北师大版八年级数学上册《探索勾股定理》第1课时示范课教学设计

合集下载

北师大版八年级数学上册:1.1《探索勾股定理 》教案

北师大版八年级数学上册:1.1《探索勾股定理 》教案

北师大版八年级数学上册:1.1《探索勾股定理》教案一. 教材分析《探索勾股定理》这一节的内容是八年级数学上册的开篇,主要让学生了解勾股定理的证明过程,培养学生的逻辑思维能力和探索精神。

教材通过引入古希腊人证明勾股定理的故事,引导学生学习运用几何图形和数学逻辑来证明这个重要的数学定理。

二. 学情分析学生在学习这一节之前,已经学习了平面几何的基本概念和性质,对几何图形的认知和推理能力有所提高。

但勾股定理的证明过程涉及到较复杂的逻辑推理,对学生来说是一个较大的挑战。

因此,在教学过程中,需要关注学生的学习反馈,适时给予引导和帮助。

三. 教学目标1.让学生了解勾股定理的证明过程,理解并掌握勾股定理的证明方法。

2.培养学生的逻辑思维能力和探索精神,提高学生运用几何图形和数学逻辑解决问题的能力。

3.激发学生对数学的兴趣,培养学生积极思考、合作探究的学习态度。

四. 教学重难点1.勾股定理的证明过程及证明方法的掌握。

2.逻辑推理能力的培养,如何将问题转化为几何图形进行证明。

五. 教学方法1.采用问题驱动的教学方法,引导学生思考和探索勾股定理的证明过程。

2.运用几何图形和数学逻辑,进行直观演示和推理,帮助学生理解和掌握勾股定理。

3.分组讨论和合作探究,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备相关的教学材料,如PPT、黑板、几何图形等。

2.设计好教学问题和活动,准备好相关的解答和反馈。

七. 教学过程1.导入(5分钟)通过引入古希腊人证明勾股定理的故事,激发学生的学习兴趣,引导学生思考和探索勾股定理的证明过程。

2.呈现(10分钟)呈现勾股定理的证明过程,运用几何图形和数学逻辑进行直观演示和推理。

在此过程中,关注学生的学习反馈,适时给予引导和帮助。

3.操练(10分钟)学生分组讨论和合作探究,运用几何图形和数学逻辑尝试证明勾股定理。

教师巡回指导,解答学生的问题,并提供反馈。

4.巩固(10分钟)针对学生的证明过程,进行总结和点评,帮助学生巩固所学内容。

北师大版八年级上册数学1.1第1课时认识勾股定理教案1

北师大版八年级上册数学1.1第1课时认识勾股定理教案1

1. 1研究勾股定理第 1 课时认识勾股定理1.研究勾股定理,进一步发展学生的推理能力;2.理解并掌握直角三角形三边之间的数目关系. ( 要点、难点 )一、情境导入如下图的图形像一棵枝叶旺盛、姿态优美的树,这就是有名的毕达哥拉斯树,它由若干个图形构成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说此中的神秘吗?二、合作研究研究点一:勾股定理的初步认识【种类一】直接利用勾股定理求长度如图,已知在△ABC 中,∠ACB=90°, AB=5cm, BC= 3cm, CD⊥ AB 于点D,求 CD的长.分析:先运用勾股定理求出AC 的长,11再依据 S△ABC=2AB·CD=2AC·BC,求出 CD的长.解:∵△ ABC 是直角三角形,∠ACB=90°, AB= 5cm, BC=3cm,∴由勾股定理得222222AC = AB - BC= 5 - 3 = 4 ,∴ AC= 4cm. 又11AC·BC∵S ABC=AB·CD=AC·BC,∴CD=△22AB4×3 12(cm) ,故 CD的长是12==cm.555方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,这个规律也称“弦高公式”,它常与勾股定理联合使用.【种类二】勾股定理与其余几何知识的综合运用如图,已知 AD是△ ABC的中线.求2222证: AB +AC= 2(AD + CD) .分析:结论中波及线段的平方,所以可以考虑作AE⊥ BC于点 E,在△ ABC中结构直角三角形,利用勾股定理进行证明.证明:如图,过点 A 作 AE⊥BC 于点 E.在 Rt △ACE、 Rt△ ABE和 Rt△ ADE中, AB2=22222222AE + BE,AC= AE+ CE,AE= AD- ED,∴2222222 AB + AC= (AE + BE) + (AE + CE) = 2(AD- ED2) + (DB - DE)2+ (DC+ DE)2= 2AD2-22222ED+ DB-2DB·DE+ DE+ DC+2DC·DE+2222DE= 2AD+DB+ DC+ 2DE(DC- DB).又∵ AD22是△ ABC 的中线,∴ BD= CD,∴ AB + AC=22222AD+ 2DC= 2(AD + CD) .方法总结:结构直角三角形,利用勾股定理把需要证明的线段联系起来.一般地,波及线段之间的平方关系问题时,往常沿着这个思路去剖析问题.【种类三】分类议论思想在勾股定理中的应用在△ ABC中, AB= 20,AC= 15,AD 为 BC边上的高,且 AD= 12,求△ ABC 的周长.分析:应试虑高AD在△ABC内和△ABC外的两种情况.解:当高 AD在△ ABC内部时,如图①.在 Rt △ ABD中,由勾股定理,得22 BD= AB-222=162,∴ BD= 16;在 Rt △ ACDAD=20 -12中,由勾股定理,得2222-CD= AC- AD= 15122= 81,∴ CD=9. ∴BC= BD+ CD= 25,∴△ABC的周长为25+20+ 15= 60.当高 AD在△ ABC外面时,如图② . 同理可得 BD= 16,CD=9. ∴BC= BD-CD= 7,∴△ABC的周长为 7+20+ 15= 42. 综上所述,△ABC的周长为 42 或 60.方法总结:题中未给出图形,作高结构直角三角形时,易遗漏钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情况,忽略高AD在△ ABC外的情况.研究点二:利用勾股定理求面积如图,以Rt△ ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中△ ABE 的面积为 ________,暗影部分的面积为 ________.1分析:由于 AE= BE,所以 S△ABE=2AE·BE 122222= AE. 又由于AE+ BE = AB,所以 2AE =2212129AB ,所以 S△=4AB=4× 3=4;同理可得ABES△AHC+121222 S△BCF=4A C+4BC. 又由于AC+BC=212121 AB ,所以暗影部分的面积为4AB +AB =24212999AB=×3=2.故填、.242方法总结:求解与直角三角形三边相关的图形面积时,要联合图形想方法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.三、板书设计勾股定理:直角三角形两直角边的平方和等于斜边的平方.假如用 a,b,c 分别表示直角三角形的两直角边和斜边,那么a2+b2= c2.让学生领会数形联合和由特别到一般的思想方法,进一步发展学生的说理和简单推理的意识及能力;进一步领会数学与现实生活的密切联系.在研究勾股定理的过程中,体验获取成功的快乐;经过介绍勾股定理在中国古代的研究,激发学生热爱祖国的悠长文化历史,激励学生奋发学习.。

