥构造新函数,利用导数求出新函数的最小值是解题的关键.14.【分析】利用在上恒成立等价于在上恒成立利用正弦函数的性质得出在的最小值即可得出的范围【详解】在上恒成立即在上恒成立则故答案为:【点睛】本题主要考查了由函数的单调性求参数的范围属于中档题解析:[)1,-+∞【分析】利用()0f x '≥在0,2π⎡⎤⎢⎥⎣⎦4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立,利用4x π⎛⎫+⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦的最小值,即可得出a 的范围. 【详解】()(sin )cos (sin cos )04x x x x f x e x a e x e x x a e x a π⎤⎛⎫'=++=++=++≥ ⎪⎥⎝⎭⎦在0,2π⎡⎤⎢⎥⎣⎦上恒成立4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立 0,2x π⎡⎤∈⎢⎥⎣⎦,3,444x πππ⎡⎤∴+∈⎢⎥⎣⎦sin 4x π⎤⎛⎫∴+∈⎥ ⎪⎝⎭⎣⎦,4x π⎛⎫⎡+∈ ⎪⎣⎝⎭ 则1,1a a ≥-≥-故答案为:[)1,-+∞【点睛】本题主要考查了由函数的单调性求参数的范围,属于中档题.15.【分析】设出圆柱的底面半径和高求出体积表达式通过求导求出体积的最大值【详解】设圆柱底面半径高圆柱轴截面的周长为定值则求导可得:令可得当时当时当时圆柱体积的有最大值圆柱体积的最大值是:故答案为:【点睛解析:3216l π 【分析】设出圆柱的底面半径和高,求出体积表达式,通过求导求出体积的最大值.【详解】设圆柱底面半径R ,高H ,圆柱轴截面的周长l 为定值,则42R H l +=22l H R ∴=- 22232222l l V SH R H R R R R ππππ⎛⎫∴===-=- ⎪⎝⎭求导可得:26V Rl R ππ'=-令0V '=,可得260Rl R ππ-=,(6)0R l R π∴-=60l R ∴-=6l R ∴=当6l R >时,(6)0V R l R π'=-< 当6l R <时,(6)0V R l R π'=-> 当6l R =时,圆柱体积的有最大值,圆柱体积的最大值是:32322216l l V R R πππ=-= 故答案为:3216l π. 【点睛】本题主要考查了根据导数求最值,解题关键是掌握根据导数求最值的方法,考查了分析能力和计算能力,属于中档题.16.【分析】根据题意得到方盒底面是正方形边长为高为建立方盒容积的函数模型为再用导数法求解最值【详解】由题意得:方盒底面是正方形边长为高为所以方盒的容积为当时时所以当时取得最大值最大值为2故答案为:2【点 解析:2【分析】根据题意得到方盒底面是正方形,边长为32x -,高为x ,建立方盒容积的函数模型为()2323324129,02V x x x x x x =-⨯=-+<<,再用导数法求解最值. 【详解】 由题意得:方盒底面是正方形,边长为32x -,高为x ,所以方盒的容积为()2323324129,02V x x x x x x =-⨯=-+<<, 213122491222V x x x x ⎛⎫⎛⎫'=-+=-- ⎪⎪⎝⎭⎝⎭, 当102x <<时,0V '>,1322x <<时,0V '<,所以当12x =时,V 取得最大值,最大值为2. 故答案为:2【点睛】本题主要考查导数的实际问题中的应用,还考查了运算求解的能力,属于中档题. 17.【分析】求导后即可求得根据二次函数的性质可得再由恒成立问题的解决方法可得即可得解【详解】求导得则当时函数单调递减;当时函数单调递增;所以;函数为开口向下对称轴为的二次函数所以当时;由题意可知即故答案 解析:11a e≤-- 【分析】求导后即可求得()()11f x f e e --≥=-,根据二次函数的性质可得()()11g x g a ≤=+,再由恒成立问题的解决方法可得11a e -+≤-,即可得解.【详解】求导得()ln 1f x x '=+,则当()10,x e -∈时,()0f x '<,函数()f x 单调递减; 当()1,x e -∈+∞时,()0f x '>,函数()f x 单调递增;所以()()11f x f e e --≥=-; 函数()22g x x x a =-++为开口向下,对称轴为1x =的二次函数,所以当()0,x ∈+∞时,()()11g x g a ≤=+;由题意可知11a e -+≤-即11a e -≤--.故答案为:11a e -≤--.【点睛】本题考查了利用导数解决不等式恒成立问题,考查了推理能力,属于中档题.18.【分析】由可得则设即求函数的最小值求导得出单调性即可得到答案【详解】由即且所以则设函数则令得令得所以函数在上单调递减在上单调递增则函数的最小值为所以的最小值为故答案为:【点睛】本题考查根据题目条件构 解析:ln 22【分析】由()()12f x g x m ==,可得212ln ,m x m x e ==,则221ln m x x m e-=-,设()2ln x h x x e=-,即求函数()h x 的最小值,求导得出单调性即可得到答案. 【详解】由()()12f x g x m ==,即1x e m ==且0m >.所以212ln ,m x m x e ==,则221ln m x x m e-=- 设函数()2ln x h x x e =-,则()2212x e h x x e x ex-'=-=. 令()0h x '>,得x >,令()0h x '<,得0x <<所以函数()h x在0⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增.则函数()h x的最小值为11ln 222e h e =⨯-=. 所以21x x -的最小值为ln 22 故答案为:ln 22【点睛】本题考查根据题目条件构造函数,利用导数求函数的最小值,属于中档题. 19.【分析】求出时的值讨论函数的增减性得到的最小值让最小值大于等于0即可求出的范围【详解】解:由可得当时令解得且①当时为递增函数②当时为递减函数③当时为递增函数所以即解得故答案为:【点睛】考查学生理解函 解析:15a ≤≤【分析】求出()0f x '=时x 的值,讨论函数的增减性得到()f x 的最小值,让最小值大于等于0即可求出a 的范围.【详解】解:由(1)0f ≥可得1a ≥,2'()33f x ax =-,当1a ≥时,令2'()330f x ax =-=解得x =,且1>-< ①当1x -<<()0,()f x f x '>为递增函数, ②当x <<()0,()f x f x '<为递减函数, ③1x <<时,()f x 为递增函数.所以()010f f ⎧≥⎪⎨⎝⎭⎪-≥⎩,即3320320a a ⎧⎪-+≥⎨⎝⎭⎝⎭⎪-++≥⎩,解得15a ≤≤.故答案为:15a ≤≤.【点睛】考查学生理解函数恒成立时取条件的能力,以及利用导数求函数最值的能力.20.【分析】求得在处的切线的斜率结合图像求得的取值范围【详解】函数对于一次函数令解得(负根舍去)所以在上递增在上递减画出的图像如下图所示由图可知要使当时恒成立只需大于或等于在处切线的斜率而所以故答案为: 解析:[1,)+∞【分析】求得()f x 在0x =处的切线的斜率,结合图像,求得a 的取值范围.【详解】函数()2()1x f x x e =-,()01f =.对于一次函数()()10g x ax a =+>,()01g =.()()'221,0x f x x x e x =--+⋅≥,令'0f x ,解得021x =-(负根舍去),所以()f x 在()00,x 上递增,在()0,x +∞上递减,画出()f x 的图像如下图所示.由图可知,要使当0x ≥时,()1(0)f x ax a ≤+>恒成立,只需a 大于或等于()f x 在0x =处切线的斜率.而()'01f =,所以1a ≥.故答案为:[1,)+∞【点睛】本小题主要考查利用导数求解不等式恒成立问题,考查数形结合的数学思想方法,属于中档题.三、解答题21.(1)()8004cos cos sin θθθ+, ()1600cos cos ,sin θθθ- 1,14⎡⎫⎪⎢⎣⎭;(2)6π. 【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定sin θ的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ,故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ),△CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0),则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ)=8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2), 则()()()()222'sin sin 2sin 1211f cos sin sin sin θθθθθθθθ=--=-+-=--+. 令()'=0f θ,得θ=π6, 当θ∈(θ0,π6)时,()'>0f θ,所以f (θ)为增函数;当θ∈(π6,π2)时,()'<0fθ,所以f(θ)为减函数,因此,当θ=π6时,f(θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.22.(1)6x+2y-1=0.;(2)15e-3.【解析】试题分析:(I)根据已知中f(x)=x3+ax2+bx+1,我们根据求函数导函数的公式,易求出导数f'(x),结合f'(1)=2a,f'(2)=﹣b,计算出参数a,b的值,然后求出f(1)及f'(1)的值,然后代入点斜式方程,即可得到曲线y=f(x)在点(1,f(1))处的切线方程.(II)根据g(x)=f′(x)e﹣1求出函数g(x)的解析式,然后求出g(x)的导数g'(x)的解析式,求出导函数零点后,利用零点分段法,分类讨论后,即可得到函数g(x)的极值.解:(I)∵f(x)=x3+ax2+bx+1∴f'(x)=3x2+2ax+b.令x=1,得f'(1)=3+2a+b=2a,解得b=﹣3令x=2,得f'(2)=12+4a+b=﹣b,因此12+4a+b=﹣b,解得a=﹣,因此f(x)=x3﹣x2﹣3x+1∴f(1)=﹣,又∵f'(1)=2×(﹣)=﹣3,故曲线在点(1,f(1))处的切线方程为y﹣(﹣)=﹣3(x﹣1),即6x+2y﹣1=0.(II)由(I)知g(x)=(3x2﹣3x﹣3)e﹣x从而有g'(x)=(﹣3x2+9x)e﹣x令g'(x)=0,则x=0或x=3∵当x∈(﹣∞,0)时,g'(x)<0,当x∈(0,3)时,g'(x)>0,当x∈(3,+∞)时,g'(x)<0,∴g(x)=(3x2﹣3x﹣3)e﹣x在x=0时取极小值g(0)=﹣3,在x=3时取极大值g(3)=15e﹣3点评:本题主要考查了利用导数研究曲线上某点切线方程,以及方程组的求解等有关问题,属于中档题.23. (1) f(x)的单调增区间为(0,+∞) (2)略【分析】(1)对函数求导,根据定义域,即可判断其单调性,从而知单调区间.(2)证明当x>1时,2312ln 23x x x +<,只需证当x>1时,3221ln 032x x x -->, 可设3221()ln 32g x x x x =--,只需证明1x >时,()0>g x ,因此,利用导数研究()g x 的单调性,得出()(1)0g x g >>,结论得证.【详解】(1)依题意知函数的定义域为{x|x>0},∵f′(x)=x +,故f′(x)>0,∴f(x)的单调增区间为(0,+∞).(2)设g(x)=x 3-x 2-lnx ,∴g′(x)=2x 2-x -,∵当x>1时,g′(x)=>0,∴g(x)在(1,+∞)上为增函数,∴g(x)>g(1)=>0,∴当x>1时, x 2+lnx<x 3.【点睛】(1)求函数的单调区间,首先要考虑函数的定义域,然后求导,导函数大于0,可求单调递增区间,导函数小于0,可求单调递减区间.对于单调函数只需说明导函数大于0(小于0)即可.(2)证明不等式一般是证明与函数有关的不等式在某个范围内成立,解题时可转化为求函数最值(或值)的问题处理.24.(1)1a =-,1b =,证明见解析;(2)(),2e -∞-.【分析】(1)先求出()21x f x e x =--,则()()21xg x f x x x e x =+-=--,利用导数求出()()min 00g x g ==,不等式即得证;(2)价于()f x k x >对任意的0,恒成立,令()()f x x xϕ=,0x >,求出函数()y x ϕ=的最小值即得解.【详解】(1)根据题意,函数()2x f x e x a =-+,则()2xf x e x '=-,则()01f b '==, 由切线方程y bx =可得切点坐标为()0,0,将其代入()y f x =,解得1a =-, 故()21x f x e x =--,则()()21xg x f x x x e x =+-=--, 则()10xg x e '=-=,得0x =, 当(),0x ∈-∞,0g x,函数y g x 单调递减; 当()0,x ∈+∞,0g x ,函数y g x 单调递增;所以()()min 00g x g ==,所以()2f x x x ≥-+.(2)由()f x kx >对任意的当()0,x ∈+∞恒成立等价于()f x k x>对任意的0,恒成立, 令()()f x x xϕ=,0x >, 得()()()()()()()22222111x x xx e x e x x e x xf x f x x x x xϕ-------'-'===, 由(1)可知,当()0,x ∈+∞时,10x e x -->恒成立, 令()0ϕ'>x ,得1x >;()0ϕ'<x ,得01x <<, 所以()y x ϕ=的单调增区间为1,,单调减区间为0,1,故()()min 12x e ϕϕ==-,所以()min 2k x e ϕ<=-. 所以实数k 的取值范围为(),2e -∞-. 【点睛】本题主要考查利用导数求函数的最值,考查利用导数研究不等式的恒成立问题,考查利用导数证明不等式,意在考查学生对这些知识的理解掌握水平. 25.(1)f (x )=x 2-2x -3;(2)1个. 【分析】(1)根据一元二次不等式的解集,可设f (x )=a (x +1)(x -3),再结合f (x )的最小值为-4即可求出a 的值,得到函数f (x )的解析式;(2)对g (x )求导可以得到g (x )的单调区间,在每个单调区间上研究函数g (x )的零点情况即可. 【详解】(1)∵f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R}, ∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0. ∴f (x )min =f (1)=-4a =-4,a =1. 故函数f (x )的解析式为f (x )=x 2-2x -3.(2)由(1)知g (x )=223x x x---4ln x =x -3x -4ln x -2,∴g (x )的定义域为(0,+∞),g ′(x )=1+23x -4x=2(1)(3)x x x --, 令g ′(x )=0,得x 1=1,x 2=3.当x 变化时,g ′(x ),g (x )的取值变化情况如下表:g (x ) 极大值 极小值当x >3时,g (e 5)=e 5-53e-20-2>25-1-22=9>0. 又因为g (x )在(3,+∞)上单调递增, 因而g (x )在(3,+∞)上只有1个零点, 故g (x )仅有1个零点. 【点睛】本题主要考查二次函数和导数在研究函数中的应用.26.(1)答案见解析;(2)2124,24e e ⎡⎫-+⎪⎢⎣⎭.【分析】(1)求导,对参数进行分类讨论,根据不同情况下函数的单调性,即可求得函数的最小值;(2)根据题意,求得不同情况下()f x 的值域,结合其值域为()f x 的子集,列出不等式,则问题得解. 【详解】(1)()2x af x x-'=1a ≤时,[]()()1,,0,x e f x f x '∈≥递增,()()min 112f x f a ==-, 2a e ≥时,[]()()1,,0,x e f x f x '∈≤递减,()()2min22e f x f e a ==-,21a e <<时,x a ⎡∈⎣时()0,()f x f x '<递减, ,x a e ⎡⎤∈⎣⎦时()0,()f x f x '>递增, 所以()min ln 22a af x fa a ==-- 综上,当min 11,()2a f x a ≤=-; 当()2min 1ln 22a aa e f x a <<=--, 当()22min 22e a ef x a ≥=-,(2)因为对于任意的1[0,1]x ∈都存在唯一的[]21,e x ∈使得()()12g x f x =成立, 所以()[],0,1g x x ∈的值域是()([1,])f x x e ∈的值域的子集.因为()1xg x e '=-[0,1],()0,()x g x g x '∈≥递增,()g x 的值域为()()[]0,10,2g g e =-⎡⎤⎣⎦(i )当1a ≤时,()f x 在[]1,e 上单调递增,又()()211,222e f a f e a =-=-,所以()f x 在[1,e]上的值域为21[,2]22ea a --,所以2102222a e a e ⎧-≤⎪⎪⎨⎪-≥-⎪⎩,即112a . (ii )当21a e <<时,因为x ⎡∈⎣时,()f x递减,x e ⎤∈⎦时,()f x 递增,且()10,0f f<<,所以只需()2f e e ≥-即2222e a e -≥-,所以21142e ea <≤-+ (iii )当2a e ≥时,因为()f x 在[1,]e 上单调递减,且()()1102f x f a ≤=-<, 所以不合题意.综合以上,实数a 的取值范围是2124,24e e ⎡⎫-+⎪⎢⎣⎭.【点睛】本题考查求含参函数最值得求解,涉及利用导数求函数值域的问题,属综合中档题.。
北师大版高中数学选修2-2第三章《导数应用》导数在实际问题中的应用(二) 课件

分析:设法把湿周l 求出来,这是关键
B
h
2013-9-14
1 解:由梯形面积公式,得 S= (AD+BC)h,其中 AD=2DE+BC, 2 E D A 3 2 3 DE= h,BC=b∴AD= h+b, 3 3 h 1 2 3 3 600 h 2b)h ( h b)h ① ∴S= ( B C 2 3 3 b h 2 2 h ,AB=CD.∴l= h ×2+b② ∵CD= cos30 3 3
4 3 S 3 S 3 h h 由①得 b= h,代入②,∴l= 3 h 3 h 3
S 3h h
S S S S l′= 3 2 =0,∴h= 4 , 当 h< 4 时,l′<0,h> 4 时,l′>0. h 3 3 3
24 3 S ∴h= 4 时,l 取最小值,此时 b= 3 3
2013-9-14
当r 2时, f r 0.
' '
由于瓶子的半径为 , 所以每瓶饮料的利润是 r 4 3 r3 2 2 y f r 0.2 πr 0.8πr 0.8π r , 3 3 0 r 6. 令f ' r 0.8π r 2 2r 0.
'
②
半径为 cm时,利润最大 . 2013-9-14 6
换一个角度: 如果 我 们不用导 数工具 , 直接 从函数的图象 图 ( 1.4 4)上观察, 你有什么发现? 从图象上容 易看出, 当 r 3 时,
f 3 0, 即瓶子半径是 3cm 时, 饮料的利润与饮料瓶的成本恰
y
r3 2 f r 0.8π r 3
北师大版高中数学选修2-2第三章《导数应用》导数与函数的极值 课件

北师大版高中数学选修2-2第三 章《导数应用》
一、教学目标:1、知识与技能:⑴理解 函数极值的概念;⑵会求给定函数在某区 间上的极值。2、过程与方法:通过具体 实例的分析,会对函数的极大值与极小值。 3、情感、态度与价值观:让学生感悟由 具体到抽象,由特殊到一般的思想方法。 二、教学重点:函数极值的判定方法 教学难点:函数极值的判定方法 三、教学方法:探究归纳,讲练结合 四、教学过程
a2 练习1:求函数 f ( x ) x x (a 0) 的极值. 解:函数的定义域为 ( ,0) (0,), a 2 ( x a )( x a ) f ( x ) 1 2 . 2 x x
令 f ( x ) 0 ,解得x1=-a,x2=a(a>0). 当x变化时, f ( x ),f(x)的变化情况如下表: x (-∞,-a) -a (-a,0) (0,a) a (a,+∞) f’(x) + 0 0 + f(x) ↗ 极大值-2a ↘ ↘ 极小值2a ↗ 故当x=-a时,f(x)有极大值f(-a)=-2a;当x=a时,f(x)有 极小值f(a)=2a. 说明:本题中的极大值是小于极小值的,这充分表明 极值与最值是完全不同的两个概念.
y
f ( x4 ) f ( x1 )
o
a
X1
X2
X3
X4
b
x
(3)极大值与极小值之间无确定的大小关系. 即一个函数的极大值未必大于极小值,如f(x4)>f(x1).
(4)函数的极值点一定出现在区间的内部,区间的端点 不能成为极值点.而使函数取得最大值、最小值的点可能 在区间的内部,也可能在区间的端点.
y
f ( x4 ) f ( x1 )
(完整版)数学选修2-2练习题及答案

目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
(易错题)高中数学高中数学选修2-2第三章《导数应用》检测卷(有答案解析)(1)

一、选择题1.已知函数()ln f x x ax =-有两个零点,则实数a 的取值范围为( )A .1a e<B .0a <C .0a ≤D .10a e<<2.已知函数()32f x x bx cx =++的图象如图所示,则2212x x +等于( )A .23B .43C .83D .1633.已知函数()32f x x x x a =--+,若曲线()y f x =与x 轴有三个不同交点,则实数a 的取值范围为( )A .11,27⎛⎫-∞-⎪⎝⎭B .1,C .5,127⎛⎫-⎪⎝⎭D .11,127⎛⎫-⎪⎝⎭4.以下不等式不成立的是( ) A .sin x x >,0,2x π⎛⎫∈ ⎪⎝⎭B .1ln x x -≥,()0,x ∈+∞C .10x e x --≥,x ∈RD .ln 10x x e +->,()0,x ∈+∞5.函数()ln sin f x x x =+(x ππ-≤≤且0x ≠)的大致图像是( )A .B .C .D .6.若1201x x ,则( )A .2121ln ln xxe e x x ->- B .2121ln ln x x ee x x -<-C .1221xxx e x e > D .1221xxx e x e <7.已知函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是( ) A .(0,1)(2,3)⋃B .(0,2)C .(0,3)D .(0,1][2,3)⋃8.已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x <', 且(1)y f x =+为偶函数,(2)1f =,则不等式()x f x e <的解集为( ) A .4(,)e -∞B .4(,)e +∞C .(,0)-∞D .(0,)+∞9.已知函数(),2021,0x e x f x x x x ⎧>=⎨-++≤⎩,若函数()()g x f x kx =-恰好有两个零点,则实数k 等于(e 为自然对数的底数)( ) A .1 B .2 C .e D .2e10.已知函数()2x f x e =+,2()21g x x x =-+,若存在123,,,[0,1]n x x x x ∈,使得*122-1122-1()()()()+()()()()()+(),N n n n n n n f x f x f x g x g x g x g x g x f x f x n --++++=++++∈成立,则n 的最大值为( )(注:=2.71828e 为自然对数的底数)A .9B .8C .7D .611.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( )A .14a <<B .24a <<C .48a <<D .28a <<12.已知函数()22ln f x x x =-,若关于x 的不等式()0f x m -≥在[]1,e 上有实数解,则实数m 的取值范围是( ) A .()2,2e -∞-B .(2,2e ⎤-∞-⎦C .(],1-∞D .(),1-∞二、填空题13.已知函数()24f x x ax =++(a ∈R ),()ln 2xg x x=+,若方程()0f g x ⎡⎤=⎣⎦有三个实根1x 、2x 、3x ,且123x x x <<,则2312123ln ln ln 222x x x x x x ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值为______.14.函数()()2ln 23f x x x =++在区间31,44⎡⎤-⎢⎥⎣⎦上的最大值与最小值之和为____________.15.已知定义在R 上的可导函数()f x 的导函数为()f x ',对任意实数均有(1)()'()0x f x xf x -+>成立,且()1y f x e =+-是奇函数,则不等式()0x xf x e ->的解集是_________.16.已知函数()e e xxf x -=-,有以下命题:①()f x 是奇函数; ②()f x 单调递增函数;③方程()22f x x x =+仅有1个实数根;④如果对任意(0,)x ∈+∞有()f x kx >,则k 的最大值为2. 则上述命题正确的有_____________.(写出所有正确命题的编号) 17.已知函数2()f x x a =+,ln ()2e xg x x x=+,其中e 为自然对数的底数,若函数()y f x =与函数()y g x =的图象有两个交点,则实数a 的取值范围是________.18.某生产厂家生产一种产品的固定成本为1万元,并且每生产1百台产品需增加投入0.5万元.已知销售收入()R x (万元)满足()32191882R x x x x =-++(其中x 是该产品的月产量,单位:百台,08x <<),假定生产的产品都能卖掉,则当公司每月产量为______百台时,公司所获利润最大.. 19.已知函数21()ln 2f x x a x =+,若对任意两个不等的正实数1x ,2x 都有()()12122f x f x x x ->-恒成立,则实数a 的取值范围是____20.已知函数2()2ln af x x x=+,其中0a >,若()2f x ≥恒成立,则实数a 的取值范围为________.三、解答题21.设函数()()()ln 10f x x x =+≥,()()()101x x a g x x x ++=≥+.(1)证明:()2f x x x ≥-. (2)若()()f x xg x +≥恒成立,求a 的取值范围; (3)证明:当*n ∈N 时,()2121ln 149n n n-+>+++. 22.已知函数()ln 1x f x ae x =--.(1)设2x =是()f x 的极值点,求()f x 的单调区间; (2)证明:当1a e≥时,()0f x ≥. 23.已知函数2()f x alnx bx =-,a ,b R ∈.若()f x 在1x =处与直线12y 相切. (1)求a ,b 的值;(2)求()f x 在1[e,]e 上的最大值.24.定义:若一个函数存在极大值,且该极大值为负数,则称这个函数为“YZ 函数”. (1)判断函数()1x xf x e=-是否为“YZ 函数”,并说明理由; (2)若函数()()ln g x x mx m R =-∈是“YZ 函数”,求实数m 的取值范围; (3)已知()32111323h x x ax bx b =++-,()0,x ∈+∞,a 、b R ∈,求证:当2a ≤-,且01b <<时,函数()h x 是“YZ 函数”.25.一件要在展览馆展出的文物类似于圆柱体,底面直径为0.8米,高1.2米,体积约为0.5立方米,为了保护文物需要设计各面是玻璃平面的正四棱柱形无底保护罩,保护罩底面边长不少于1.2米,高是底面边长的2倍,保护罩内充满保护文物的无色气体,气体每立方米500元,为防止文物发生意外,展览馆向保险公司进行了投保,保险费用和保护罩的占地面积成反比例,当占地面积为1平方米时,保险费用为48000元. (1)若保护罩的底面边长为2.5米,求气体费用和保险费用之和; (2)为使气体费用和保险费用之和最低,保护罩该如何设计? 26.已知函数ln xy x=(0x >). (1)求这个函数的单调区间;(2)求这个函数在区间21,e e⎡⎤⎢⎥⎣⎦的最大值与最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求出()f x 的导数,可得0a ≤时函数单调递增,不满足题意,0a >时,利用()max 0f x >可得.【详解】可知()f x 的定义域为()0,∞+,()11ax f x a x x-'=-=, 当0a ≤时,()0f x '≥恒成立,()f x 单调递增,则()f x 不可能有两个零点; 当0a >时,10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增;1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减,则()f x 在1x a=处取得极大值即最大值11ln 1f a a ⎛⎫=- ⎪⎝⎭,要满足()ln f x x ax =-有两个零点,则1ln 10a ->,解得10a e<<, 综上,10a e<<. 故选:D. 【点睛】方法点睛:本题考查利用导数研究函数的零点,根据零点个数求参数,一般如下步骤: (1)求出函数的定义域,求出函数的导数;(2)先讨论参数范围(以明显使得导数为正或负为参数界点讨论); (3)利用导数正负讨论函数单调性,得出极值或最值; (4)以极值或最值列出满足条件的等式或不等式,即可求出.2.C解析:C 【分析】先利用函数的零点,计算b 、c 的值,确定函数解析式,再利用函数的极值点为x ,xz ,利用导数和一元二次方程根与系数的关系计算所求值即可 【详解】由图可知,()0f x =的3个根为0,1,2,()()110,28420f b c f b c ∴=++==++=,解得3,2b c =-=,又由图可知,12,x x 为函数f (x )的两个极值点,()23620f x x x ∴=-+='的两个根为12,x x ,121222,3x x x x ∴+==, ()222121212482433x x x x x x ∴+=+-=-=, 故选:C 【点睛】本题主要考查了导数在函数极值中的应用,一元二次方程根与系数的关系,整体代入求值的思想方法.3.C解析:C 【分析】根据曲线()y f x =与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点,即可求出实数a 的取值范围. 【详解】函数()32f x x x x a =--+与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点.又()2321(31)(1)g x x x x x '=-++=-+-,∴在1,,(1,)3⎛⎫-∞-+∞ ⎪⎝⎭上,()0g x '<;在1,13⎛⎫- ⎪⎝⎭上,()0g x '>.∴()15327g x g ⎛⎫=-=- ⎪⎝⎭极小值,()()11g x g ==极大值,5127a ∴-<<. 故选:C 【点睛】本题考查函数的零点及导数与极值的应用,考查了转化思想和数形结合思想,属于中档题.4.D解析:D 【分析】针对ABC 选项中的不等式构造函数,然后利用导数研究函数的单调性,由此判断出不等式成立,利用特殊值判断出D 选项不等式不成立. 【详解】A.令()sin x x x f -=,0,2x π⎛⎫∈ ⎪⎝⎭,由()cos 10x x f '=->,则()f x 在0,2x π⎛⎫∈ ⎪⎝⎭单调递增,则()()00sin 0sin f x f x x x x >=⇒->⇒>,不等式成立 B.令()1ln f x x x =--,()0,x ∈+∞,由()111x f x x x-'=-=,当()0,1x ∈,()0f x '<,()f x 单调递减,当()1,x ∈+∞,()0f x '>,()f x 单调递增,则()()101ln 01ln f x f x x x x ≥=⇒--≥⇒-≥,不等式成立C.令()1xf x e x =--,x ∈R ,由()1xf x e '=-,当(),0x ∈-∞,()0f x '<,()f x 单调递减,当()0,x ∈+∞,()0f x '>,()f x 单调递增, 则()()0010xf x f e x =⇒--≥≥,不等式成立D.令()ln 1xf x x e =+-,()0,x ∈+∞,当1x =时,()110f e =-<,所以不等式不成立.故选:D 【点睛】本小题主要考查利用导数证明不等式,属于中档题.5.D解析:D 【分析】利用函数的奇偶性排除选项,能过导数求解函数极值点的个数,求出()f π的值,从而可判断选项 【详解】解:因为()ln sin()ln sin ()f x x x x x f x -=-+-=+=, 所以()f x 为偶函数,故排除B当0πx <≤时,()ln sin f x x x =+,则'1()cos f x x x=+, 令'()0f x =,则1cos x x=-, 作出1,cos y y x x==-的图像如图,可知两个函数图像有一个交点,就是函数的极值点,所以排除A 因为()ln 1f ππ=>,所以排除C ,当0x x =时,'0()0f x =,故0(0,)x x ∈时,函数()f x 单调递增,当0(,)x x π∈时,函数()f x 单调递减,所以D 满足. 故选:D 【点睛】此题考查了与三角函数有关的函数图像识别,利用了导数判断函数的单调性,考查数形结合的思想,属于中档题6.C解析:C 【分析】令()x e f x x=,(01)x <<,()()ln 01xg x e x x =-<<,求出函数的导数,通过讨论x的范围,求出函数的单调区间,从而判断结论. 【详解】令()x e f x x =,(01)x <<,则2(1)()0x e x f x x-'=<, 故()f x 在(0,1)递减,若1201x x ,则12()()f x f x >,故1212x x e e x x >,即1221x xx e x e >,故C 正确,D 不正确; 令()()ln 01xg x e x x =-<<,则11()x xxe g x e x x-'=-=,令()1x h x xe =-,可知()h x 在()0,1单调递增,且(0)10,(1)10h h e =-<=->,则存在()00,1x ∈,使得0()0h x =, 则当()00,x x ∈时,()0h x <,即()0g x '<,()g x 在()00,x 单调递减, 当()0,1x x ∈时,()0h x >,即()0g x '>,()g x 在()0,1x 单调递增, 所以()g x 在()0,1不单调,故A ,B 错误. 故选:C. 【点睛】本题考查了函数的单调性问题,考查导数的应用,是一道中档题.7.A解析:A 【详解】试题分析:此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以01{113t t <<<+<或13{31t t <<<+,01t ∴<<或23t <<,故选A.考点:函数的单调性与导数.8.D解析:D 【详解】()()()()()0()x xf x f x f xg x g x g x e e'-'=∴=<∴单调递减 (1)(1)(0)(2)1f x f x f f +=-+∴==因此()g()(0)0x f x e x g x <⇔<⇔> 故选:D9.C解析:C【分析】求得y kx =与x y e =的图象相切时的k 值,结合图象可得结论. 【详解】()()0g x f x kx =-=,()f x kx =,作出()f x 的图象,及直线y kx =,如图,∵0x ≤时,221y x x =-++是增函数,0x =时,1y =,无论k 为何值,直线y kx =与()(0)y f x x =≤都有一个交点且只有一个交点,而()g x 有两个零点,∴直线y kx =与()(0)x f x e x =>只能有一个公共点即相切.设切点为00(,)x y ,()x f x e '=,00()xf x e '=,切线方程为000()-=-xx y e e x x ,切线过原点,∴000x x ee x -=-⋅,01x =,∴(1)kf e '==,故选:C .【点睛】方法点睛:本题考查函数零点个数问题,解题方法是把零点转化为直线与函数图象交点个数,再转化为求直线与函数图象相切问题.10.D解析:D 【分析】构造函数()()()h x f x g x =-,利用导数研究函数的单调性,求出函数的值域即可求解. 【详解】 由122-1()()()()+()n n n f x f x f x g x g x -++++*122-1()()()()+(),N n n n g x g x g x f x f x n -=++++∈,变形为:()()()()()()112222n n f x g x f x g x f x g x ---+-+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()()()()11n n n n f x g x f x g x --=-+-⎡⎤⎡⎤⎣⎦⎣⎦,设()()()h x f x g x =-,则()()()()()1122n n n h x h x h x h x h x --+=+++,()()()()2222121x x h x f x g x e x x e x x =-=+--+=-++,()22'=-+x h x e x ,当[]0,1x ∈时,()0h x '>,所以[]0,1x ∈时,()h x 单调递增,()22h x e ∴≤≤+,()()()122n h x h x h x -∴++的值域为()()()22,22n e n -+-⎡⎤⎣⎦, 若存在123,,,[0,1]nx x x x ∈,使得()()()()()1122n n n h x h x h x h x h x --+=+++,则()42224n e ≤-≤+,44n e ∴≤≤+,且n *∈N ,n ∴的最大值为6.故选:D 【点睛】关键点点睛:本题考查了导数研究函数方程的根,解题的关键是构造函数()()()h x f x g x =-,考查了运算能力、分析能力. 11.D解析:D 【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解.【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2ax =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >; 当0x >时,()2f x x '=-,令2x a -=-,解得 2ax =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <,综上:a 的取值范围为28a <<故选:D 【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.12.B解析:B【分析】由题意可得()max m f x ≤,利用导数求出函数()f x 在区间[]1,e 上的最大值,由此可求得实数a 的取值范围.【详解】由题意可知,存在[]1,3x ∈,使得()m f x ≤,则()max m f x ≤.()22ln f x x x =-,则()()()22112222x x x f x x x x x -+-'=-==, 当[]1,3x ∈时,()0f x '≥,所以,函数()f x 在区间[]1,e 上单调递增,则()()2max 2f x f e e ==-,22m e ∴≤-, 因此,实数m 的取值范围是(2,2e ⎤-∞-⎦. 故选:B.【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.二、填空题13.16【分析】利用导数画出函数的大致图象数形结合可得有两个不等实根满足且即可得解【详解】因为所以令得所以当时函数单调递增;当时函数单调递减又故可画出函数的大致图象如图所示:因为方程有三个实根故有两个不 解析:16【分析】利用导数画出函数()g x 的大致图象,数形结合可得()0f x =有两个不等实根,满足124t t =、121022t t e<<<<+,且111ln 2x t x =+,32223ln ln 22x x t x x =+=+,即可得解. 【详解】因为()ln 2x g x x=+,()0,x ∈+∞,所以()21ln x g x x-'=,令()0g x '=得x e =, 所以当()0,x e ∈时,()0g x '>,函数()g x 单调递增;当(),x e ∈+∞时,()0g x '<,函数()g x 单调递减,又()12g e e =+, 故可画出函数()g x 的大致图象,如图所示:因为方程()0f g x =⎡⎤⎣⎦有三个实根,故()0f x =有两个不等实根,不妨设两根为1t ,2t ,且12t t <,则124t t =,所以121022t t e <<<<+, 则111ln 2x t x =+,32223ln ln 22x x t x x =+=+, 所以()22223121212123ln ln ln 22216x x x t t t t x x x ⎛⎫⎛⎫⎛⎫+++=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故答案为:16.【点睛】本题考查了函数的零点与方程的根的关系,考查了利用导数研究函数的单调性和极值,属于中档题.14.【分析】利用导数求得函数的单调性进而求得极值和区间端点处的函数值值找出函数的最大值和最小值即可【详解】解:由题得的定义域为由得或因为所以时单调递增;时单调递减;所以为极小值点且又因为又所以所以所以故 解析:5ln 716+【分析】利用导数求得函数的单调性,进而求得极值和区间端点处的函数值值,找出函数的最大值和最小值即可.【详解】解:由题得()f x 的定义域为3,2⎛⎫-+∞ ⎪⎝⎭, ()22(1)(21)22323x x f x x x x ++'=+=++ 由()0f x '=得,1x =-或12x =-,因为31,44x ⎡⎤∈-⎢⎥⎣⎦所以11,24⎛⎤- ⎥⎝⎦时,()0f x '>,()f x 单调递增; 31,42x ⎡⎤∈--⎢⎥⎣⎦时,()0f x '<,()f x 单调递减; 所以12x =-为极小值点,且11ln 224f ⎛⎫-=+ ⎪⎝⎭, 又因为339ln 4216f ⎛⎫-=+ ⎪⎝⎭,171ln 4216f ⎛⎫=+ ⎪⎝⎭ 又13711ln ln 2044322f f ⎛⎫⎛⎫--=->-> ⎪ ⎪⎝⎭⎝⎭,所以max 171()ln 4216f x f ⎛⎫==+ ⎪⎝⎭ 所以()min 11ln 224f x f ⎛⎫=-=+ ⎪⎝⎭. 所以max min 7115()()lnln 2ln 7216416f x f x +=+++=+. 故答案为:5ln 716+. 【点睛】 本题主要考查用导数求函数的最值,属于中档题.15.【分析】将问题转化为解不等式令根据函数的单调性以及奇偶性求出的范围即可【详解】由可得令则故在上单调递增又是奇函数故故解得:故答案为:【点睛】本题主要考查了函数的单调性问题考查导数的应用以及函数的奇偶 解析:()1,+∞【分析】将问题转化为解不等式()1x xf x e >,令()()x xf x g x e =,根据函数的单调性以及奇偶性求出x 的范围即可.【详解】由()0x xf x e ->可得()1x xf x e >,令()()x xf x g x e =,则()()()()10xx f x xf x g x e -+''=>,故()g x 在R 上单调递增, 又()1y f x e =+-是奇函数,故()1f e =,()11g =,故()()1g x g >,解得:1x >,故答案为:()1,+∞.【点睛】本题主要考查了函数的单调性问题,考查导数的应用以及函数的奇偶性,属于中档题. 16.①②④【分析】根据题意依次分析4个命题对于①由奇函数的定义分析可得①正确;对于②对函数求导分析可得分析可得②正确;对于③分析可得即方程有一根进而利用二分法分析可得有一根在之间即方程至少有2跟故③错误解析:①②④【分析】根据题意,依次分析4个命题,对于①、由奇函数的定义分析可得①正确;对于②、对函数()x x f x e e -=-求导,分析可得()0f x '>,分析可得②正确;对于③、2()2x x g x e e x x -=---,分析可得(0)0g =,即方程2()2f x x x =+有一根0x =,进而利用二分法分析可得()g x 有一根在(3,4)之间,即方程2()2f x x x =+至少有2跟,故③错误,对于④、由函数的恒成立问题的分析方法,分析可得④正确,综合可得答案.【详解】解:根据题意,依次分析4个命题:对于①、()x x f x e e -=-,定义域是R ,且()()x x f x e e f x --=-=-,()f x 是奇函数;故①正确;对于②、若()x x f x e e -=-,则()0x x f x e e -'=+>,故()f x 在R 递增;故②正确; 对于③、2()2f x x x =+,令2()2x x g x e e x x -=---,令0x =可得,(0)0g =,即方程2()2f x x x =+有一根0x =,()3313130g e e =--<,()4414200g e e =-->, 则方程2()2f x x x =+有一根在(3,4)之间,故③错误;对于④、如果对任意(0,)x ∈+∞,都有()f x kx >,即0x x e e kx --->恒成立, 令()x x h x e e kx -=--,且(0)0h =,若()0h x >恒成立,则必有()0x x h x e e k -'=+->恒成立,若0x x e e k -+->,即1x x x xk e e e e -<+=+恒成立,而12x xe e +,若有2k <, 故④正确;综合可得:①②④正确;故答案为:①②④.【点睛】本题考查函数的奇偶性、单调性的判定,以及方程的根与恒成立问题的综合应用,③关键是利用二分法,属于中档题.17.