北师大版八年级数学上册第1章《1.1探索勾股定理(一)》教学设计

北师大版八年级数学上册第1章《1.1探索勾股定理(一)》教学设计

1.1探索勾股定理(一)一、教学目标1、知识与能力:探索并理解勾股定理反映的直角三角形的三边之间的数量关系,会运用勾股定理解决一些简单的问题。

2、过程与方法:经历用数格子(或割、补、拼等)的方法体验勾股定理的探索过程,体会数形结合和特殊到一般的思想方法,进一步发展学生的合情推理意识。

3、情感态度价值观:在探索勾股定理的过程中,体验获得结论的快乐,培养合作意识和探索精神,进一步体会数学与现实生活的紧密联系。

二、教学重难点:1、重点:了解勾股定理的由来并能用它解决一些简单的问题2、难点:勾股定理的发现及探索过程三、教学过程:(一)创设情景,导入新课:如图,一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处,旗杆折断前有多高?【提出问题:“已知直角三角形的两边,怎样求第三边?”通过本节的学习——《探索勾股定理》我们就可以解决这个问题。

】(二)合作交流,探究新知早在2500年前,古希腊数学家毕达哥拉斯从朋友家的地砖铺成的地面上找到了灵感,并且对此展开研究,下面我们也来重温数学家的发现之路,探究这个“饭局中诞生的定理”。

活动 1、(1)、你能发现各图中三个正方形的面积之间有何关系吗?【图中的较小的两个正方形面积分别记为A S ,B S ,较大那个正方形的面积记为C S ; 则有:C S = A S +B S 】(2)、如用它们的边长表示,能得到怎样的式子?(3)、你能发现图中的直角三角形三边长度之间存在什么关系吗?学生通过观察,归纳发现:结论1:以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

【设计意图】学生通过观察,采用数格子、拼接的方法得出两个小正方形的面积等于大正方形的面积,由特殊、简单的例子入手,为下一步探索一般直角三角形是否具有同样的性质提供思路和经验。

活动2、由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?(1)观察下面两幅图:第①个图中,A S = ,B S = ,C S = 。