【分析】将已知等价转化为函数与函数的图象有两个交点分别作出图象观察其只需满足二次函数顶点低于函数的顶点从而构建不等式解得答案【详解】函数与函数的图象有两个交点等价于函数与函数的图象有两个交点对函数求 解析:21,e e ⎛⎫-∞+ ⎪⎝⎭ 【分析】将已知等价转化为函数22y x ex a =-+与函数ln x y x =的图象有两个交点,分别作出图象,观察其只需满足二次函数顶点低于函数ln x y x =的顶点,从而构建不等式,解得答案. 【详解】函数()y f x =与函数()y g x =的图象有两个交点,等价于函数22y x ex a =-+与函数ln x y x =的图象有两个交点, 对函数ln x y x =求导,得21ln x y x -'=,()0,x e ∈,0y '>, 函数ln x y x =单调递增;(),x e ∈+∞,0y '<, 函数ln x y x =单调递减,在x e =处取得极大值,也是最大值为1e, 对二次函数22y x ex a =-+,其对称轴为x e =,顶点坐标为()2,e a e - 分别作出图象,其若要有两个交点,则2211a e a e e e-<⇒<+故答案为:21,e e ⎛⎫-∞+ ⎪⎝⎭ 【点睛】本题考查由函数图象的交点个数求参数的取值范围,属于中档题.18.6【分析】设销售利润为利用导数求出的最大值即可【详解】设销售利润为依题意可得当时当时所以在单调递增在单调递减所以时取得极大值也是最大值所以当公司每月生产6百台时获得利润最大故答案为:6【点睛】本题考 解析:6【分析】 设销售利润为1(),()()12g x g x R x x =--,利用导数求出()g x 的最大值即可. 【详解】设销售利润为()g x ,依题意可得, 3232191119()11,(0,8)882288g x x x x x x x x =-++--=-+-∈, 2393()(6)848g x x x x x '=-+=--, 当(0,6)x ∈时,()0g x '>,当(6,8)x ∈时,()0g x '<,所以()g x 在(0,6)单调递增,在(6,8)单调递减,所以6x =时,()g x 取得极大值,也是最大值,所以当公司每月生产6百台时,获得利润最大.故答案为:6.【点睛】本题考查函数应用问题以及运用导数求最值,考查数学建模、数学计算能力,属于中档题. 19.【分析】由条件不妨设恒成立即为恒成立构造函数只需在上为增函数即可即求恒成立时的取值范围【详解】依题意不妨设恒成立恒成立设即在上为增函数恒成立只需的取值范围是故答案为:【点睛】本题考查函数的单调性求参 解析:[1,)+∞【分析】由条件不妨设12x x >,()()12122f x f x x x ->-恒成立,即为()()112222f x x f x x ->-恒成立,构造函数()()2g x f x x =-,只需()g x 在(0,)+∞上为增函数即可,即求()0g x '≥恒成立时a 的取值范围.【详解】依题意,不妨设12x x >,()()12122f x f x x x ->-恒成立, ()()112222f x x f x x ->-恒成立,设()()2g x f x x =-即12()(),()g x g x g x >在(0,)+∞上为增函数,2()2,()1220ln a g x x g x x x a x x'=-+-+=≥, 22,(0,)a x x x ≥-+∈+∞恒成立, 只需2max (2)1,(0,)a x x x ≥-+=∈+∞,a ∴的取值范围是[1,)+∞.故答案为:[1,)+∞.【点睛】本题考查函数的单调性求参数范围,构造函数把问题等价转化为函数的单调性是解题的关键,属于中档题.20.【分析】恒成立只需即可求出得出单调区间进而求出求解即可得出结论【详解】由得又函数的定义域为且当时;当时故是函数的极小值点也是最小值点且要使恒成立需则∴的取值范围为故答案为:【点睛】本题考查应用导数求 解析:[),e +∞【分析】()2f x ≥恒成立,只需min ()2f x ≥即可,求出()f x ',得出单调区间,进而求出min ()f x ,求解即可得出结论.【详解】 由2()2ln a f x x x =+,得()233222()x a a f x x x x-'=-+=, 又函数()f x 的定义域为(0,)+∞且0a >,当0x <<()0f x '<;当x ()0f x '>,故x =()f x 的极小值点,也是最小值点,且ln 1f a =+,要使()2f x ≥恒成立,需ln 12a +≥,则a e ≥,∴a 的取值范围为[),e +∞.故答案为:[),e +∞.【点睛】本题考查应用导数求函数的最值,恒成立问题等价转化为函数的最值,考查计算求解能力,属于中档题.三、解答题21.(1)证明见解析;(2)(],1-∞;(3)证明见解析.【分析】(1)令函数()()2ln 1h x x x x =+-+,[)0,x ∈+∞,利用导数判断函数单调递增,从而可得()()00h x h ≥=,即证.(2)令()()ln 11ax m x x x=+-+,转化为()0m x ≥恒成立,利用导数求出()()11x a m x x +-'=+,讨论a 的取值,判断函数的单调性,求出()()()min 100m x m a m =-<=,即求.(3)由(1)()2ln 1x x x +≥-,令1x n =,*n ∈N ,整理可得()21ln 1ln n n n n -+->,然后将不等式相加即可证明.【详解】(1)证明:令函数()()2ln 1h x x x x =+-+,[)0,x ∈+∞, ()21221011x x h x x x x+'=+-=≥++, 所以()h x 为单调递增函数,()()00h x h ≥=,故()2ln 1x x x +≥-. (2)()()f x x g x +≥,即为()ln 11ax x x +≥+, 令()()ln 11ax m x x x=+-+,即()0m x ≥恒成立, ()()()()2111111a x ax x a m x x x x +-+-'=-=+++,令()0m x '>,即10x a +->,得1x a >-. 当10a -≤,即1a ≤时,()m x 在[)0,+∞上单调递增,()()00m x m ≥=,所以当1a ≤时,()0m x ≥在[)0,+∞上恒成立;当10a ->,即1a >时,()m x 在()1,a -+∞上单调递增,在[]0,1a -上单调递减, 所以()()()min 100m x m a m =-<=,所以当1a >,()0m x ≥不恒成立.综上所述:a 的取值范围为(],1-∞.(3)证明:由(1)知()2ln 1x x x +≥-, 令1x n=,*n ∈N ,(]0,1x ∈, 211lnn n n n+->,即()21ln 1ln n n n n -+->, 故有ln 2ln10->, 1ln 3ln 24->, …… ()21ln 1ln n n n n-+->, 上述各式相加可得()2121ln 149n n n -+>+++. 【点睛】本题考查了利用导数证明不等式、利用导数研究不等式恒成立,考查了转化与划归的思想,属于中档题.22.(1)在()0,2上单调递减,在(2,)+∞上单调递增;(2)证明见解析.【分析】(1)由()20f '=可得212a e =,由导函数的符号可得函数的单调区间; (2)当1a e 时,()ln 1x e f x x e--()g x =,利用导数证明()0g x ≥即可. 【详解】(1)()f x 的定义域为1(0,),()e x f x a x'+∞=-. 由题设知,()20f '=,所以212a e =.从而22111()ln 1,()22x x f x e x f x e e e x'=--=-. 当02x <<时,()0f x <′;当2x >时,()0f x >′.所以()f x 在()0,2上单调递减,在(2,)+∞上单调递增.(2)证明:当1a e 时,()ln 1x e f x x e --. 设()ln 1x e g x x e =--,则1()x e g x e x'=-为(0,)+∞上的增函数, 当01x <<时,()0(1)g g x '<'=;当1x >时,()(1)0g x g ''>=.所以()g x 在(0,1)上递减,在(1,)+∞上递增,所以1x =是()g x 的最小值点.故当0x >时,()()10g x g ≥=.因此,当1ae时,()()0f x g x ≥≥. 【点睛】本题考查了由函数的极值点求参数,考查了利用导数求函数的单调区间,考查了利用导数证明不等式,属于中档题. 23.(1)112a b =⎧⎪⎨=⎪⎩;(2)12- . 【分析】(1)对()f x 进行求导,先利用导数求出在1x =处的导函数值,再结合导数的几何意义即可求出切线的斜率.列出关于a ,b 的方程求得a ,b 的值.(2)判定函数的单调性,可得函数的极大值就是最大值,求出函数的极值可确定出最大值.【详解】(1)函数2()(0)f x alnx bx x =->,()2a f x bx x ∴'=-, 函数()f x 在1x =处与直线12y相切, ∴(1)201(1)2f a b f b '=-=⎧⎪⎨=-=-⎪⎩,解得112a b =⎧⎪⎨=⎪⎩; (2)21()2f x lnx x =-,21()x f x x-'=, 当1x e e 时,令()0f x '>得:11x e <,令()0f x '<,得1x e <,()f x ∴在1[e,1],上单调递增,在[1,]e 上单调递减,所以函数的极大值就是最大值, ()max f x f ∴=(1)12=-. 【点睛】本小题主要考查函数单调性的应用、利用导数研究曲线上某点切线方程、导数在最大值、最小值问题中的应用考查运算求解能力、化归与转化思想.属于中档题.24.(1)()f x 是“YZ 函数”,理由见解析;(2)1,e ⎛⎫+∞ ⎪⎝⎭;(3)证明见解析. 【分析】(1)利用导数求出函数()y f x =的极大值,结合题中定义判断即可;(2)分0m ≤和0m >两种情况讨论,利用导数分析函数()y g x =的单调性,利用题中定义得出关于m 的不等式,进而可解得实数m 的取值范围;(3)求出函数()y h x =的导数()2h x x ax b =++',利用导数分析函数()y h x =的单调性,设函数()y h x =的极值点分别为1x 、2x ,可知1x 、2x 是方程()0h x '=的两根,进而可列出韦达定理,结合韦达定理证明出函数()y h x =的极大值为负数,由此可证得结论.【详解】(1)函数()1x x f x e =-是“YZ 函数”,理由如下: 因为()1x x f x e =-,则()1x x f x e='-, 当1x <时,()0f x '>;当1x >时,()0f x '<,所以函数()1x x f x e =-的极大值()1110f e =-<,故函数()1x x f x e=-是“YZ 函数”; (2)函数()ln g x x mx =-的定义域为()0,+∞,()1g x m x '=-. 当0m ≤时,()10g x m x-'=>,函数()y g x =单调递增,无极大值,不满足题意; 当0m >时,当10x m <<时,()10g x m x -'=>,函数单调递增, 当1x m>时,()10g x m x -'=<,函数单调递减, 所以函数()y g x =的极大值为111ln ln 1g m m m m m ⎛⎫=-⋅=--⎪⎝⎭,易知1ln 10g m m ⎛⎫=--< ⎪⎝⎭,解得1m e >, 因此,实数m 的取值范围是1,e ⎛⎫+∞ ⎪⎝⎭;(3) ()2h x x ax b =++',因为2a ≤-,01b <<,则240a b ∆=->, 所以()20h x x ax b =++='有两个不等实根,设为1x 、2x , 因为121200x x a x x b +=->⎧⎨=>⎩,所以1>0x ,20x >,不妨设120x x <<, 当10x x <<时,()0h x '>,则函数()y h x =单调递增;当12x x x <<时,()0h x '<,则函数()y h x =单调递减.所以函数()y h x =的极大值为()321111111323h x x ax bx b =++-, 由()21110h x x ax b =++='得()3211111x x ax b ax bx =--=--,因为2a ≤-,01b <<,所以()()322211111111111111323323h x x ax bx b ax bx ax bx b =++-=--++- ()()22211111121121111063333333ax bx b x bx b x b b b =+-≤-+-=--+-<. 所以函数()y h x =是“YZ 函数”.【点睛】本题考查函数的新定义“YZ 函数”的应用,考查利用导数求函数的极值、利用极值求参数,同时也考查了利用导数证明不等式,考查推理能力与运算求解能力,属于中等题. 25.(1)23055元;(2)保护罩为底面边长为2米,高为4米的正四棱柱【分析】(1)根据定义先求保险费用,再计算正四棱柱体积,进而求气体费用,最后求和得结果; (2)先列出气体费用和保险费用之和函数关系式,再利用导数求最值,即得结果.【详解】(1)保险费用为24800076802.5= 正四棱柱体积为22.5(2 2.5)⨯⨯所以气体费用为2500[2.5(2 2.5)0.5]15375⨯⨯⨯-=因此气体费用和保险费用之和为76801537523055+=(元);(2)设正四棱柱底面边长为a 米,则 1.2a ≥因此气体费用和保险费用之和23224800048000500[(2)0.5]1000250y a a a a a=+⨯⨯-=+-因为2396000300002y a a a'=-+=∴= 当2a >时,0y '>,当1.22a ≤<时,0y '<, 因此当2a =时,y 取最小值,保护罩为底面边长为2米,高为4米的正四棱柱时,气体费用和保险费用之和最低.【点睛】本题考查利用导数求函数最值、列函数解析式,考查基本分析求解能力,属中档题. 26.(1)函数ln x y x =在()0,e 单调递增;在(),e +∞单调递减;(2)最大值1e ,最小值e -.【分析】(1)对函数进行求导得()21ln x y f x x-''==,解不等式,即可得答案; (2)求出端点的函数值和极值,再进行比较,即可得答案;【详解】(1)()21ln x y f x x -''==, 解()0f x '=得x e =, 当0x e <<时,()0f x '>,所以函数ln x y x =在()0,e 单调递增; 当x e >时,()0f x '<,所以函数ln x y x =在(),e +∞单调递减. (2)由(1)知,()ln x y f x x ==在区间1,e e ⎡⎤⎢⎥⎣⎦单调递增,在区间2,e e ⎡⎤⎣⎦单调递减, 所以最大值为()1f e e =,而1f e e ⎛⎫=- ⎪⎝⎭;()222f e e =. 因为()21f f ee ⎛⎫< ⎪⎝⎭,所以,ln x y x =在区间21,e e ⎡⎤⎢⎥⎣⎦的最大值1M e =,最小值m e =-. 【点睛】本题考查利用导数研究函数的单调性和极值,考查函数与方程思想,考查运算求解能力,属于基础题.。
西安交通大学附属中学分校高中数学选修2-2第三章《导数应用》测试(包含答案解析)

一、选择题1.已知函数()()2xf x ax e x =+-(其中2a >-),若函数()f x 为R 上的单调减函数,则实数a 的取值范围为( ) A .()2,1--B .(]2,0-C .(]1,0-D .(]2,1--2.设函数()3xf x xe =,若存在唯一的负整数0x ,使得()00f x kx k <-,则实数k 的取值范围是( ) A .23,0e ⎡⎫-⎪⎢⎣⎭B .30,2e ⎡⎫⎪⎢⎣⎭C .236,e e ⎛⎫--⎪⎝⎭D .223,2e e ⎡⎫⎪⎢⎣⎭3.已知函数()()()21=)1ln 2(,1+f x x a x a a b x -+->,函数2x b y +=的图象过定点0,1(),对于任意()1212,0,,x x x x ∈+∞>,有()()1221f x f x x x ->-,则实数a 的范围为( ) A .15a <≤ B .25a <≤ C .25a ≤≤D .35a <≤4.已知函数32()f x x bx cx d =+++在区间[1,2]-上是减函数,那么b c + ( ) A .有最小值152 B .有最大值152 C .有最小值152- D .有最大值152-5.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( ) A .()1,+∞ B .[)3,+∞C .(],1-∞D .(],3-∞6.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( ) A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞7.定义域为R 的连续可导函数()f x 满足()()xf x f x e '-=,且()00f =,若方程()()21016m f x f x ++=⎡⎤⎣⎦有四个根,则m 的取值范围是( ) A .2416e e m -<<B .42em <<C .216e m e >-D .2e m >8.已知函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( ) A .(21e -,0) B .(12e-,0) C .(0,12e) D .(0,21e ) 9.若函数1()21xf x e x =--(e 为自然对数的底数),则()y f x =图像大致为( ) A . B .C .D .10.函数()21xy x e =-的图象大致是( )A .B .C .D .11.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( )A .2eB .eC .1D .1212.对*n N ∈,设n x 是关于x 的方程320nx x n +-=的实数根,[(1)](2,3,...)n n a n x n =+=,其中符号[]x 表示不超过x 的最大整数,则2320202019a a a ++=( )A .1011B .1012C .2019D .2020二、填空题13.已知()(sin )x f x e x a =+在0,2π⎡⎤⎢⎥⎣⎦上是单调增函数,则实数a 的取值范围是________.14.已知直线y kx =与曲线ln y x =有公共点,则k 的取值范围为___________ 15.如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,,,DBC ECA FAB 分别是以BC,CA,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB 为折痕折起,,DBC ECA FAB ,使得D ,E ,F 重合,得到三棱锥.当所得三棱锥体积(单位:3cm )最大时,ABC 的边长为_________(cm ).16.已知函数()e e xxf x -=-,有以下命题:①()f x 是奇函数; ②()f x 单调递增函数;③方程()22f x x x =+仅有1个实数根;④如果对任意(0,)x ∈+∞有()f x kx >,则k 的最大值为2. 则上述命题正确的有_____________.(写出所有正确命题的编号) 17.已知函数32()1f x x ax x =+++在区间21,33⎛⎫-- ⎪⎝⎭内是减函数,则实数a 的取值范围是________.18.已知定义在()(),00,-∞⋃+∞上的偶函数()f x 的导函数为()f x ',且()10f =,当0x <时,()()+0f x f x x'>,则使得()0f x >成立的x 的取值范围是________. 19.已知函数2()2ln af x x x=+,其中0a >,若()2f x ≥恒成立,则实数a 的取值范围为________.20.已知函数()ln f x x x =.存在k Z ∈,使()2f x kx k >--在1x >时恒成立,则整数k 的最大值为________.三、解答题21.设函数()xf x e x =-.(1)求()f x 的单调区间; (2)证明:当0x ≥时,()2112f x x ≥+. 22.已知函数2()ln (2)f x x a x ax =-+-. (1)求函数()f x 的单调区间;(2)若对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方,求实数a 的取值范围. 23.已知函数()()ln 0af x x a a x=-+>. (1)若曲线()y f x =在点()()1,1f 处与x 轴相切,求a 的值; (2)求函数()f x 在区间()1,e 上的零点个数;(3)若1x ∀、()21,x e ∈,()()()12120x x f x f x ⎡⎤-->⎣⎦,试写出a 的取值范围.(只需写出结论)24.已知函数()3213f x x ax bx ab =-+++. (1)若()f x 是奇函数,且有三个零点,求b 的取值范围; (2)若()f x 在1x =处有极大值223-,求当[]1,2x ∈-时()f x 的值域. 25.已知函数()xf x mx e =-(e 为自然对数的底数). (1)讨论函数()f x 的单调性;(2)已知函数()f x 在1x =处取得极大值,当[]0,3x ∈时,恒有2()0x f x ex p-+<,求实数p 的取值范围. 26.设函数f (x )=ln x +kx,k ∈R . (1)若曲线y =f (x )在点(e ,f (e ))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除1.D 解析:D 【分析】令()()(2)1x g x f x ax a e ='=++-,则()(2)x g x ax a e '=++.分0a =,0a >,20a -<<三类讨论,即可求得实数a 的取值范围即可. 【详解】解:令()()(2)1x g x f x ax a e ='=++-,则()(22)x g x ax a e '=++,(ⅰ)当0a =时,()20x g x e '=>,()g x 在R 递增,即()21x f x e '=-在R 递增, 令()0f x '=,解得:2x ln =-,故()f x 在(,2)ln -∞-递减,在(2,)ln -+∞递增,()f x 不单调,与题意不符; (ⅱ)当0a >时,由2()0(2)g x x a '>⇒>-+,2()0(2)g x x a '<⇒<-+,222()(2)10aming x g ae a--∴=--=--<,(0)10g a =+>,∴此时函数()f x '存在异号零点,与题意不符;(ⅲ)当20a -<<,由()0g x '>,可得2(2)x a <-+,由()0g x '<可得2(2)x a>-+,()g x ∴在2(,2)a -∞--上单调递增,在2(2a--,)+∞上单调递减,故222()(2)1amaxg x g ae a--=--=--,由题意知,2210a ae ----恒成立, 令22t a--=,则上述不等式等价于12t e t+,其中1t >, 易证,当0t >时,112tte t >+>+, 当(1t ∈-,0]时12te t+成立, 由2120a-<--,解得21a -<-. 综上,当21a -<-时,函数()f x 为R 上的单调函数,且单调递减; 故选:D .本题主要考查了利用导数研究函数的单调性,突出考查等价转化思想与分类讨论思想的应用,考查逻辑思维能力与推理证明能力,考查参数范围问题及求解函数的值域,属于函数与导数的综合应用.2.D解析:D 【分析】利用到函数研究其图象,令3x y xe =,y kx k =-,从而讨论两个函数的性质作出3x y xe =与y kx k =-的图象,从而结合图象可得解. 【详解】()3x f x xe =,令y kx k =-,()3(1)x f x e x '=+,()3x f x xe ∴=在(-∞,1]-上是减函数,在(1,)-+∞上是增函数,又y kx k =-是恒过点(1,0)的直线,∴作()3x f x xe =与y kx k =-的图象如下:当直线y kx k =-与()3x f x xe =相切时, 设切点为(,3)x x xe ,3331xx x xe e xe x =+-, 则152x -=,152x +=;令()3x g x xe kx k =-+ 结合图象可知:(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩解得:2232k e e<故选:D关键点睛:解答本题的关键是数形结合思想的灵活运用.作出两个函数的图象后,通过观察分析得到存在唯一的负整数01x =-,使得()00f x kx k <-,即(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩.3.A解析:A 【分析】由图象过定点可得0b =,设()()F x f x x =+,结合已知条件可得()F x 在()0,∞+递增,求()F x 的导数,令()()211g x x a x a =--+-,由二次函数的性质可得102a g -⎛⎫≥ ⎪⎝⎭,从而可求出实数a 的范围. 【详解】解:因为2x b y +=的图象过定点0,1(),所以21b =,解得0b =,所以()()()21=1ln ,12f x x ax a x a -+->,因为对于任意()1212,0,,x x x x ∈+∞>, 有()()1221f x f x x x ->-,则()()1122f x x x f x +>+,设()()F x f x x =+, 即()()()()()22111ln =11ln 22F x ax a x x x f x x x a x a x =+=-+-+--+-, 所以()()()21111x a x a a F x x a x x--+--'=--+=,令()()211g x x a x a =--+-, 因为1a >,则102a x -=>,所以要使()0F x '≥在()0,∞+恒成立,只需102a g -⎛⎫≥ ⎪⎝⎭, 故()21111022a a a a --⎛⎫⎛⎫--+-≥ ⎪ ⎪⎝⎭⎝⎭,整理得()()150a a --≤,解得15a <≤, 故选:A. 【点睛】 关键点睛:本题的关键是由已知条件构造新函数()()F x f x x =+,并结合导数和二次函数的性质列出关于参数的不等式.4.D解析:D 【解析】试题分析:由f (x )在[-1,2]上是减函数,知f′(x )=3x 2+2bx+c≤0,x ∈[-1,2],则f′(-1)=3-2b+c≤0,且f′(2)=12+4b+c≤0,⇒15+2b+2c≤0⇒b+c≤-152,故选D. 考点:本题主要考查了函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.点评:解决该试题的关键是先对函数f (x )求导,然后令导数在[-1,2]小于等于0即可求出b+c 的关系,得到答案.5.B解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.6.D解析:D 【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln xa x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解. 【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=, ()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x∴=-()1x >,不等式()f x ax ≤对任意()1,x ∈+∞恒成立,∴2ln x ax x-≤对任意()1,x ∈+∞恒成立,即ln xa x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x =-,则()()21ln ln x g x x -=′,令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减,∴当x e =时,()g x 取得极大值,也是最大值,()()max ln eg x g e e e==-=-, a e ∴≥-,∴实数a 的取值范围是[),e -+∞.故选:D. 【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥. 7.A解析:A 【分析】构造函数()()xf x x b e =+,根据()00f =求出0b =,利用导数判断函数的单调性,作出其大致图像,令()t f x =,只需21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,利用二次函数根的分布即可求解. 【详解】由()()()()()()()()221x xxxxx x f x e f x e f x f x e e f x e ef x e '-'-=-=⇒'=⇒,则()()()()1x x xf x f x x b x x b e e e f ⎡⎤=⇒=+=+⎢⎥⎣⎦⇒, 由()000f b =⇒=,则()xf x e x =⋅.由()()1xf x e x '=+,当()1,x ∈-+∞,()0f x '>,()f x 单调递增;当(),1x ∈-∞-,()0f x '<,()f x 单调递减,当x →-∞,()0f x <,x →+∞,()0f x >,如图所示:令()t f x =,则21016mt t ++=,由已知可得 21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭, 令()2116g t mt t =++,由12121001016t t m m t t m ⎧+=-<⎪⎪⇒>⎨⎪⋅=>⎪⎩, 则()21000,41601102g e e g m e em ⎧⎛⎫-> ⎪⎪⎝⎭⎪⎛⎫⎪>⇒∈-⎨⎪∆>⎝⎭⎪⎪-<-<⎪⎩. 故选:A 【点睛】本题考查了构造函数判断函数的单调性、根据方程根的个数求参数的取值范围,考查了二次函数根的分布,此题综合性比较强,属于中档题.8.C解析:C【分析】由函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()0F x =,可得y k =和()2ln x g x x=有两个交点;当0x <时,y k =和()1g x x =有一个交点,求得0k >,即可求解,得到答案.【详解】 由题意,函数10()ln ,0x x f x x x x⎧⎪⎪=⎨⎪⎪⎩,<>, 要使得函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()()0F x f x kx =-=, 可得2ln x k x =, 要使得()0F x =有两个实数解,即y k =和()2ln x g x x =有两个交点, 又由()312ln x g x x -'=, 令12ln 0x -=,可得x =当x ∈时,()0g x '>,则()g x 单调递增;当)x ∈+∞时,()0g x '<,则()g x 单调递减,所以当x =()max 12g x e=, 若直线y k =和()2ln x g x x =有两个交点, 则1(0,)2k e∈,当0x <时,y k =和()21g x x =有一个交点, 则0k >, 综上可得,实数k 的取值范围是1(0,)2e . 故选:C.【点睛】本题主要考查了函数与方程的综合应用,以及利用导数研究函数的单调性与最值的综合应用,着重考查了转化思想以及推理与运算能力.属于中档题.9.C解析:C【分析】代入特殊值()10f <可判断,A B 选项,记()21x g x e x =--,结合函数单调性可得当x →+∞时,()0f x >,从而可选出正确答案.【详解】记()21x g x e x =--,则有()2x g x e '=-,当ln 2x <时,()20x g x e -'=<,()g x 是减函数,当ln 2x >时,()20x g x e -'=>,()g x 是增函数,因为()130g e =-<,所以()10f <,排除,A B 选项;()2250g e =->,所以当x →+∞时,()0>g x , 即x →+∞时,()0f x >,则D 错误.故选:C.【点睛】本题考查了函数图象的识别,属于中档题.10.A解析:A根据函数图象,当12x <时,()210x y x e =-<排除CD ,再求导研究函数单调性得()21x y x e =-在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减,排除B 得答案. 【详解】 解:因为12x <时,()210x y x e =-<,所以C ,D 错误; 因为()'21xy x e =+, 所以当12x <-时,'0y <, 所以()21x y x e =-在区间1,2⎛⎫-∞-⎪⎝⎭上单调递减, 所以A 正确,B 错误.故选:A.【点睛】 本小题主要考查函数的性质对函数图象的影响,并通过对函数的性质来判断函数的图象等问题.已知函数的解析式求函数的图像,常见的方法是,通过解析式得到函数的值域和定义域,进行排除,由解析式得到函数的奇偶性和轴对称性,或者中心对称性,进行排除,还可以代入特殊点,或者取极限.11.C解析:C【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果.【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x , 则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x+=,()2ln x f x x -'=, 令()0f x '>,则01x <<;令()0f x '<,则1x > ,所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数, 由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤,故a 的最大值为1.故选:C.本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.12.A解析:A【分析】根据条件构造函数()32f x nx x n =+-,求得函数的导数,判断函数的导数,求出方程根的取值范围,进而结合等差数列的求和公式,即可求解.【详解】设函数()32f x nx x n =+-,则()232f x nx '=+, 当n 时正整数时,可得()0f x '>,则()f x 为增函数,因为当2n ≥时,()323()()2()(1)01111n n n n f n n n n n n n n =⨯+⨯-=⋅-++<++++, 且()120f =>,所以当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n n x n ∈+, 所以(1)1,[(1)]n n n n n x n a n x n <+<+=+=, 因此2320201(2342020)101120192019a a a ++=++++=.故选:A.【点睛】方法点睛:构造新函数()32f x nx x n =+-,结合导数和零点的存在定理,求得当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n n x n ∈+是解答的关键. 二、填空题13.【分析】利用在上恒成立等价于在上恒成立利用正弦函数的性质得出在的最小值即可得出的范围【详解】在上恒成立即在上恒成立则故答案为:【点睛】本题主要考查了由函数的单调性求参数的范围属于中档题解析:[)1,-+∞【分析】利用()0f x '≥在0,2π⎡⎤⎢⎥⎣⎦4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立,利用4x π⎛⎫+⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦的最小值,即可得出a 的范围. 【详解】()(sin )cos (sin cos )04x x x x f x e x a e x e x x a e x a π⎤⎛⎫'=++=++=++≥ ⎪⎥⎝⎭⎦在0,2π⎡⎤⎢⎥⎣⎦上恒成立4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立 0,2x π⎡⎤∈⎢⎥⎣⎦,3,444x πππ⎡⎤∴+∈⎢⎥⎣⎦sin 42x π⎤⎛⎫∴+∈⎥ ⎪⎝⎭⎣⎦,4x π⎛⎫⎡+∈ ⎪⎣⎝⎭ 则1,1a a ≥-≥-故答案为:[)1,-+∞【点睛】本题主要考查了由函数的单调性求参数的范围,属于中档题.14.【分析】直线与曲线有公共点等价于方程在时有解即有解构造函数利用导数求出函数的取值情况即可求出k 的取值范围【详解】直线与曲线有公共点等价于方程在时有解即有解设则由解得此时函数单调递增由解得此时函数单调解析:1,e ⎛⎤-∞ ⎥⎝⎦【分析】直线y kx =与曲线ln y x =有公共点,等价于方程ln kx x =在0x >时有解,即ln x k x =有解,构造函数()ln x f x x=,利用导数求出函数的取值情况,即可求出k 的取值范围. 【详解】直线y kx =与曲线ln y x =有公共点, ∴等价于方程ln kx x =在0x >时有解, 即ln x k x=有解, 设()ln x f x x =, 则()21ln x f x x-'=, 由()0f x '>,解得0x e <<,此时函数单调递增,由()0f x '<,解得x e >,此时函数单调递减,当x e =时,函数()f x 取得极大值,同时也是最大值()ln 1e f e e e ==, 所以()1f x e ≤,1k e∴≤, 即k 的取值范围为1,e ⎛⎤-∞ ⎥⎝⎦. 故答案为:1,e ⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了利用导数求函数的最值,考查了等价转化的思想,属于中档题.15.【分析】连接交于点设求出构造函数利用导数研究函数的单调性从而得出时所得三棱锥体积最大时进而得解【详解】如图连接交于点连接由题意知所以所以设则三棱锥的高则三棱锥的体积令则令即解得所以当时在上单调递增; 解析:43【分析】连接OD ,交BC 于点G ,设OG x =,求出23BC x =,4532510V x x =⨯-,构造函数,利用导数研究函数的单调性,从而得出2x =时,所得三棱锥体积最大时,进而得解.【详解】如图,连接OD ,交BC 于点G ,连接OB ,由题意,知OD BC ,12BG BC =,30OBG ∠=︒, 所以,133tan 302OG BG BC BC =⨯︒==,所以23BC OG =, 设OG x =,则23BC x =,5DG x =-,三棱锥的高()222252510h DG OG x x x =-=--=-21233332ABC S x x x =⨯⨯=△, 则三棱锥的体积245113325103251033ABC V S h x x x x =⨯=⨯-=-△,令()452510f x x x =-502x ⎛⎫<< ⎪⎝⎭, 则()3410050f x x x =-′, 令()0f x '=,即34100500x x -=,解得2x =,所以,当02x <<时,()0f x >′,()f x 在()0,2上单调递增; 当522x <<时,()0f x <′,()f x 在52,2⎛⎫ ⎪⎝⎭上单调递减, 所以,当2x =时,()f x 取得极大值,也是最大值,此时,BC ==,所以,当所得三棱锥体积最大时,ABC 的边长为故答案为:【点睛】本题考查三棱锥体积的计算及利用导数研究函数的最值问题,考查学生对这些知识的掌握能力,本题的解题关键是掌握根据导数求极值的方法,属于中档题.16.①②④【分析】根据题意依次分析4个命题对于①由奇函数的定义分析可得①正确;对于②对函数求导分析可得分析可得②正确;对于③分析可得即方程有一根进而利用二分法分析可得有一根在之间即方程至少有2跟故③错误解析:①②④【分析】根据题意,依次分析4个命题,对于①、由奇函数的定义分析可得①正确;对于②、对函数()x x f x e e -=-求导,分析可得()0f x '>,分析可得②正确;对于③、2()2x x g x e e x x -=---,分析可得(0)0g =,即方程2()2f x x x =+有一根0x =,进而利用二分法分析可得()g x 有一根在(3,4)之间,即方程2()2f x x x =+至少有2跟,故③错误,对于④、由函数的恒成立问题的分析方法,分析可得④正确,综合可得答案.【详解】解:根据题意,依次分析4个命题:对于①、()x x f x e e -=-,定义域是R ,且()()x x f x e e f x --=-=-,()f x 是奇函数;故①正确;对于②、若()x x f x e e -=-,则()0x x f x e e -'=+>,故()f x 在R 递增;故②正确; 对于③、2()2f x x x =+,令2()2x x g x e e x x -=---,令0x =可得,(0)0g =,即方程2()2f x x x =+有一根0x =,()3313130g e e =--<,()4414200g e e =-->,则方程2()2f x x x =+有一根在(3,4)之间,故③错误;对于④、如果对任意(0,)x ∈+∞,都有()f x kx >,即0x x e e kx --->恒成立, 令()x x h x e e kx -=--,且(0)0h =,若()0h x >恒成立,则必有()0x x h x e e k -'=+->恒成立,若0x x e e k -+->,即1x x x x k e ee e -<+=+恒成立, 而12x xe e +,若有2k <, 故④正确;综合可得:①②④正确;故答案为:①②④.【点睛】本题考查函数的奇偶性、单调性的判定,以及方程的根与恒成立问题的综合应用,③关键是利用二分法,属于中档题.17.【分析】求导得转化条件为在区间内恒成立令求导后求得即可得解【详解】函数在区间内是减函数在区间内恒成立即在区间内恒成立令则当时单调递减;当时单调递增;又故答案为:【点睛】本题考查了导数的综合应用考查了 解析:2a ≥【分析】求导得2()321f x x ax '=++,转化条件为1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,求导后求得()max 2g x =即可得解. 【详解】 32()1f x x ax x =+++,∴2()321f x x ax '=++,函数()f x 在区间21,33⎛⎫-- ⎪⎝⎭内是减函数, ∴()0f x '≤在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,即1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立, 令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,则()2221312232x x x xg -++='=-,∴当2,3x ⎛∈- ⎝⎭时,()0g x '<,()g x 单调递减;当13x ⎛⎫∈- ⎪ ⎪⎝⎭时,()0g x '>,()g x 单调递增;又2734g ⎛⎫-= ⎪⎝⎭,123g ⎛⎫-= ⎪⎝⎭,∴()2g x <, ∴2a ≥.故答案为:2a ≥.【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于中档题.18.【分析】结合所给不等式构造函数可证明在时单调递减根据为偶函数且可得单调性的示意图结合函数图像即可求得使成立的的取值范围【详解】令则由题意可知当时不等式两边同时乘以可得即所以在时单调递减因为定义在上的 解析:()()1,00,1- 【分析】结合所给不等式,构造函数()()g x x f x =⋅,可证明()g x 在0x <时单调递减,根据()f x 为偶函数且()10f =,可得()g x 单调性的示意图,结合函数图像即可求得使()0f x >成立的x 的取值范围.【详解】令()()g x x f x =⋅,则()()()g x f x x f x '=+⋅'由题意可知当0x <时,()()+0f x f x x'>,不等式两边同时乘以x 可得()()+0xf x f x '<,即()0g x '<,所以()()g x x f x =⋅在0x <时单调递减,因为定义在()(),00,-∞⋃+∞上的()f x 为偶函数,所以()()g x x f x =⋅为定义在()(),00,-∞⋃+∞上的奇函数,且()10f =,所以()()110g g =-=,由奇函数性质可得()()g x x f x =⋅函数图像示意图如下图所示:所以当0x <时,()0f x >的解集为()1,0-,当0x >时,()0f x >的解集为()0,1, 综上可知,()0f x >的解集为()()1,00,1- 故答案为:()()1,00,1-.【点睛】本题考查了函数奇偶性及单调性的综合应用,构造函数判断函数的单调性,数形结合法解不等式,属于中档题. 19.【分析】恒成立只需即可求出得出单调区间进而求出求解即可得出结论【详解】由得又函数的定义域为且当时;当时故是函数的极小值点也是最小值点且要使恒成立需则∴的取值范围为故答案为:【点睛】本题考查应用导数求 解析:[),e +∞【分析】()2f x ≥恒成立,只需min ()2f x ≥即可,求出()f x ',得出单调区间,进而求出min ()f x ,求解即可得出结论.【详解】 由2()2ln a f x x x =+,得()233222()x a a f x x x x-'=-+=, 又函数()f x 的定义域为(0,)+∞且0a >, 当0x a <<()0f x '<;当x a ()0f x '>, 故x a =()f x 的极小值点,也是最小值点,且()ln 1f a a =+,要使()2f x ≥恒成立,需ln 12a +≥,则a e ≥,∴a 的取值范围为[),e +∞.故答案为:[),e +∞.【点睛】本题考查应用导数求函数的最值,恒成立问题等价转化为函数的最值,考查计算求解能力,属于中档题.20.2【分析】由即则将问题转化为在上恒成立令利用导函数求出最小值即可【详解】解:因为由即对任意的恒成立得()令()则令得画出函数的图象如图示:与在有唯一的交点∴存在唯一的零点又∴零点属于∴在递减在递增而解析:2 【分析】由()2f x kx k >--,即ln 2x x kx k >--,则将问题转化为ln 21x x k x +<-在1x >上恒成立,令ln 2()1x x h x x +=-,利用导函数求出最小值即可. 【详解】解:因为()ln f x x x =,由()2f x kx k >--即()()12k x f x --<对任意的1x >恒成立, 得ln 21x x k x +<-(1x >), 令ln 2()1x x h x x +=-(1x >),则2ln 3()(1)x x h x x '--=-, 令()ln 30g x x x =--=,得3ln x x -=, 画出函数3y x =-,ln y x =的图象,如图示:∴3y x =-与ln y x =在1x >有唯一的交点,∴()g x 存在唯一的零点,又()41ln40g =-<,()52ln50g =->, ∴零点0x 属于()4,5,∴()h x 在()01,x 递减,在()0,x +∞递增, 而4ln 442(4)33h +<=<,115ln 55(5)344h +<=<, ∴()023h x <<,k Z ∈, ∴k 的最大值是2.故答案为:2 【点睛】本题考查不等式的恒成立问题,考查利用导函数求最值,考查零点存在性定理的应用,考查数形结合思想.三、解答题21.(1)函数()f x 的增区间为()0,∞+,减区间为(),0-∞;(2)证明见解析. 【分析】(1)求出()f x ',解不等式()0f x '>、()0f x '<可得出函数()f x 的单调递增区间和递减区间;(2)构造函数()()2112g x f x x =--,利用导数证得()()00g x g ≥=,即可证得所证不等式成立. 【详解】(1)函数()x f x e x =-的定义域为R ,且()1xf x e '=-.令()0f x '>,可得0x >;令()0f x '<,可得0x <.因此,函数()f x 的单调递增区间为()0,∞+,单调递减区间为(),0-∞; (2)构造函数()()22111122x g x f x x e x x =--=---,则()1x g x e x '=--, 当0x ≥时, ()10xg x e ''=-≥,所以,函数()g x '在区间[)0,+∞上为增函数, 当0x ≥时,()()00g x g ''≥=,所以,函数()g x 在区间[)0,+∞上为增函数, 当0x ≥时,()()()211002f x x g x g --=≥=,()2112f x x ∴≥+. 【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.22.(1)详见解析;(2)[1,)-+∞. 【分析】(1)对函数求导[]()(2)121()a x x f x x-+-+'=,分20a +≤ 和20a +>, 讨论导函数的正负即可.(2)由对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方,则()0f x ≤,()0,x ∈+∞恒成立,转化为22ln 2x x a x x -≥+,()0,x ∈+∞恒成立,令()22ln 2x x g x x x-=+,用导数法求其最大值即可. 【详解】(1)函数2()ln (2)f x x a x ax =-+-定义域为()0,∞+,则[]()(2)1211()2(2)a x x f x a x a x x-+-+'=-+-=, 当20a +≤时,()0f x '>,()f x 递增,当20a +>时,令()0f x '>,解得102x a <<+,令()0f x '<,解得12x a >+, 所以()f x 在10,2a ⎛⎫ ⎪+⎝⎭递增,在1,2a ⎛⎫+∞ ⎪+⎝⎭递减;(2)若对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方, 则2()ln (2)0f x x a x ax =-+-≤,()0,x ∈+∞恒成立,则22ln 2x x a x x-≥+,()0,x ∈+∞恒成立, 令()22ln 2x x g x x x-=+,则()()()()22211ln x x x g x x x +-+-'=+,令()1ln h x x x =-+-,则()110h x x'=--<, 所以()h x 在()0,∞+递减,而()10h =,所以当01x <<时,()0g x '>,当1x >时,()0g x '<, 所以当1x =时,()g x 取得最大值1-,所以1a ≥-, 所以实数a 的取值范围是[1,)-+∞. 【点睛】方法点睛:1、利用导数研究函数的单调性:关键在于准确判定导数的符号,当()f x 含参数时,需依据参数取值对不等式解集的影响进行分类讨论.. 2、恒成立问题的解法:(1)若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;(2)若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.23.(1)1a =;(2)答案见解析;(3)(][)0,1,e +∞.【分析】(1)由题意可得()10f '=,由此可解得实数a 的值; (2)求得()2x af x x-'=,对实数a 的取值进行分类讨论,分析函数()f x 在区间()1,e 上的单调性,结合零点存在定理可得出结论; (3)根据(2)中的讨论可写出实数a 的取值范围. 【详解】(1)()221a x af x x x x'-=-=, 因为()y f x =在点()()1,1f 处与x 轴相切,且()10f =, 所以()110f a '=-=,解得1a =. 经检验1a =符合题意; (2)由(1)知()2x af x x-'=,令()0f x '=,得x a =. (i )当01a <≤时,()1,x e ∈,()0f x '>,函数()f x 在区间()1,e 上单调递增, 所以()()10f x f >=, 所以函数()f x 在区间()1,e 上无零点;(ii )当1a e <<时,若1x a <<,则()0f x '<,若a x e <<,则()0f x '>. 函数()f x 在区间()1,a 上单调递减,在区间(),a e 上单调递增, 且()10f =,()1ea f e a =-+. 当()10af e a e=-+>,即11e a e <<-时,函数()f x 在区间()1,e 上有一个零点;当()10af e a e=-+≤时,即当e e e 1a <-≤时,函数()f x 在区间()1,e 上无零点; (iii )当a e ≥时,()1,x e ∈,()0f x '<,函数()f x 在区间()1,e 上单调递减, 所以()()10f x f <=, 所以函数()f x 在区间()1,e 上无零点. 综上:当01a <≤或ee 1a ≥-时,函数()f x 在区间()1,e 上无零点; 当11ea e <<-时,函数()f x 在区间()1,e 上有一个零点. (3)01a <≤或a e ≥. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题. 24.(1)()0,∞+;(2)5022,33⎡⎤--⎢⎥⎣⎦. 【分析】(1)先由函数奇偶性,得到0a =,得出()313f x x bx =-+,对其求导,分别讨论0b ≤和0b >两种情况,根据导数的方法判定函数单调性,结合零点个数,即可求出结果; (2)先对函数求导,根据极大值求出2,5.a b =-⎧⎨=⎩,根据函数单调性,即可求出值域.【详解】(1)∵()f x 是定义域为R 的奇函数,所以0a =,且()00f =. ∴()313f x x bx =-+, ∴()2f x x b '=-+.当0b ≤时,()20f x x b '=-+≤,此时()f x 在R 上单调递减,()f x 在R 上只有一个零点,不合题意.当0b >时,()20f x x b '=-+>,解得x <<∴()f x 在(,-∞,)+∞上单调递减,在(上单调递增,∵()f x 在R 上有三个零点,∴0f >且(0f <,即3103f=-+>,即0>,而0>恒成立,∴0b >. 所以实数b 的取值范围为()0,∞+. (2)()22f x x ax b '=-++,由已知可得()1120f a b '=-++=,且()122133f a b ab =-+++=-, 解得2,3,a b =⎧⎨=-⎩或2,5.a b =-⎧⎨=⎩当2a =,3b =-时,()3212363f x x x x =-+--,()243f x x x '=-+-,令()0f x '≥,即2430x x -+-≥,解得13x ≤≤,令()0f x '<,即2430x x -+-<,解得1x <或3x >,即函数()f x 在(),1-∞上单调递减,在()1,3上单调递增,在()3,+∞上单调递减; 所以1x =是()f x 的极小值点,与题意不符. 当2a =-,5b =时,()32125103f x x x x =--+-,()245f x x x '=--+. 令()0f x '≥,即2450x x --+≥,解得51x -≤≤; 令()0f x '<,即2450x x --+<,解得5x <-或1x >,即函数()f x 在(),5-∞-上单调递减,在()5,1-上单调递增,在()1,+∞上单调递减; 所以1x =是()f x 的极大值点,符合题意,故2a =-,5b =. 又∵[]1,2x ∈-,∴()f x 在[]1,1-上单调递增,在[]1,2上单调递减. 又()5013f '-=-,()2213f =-,()3223f =-. 所以()f x 在[]1,2-上的值域为5022,33⎡⎤--⎢⎥⎣⎦. 【点睛】 思路点睛:导数的方法求函数零点的一般步骤:先对函数求导,由导数的方法求出函数的单调性区间,根据函数极值的定义,求出函数的的极值,再根据函数函数的零点个数,确定极值的取值情况,进而可得出结果. 25.(1)答案见解析;(2)24(,0),e ⎛⎫-∞⋃+∞ ⎪⎝⎭. 【分析】(1)根据函数()x f x mx e =-,求导得到()xf x m e '=-,然后分0m ≤和0m >两种情况讨论求解.(2)根据()f x 在1x =处取得极大值,由(1)知,0m >,且()f x 在ln x m =处取得极大值,从而求得m ,然后将2()0x f x ex p -+<在[]0,3x ∈恒成立,转化为20xx e p-+<在[]0,3x ∈上恒成立求解.【详解】(1)因为函数()xf x mx e =-,所以()xf x m e '=-,若0m ≤,则()()0,f x f x '<在R 上单调递减; 若0m >,令()0f x '=,则x lnm =,当x lnm <时,()()0,f x f x '>单调递增;当x lnm >时,()()0,f x f x '<单调递减, 综上所述,当0m ≤时,函数()f x 在R 上单调递减;当0m >时,函数()f x 的单调增区间为(),lnm ∞﹣,单调减区间为(),lnm +∞. (2)()f x 在1x =处取得极大值,由(1)知,0m ≤不符合题意,故0m >,此时()f x 在ln x m =处取得极大值,1lnm ∴=,解得(),x m e f x ex e =∴=﹣. 2()0x f x ex p -+<在[]0,3x ∈恒成立,20xx e p∴-+<在[]0,3x ∈上恒成立,显然0p ≠,当0p <时,20xx e p-+<恒成立,符合题意; 当0p >时,问题可转化为2x xp e>在[]0,3x ∈上恒成立,设2()([0,3])xx g x x e =∈,则22()xx x g x e '-=, 当[)0,2x ∈时,()()'0,g x g x ≥单调递增;当(]2,3x ∈时,()()'0,g x g x <单调递减.42max24()(2),g x g p e e∴==∴>,综上,实数p 的取值范围为24(,0),e ⎛⎫-∞⋃+∞⎪⎝⎭. 【点睛】本题主要考查利用导数研究函数的单调性、极值和存在性问题,还考查运分类讨论、构造函数和参变分离等方法以及逻辑推理和运算能力,属于中档题.26.(1)在(0,e )上单调递减,在(e ,+∞)上单调递增,极小值为2;(2)1,4⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)求导后,根据导数的几何意义以及两直线垂直关系可得k =e ,再根据导数得到函数的单调性和极值;(2)转化为h (x )=f (x )-x =ln x +kx-x (x >0)在(0,+∞)上单调递减,接着转化为()h x '≤0在(0,+∞)上恒成立,即,k ≥-x 2+x =21124x 恒成立,利用二次函数求出最大值可得答案.【详解】(1)由题意,得21()(0)kf x x x x'=->, ∵曲线y =f (x )在点(e ,f (e ))处的切线与直线x -2=0垂直, ∴()0f e '=,即210ke e -=,解得k =e , ∴221()(0)e x ef x x x x x-'=-=>, 由()'f x <0,得0<x <e ;由()'f x >0,得x >e , ∴f (x )在(0,e )上单调递减,在(e ,+∞)上单调递增. 当x =e 时,f (x )取得极小值,且f (e )=ln e +ee=2. ∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立, 设h (x )=f (x )-x =ln x +kx-x (x >0),则h (x )在(0,+∞)上单调递减, ∴21()1kh x x x '=--≤0在(0,+∞)上恒成立, 即当x >0时,k ≥-x 2+x =21124x 恒成立, ∴k ≥14.故k 的取值范围是1,4⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查了导数的几何意义,考查了减函数的定义,考查了利用导数研究函数的单调性和极值,考查了利用导数处理不等式恒成立,属于中档题.。
上海同济初级中学高中数学选修2-2第三章《导数应用》测试题(有答案解析)
一、选择题1.已知函数()23ln 6f x x kx x =-+,若()0f x >的解集为(),m n ,且(),m n 中只有两个整数,则( ) A .k 无最值 B .k 的最小值为123ln 24+ C .k 的最大值为123ln 24+ D .k 的最小值为6ln33+ 2.已知函数()()ln 0f x ax x a =->有两个零点1x ,2x ,且122x x <,则a 的取值范围是( )A .2,ln 2⎛⎫+∞ ⎪⎝⎭ B .20,ln 2⎛⎫ ⎪⎝⎭C.⎫+∞⎪⎪⎝⎭D.⎛ ⎝⎭3.设函数()3xf x xe =,若存在唯一的负整数0x ,使得()00f x kx k <-,则实数k 的取值范围是( ) A .23,0e ⎡⎫-⎪⎢⎣⎭B .30,2e ⎡⎫⎪⎢⎣⎭C .236,e e ⎛⎫--⎪⎝⎭D .223,2e e ⎡⎫⎪⎢⎣⎭ 4.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( )A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>5.若直角坐标系内A ,B 两点满足:(1)点A ,B 都在()f x 图象上;(2)点A ,B 关于原点对称,则称点对()A B ,是函数()f x 的一个“和谐点对”,()A B ,与()B A ,可看作一个“和谐点对”.已知函数22(0)()2(0)x x x x f x x e⎧+<⎪=⎨≥⎪⎩则()f x 的“和谐点对”有( )A .1个B .2个C .3个D .4个6.已知定义在R 上的函数()y xf x '=的图象(如图所示)与x 轴分别交于原点、点(2,0)-和点(2,0),若3-和3是函数()f x 的两个零点,则不等式()0f x >的解集( )A .(-∞,2)(2-⋃,)+∞B .(-∞,3)(3-,)+∞C .(-∞,3)(0-⋃,2)D .(3-,0)(3⋃,)+∞7.设()f x 在定义域内可导,其图象如图所示,则导函()'f x 的图象可能是( )A .B .C .D .8.在半径为r 的半圆内作一内接梯形,使其底为直径,其他三边为圆的弦,则梯形面积最大时,其梯形的上底为A .r 2B 3C 3D .r9.已知()321233y x bx b x =++++是R 上的单调增函数,则b 的取值范围是( ) A . 1b <-或2b > B .1,b ≤-或b 2≥C .12b -<<D .12b -≤≤10.已知f (x )=-x 3-ax 在(-∞,-1]上递减,且g (x )=2x-ax在区间(1,2]上既有最大值又有最小值,则a 的取值范围是( ) A .2a >-B .3a -≤C .32a -≤<-D .32a --≤≤11.若121x x >>,则( ) A .1221xxx e x e > B .1221x xx e x e < C .2112ln ln x x x x >D .2112ln ln x x x x <12.如果不等式3310x ax ++≥对于[]1,1x ∈-恒成立,则实数a 的取值范围是( )A.⎡⎤⎢⎥⎣⎦B .2,03⎡⎤-⎢⎥⎣⎦C.2,3⎡-⎢⎣⎦D .2,3⎛⎤-∞- ⎥⎝⎦二、填空题13.已知函数()()21,0e ,0x x x f x x ⎧+≤⎪=⎨>⎪⎩,若函数()()g x f x x m =--恰好有2个零点,则实数m 的取值范围为______.14.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )+xf '(x )>0,且f (3)=0,则不等式xf (x )>0的解集是_____.15.已知函数()24ln f x x x a x =++,若函数()f x 在()1,2上是单调函数,则实数a 的取值范围是______.16.已知定义在R 上的可导函数()f x 的导函数为()f x ',对任意实数均有(1)()'()0x f x xf x -+>成立,且()1y f x e =+-是奇函数,则不等式()0x xf x e ->的解集是_________. 17.设函数()21ln 12f x x x bx =+-+(b 为常数),若函数()f x 在[]1,3上存在单调减区间,则实数b 的取值范围是______.18.设函数3()32()f x ax x x =-+∈R ,若对于任意[1,1]x ∈-,都有()0f x ≥成立,则实数a 的取值范围是_________.19.已知函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩方程2()2()0()f x mf x m R -=∈有五个不相等的实数根,则实数m 的取值范围是______.20.已知()2sin cos f x x x x x =++,则不等式()()1lg lg 22f x f x f ⎛⎫+ ⎪⎝⎭>的解集为______.三、解答题21.已知函数()322=-+f x x ax b .(1)4a =时,()f x 在区间[]1,1-的最小值为-5,求b 的值 (2)讨论()f x 的单调性;22.已知函数2()ln (2)f x x a x ax =-+-. (1)求函数()f x 的单调区间;(2)若对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方,求实数a 的取值范围. 23.已知函数()()ln 0af x x a a x=-+>. (1)若曲线()y f x =在点()()1,1f 处与x 轴相切,求a 的值; (2)求函数()f x 在区间()1,e 上的零点个数;(3)若1x ∀、()21,x e ∈,()()()12120x x f x f x ⎡⎤-->⎣⎦,试写出a 的取值范围.(只需写出结论) 24.已知函数()212f x x =,()ln g x a x =.设()()()h x f x g x =+ (1)试讨论函数()h x 的单调性. (2)若对任意两个不等的正数12,x x ,都有()()12122h x h x x x ->-恒成立,求实数a 的取值范围;25.如图是一个半径为2千米,圆心角为3π的扇形游览区的平面示意图C 是半径OB 上一点,D 是圆弧AB 上一点,且//CD OA .现在线段OC ,线段CD 及圆弧DB 三段所示位置设立广告位,经测算广告位出租收入是:线段OC 处每千米为2a 元,线段CD 及圆弧DB 处每千米均为a 元.设AOD x ∠=弧度,广告位出租的总收入为y 元.(1)求y 关于x 的函数解析式,并指出该函数的定义域;(2)试问:x 为何值时,广告位出租的总收入最大?并求出其最大值. 26.已知函数()(2)()x f x x e alnx ax a R =-+-∈. (1)若1x =为()f x 的极大值点,求a 的取值范围;(2)当0a 时,判断()y f x =与x 轴交点个数,并给出证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 原不等式化为3ln 6x kx x >-,设()()3ln ,6xg x h x kx x==-,画出函数图象,结合函数图象列不等式求解即可. 【详解】由()23ln 60f x x kx x =-+>,得3ln 6xkx x>-, 设()()3ln ,6xg x h x kx x==-, ()()231ln x g x x-'=,()()00,0g x x e g x x e >⇒<<⇒''所以()g x 在()0,e 的上单调递增,在(),e +∞单调递减, 而()6h x kx =-的图象是一条恒过点()0,6-的直线, 函数()g x 与()h x 的图象如图所示,依题意得,01m <<,若(),m n 中只有两个整数,这两个整数只能是1和2,则()()()()2233g h g h ⎧>⎪⎨≤⎪⎩,即3ln 2262ln 336k k ⎧>-⎪⎨⎪≤-⎩,解得6ln 3123ln 234k ++≤<, 故k 的最小值为6ln33+, 故选:D. 【点睛】方法点睛:函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.2.A解析:A 【分析】根据已知可进行分离参数后,构造函数,两个零点1x ,2x ,求解a 的范围和切点,可得1201x x <<<,且()()12f x f x =,结合1x 与2x 的大小关系及函数的性质可求1x 的范围,然后结合函数单调性进行求解即可. 【详解】解:函数()()ln 0f x ax x a =-> 有两个零点1x ,2x , 令()0f x =,可得e xa x =令()e xg x x=即()()2e 1x x g x x-'=, 令()0g x '=,可得1x =, 可得当()0,1x ∈时,则()0g x '<, 当()1,x ∈+∞时,则()0g x '>,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,可得1201x x <<<, (i )若1102x <<,则21120x x >>>,符合题意;(ii )若1112x <<,则2121x x >>, 根据单调性,可得()()122f x f x <, 即()()112f x f x <,可得1111ln 22ln ax x ax x -<-,1ln 2x ∴>,综合(i )(ii )得,1x 的取值范围是()ln 2,1. 又()g x 在()ln 2,1上单调递减,可得()()ln 2g x g >, 即2ln 2a. 故选:A . 【点睛】本题主要考查了导数的几何意义的应用及利用导数求解参数的取值范围,体现了转化思想的应用.导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.D解析:D 【分析】利用到函数研究其图象,令3x y xe =,y kx k =-,从而讨论两个函数的性质作出3x y xe =与y kx k =-的图象,从而结合图象可得解. 【详解】()3x f x xe =,令y kx k =-,()3(1)x f x e x '=+,()3x f x xe ∴=在(-∞,1]-上是减函数,在(1,)-+∞上是增函数,又y kx k =-是恒过点(1,0)的直线,∴作()3x f x xe =与y kx k =-的图象如下:当直线y kx k =-与()3x f x xe =相切时, 设切点为(,3)x x xe ,3331xx x xe e xe x =+-,则x =,x =令()3x g x xe kx k =-+结合图象可知:(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩解得:2232k e e<故选:D【点睛】关键点睛:解答本题的关键是数形结合思想的灵活运用.作出两个函数的图象后,通过观察分析得到存在唯一的负整数01x =-,使得()00f x kx k <-,即(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩.4.A解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小. 【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.52-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>,∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A 【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.5.B解析:B 【分析】问题转化为0,()x f x ≥关于原点对称的函数与2()2f x x x =+在(,0)-∞交点的个数,先求出0,()x f x ≥关于原点对称的函数()g x ,利用导数方法求出2()2g x x x =+在(,0)-∞解的个数,即可得出结论. 【详解】设(,)(0)P x y x ≤是()(0)y f x x =≥关于原点对称函数图象上的点,则点P 关于原点的对称点为()P x y '--,在()(0)y f x x =≥上, 2,2x x y y e e--==-,设()2(0)xg x e x =-≤, “和谐点对”的个数即为()g x 与()f x 在(,0)-∞交点的个数, 于是222x e x x -=+,化为2220(0)x e x x x ++=<, 令2()22(0)x x e x x x ϕ=++<,下面证明方程()0x ϕ=有两解, 由于20x e >,所以220x x +<,解得20x -<<,∴只要考虑(20)x ∈-,即可, ()222x x e x ϕ'=++,()x ϕ'在区间(20)-,上单调递增, 而2(2)2420e ϕ-'-=-+<,1(1)20e ϕ-'-=>, ∴存在0(2,1)x ∈--使得0()0x ϕ'=, 当0(2,),()0,()x x x x ϕϕ∈-'<单调递减,0(,0),()0,()x x x x ϕϕ∈'>单调递增,而2(2)20e ϕ--=>,10()(1)210x e ϕϕ-<-=-<,(0)20ϕ=>,∴函数()ϕx 在区间(21)--,,(1,0)-分别各有一个零点, 即()f x 的“和谐点对”有2个. 故选:B . 【点睛】本题考查函数的新定义,等价转化为函数图象的交点,利用函数导数研究单调性,结合零点存在性定理是解题的关键,考查逻辑思维能力和运算求解能力,属于常考题.6.B解析:B 【分析】根据()y xf x '=的图像可得()'f x 在R 上的正负值,进而求得原函数的单调性,再结合()f x 的零点画出()f x 的简图,进而求得不等式()0f x >的解集.【详解】由图,当(),2x ∈-∞-时()0xf x '>,故()0f x '<,()f x 为减函数; 当()2,0x ∈-时()0xf x '<,故()0f x '>,()f x 为增函数; 当()0,2x ∈时()0xf x '<,故()0f x '<,()f x 为减函数; 由图,当()2,x ∈+∞时()0xf x '>,故()0f x '>,()f x 为增函数; 又3-和3是函数()f x 的两个零点,画出()f x 的简图如下:故不等式()0f x >的解集为()(),33,-∞-+∞.故选:B 【点睛】本题主要考查了根据关于导函数的图像,分析原函数单调性从而求得不等式的问题.需要根据题意分段讨论导函数的正负,属于中档题.7.B解析:B 【详解】试题分析:函数的递减区间对应的()0f x '<,函数的递增区间对应()0f x '>,可知B 选项符合题意.考点:函数的单调性与导数的关系.8.D解析:D 【解析】设=COB θ∠,则上底为2cos r θ,高为sin r θ, 因此梯形面积为21(2cos 2)sin (1cos )sin 022S r r r r πθθθθθ=+=+∈,(,) 因为由22222=(sin cos cos )(1cos 2cos )0S r r θθθθθ'-++=-++=, 得1cos 2θ=,根据实际意义得1cos 2θ=时,梯形面积取最大值,此时上底为2cos =r r θ,选D.点睛:利用导数解答函数最值的一般步骤:第一步:利用()0f x '=得可疑最值点;第二步:比较极值同端点值的大小.在应用题中若极值点唯一,则极值点为开区间的最值点.9.D解析:D 【分析】利用三次函数()321233y x bx b x =++++的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题. 【详解】∵()321233y x bx b x =++++,∴222y x bx b '=+++, ∵函数是R 上的单调增函数,∴2220x bx b +++≥在R 上恒成立, ∴0∆≤,即244(2)0b b -+≤.∴12b -≤≤ 故选:D. 【点睛】本题考查根据导函数研究函数的单调性,属于中档题.可导函数在某一区间上是单调函数,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()'f x 在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式0∆≤来进行求解.10.C解析:C 【分析】利用()f x 导数小于等于零恒成立,求出a 的范围,再由()2'2ag x x x=+在(]1,2上有零点,求出a 的范围,综合两种情况可得结果. 【详解】因为函数()3f x x ax =--在(],1-∞-上单调递减,所以()2'30f x x a =--≤对于一切(],1x ∈-∞-恒成立,得23,3x a a -≤∴≥-, 又因为()2ag x x x=-在区间(]1,2上既有最大值,又有最小值, 所以,可知()2'2ag x x x=+在(]1,2上有零点, 也就是极值点,即有解220ax x+=,在(]1,2上解得32a x =-, 可得82,32a a -≤<-∴-≤<-,故选C. 【点睛】本题主要考查“分离常数”在解题中的应用以及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间[],a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围. 11.A解析:A 【分析】根据条件构造函数,再利用导数研究单调性,进而判断大小. 【详解】①令()()1x e f x x x =>,则()()21'0x x e f x x-=>,∴()f x 在1,上单调递增,∴当121x x >>时,1212x x e e x x >,即1221x xx e x e >,故A 正确.B 错误. ②令()()ln 1x g x x x =>,则()21ln 'xg x x-=,令()0g x =,则x e =, 当1x e <<时,()'0g x >;当x e >时,()'0g x <,∴()g x 在()1,e 上单调递增, 在(),e +∞上单调递减,易知C ,D 不正确, 故选A . 【点睛】本题考查利用导数研究函数单调性,考查基本分析判断能力,属中档题.12.A解析:A 【分析】分0x =、10x -≤<、01x <≤三种情况讨论,利用参变量分离法计算出实数a 在各种情况下的取值范围,综合可得出实数a 的取值范围. 【详解】由已知,不等式3310x ax ++≥对于[]1,1x ∈-恒成立. ①当0x =时,则有10≥恒成立,此时a R ∈; ②当10x -≤<时,由3310x ax ++≥可得213a x x≤--, 令()21f x x x =--,()32211220x f x x x x -'=-+=>,所以,函数()f x 在区间[)1,0-上为增函数,则()()min 10f x f =-=,则30a ≤,得0a ≤;③当01x <≤时,由3310x ax ++≥可得213a x x≥--, 令()32120x f x x -'==可得2x =,列表如下:2()2max22f x ⎛=-= ⎝⎭3a ∴≥a ≥.综上所述,实数a 的取值范围是⎡⎤⎢⎥⎣⎦.故选:A. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.二、填空题13.【分析】转化为函数的图象与直线恰有2个交点作出函数的图象利用图象可得结果【详解】因为函数恰好有2个零点所以函数的图象与直线恰有2个交点当时当时所以函数在上为增函数函数的图象如图:由图可知故答案为:【 解析:34m >【分析】转化为函数()y f x x =-的图象与直线y m =恰有2个交点,作出函数的图象,利用图象可得结果. 【详解】因为函数()()g x f x x m =--恰好有2个零点,所以函数()y f x x =-的图象与直线y m =恰有2个交点, 当0x ≤时,22133()1()244y f x x x x ==++=++≥, 当0x >时,()x y f x x e x =-=-,10x y e '=->,所以函数()x y f x x e x =-=-在(0,)+∞上为增函数,函数()y f x x =-的图象如图:由图可知,34m >. 故答案为:34m > 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.14.(﹣∞﹣3)∪(3+∞)【分析】令当x >0时可得x ∈(0+∞)上函数单调递增由可得由函数是定义在R 上的奇函数可得函数是定义在R 上的偶函数进而得出不等式的解集【详解】解:令当x >0时∴x ∈(0+∞)上解析:(﹣∞,﹣3)∪(3,+∞) 【分析】令()()g x xf x =,()()()g x f x xf x ''+=,当x >0时,()()0f x xf x '+>,可得x ∈(0,+∞)上,函数()g x 单调递增.由()30f =,可得()30g =.由函数()f x 是定义在R 上的奇函数,可得函数()g x 是定义在R 上的偶函数.进而得出不等式的解集. 【详解】解:令()()g x xf x =,()()()g x f x xf x ''+= 当x >0时,()()0f x xf x '+>∴x ∈(0,+∞)上,函数()g x 单调递增.()30f =,∴()30g =.∵函数()f x 是定义在R 上的奇函数, ∴函数()g x 是定义在R 上的偶函数. 由()()03g x g >=,即()()3g x g >, ∴|x |>3,解得x >3,或x <﹣3.∴不等式()0xf x >的解集是()(),33-,-∞⋃+∞. 故答案为:()(),33-,-∞⋃+∞. 【点睛】本题考查了利用导数研究函数的单调性、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于中档题.15.【分析】对函数进行求导导函数在区间上恒非正或恒非负进行求解即可【详解】由题意得:函数的定义域为由题意可知:或在区间上恒成立当在区间上恒成立时当时因此有;当在区间上恒成立时当时因此有综上所述:实数的取 解析:(,16][6,)-∞-+∞【分析】对函数进行求导,导函数在区间()1,2上恒非正或恒非负进行求解即可. 【详解】由题意得:函数()f x 的定义域为()0+∞,, 2'()+4ln ()2+4af x x x a x f x x x=+⇒=+,由题意可知:'()0f x ≥或'()0f x ≤在区间()1,2上恒成立.当'()0f x ≥在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≥⇒≥--=-+, 当()1,2x ∈时,()2(24)166x x --∈--,,因此有6a ≥-; 当'()0f x ≤在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≤⇒≤--=-+, 当()1,2x ∈时,()2(24)166x x --∈-,,因此有16a ≤-, 综上所述:实数a 的取值范围是(,16][6,)-∞-+∞. 故答案为:(,16][6,)-∞-+∞. 【点睛】本题考查了已知函数在区间上的单调性求参数取值范围,考查了导数的应用,考查了数学运算能力,属于中档题.16.【分析】将问题转化为解不等式令根据函数的单调性以及奇偶性求出的范围即可【详解】由可得令则故在上单调递增又是奇函数故故解得:故答案为:【点睛】本题主要考查了函数的单调性问题考查导数的应用以及函数的奇偶 解析:()1,+∞【分析】将问题转化为解不等式()1xxf x e >,令()()xxf x g x e=,根据函数的单调性以及奇偶性求出x 的范围即可. 【详解】由()0xxf x e ->可得()1xxf x e>,令()()x xf x g x e =,则()()()()10xx f x xf x g x e -+''=>,故()g x 在R 上单调递增,又()1y f x e =+-是奇函数,故()1f e =,()11g =, 故()()1g x g >,解得:1x >, 故答案为:()1,+∞. 【点睛】本题主要考查了函数的单调性问题,考查导数的应用以及函数的奇偶性,属于中档题.17.【分析】根据题意将函数在上存在单调减区间转化为在上有解则只需:只需在内即可结合基本不等式即可求出的取值范围【详解】解:由题意知:在上存在单调减区间在上有解即在上有解即在上有解只需在内即可当且仅当时取 解析:()2,+∞【分析】根据题意,将函数()f x 在[]1,3上存在单调减区间,转化为()0f x '<在[]1,3上有解,则只需:只需在[]1,3内min1b x x ⎛⎫>+ ⎪⎝⎭即可,结合基本不等式,即可求出b 的取值范围. 【详解】解:由题意知:()()21ln 102f x x x bx x =+-+>, ()211x bx f x x b x x-+'∴=+-=, ()f x 在[]1,3上存在单调减区间,()0f x '∴<在[]1,3上有解,即10x b x+-<在[]1,3上有解,即1>+b x x 在[]1,3上有解,只需在[]1,3内,min1b x x ⎛⎫>+ ⎪⎝⎭即可, 0x,12x x∴+≥,当且仅当1x =时取得最小值2,即在在[]1,3内min12x x ⎛⎫+= ⎪⎝⎭, 所以:2b >,则b 的取值范围是:()2,+∞. 故答案为:()2,+∞. 【点睛】本题考查导数的应用,以及基本不等式的应用,考查转化思想和计算能力.18.【分析】求出时的值讨论函数的增减性得到的最小值让最小值大于等于0即可求出的范围【详解】解:由可得当时令解得且①当时为递增函数②当时为递减函数③当时为递增函数所以即解得故答案为:【点睛】考查学生理解函 解析:15a ≤≤【分析】求出()0f x '=时x 的值,讨论函数的增减性得到()f x 的最小值,让最小值大于等于0即可求出a 的范围. 【详解】解:由(1)0f ≥可得1a ≥,2'()33f x ax =-,当1a ≥时,令2'()330f x ax =-=解得x =,且1>-<①当1x -<<()0,()f x f x '>为递增函数,②当a ax a a-<<时,()0,()f x f x '<为递减函数, ③当1ax a<<时,()f x 为递增函数. 所以()010a f a f ⎧⎛⎫≥⎪ ⎪ ⎪⎨⎝⎭⎪-≥⎩,即3320320a a a a a a ⎧⎛⎫⎛⎫⎪-+≥ ⎪ ⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎪-++≥⎩, 解得15a ≤≤. 故答案为:15a ≤≤. 【点睛】考查学生理解函数恒成立时取条件的能力,以及利用导数求函数最值的能力.19.【分析】作出函数的图象结合图象可求实数的取值范围【详解】当时当时函数为增函数;当时函数为减函数;极大值为且;作出函数的图象如图方程则或由图可知时有2个解所以有五个不相等的实数根只需要即;故答案为:【解析:1(0,)2【分析】作出函数21ln ,0()log ,0xx f x xx x +⎧>⎪=⎨⎪<⎩的图象,结合图象可求实数m 的取值范围. 【详解】当0x >时,2ln ()xf x x'=-,当01x <<时,()0f x '>,函数为增函数; 当1x >时,()0f x '<,函数为减函数;极大值为(1)1f =,且x →+∞,()0f x →;作出函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩的图象,如图,方程2()2()0()f x mf x m R -=∈,则()0f x =或()2f x m =,由图可知()0f x =时,有2个解,所以2()2()0f x mf x -=有五个不相等的实数根,只需要021m <<,即102m <<; 故答案为:1(0,)2. 【点睛】本题主要考查导数的应用,利用研究方程根的问题,作出函数的简图是求解的关键,侧重考查数学抽象的核心素养.20.【分析】先判断函数为偶函数再利用导数判断函数在递增从而将不等式转化为进一步可得不等式解对数不等式即可得答案【详解】的定义域为且即有即为偶函数;又时则在递增不等式即为即有可得即有即或解得或则解集为故答解析:()10,100,100⎛⎫+∞ ⎪⎝⎭【分析】先判断函数为偶函数,再利用导数判断函数在0x >递增,从而将不等式转化为()()lg 2f x f >,进一步可得不等式lg 2x >,解对数不等式即可得答案.【详解】()2sin cos f x x x x x =++的定义域为R ,且()()()()()22sin cos sin cos f x x x x x x x x x -=--+-+-=++,即有()()f x f x -=,即()f x 为偶函数;又0x >时,()()sin cos sin 22cos 0f x x x x x x x x '=+-+=+>, 则()f x 在0x >递增,不等式()()1lg lg 22f x f x f ⎛⎫+ ⎪⎝⎭>,即为()()()lg lg 22f x f x f +->,即有()()lg 2f x f >, 可得()()lg 2fx f >,即有lg 2x >, 即lg 2x >或lg 2x <-, 解得100x >或10100x <<, 则解集为()10,100,100⎛⎫+∞ ⎪⎝⎭.故答案为:()10,100,100⎛⎫+∞ ⎪⎝⎭.【点睛】本题考查函数奇偶性、单调性的综合运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意偶函数(||)()f x f x =这一性质的应用.三、解答题21.(1)1b =;(2)答案见解析. 【分析】(1)求导求出函数的单调区间,比较(1),(1)f f -得到函数的最小值为65b -=-即得解;(2)先求导,再对a 分三种情况得到函数的单调性. 【详解】(1)()3224f x x x b =-+,所以()2682(34)f x x x x x '=-=-,令()>00f x x '∴<,;()<00f x x '∴>,; 所以函数的单调递增区间为[1,0]-,单调递减区间为[0,1], 因为(1)246,(1)2f b b f b -=--+=-=-, 所以()f x 在区间[]1,1-的最小值65,1b b -=-∴=. (2)()()26223f x x ax x x a '=-=-.令0f x ,得0x =或3ax =. 若0a >,则当(),0,3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,0f x ;当0,3⎛⎫∈ ⎪⎝⎭a x 时,0f x .故()f x 在,0,,3a⎛⎫+∞⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减; 若0a =,()f x 在(),-∞+∞单调递增;若0a <,则当(),0,3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,0fx ;当,03⎛⎫∈⎪⎝⎭a x 时,0f x.故()f x 在,3a ⎛⎫-∞ ⎪⎝⎭,0,单调递增,在,03⎛⎫ ⎪⎝⎭a 单调递减. 【点睛】 方法点睛:用导数求函数的单调区间步骤:求函数的定义域D →求导'()f x →解不等式'()f x >()<0得解集P →求D P ⋂,得函数的单调递增(减)区间.22.(1)详见解析;(2)[1,)-+∞.【分析】(1)对函数求导[]()(2)121()a x x f x x -+-+'=,分20a +≤ 和20a +>, 讨论导函数的正负即可.(2)由对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方,则()0f x ≤,()0,x ∈+∞恒成立,转化为22ln 2x x a x x -≥+,()0,x ∈+∞恒成立,令()22ln 2x x g x x x-=+,用导数法求其最大值即可.【详解】(1)函数2()ln (2)f x x a x ax =-+-定义域为()0,∞+, 则[]()(2)1211()2(2)a x x f x a x a x x-+-+'=-+-=, 当20a +≤时,()0f x '>,()f x 递增, 当20a +>时,令()0f x '>,解得102x a <<+,令()0f x '<,解得12x a >+, 所以()f x 在10,2a ⎛⎫ ⎪+⎝⎭递增,在1,2a ⎛⎫+∞ ⎪+⎝⎭递减; (2)若对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方,则2()ln (2)0f x x a x ax =-+-≤,()0,x ∈+∞恒成立, 则22ln 2x x a x x-≥+,()0,x ∈+∞恒成立, 令()22ln 2x x g x x x -=+,则()()()()22211ln x x x g x x x +-+-'=+, 令()1ln h x x x =-+-,则()110h x x'=--<, 所以()h x 在()0,∞+递减,而()10h =,所以当01x <<时,()0g x '>,当1x >时,()0g x '<,所以当1x =时,()g x 取得最大值1-,所以1a ≥-,所以实数a 的取值范围是[1,)-+∞.【点睛】方法点睛:1、利用导数研究函数的单调性:关键在于准确判定导数的符号,当()f x 含参数时,需依据参数取值对不等式解集的影响进行分类讨论..2、恒成立问题的解法:(1)若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;(2)若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.23.(1)1a =;(2)答案见解析;(3)(][)0,1,e +∞. 【分析】(1)由题意可得()10f '=,由此可解得实数a 的值;(2)求得()2x a f x x-'=,对实数a 的取值进行分类讨论,分析函数()f x 在区间()1,e 上的单调性,结合零点存在定理可得出结论;(3)根据(2)中的讨论可写出实数a 的取值范围.【详解】(1)()221a x a f x x x x'-=-=, 因为()y f x =在点()()1,1f 处与x 轴相切,且()10f =,所以()110f a '=-=,解得1a =.经检验1a =符合题意;(2)由(1)知()2x a f x x-'=,令()0f x '=,得x a =. (i )当01a <≤时,()1,x e ∈,()0f x '>,函数()f x 在区间()1,e 上单调递增, 所以()()10f x f >=, 所以函数()f x 在区间()1,e 上无零点;(ii )当1a e <<时,若1x a <<,则()0f x '<,若a x e <<,则()0f x '>.函数()f x 在区间()1,a 上单调递减,在区间(),a e 上单调递增,且()10f =,()1e a f e a =-+. 当()10a f e a e=-+>,即11e a e <<-时,函数()f x 在区间()1,e 上有一个零点; 当()10a f e a e=-+≤时,即当e e e 1a <-≤时,函数()f x 在区间()1,e 上无零点; (iii )当a e ≥时,()1,x e ∈,()0f x '<,函数()f x 在区间()1,e 上单调递减,所以()()10f x f <=, 所以函数()f x 在区间()1,e 上无零点.综上:当01a <≤或e e 1a ≥-时,函数()f x 在区间()1,e 上无零点; 当11e a e <<-时,函数()f x 在区间()1,e 上有一个零点. (3)01a <≤或a e ≥.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.24.(1)答案见解析;(2)[)1,+∞.【分析】(1)求导后,分别在0a ≥和0a <两种情况下讨论导函数的正负即可得到结果; (2)将恒成立的不等式转化为()()112222h x x h x x ->-对于任意的12x x >恒成立,从而只需构造函数()()2t x h x x =-,证明()t x 在()0,∞+上单调递增即可,从而将问题进一步转化为()0t x '≥在()0,∞+上恒成立,进而利用分离变量的方法可求得结果.【详解】(1)()()21ln 02h x x a x x =+>,则()()20a x a h x x x x x+'=+=>, 当0a ≥时,()0h x '>恒成立,()h x ∴在()0,∞+上单调递增;当0a <时,若(x ∈,()0h x '<;若)x ∈+∞,()0h x '>; ()h x ∴在(上单调递减,在)+∞上单调递增. (2)设12x x >,则()()12122h x h x x x ->-等价于()()112222h x x h x x ->-, 即()()112222h x x h x x ->-对于任意的12x x >恒成立. 令()()212ln 22t x h x x x a x x =-=+-,则只需()t x 在()0,∞+上单调递增, ()2a t x x x '=+-,∴只需()0t x '≥在()0,∞+上恒成立即可. 令()200a x x x+-≥>,则()220a x x x ≥-+>,当1x =时,()2max 21x x-+=,1a ∴≥,即实数a 的取值范围为[)1,+∞.【点睛】 关键点点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.25.(1)2cos ,0,33y a x x x x ππ⎫⎛⎫=+-+∈⎪ ⎪⎭⎝⎭;(2)当6x π=时,广告位出租的总收入最大,最大值为26a π⎫⎪⎭元. 【分析】(1)根据题意,利用正弦定理求得OC 的值,再求弧长DB ,求出函数y 的解析式,写出x 的取值范围;(2)求函数y 的导数,利用导数判断函数的单调性,求出函数的最值和对应x 的值.【详解】(1)因为//CD OA ,所以ODC AOD xrad ∠=∠=.在OCD ∆中,23OCD π∠=,3COD x π∠=-,2OD km =.由正弦定理,得22sin sin sin 33OC CD x x ππ===⎛⎫- ⎪⎝⎭得OC xkm =,3CD x km π⎛⎫=- ⎪⎝⎭. 又圆弧DB 长为23x km π⎛⎫-⎪⎝⎭,所以2233y a x a x x ππ⎤⎛⎫⎛⎫=+⨯-+-⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦2cos ,0,33a x x x x ππ⎫⎛⎫=+-+∈⎪ ⎪⎭⎝⎭. (2)记()2cos 3f x a x x x π⎫=+-+⎪⎭, 则())'2sin 122cos 16f x a x x a x π⎡⎤⎛⎫=--=+- ⎪⎢⎥⎝⎭⎣⎦, 令()'0f x =,得6x π=.当x 变化时,()'f x ,()f x 的变化如下表:所以()f x 在6x π=处取得极大值,这个极大值就是最大值,即2323666f a a πππ⎛⎫⎫⎫=⨯= ⎪⎪⎪⎝⎭⎭⎭. 故当6x π=时,广告位出租的总收入最大,最大值为236a π⎫⎪⎭元. 【点睛】本题考查了三角函数模型的应用问题,考查利用导数知识处理最值问题,考查函数与方程思想,是中档题.26.(1)a e >;(2)()f x 有唯一零点;证明见解析.【分析】(1)先对函数求导,然后结合极值存在条件即可求解;(2)结合导数可判断函数的单调性,然后结合a 的范围及函数的性质可求.【详解】解:(1)()(1)x e x a f x x x-'=-,0x >, 设()x g x xe a =-,()(1)0x g x x e '=+>,()g x 在R 递增,故存在0x 使得0()0g x =,当a e =时,()(1)0x e x a f x x x-'=-恒成立,故()f x 单调递增无极值, a e <时,易得0x x <时,()0f x '>,函数()f x 单调递增,01x x <<时,()0f x '<,函数单调递减,当1x >,()0f x '>,函数单调递增,当1x =时,函数取得极小值,不满足题意;a e >时,易得1x <时,()0f x '>,函数()f x 单调递增,01x x <<,时,()0f x '<,函数单调递减,当0x x >,()0f x '>,函数单调递增,1x =为极大值点综上:a e >,(2)由(1)知:①a e =时,()f x 在(0,)+∞单调递增,f (2)0<,f (3)0>,()f x 有唯一零点; ②a e <时,0x 满足()0g x =,01x <,()f x 在0(0,)x 递增,在0(x ,1)递减,在(1,)+∞递增,当(0,1)x ∈时,()0f x <恒成立,当(1,)x ∈+∞时,f (1)0<,2(2)(2)(2)0a f a ae aln a a a ++=++-+>,所以23a e a +>+,有唯一零点;③a e >,()f x 在(0,1)上单调递增,0(1,)x 单调递减,0(x ,)+∞单调递增, 0()f x f <(1)0<在0(0,)x 上无零点,在0(x ,)+∞上有唯一零点;综上:0a ,()f x 有唯一零点.【点睛】本题主要考查了利用导数研究函数的极值及函数零点的研究,体现了分类讨论思想的应用,属于中档题.。
北师大版高中数学选修2-2第三章《导数应用》导数与函数的单调性 课件
0
. . . . . ..
2
2013-4-2
x
(-∞,2)上单减, 切线斜率小于0,即其 导数为负,在区间(2, +∞)上单增,切线斜率 大于0,即其导数为正. 而当x=2时其切线斜率 为0,即导数为0. 函数在该点单调性发生 改变.
结论:一般地,设函数y=f(x)在某个区间
内可导,则函数在该区间
(B)–1<a<1
(D) 0<a<1
3 、 当 x∈(-2,1) 时 , f(x)=2x3+3x2-12x+1 是( B ) (A)单调递增函数 (B)单调递减函数 (C)部份单调增,部分单调减 (D) 单调性不能确定
作业布置:课本P62页习题3-1A组1、2 五、教后反思:
2013-4-2
2013-4-2
2.已知导函数的下列信息:
当2 x 3时,f '( x ) 0; 当x 3或x 2时,f '( x ) 0; 当x 3或x 2时,f '( x ) 0.
试画出函数 f ( x )图象的大致形状。 y A
y f ( x)
B o
2013-4-2
2
3
x
设 f '( x ) 是函数 f ( x ) 的导函数, y f '( x ) 的图象如 右图所示,则 y f ( x )的图象最有可能的是( C)
1 1 6 x 3 0, x , 单调增区间为 ,); ( 2 2 1 1 6 x 3 0, x , 单调减区间为 , ). ( 3 2 的单调区间。 2 2 变1:求函数
y 3x 3x
解 : y 9 x 2 6 x 2 2 9 x 6 x 0, x 或x 0, 单调增区间为 ,0) ( ,); ( 3 3 2 2 2 9 x 6 x 0,0 x , 单调减区间为 0, ). ( 3 3 2013-4-2
高中数学选修2-2同步练习题库:定积分的简单应用(填空题:容易)
定积分的简单应用(填空题:容易)1、若,则实数的值是 .2、由曲线所围成的封闭图形的面积为________3、如图所示,在边长为1的正方形中任取一点,则点恰好取自阴影部分的概率为___________.4、已知,则函数的单调递减区间是______.5、定积分的值为.6、_____________.7、曲线与直线及所围成的封闭图形的面积为 .8、曲线与所围成的封闭图形的面积s=9、已知,则.10、曲线和曲线围成的图形面积是11、的值等于 .12、曲线与直线围成的封闭图形的面积是 .13、在平面直角坐标系内,由曲线所围成的封闭图形的面积为.14、二项式的展开式的第二项的系数为,则的值为.15、.16、由直线与曲线所围成的封闭图形的面积为______________.17、定积分.18、计算定积分:.19、已知函数,则。
20、= .21、计算= .22、计算:= .23、等于.24、________.25、定积分___________;26、=。
27、求曲线,所围成图形的面积.28、由曲线,直线所围图形面积S= .29、定积分= .30、定积分的值为____________.31、计算定积分(x2+sinx)dx=.32、求曲线y=,y=2-x,y=-x所围成图形的面积为_______。
33、已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面积为________.34、dx + .35、曲线=x与y=围成的图形的面积为______________.36、=________________。
37、设.若曲线与直线所围成封闭图形的面积为,则______.38、一物体在力(单位:)的作用下沿与力相同的方向,从处运动到(单位:)处,则力做的功为焦.39、由直线,,曲线及轴所围成的图形的面积是.40、计算定积分 .41、已知求 .42、曲线与直线所围成的封闭图形的面积为.43、在的展开式中的常数项为p,则 .44、设=,则二项式展开式中含项的系数是。
选修2-2第3章 导数的应用总讲义资料
3.1导数与函数的单调性【学习要求】1.结合实例,直观探索并掌握函数的单调性与导数的关系. 2.能利用导数判断函数的单调性.3.会求函数的单调区间(其中多项式函数一般不超过三次). 【学法指导】结合函数图像(几何直观)探讨归纳函数的单调性与导函数正负之间的关系,体会数形结合思想,以直代曲思想. 一.基础知识回顾1.探究点一:函数的单调性与导函数正负的关系 例1:已知导函数f ′(x )的下列信息:当1<x <4时,f ′(x )>0;当x >4,或x <1时,f ′(x )<0; 当x =4,或x =1时,f ′(x )=0.试画出函数f (x )图像的大致形状.解:当1<x <4时,f ′(x )>0,可知f (x )在此区间内单调递增;当x >4,或x <1时,f ′(x )<0,可知f (x )在此区间内单调递减;当x =4,或x =1时,f ′(x )=0,这两点比较特殊,我们称它们为“临界点”. 综上,函数f (x )图像的大致形状如图所示. 跟踪训练1:函数y =f (x )的图像如图所示,试画出导函数f ′(x )图像的大致形状. 解:f ′(x )图像的大致形状如下图: 注:图像形状不唯一.例2:求下列函数的单调区间:(1)f (x )=2x 3-3x 2-36x +16;(2)f (x )=3x 2-2ln x .解:(1)f ′(x )=6x 2-6x -36=6(x +2)(x -3).由f ′(x )>0得,x <-2或x >3;由f ′(x )<0得,-2<x <3. 所以函数f (x )的递增区间为(-≦,-2)和(3,+≦);递减区间为(-2,3).(2)函数的定义域为(0,+≦),f ′(x )=6x -2x =2·3x 2-1x .令f ′(x )>0,即2·3x 2-1x>0,解得-33<x <0或x >33.又≧x >0,≨x >33.令f ′(x )<0,即2·3x 2-1x <0,解得x <-33或0<x <33.又≧x >0,≨0<x <33.≨f (x )的单调递增区间为(33,+≦),单调递减区间为(0,33). 跟踪训练2:求下列函数的单调区间:(1)f (x )=x 2-ln x ; (2)f (x )=e x x -2; (3)f (x )=sin x (1+cos x )(0≤x <2π).解:(1)函数f (x )的定义域为(0,+≦).f ′(x )=2x -1x =2x -12x +1x.因为x >0,所以2x +1>0,由f ′(x )>0得x >22,所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫22,+≦;由f ′(x )<0得x <22,又x ∈(0,+≦),所以函数f (x )的单调递减区间为⎝⎛⎭⎪⎫0,22.(2)函数f (x )的定义域为(-≦,2)∪(2,+≦).f ′(x )=e x x -2-e x x -22=e xx -3x -22.因为x ∈(-≦,2)∪(2,+≦),所以e x >0,(x -2)2>0. 由f ′(x )>0得x >3,所以函数f (x )的单调递增区间为(3,+≦);由f ′(x )<0得x <3,又定义域为(-≦,2)∪(2,+≦),所以函数f (x )的单调递减区间为(-≦,2)和(2,3).(3)f ′(x )=cos x (1+cos x )+sin x (-sin x ) =2cos 2x +cos x -1=(2cos x -1)(cos x +1).因为0≤x <2π,所以cos x +1≥0,由f ′(x )>0得0<x <π3或5π3<x <2π;由f ′(x )<0得π3<x <5π3,故函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,π3,⎝ ⎛⎭⎪⎫5π3,2π,单调递减区间为⎝ ⎛⎭⎪⎫π3,5π3.探究点二:函数的变化快慢与导数的关系例3:如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图像.解:(1)→B (2)→A (3)→D (4)→C跟踪训练3:已知f ′(x )是f (x )的导函数,f ′(x )的图像如图所示,则f (x )的图像只可能是 (D)解析:从f ′(x )的图像可以看出,在区间⎝⎛⎭⎪⎫a ,a +b 2内,导数递增;在区间⎝ ⎛⎭⎪⎫a +b 2,b 内,导数递减.即函数f (x )的图像在⎝⎛⎭⎪⎫a ,a +b 2内越来越陡,在⎝ ⎛⎭⎪⎫a +b 2,b 内越来越平缓.三.练一练1.函数f (x )=x +ln x 在(0,6)上是(A)A .单调增函数B .单调减函数C .在⎝ ⎛⎭⎪⎫0,1e 上是减函数,在⎝ ⎛⎭⎪⎫1e ,6上是增函数 D .在⎝ ⎛⎭⎪⎫0,1e 上是增函数,在⎝ ⎛⎭⎪⎫1e ,6上是减函数 解析:≧f ′(x )=1+1x>0,≨函数在(0,6)上单调递增.2.f ′(x )是函数y =f (x )的导函数,若y =f ′(x )的图像如图所示,则函数y =f (x )的图像可能是(D)解析:由导函数的图像可知,当x <0时,f ′(x )>0,即函数f (x )为增函数;当0<x <2时,f ′(x )<0,即f (x )为减函数;当x >2时,f ′(x )>0,即函数f (x )为增函数.观察选项易知D 正确3.函数f (x )=ln x -ax (a >0)的单调增区间为 (A)A .⎝ ⎛⎭⎪⎫0,1aB .⎝ ⎛⎭⎪⎫1a ,+∞ C .(0,+∞) D .(0,a )解析:f (x )的定义域为{x |x >0},由f ′(x )=1x -a >0,得0<x <1a.4.(1)函数y =x 2-4x +a 的增区间为(2,+∞),减区间为(-∞,2)(2)函数f (x )=x 3-x 的增区间为⎝ ⎛⎭⎪⎫-∞,-33和⎝ ⎛⎭⎪⎫33,+∞,减区间为⎝ ⎛⎭⎪⎫-33,33解析:(1)y ′=2x -4,令y ′>0,得x >2;令y ′<0,得x <2,所以y =x 2-4x +a 的增区间为(2,+≦),减区间为(-≦,2).(2)y ′=3x 2-1,令y ′>0,得x >33或x <-33;令y ′<0,得-33<x <33,所以f (x )=x 3-x 的增区间为⎝ ⎛⎭⎪⎫-≦,-33和⎝ ⎛⎭⎪⎫33,+≦,减区间为(-33,33). 四.课时小结1.导数的符号反映了函数在某个区间上的单调性,导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度.2.利用导数求函数f (x )的单调区间的一般步骤为:(1)确定函数f (x )的定义域;(2)求导数f ′(x );(3)在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0;(4)根据(3)的结果确定函数f (x )的单调区间. 五.作业设计1. 命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的 (A) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2. 函数f (x )=(x -3)e x 的单调递增区间是 (D)A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)3. 函数f (x )=x 3+ax 2+bx +c ,其中a ,b ,c 为实数,当a 2-3b <0时,f (x )是 (A)A .增函数B .减函数C .常数D .既不是增函数也不是减函数 4. 下列函数中,在(0,+∞)内为增函数的是 (B)A .y =sin xB .y =x e 2C .y =x 3-x D .y =ln x -x 5. 如果函数f (x )的图像如图,那么导函数y =f ′(x )的图像可能是 (A)6. 设f (x ),g (x )在[a ,b ]上可导,且f ′(x )>g ′(x ),则当a <x <b 时,有 (C)A .f (x )>g (x )B .f (x )<g (x )C .f (x )+g (a )>g (x )+f (a )D .f (x )+g (b )>g (x )+f (b )7. 函数y =f (x )在其定义域⎝⎛⎭⎫-32,3内可导,其图像如图所示,记y =f (x )的导函数为y =f ′(x ),则不等式f ′(x )≤0的解集为⎣⎡⎦⎤-13,1∪[2,3) 8. 函数y =x -2sin x 在(0,2π)内的单调递增区间为⎝⎛⎭⎫π3,5π3.9.函数y =ax 3-x 在R 上是减函数,则a 的取值范围为________.10.已知函数y =f (x )的导函数f ′(x )的图像如图所示,试画出函数y =f (x )的大致图像.解:由y =f ′(x )的图像可以得到以下信息:x <-2或x >2时,f ′(x )<0,-2<x <2时,f ′(x )>0,f ′(-2)=0,f ′(2)=0.故原函数y =f (x )的图像大致如下:11.求下列函数的单调区间:(1)y =x -ln x ; (2)y =12x .解:(1)函数的定义域为(0,+≦),y ′=1-1x,由y ′>0,得x >1;由y ′<0,得0<x <1.≨函数y =x -ln x 的单调增区间为(1,+≦),单调减区间为(0,1).(2)函数的定义域为{x |x ≠0},y ′=-12x 2,≧当x ≠0时,y ′=-12x2<0恒成立.≨函数y =12x的单调减区间为(-≦,0),(0,+≦),没有单调增区间.12.已知函数f (x )=x 3+bx 2+cx +d 的图像经过点P (0,2),且在点M (-1,f (-1))处的切线方程为6x -y +7=0.(1)求函数y =f (x )的解析式;(2)求函数y =f (x )的单调区间.解:(1)由y =f (x )的图像经过点P (0,2),知d =2,≨f (x )=x 3+bx 2+cx +2,f ′(x )=3x 2+2bx +c .由在点M (-1,f (-1))处的切线方程为6x -y +7=0,知-6-f (-1)+7=0,即f (-1)=1,f ′(-1)=6.≨⎩⎪⎨⎪⎧ 3-2b +c =6-1+b -c +2=1,即⎩⎪⎨⎪⎧2b -c =-3b -c =0,解得b =c =-3.故所求的解析式是f(x)=x3-3x2-3x+2.(2)f′(x)=3x2-6x-3.令f′(x)>0,得x<1-2或x>1+2;令f′(x)<0,得1-2<x<1+ 2.故f(x)=x3-3x2-3x+2在(-≦,1-2)和(1+2,+≦)内是增函数,在(1-2,1+2内是减函数.13.已知函数f(x)=mx3+nx2(m、n∈R,m≠0),函数y=f(x)的图像在点(2,f(2))处的切线与x轴平行.(1)用关于m的代数式表示n;(2)求函数f(x)的单调增区间.解:(1)由已知条件得f′(x)=3mx2+2nx,又f′(2)=0,≨3m+n=0,故n=-3m.(2)≧n =-3m,≨f(x)=mx3-3mx2,≨f′(x)=3mx2-6mx.令f′(x)>0,即3mx2-6mx>0,当m>0时,解得x<0或x>2,则函数f(x)的单调增区间是(-≦,0)和(2,+≦);当m<0时,解得0<x<2,则函数f(x)的单调增区间是(0,2).综上,当m>0时,函数f(x)的单调增区间是(-≦,0)和(2,+≦);当m<0时,函数f(x)的单调增区间是(0,2).3.2函数的极值【学习要求】1.了解函数极值的概念,会从几何直观理解函数的极值与导数的关系,并会灵活应用. 2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件.【学法指导】函数的极值反映的是函数在某点附近的性质,是局部性质.函数极值可以在函数图像上“眼见为实”,通过研究极值初步体会函数的导数的作用.一.基础知识回顾1.极大值点与极大值:如图,在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都小于或等于x0点的函数值,称点x0为函数y=f(x)的极大值点,其函数值f(x0)为函数的极大值.2.极小值点与极小值:如图,在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都大于或等于x0点的函数值,称点x0为函数y=f(x)的极小值点,其函数值f(x0)为函数的极小值.3.如果函数y=f(x)在区间(a,x0)上是增加的,在区间(x0,b)上是减少的,则x0是极大值点,f(x0)是极大值;如果函数y=f(x)在区间(a,x0)上是减少的,在区间(x0,b)上是增加的,则x0是极小值点,f(x0)是极小值.二.问题探究探究点一:函数的极值与导数的关系问题1:如图观察,函数y=f(x)在d、e、f、g、h、i等点处的函数值与这些点附近的函数值有什么关系?y=f(x)在这些点处的导数值是多少?在这些点附近,y=f(x)的导数的符号有什么规律?答:以d、e两点为例,函数y=f(x)在点x=d处的函数值f(d)比它在点x=d附近其他点的函数值都小,f′(d)=0;在x=d的附近的左侧f′(x)<0,右侧f′(x)>0.类似地,函数y=f(x)在点x=e的函数值f(e)比它在x=e附近其他点的函数值都大,f′(e)=0;在x=e附近的左侧f′(x)>0,右侧f′(x)<0.问题2:函数的极大值一定大于极小值吗?在区间内可导函数的极大值和极小值是唯一的吗?答:函数的极大值与极小值并无确定的大小关系,一个函数的极大值未必大于极小值;在区间内可导函数的极大值或极小值可以不止一个.问题3:若某点处的导数值为零,那么,此点一定是极值点吗?答:可导函数的极值点处导数为零,但导数值为零的点不一定是极值点.可导函数f(x)在x0处取得极值的充要条件是f′(x0)=0且在x0两侧f′(x)的符号不同.例1:求函数f (x )=x 3-3x 2-9x +5的极值与极值点. 解:f ′(x )=3x 2-6x -9. 解方程3x 2-6x -9=0,得x 1=-1,x 2=3. 当x 变化时,f ′(x ),有极小值f (3)=-22,x =3是极小值点.跟踪训练1:求函数f (x )=3x+3ln x 的极值与极值点.解:函数f (x )=3x +3ln x 的定义域为(0,+≦),f ′(x )=-3x 2+3x=3x -1x 2.令f ′(x )因此当=1时,()有极小值(1)=3.=1是极小值点. 探究点二:利用函数极值确定参数的值例2:已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,求常数a ,b 的值.解:因为f (x )在x =-1时有极值0,且f ′(x )=3x 2+6ax +b ,所以⎩⎪⎨⎪⎧f ′-1=0,f -1=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0.解之得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0,所以f (x )在R 上为增函数,无极值,故舍去.当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3).当x ∈(-3,-1)时,f (x )为减函数;当x ∈(-1,+≦)时,f (x )为增函数,所以f (x )在x =-1时取得极小值,因此a =2,b =9.跟踪训练2:设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极 值点.(1)试确定常数a 和b 的值;(2)判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由.解:(1)≧f (x )=a ln x +bx 2+x ,≨f ′(x )=ax+2bx +1. 由极值点的必要条件可知:f ′(1)=f ′(2)=0,≨a +2b +1=0且a 2+4b +1=0,解方程组得,a =-23,b =-16.(2)由(1)可知f (x )=-23ln x -16x 2+x . f ′(x )=-23x -1-13x +1=-x -1x -23x.当x ∈(0,1)时,f ′(x )<0;当x ∈(1,2)时,f ′(x )>0;当x ∈(2,+≦)时,f ′(x )<0;所以x =1是函数f (x )的极小值点,x =2是函数f (x )的极大值点. 探究点三:函数极值的综合应用例3 设函数f (x )=x 3-6x +5,x ∈R. (1)求函数f (x )的单调区间和极值;(2)若关于x 的方程f (x )=a 有三个不同的实根,求实数a 的取值范围.解:(1)f ′(x )=3x 2-6,令f ′(x )=0,解得x 1=-2,x 2= 2.因为当x >2或x <-2时,f ′(x )>0;当-2<x <2时,f ′(x )<0. 所以f (x )的单调递增区间为单调递减区间为(-2,2). (-≦,-2)和(2,+≦);当x =-2时,f (x )有极大值5+42;当x =2时,f (x )有极小值5-4 2.(2)由(1)的分析知y =f (x )的图像的大致形状及走向如图所示.所以,当5-42<a <5+42时,直线y =a 与y =f (x )的图像有三个不同的交点,即方程f (x )=a 有三个不同的实根.跟踪训练3:若函数f (x )=2x 3-6x +k 在R 上只有一个零点,求常数k 的取值范围.解:f (x )=2x 3-6x +k ,则f ′(x )=6x 2-6,令f ′(x )=0,得x =-1或x =1,可知f (x )在(-1,1)上是减函数,f (x )在(-≦,-1)和(1,+≦)上为增函数.f (x )的极大值为f (-1)=4+k ,f (x )的极小值为f (1)=-4+k . 要使函数f (x )只有一个零点,只需4+k <0或-4+k >0(如图所示)即k <-4或k >4. ≨k 的取值范围是(-≦,-4)∪(4,+≦). 三.练一练1.“函数y =f (x )在一点的导数值为0”是“函数y =f (x )在这点取得极值”的(B) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2.下列函数存在极值的是 (B)A .y =1xB .y =x -e xC .y =x 3+x 2+2x -3D .y =x 3解析:A 中f ′(x )=-1x2,令f ′(x )=0无解,≨A 中函数无极值.B 中f ′(x )=1-e x,令f ′(x )=0可得x =0. 当x <0时,f ′(x )>0,当x >0时,f ′(x )<0. ≨y =f (x )在x =0处取极大值,f (0)=-1. C 中f ′(x )=3x 2+2x +2,Δ=4-24=-20<0. ≨y =f (x )无极值.D也无极值.故选B.3.已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围为 (D) A .-1<a <2 B .-3<a <6 C .a <-1或a >2 D .a <-3或a >6解析:f ′(x )=3x 2+2ax +(a +6),因为f (x )既有极大值又有极小值,那么Δ=(2a )2-4×3×(a +6)>0,解得a >6或a <-3.4.设a ∈R,若函数y =e x+ax ,x ∈R 有大于零的极值点,则a 的取值范围为(-∞,-1).解析:y ′=e x+a ,由y ′=0得x =ln(-a ).由题意知ln(-a )>0,≨a <-1.5.直线y =a 与函数y =x 3-3x 的图像有三个相异的交点,则a 的取值范围是-2<a <2.解析:f ′(x )=3x 2-3,令f ′(x )=0可以得到x =1或x =-1,≧f (1)=-2,f (-1)=2,≨-2<a <2. 四.课时小结1.在极值的定义中,取得极值的点称为极值点,极值点指的是自变量的值,极值指的是函数值.2.函数的极值是函数的局部性质.可导函数f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0且在x 0两侧f ′(x )符号相反.3.利用函数的极值可以确定参数的值,解决一些方程的解和图像的交点问题. 4.求可导函数f (x )的极值的步骤:(1)确定函数的定义区间,求导数f ′(x );(2)求方程f ′(x )=0的根(3)用函数的导数为0的点,顺次将函数的定义区间分成若干个小开区间,并列成表格.检测f ′(x )在方程根左右两侧的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值 五.作业设计1. 函数y =f (x )的定义域为(a ,b ),y =f ′(x )的图像如图,则函数y =f (x )在开区间(a ,b )内取得极小值的点有(A)A .1个B .2个C .3个D .4个 2. 下列关于函数的极值的说法正确的是(D)A .导数值为0的点一定是函数的极值点B .函数的极小值一定小于它的极大值C .函数在定义域内有一个极大值和一个极小值D .若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内不是单调函数 3. 函数y =x 3-3x 2-9x (-2<x <2)有(C)A .极大值5,极小值-27B .极大值5,极小值-11C .极大值5,无极小值D .极小值-27,无极大值 4. 已知函数f (x ),x ∈R ,且在x =1处,f (x )存在极小值,则(C)A .当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0B .当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )>0C .当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0D .当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )<08. 若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于(D)A .2B .3C .6D .99. 若函数y =x 3-3ax +a 在(1,2)内有极小值,则实数a 的取值范围是(B)A .1<a <2B .1<a <4C .2<a <4D .a >4或a <15. 若函数f (x )=x 2+ax +1在x =1处取极值,则a =3 .6. 设函数f (x )=6x 3+3(a +2)x 2+2ax .若f (x )的两个极值点为x 1,x 2,且x 1x 2=1,则实数a的值为9.7. 如果函数y =f (x )的导函数的图像如图所示,给出下列判断:①函数y =f (x )在区间⎝⎛⎭⎫-3,-12内单调递增;②函数y =f (x )在区间⎝⎛⎭⎫-12,3内单调递减;③函数y =f (x )在区间(4,5)内单调递增;④当x=2时,函数y =f (x )有极小值;⑤当x =-12时,函数y =f (x )有极大值.则上述判断正确的是③.(填序号)10.求下列函数的极值:(1)f (x )=x 3-2x 2+x +1;(2)f (x )=x 2ex .解:(1)函数的定义域为R ,f ′(x )=3x 2-4x +1=3(x -1)⎝ ⎛⎭⎪⎫x -13.令f ′(x )>0,可得x >1或x <13;令f ′(x )<0,可得13<x <1.≨函数f (x )=x 3-2x 2+x +1的单调递增区间为⎝ ⎛⎭⎪⎫-≦,13和(1,+≦),单调递减区间为⎝ ⎛⎭⎪⎫13,1.(2)函数的定义域为R ,f ′(x )=2x e-x+x 2·⎝ ⎛⎭⎪⎫1e x ′=2x e -x -x 2e -x =x (2-x )e -x,令f ′(x )=0,得x =0或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可以看出,当x =0时,函数有极小值,且为f (0)=0;当x =2时,函数有极大值,且为f (2)=4e -2.11.已知f (x )=x 3+12mx 2-2m 2x -4(m 为常数,且m >0)有极大值-52,求m 的值.解:≧f ′(x )=3x 2+mx -2m 2=(x +m )(3x-2m ),令f ′(x )=0,则x =-m 或x =23m .当x 变化时,f ′(x ),f (x )的变化情况如下表:≨f (x )极大值=f (-m )=-m 3+12m 3+2m 3-4=-52≨m =1.12.设a 为实数,函数f (x )=x 3-x 2-x +a .(1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点? 解:(1)f ′(x )=3x2-2x -1.令f ′(x )=0,则x =-13或x=1.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )的极大值是f (-13)=527+a ,极小值是f (1)=a -1.(2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1,由此可知,x 取足够大的正数时,有f (x )>0,x 取足够小的负数时,有f (x )<0,所以曲线y =f (x )与x 轴至少有一个交点.由(1)知f (x )极大值=f (-13)=527+a ,f (x )极小值=f (1)=a -1.≧曲线y =f (x )与x 轴仅有一个交点,≨f (x )极大值<0或f (x )极小值>0,即527+a <0或a -1>0,≨a <-527或a >1,≨当a ∈(-≦,-527)∪(1,+≦)时,曲线y =f (x )与x 轴仅有一个交点.13.已知函数f (x )=(x 2+ax -2a 2+3a )e x (x ∈R ),其中a ∈R .(1)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线的斜率; (2)当a ≠23时,求函数f (x )的单调区间与极值.解:(1)当a =0时,f (x )=x 2e x,f ′(x )=(x 2+2x )e x ,故f ′(1)=3e.(2)f ′(x )=[x 2+(a +2)x -2a 2+4a ]e x.令f ′(x )=0,解得x =-2a 或x =a -2,由a ≠23知,-2a ≠a -2.以下分两种情况讨论:①若a >23,则-2a <a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:f (x )在x =-2a 处取得极大值f (-2a ),且f (-2a )=3a e -2a.函数f (x )在x =a -2处取得极小值f (a -2),且f (a -2)=(4-3a )ea -2.②若a <3,则-2a >a -2.当x 变化时,f ′(x ),f (x )的变化情况如上表:所以f (x )在(-≦,a -2),(-2a ,+≦)内是增函数,在(a -2,-2a )内是减函数.函数f (x )在x =a -2处取得极大值f (a -2),且f (a -2)=(4-3a )e a -2.函数f (x )在x =-2a 处取得极小值f (-2a ),且f (-2a )=3a e-2a.3.3最大值、最小值问题(一)【学习要求】1.理解函数最值的概念,了解其与函数极值的区别与联系. 2.会用导数求某定义域上函数的最值. 【学法指导】弄清极值与最值的区别是学好本节的关键.函数的最值是一个整体性的概念.函数极值是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义域上的情况,是对整个区间上的函数值的比较. 一.基础知识回顾1.函数f (x )在闭区间[a ,b ]上的最值如图,函数f (x )在闭区间[a ,b ]上的图像是一条连续不断的曲线,则该函数在[a ,b ]上一定能够取得最大值与最小值,函数的最值必在端点处或极值点处取得.2.求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤(1)求函数y =f (x )在(a ,b )内的极值,(2)将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.二.问题探究探究点一:求函数的最值问题:函数的极值和最值有什么区别和联系?答:函数的最大值、最小值是比较整个定义区间的函数值得出的,函数的极值是比较极值点附近的函数值得出的,函数的极值可以有多个,但最值只能有一个;极值只能在区间内取得,最值则可以在端点处取得;有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点处取得必定是极值.例1:求下列函数的最值:(1)f (x )=2x 3-12x ,x ∈[-1,3];(2)f (x )=12x +sin x ,x ∈[0,2π].f (x )取得最大值18. (2)f ′(x )=2+cos x ,令f ′(x )=0,又x ∈[0,2π],解得x =3π或x =3π. 当≨当=0时,()有最小值(0)=0;当=2π时,()有最大值(2π)=π.跟踪训练1:求下列函数的最值:(1)f (x )=x 3+2x 2-4x +5,x ∈[-3,1];(2)f (x )=e x (3-x 2),x ∈[2,5].解:(1)≧f (x )=x 3+2x 2-4x +5,≨f ′(x )=3x 2+4x -4. 令f ′(x )=0,得x 1=-2,x 2=23.≧f (-2)=13,f ⎝ ⎛⎭⎪⎫23=9527,f (-3)=8,f (1)=4,≨函数f (x )在[-3,1]上的最大值为13,最小值为9527.(2)≧f (x )=3e x -e x x 2,≨f ′(x )=3e x -(e x x 2+2e x x )=-e x (x 2+2x -3) =-e x (x +3)(x -1),≧在区间[2,5]上,f ′(x )=-e x(x +3)(x -1)<0,即函数f (x )在区间[2,5]上单调递减,≨x =2时,函数f (x )取得最大值f (2)=-e 2;x =5时,函数f (x )取得最小值f (5)=-22e 5.探究点二:含参数的函数的最值问题例2 已知a 是实数,函数f (x )=x 2(x -a ).(1)若f ′(1)=3,求a 的值及曲线y =f (x )在点(1,f (1))处的切线方程.(2)求f (x )在区间[0,2]上的最大值.解:(1)f ′(x )=3x 2-2ax . 因为f ′(1)=3-2a =3,所以a =0.又当a =0时,f (1)=1,f ′(1)=3,所以曲线y =f (x )在点(1,f (1))处的切线方程为3x -y -2=0. (2)令f ′(x )=0,解得x 1=0,x 2=2a 3.当2a 3≤0,即a ≤0时,f (x )在[0,2]上单调递增,从而f (x )max =f (2)=8-4a . 当2a 3≥2,即a ≥3时,f (x )在[0,2]上单调递减,从而f (x )max =f (0)=0. 当0<2a 3<2,即0<a <3时,f (x )在⎣⎢⎡⎦⎥⎤0,2a 3上单调递减,在⎣⎢⎡⎦⎥⎤2a 3,2上单调递增,从而f (x )max =⎩⎪⎨⎪⎧ 8-4a 0<a ≤2 0 2<a <3 ,综上所述,f (x )max =⎩⎪⎨⎪⎧ 8-4a a ≤2 0 a >2 . 跟踪训练2:已知函数f (x )=ax 3-6ax 2+b ,x ∈[-1,2]的最大值为3,最小值为-29,求a ,b 的值.解:f ′(x )=3ax 2-12ax =3ax (x -4),令f ′(x )=0,得x 1=0,x 2=4(舍去).(1)当a >0时,列表如下:由表可知,当x =0时,f (x )取极大值,也就是函数在[-1,2]上的最大值,≨f (0)=3,即b =3. 又f (-1)=-7a +3,f (2)=-16a +3<f (-1),≨f (2)=-16a +3=-29,≨a =2.(2)当a <0时,同理可得,当x =0时,f (x )取极小值,也就是函数在[-1,2]上的最小值,≨f (0)=-29,即b =-29. 又f (-1)=-7a -29,f (2)=-16a -29>f (-1),≨f (2)=-16a -29=3,≨a =-2. 综上可得,a =2,b =3或a =-2,b =-29.探究点三:函数最值的应用例3:已知函数f (x )=(x +1)ln x -x +1.若xf ′(x )≤x 2+ax +1恒成立,求a 的取值范围.解:f ′(x )=x +1x +ln x -1=ln x +1x,xf ′(x )=x ln x +1,而xf ′(x )≤x 2+ax +1(x >0)等价于ln x -x ≤a . 令g (x )=ln x -x ,则g ′(x )=1x-1. 当0<x <1时,g ′(x )>0;当x ≥1时,g ′(x )≤0,x =1是g (x )的最大值点,≨g (x )≤g (1)=-1. 综上可知,a 的取值范围是[)-1,+≦.跟踪训练3:设函数f (x )=2x 3-9x 2+12x +8c ,若对任意的x ∈[0,3],都有f (x )<c 2成立,求c 的取值范围.解:≧f ′(x )=6x 2-18x +12=6(x -1)(x -2).≨当x ∈(0,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,3)时,f ′(x )>0. ≨当x =1时,f (x )取极大值f (1)=5+8c . 又f (3)=9+8c >f (1),≨x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . ≧对任意的x ∈[0,3],有f (x )<c 2恒成立,≨9+8c <c 2,即c <-1或c >9. ≨c 的取值范围为(-≦,-1)∪(9,+≦).三.练一练1.函数y =f (x )在[a ,b ]上 (D)A .极大值一定比极小值大B .极大值一定是最大值C .最大值一定是极大值D .最大值一定大于极小值解析:由函数的最值与极值的概念可知,y =f (x )在[a ,b ]上的最大值一定大于极小值2.函数f (x )=x 3-3x (|x |<1) (D)A .有最大值,但无最小值B .有最大值,也有最小值C .无最大值,但有最小值D .既无最大值,也无最小值解析:f ′(x )=3x 2-3=3(x +1)(x -1),当x ∈(-1,1)时,f ′(x )<0,所以f (x )在(-1,1)上是单调递减函数,无最大值和最小值,故选D.3.函数y =x -sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π的最大值是 (C) A .π-1 B .π2-1 C .π D .π+1 解析:因为y ′=1-cos x ,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,y ′>0,则函数y 在区间⎣⎢⎡⎦⎥⎤π2,π上为增函数,所以y 的最大值为y max =π-sin π=π,故选C.4.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为-71解析:f ′(x )=3x 2-6x -9=3(x -3)(x +1).由f ′(x )=0得x =3或x =-1. 又f (-4)=k -76,f (3)=k -27,f (-1)=k +5,f (4)=k -20. 由f (x )max =k +5=10,得k =5,≨f (x )min =k -76=-71.四.课时小结1.求函数在闭区间上的最值,只需比较极值和端点处的函数值即可;函数在一个开区间内只有一个极值,这个极值就是最值.2..“恒成立”问题向最值问题转化是一种常见的题型,对于不能分离参数的恒成立问题,直接求含参函数的最值即可.一般地,可采用分离参数法.λ≥f (x )恒成立⇔λ≥[f (x )]max ;λ≤f (x )恒成立⇔λ≤[f (x )]min .3.函数最值:(1)求函数的最值,显然求极值是关键的一环.但仅仅是求最值,可用下面简化的方法求得.①求出导数为零的点.②比较这些点与端点处函数值的大小,就可求出函数的最大值和最小值.(2)若函数在闭区间[a ,b ]上连续单调,则最大、最小值在端点处取得.五.作业设计1. 函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是 (B)A .f (2),f (3)B .f (3),f (5)C .f (2),f (5)D .f (5),f (3)2. f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是 (C)A .-2B .0C .2D .43. 函数y =ln x x的最大值为 (A) A .e -1 B .e C .e 2 D.1034. 已知函数y =-x 2-2x +3在区间[a,2]上的最大值为154,则a 等于 (C) A .-32 B.12 C .-12 D.12或-325. 函数y =4x x 2+1在定义域内 (C) A .有最大值2,无最小值 B .无最大值,有最小值-2C .有最大值2,最小值-2D .无最值6. 设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图像分别交于点M ,N ,则当|MN |达到最小时t 的值为 (D)A .1B.12C.52D.227. 函数f (x )=x e x 的最小值为-1e. 8. 已知f (x )=-x 2+mx +1在区间[-2,-1]上最大值就是函数f (x )的极大值,则m 的取值范围是[-4,-2].9.已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是(-∞,2ln 2-2].10. 求函数f (x )=x 3-3x 2+6x -10在区间[-1,1]上的最值.解:因为f ′(x )=3x 2-6x +6=3(x -1)2+3,所以在区间[-1,1]上f ′(x )>0恒成立,即函数f (x )在区间[-1,1]上单调递增,故当x =-1时,函数f (x )取得最小值f (-1)=-20;当x =1时,函数f (x )取得最大值f (1)=-6.11.已知函数f (x )=2x 3-6x 2+a 在[-2,2]上有最小值-37,求a 的值及f (x )在[-2,2]上的最大值.解:f ′(x )=6x 2-12x =6x (x -2),令f ′(x )=0,得x =0或x =2,当x 变化时,f ′(x ),f (x )变化情况如下表:≨当x =-2时,f (x )min =-40+a =-37,得a =3.当x =0时,f (x )最大值为3.12.已知函数f (x )=x 3-ax 2+bx +c (a ,b ,c ∈R).(1)若函数f (x )在x =-1和x =3处取得极值,试求a ,b 的值;(2)在(1)的条件下,当x ∈[-2,6]时,f (x )<2|c |恒成立,求c 的取值范围.解:(1)f ′(x )=3x 2-2ax +b ,≧函数f (x )在x =-1和x =3处取得极值,≨-1,3是方程3x 2-2ax +b =0的两根.≨⎩⎪⎨⎪⎧ -1+3=23a -1×3=b 3,≨⎩⎪⎨⎪⎧ a =3b =-9.(2)由(1)知f (x )=x 3-3x 22|恒成立,只要c +54<2|c |即可,当c ≥0时,c +54<2c ,≨c >54;当c <0时,c +54<-2c ,≨c <-18.≨c ∈(-≦,-18)∪(54,+≦),此即为参数c 的取值范围.13.已知函数f (x )=(x -k )e x .(1)求f (x )的单调区间; (2)求f (x )在区间[0,1]上的最小值.解:(1)f ′(x所以f (.(2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ;当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1]上单调递减,在(k -1,1)上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1.当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减,所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.3.4最大值、最小值问题(二)【学习要求】1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.【学法指导】1.在利用导数解决实际问题的过程中体会建模思想.2.感受导数知识在解决实际问题中的作用,自觉形成将数学理论与实际问题相结合的思想,提高分析问题、解决问题的能力.一.基础知识回顾1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.2.解决优化问题的基本思路是上述解决优化问题的过程是一个典型的数学建模过程.二.问题探究探究点一:面积、体积的最值问题问题 如何利用导数解决生活中的优化问题?答案:①函数建模,细致分析实际问题中各个量之间的关系,正确设定所求最大值或最小值的变量y 与自变量x ,把实际问题转化为数学问题,即列出函数关系式y =f (x ).②确定定义域,一定要从问题的实际意义去考察,舍去没有实际意义的变量的范围.③求最值,此处尽量使用导数法求出函数的最值.④下结论,回扣题目,给出圆满的答案.例1 如图所示,一边长为48 cm 的正方形铁皮,四角各截去一个大小相同的正方形,然后折起,可以做成一个无盖长方体容器.所得容器的容积V (单位:cm 3)是关于截去的小正方形的边长x (单位:cm)的函数.(1)随着x 的变化,容积V 是如何变化的?(2)截去的小正方形的边长为多少时,容器的容积最大?最大容积是多少?解:(1)首先写出V 关于x 的函数解析式.根据题意可得V =f (x )=x (48-2x )2. 由实际情况可知函数的定义域为0<x <24. 根据导数公式表及求导法则,可得f ′(x )=-4x (48-2x )+(48-2x )2=(48-2x )(-6x +48) =12(x -24)(x -8).解方程V ′(x )=0,得x 1=8,x 2=12V =f (8)=(48-16)2×8=8 192(cm 2).V =(48-2x )2x 的图像如图所示.当0<x ≤8时,函数V =f (x )是增加的;当8≤x <24时,函数V =f (x )是减少的.(2)区间(0,24)上任意点的函数值都不超过f (8),因此x =8是函数的最大值点.此时V =f (8)=8 192(cm 3).即当截去的小正方形的边长为8 cm 时,得到的容器容积最大,最大容积为8 192 cm 3.跟踪训练1:学校或班级举行活动,通常需要张贴海报进行宣传.现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128 dm 2,上、下两边各空2dm ,左、右两边各空1 dm.如何设计海报的尺寸,才能使四周空白面积最小?解:设版心的高为x dm ,则版心的宽为128xdm ,此时四周空白面积为S (x )=(x +4)⎝ ⎛⎭⎪⎫128x +2-128=2x +512x +8,x >0.求导数,得S ′(x )=2-512x 2.令S ′(x )=2-512x 2=0,解得x =16(x =-16舍去).于是宽为128x =12816=8. 当x ∈(0,16)时,S ′(x )<0;当x ∈(16,+≦)时,S ′(x )>0.因此,x =16是函数S (x )的极小值点,也是最小值点.所以,当版心高为16 dm ,宽为8 dm 时,能使四周空白面积最小.答 当版心高为16 dm ,宽为8 dm 时,海报四周空白面积最小.探究点二:利润最大问题例2:某制造商制造并出售球形瓶装的某种饮料.瓶子的制造成本是0.8πr 2分,其中r (单位:cm)是瓶子的半径,已知每出售1 mL 的饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为6 cm.(1)瓶子半径多大时,能使每瓶饮料的利润最大?(2)瓶子半径多大时,每瓶饮料的利润最小?解:由于瓶子的半径为r ,所以每瓶饮料的利润是y =f (r )=0.2×43πr 3-0.8πr 2=0.8π⎝ ⎛⎭⎪⎫r 33-r 2,0<r ≤6. 令f ′(r )=0.8π(r 2-2r )=0. 当r =2时,f ′(r )=0. 当r ∈(0,2)时,f ′(r )<0;当r ∈(2,6)时,f ′(r )>0. 因此,当半径r >2时,f ′(r )>0,它表示f (r )单调递增,即半径越大,利润越高;半径r <2时,f ′(r )<0,它表示f (r )单调递减,即半径越大,利润越低.≨半径为2 cm 时,利润最小,这时f (2)<0,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值.半径为6 cm 时,利润最大.跟踪训练2:某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =a x -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解:(1)因为x =5时,y =11,所以a 2+10=11,所以a =2. (2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2,所以商场每日销售该商品所获得的利润f (x )=(x -3)[2x -3+10(x -6)2]=2+10(x -3)(x -6)2,3<x <6. 从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x-6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点.所以,当x =4时,函数f (x )取得最大值,且最大值等于42. 答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大. 探究点三:费用(用材)最省问题例3 已知A 、B 两地相距200 km ,一只船从A 地逆水行驶到B 地,水速为8 km/h ,船在静水中的速度为v km/h(8<v ≤v 0).若船每小时的燃料费与其在静水中的速度的平方成正比,当v =12 km/h ,每小时的燃料费为720元,为了使全程燃料费最省,船的实际速度为多少?解:设每小时的燃料费为y 1,比例系数为k (k >0),则y 1=kv 2,当v =12时,y 1=720,≨720=k ·122,得k =5. 设全程燃料费为y ,由题意y =y 1·200v -8=1 000v 2v -8,≨y ′=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌
▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓
第三章 导数的应用 同步练习(二)
1. 若)()(023adcxbxaxxf为增函数,则( )
A. 042acb B. 0,0cb
C. 0,0cb D. 032acb
2. 已知函数232xxy则( )
A. 有极小值但无极大值 B. 有极小值0 但无极大值
C. 有极小值0 ,极大值41 D. 有极大值41但无极小值
3. 已知1)(,2)1()(22xxgxxf,则)(xgf( )
A. 在(-2,0)上递增 B. 在(0,2)上递增
C. 在)0,2( 上递增 D. 在)2,0(上递增
4. 函数bxaxy2在1x处有极值 2,则ba,的值分别为( )
A. 3,1 B.3,1 C. 3,1 D. 3,1
5. 函数223xxy的极值情况是( )
A. 有极大值,没有极小值 B. 有极小值,没有极大值
C. 既无极大值又无极小值 D. 既有极大值又有极小值
6. 若在区间内,则在内),(0)(,0)(,),('baafxfba( )
A. 0)(xf B. 0)(xf C. 0)(xf D. )(xf的正负不确定
▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌
▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓
7. 函数xxay3sin31sin在3x处有最值,则a( )
A. 2 B. 1 C. 332 D. 0
8. 内接于半径为R的球且体积最大的圆柱体的高为( )
A. R332 B. R33 C. R233 D. R23
9. 函数23bxaxy取得极大值或极小值时的x值分别为0和31, 则 ( )
A. ba2=0 B. ba20 C. ba20 D. ba2符号不定
10. 用边长为48 cm的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等
的小正方形,要使铁盒容积最大时,截去的小正方形的边长为( )
A. 5 B. 8 C. 10 D. 12
11. 函数)2ln(2xxy的递减区间为___________________。
12. 函数axxxf6)(3的极大值为________,极小值为_______。
13. 函数2,2,cossin)(xxxxf的最大值和最小值分别为________________。
14. 要做一个无盖的圆柱形水桶,若要使其体积为27,且用料最省,则圆柱的底面半径是
▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌
▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓
_____。
15. 求函数12)(23xxxf在区间2,1上的最大值与最小值。
16. 若函数xaxxy23在1,1上极大值和极小值,如图所示,求常数a的取值范围。
-1
1
Ox
y
17. 确定函数3231)1(xxy的单调区间,并求此函数的极值。
18. 已知函数)131()(2acbxaxxf的图像过点)1,0(A,且过该点的切线与直线
032yx
平行,
(1)求cb,的值;
(2)设)(xf在3,1上的最大值与最小值分别为)(),(amaM,令)()()(amaMaF,
求)(aF的表达式。
▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌
▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓
19. 如图,有甲乙两个生活社区,甲区位于一条直线主干道上P处,乙区位于离主干道40千
米的Q处,乙区在主干道上的射影R与P相距50千米。现要在主干道上建一个煤气减压站H,
向甲乙两个社区供应煤气,已知输气管道从H←→P和从H←→Q的费用每千米分别为a3和
a5
元,问供气站建在何处,才能使管道建设费用最低??
40
千
米
50千米
H
R
Q
P
参考答案:
1. D
2. C
3. C ;64)1()()(242xxxfxgfxF,可得)(xF在0,2和,2上
单调递增。
4. A
5. D
6. A
▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌
▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓
7. B
8. A
9. A
10. B
11. 1,
12. 24,24aa
13. 1,2
14. 3
15. 2)1()(,1)2()0()(minmaxfxfffxf
16. 由于123)(2axxxf,且xaxxy23在1,1上极大值和极小值,
即0)(xf在区间1,1上有两个相异的实根,所以
223333042)1(042)1(13101242aaaaaf
af
a
a
或
解得2,33,2a
17. 单调增区间为31,与,1,单调减区间为1,31;
极大值为34)31(3f,极小值为0)1(f。
18. (1))(xf过点)1,0(A,则1c,又baxxf2)(,过点A的切线与
032yx
平行,
故2)0(bfk切;
(2)12)(2xaxxf,对称轴为ax1,131a,则311a,所以
▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌
▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓
)121(59)3()2131(1)1()()(maxaaf
aaf
aMxf
aa
famxf111)()(min
则)121(619)2131(21)()()(aaaaaaamaMxF
19. 设)20(QHR,则tan40,sin40HRQH,所以tan4050PH,设
)(f
是总的管道建设费用,则
sincos3540150sin405)tan4050(3)(aaaaf
所以2sincos5340)(af,
令0)(f,得53cos,
即当20PH千米时,管道建设费用最低。