北师大版初中数学八年级上册《1 探索勾股定理 探索勾股定理》 优课教学设计_0

北师大版初中数学八年级上册《1 探索勾股定理 探索勾股定理》 优课教学设计_0

1探索勾股定理1.知道勾股定理的由来,初步理解割补拼接的面积证法.2.掌握勾股定理,通过动手操作利用等积法理解勾股定理的证明过程.在探索勾股定理的过程中,让学生经历“观察——猜想——归纳——验证”的数学思想,并体会数形结合以及由特殊到一般的思想方法,培养学生的观察能力、抽象概括能力、创造想象能力以及科学探究问题的能力.1.通过观察、猜想、拼图、证明等操作,使学生深刻感受到数学知识的发生、发展过程.2.介绍“赵爽弦图”,让学生感受到中国古代在勾股定理研究方面所取得的伟大成就,激发学生的数学激情及爱国情感.【重点】掌握勾股定理,并运用勾股定理解决实际问题.【难点】理解勾股定理及其逆定理的关系.第课时1.经历用测量法和数格子的方法探索勾股定理的过程,发展合情推理能力,体会数形结合的思想.2.会解决已知直角三角形的两边求另一边的问题.1.经历“测量—猜想—归纳—验证”等一系列过程,体会数学定理发现的过程.2.在观察、猜想、归纳、验证等过程中培养语言表达能力和初步的逻辑推理能力.3.在探索过程中,体会数形结合、由特殊到一般及化归等数学思想方法.通过让学生参加探索与创造,获得参加数学活动成功的经验.【重点】勾股定理的探索及应用.【难点】勾股定理的探索过程.【教师准备】分发给学生打印的方格纸.【学生准备】有刻度的直尺.导入一:展示教材P2开头的情境.如图所示,从电线杆离地面8 m处向地面拉一条钢索,如果这条钢索在地面的固定点距离电线杆底部6 m,那么需要多长的钢索?事实上,古人发现,直角三角形的三条边长度的平方存在一个特殊关系,学完了这节课,我们就会很容易地求出钢索的长度.[设计意图]创设问题情境,造成学生的认知冲突,激发学生的求知欲望.导入二:如图所示,强大的台风使得一个旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处.旗杆折断之前有多高?【师生活动】在直角三角形中,任意两条边确定了,第三条边确定吗?为什么?在直角三角形中,任意两条边确定了,第三条边也就随之确定,三边之间存在着一种特定的数量关系.事实上,古人发现,直角三角形的三条边长度的平方存在一种特殊的关系.让我们一起去探索吧!一、用测量的方法探索勾股定理思路一【学生活动】1.画一个直角三角形,使直角边长分别为3 cm和4 cm,测量一下斜边长是多少.2.画一个直角边长分别是6 cm和8 cm的直角三角形,测量一下斜边长是多少.3.画一个直角边长分别是5 cm和12 cm的直角三角形,测量一下斜边长是多少.【问题】你能观察出直角三角形三边之间的关系吗?[设计意图]帮助学生感知直角三角形三条边的长度存在特殊的关系,进而激发学生的探索欲望.任意画一个直角三角形,分别测量三条边长,把长度标在图形中,计算三边的平方,把结果填在表格中.【师生活动】师:观察表格,有什么发现?生1:a2+b2=c2.生2:两直角边的平方和很接近斜边的平方.师:很精确,他用了很接近这个词,非常棒!有哪些数据得到了a2+b2=c2?生:3,4,5;6,8,10;2,1.5,2.5;5,12,13……师:哪些数据没得到a2+b2=c2?生:2,4,4.5;5,8,9.5;2.4,4.8,9.3……师:怎样验证直角三角形三边之间的平方关系呢?二、验证直角三角形三条边长度存在的特殊关系,用数格子的方法探索勾股定理1.探索等腰直角三角形的情况.展示教材P2图1 - 2部分图.探索问题:(1)这个三角形是什么样的三角形?(2)直角三角形三边的平方分别是多少?它们满足怎样的数量关系?(学生通过数格子的方法可以得出S A+S B=S C)[设计意图]通过三个正方形面积的关系,得到直角三角形三边的关系.思路二展示教材P2图1 - 2,直角三角形三边的平方分别是多少,它们满足上面所猜想的数量关系吗?你是如何计算的?【师生活动】师:在这幅图中,边长的平方是如何刻画的?我们的猜想如何实现?生:用正方形A,B,C刻画的,就是证A+B=C.师:再准确点说呢?生:是用三个正方形A,B,C的面积刻画的,就是证明正方形A的面积加上正方形B的面积等于正方形C的面积.师:请同学们快速算一算正方形A,B,C的面积.(学生交流面积C的求法,教师巡视点评)生:A的面积是9,B的面积也是9,C的面积是18.师:你用什么方法得到正方形C的面积为18个单位面积?生1:我先数整个格子有12个,两个三角形格子拼成一个正方形格子,能凑6个,一共是18个.生2:把正方形对折,得到两个三角形.(学生板演,并列式计算)生3:分成四个全等的直角三角形.(学生板演,口述面积求法)师:方法不错,你们很善于动脑筋,我们用数格子、分割图形的方法得到C的面积,还有什么方法可以得到吗?生:在正方形C的外侧画一个大正方形,用大正方形的面积减去4个三角形的面积.(学生板演,口述面积求法)师:很好,他采用了补形的方法计算面积,我们能得到什么结论?生1:S A+S B=S C.生2:a2+b2=c2.师:我们看到上面的三角形具有特殊性,是等腰直角三角形,一般三角形能验证吗?2.探索边长为3,4,5的直角三角形的情况.展示教材P2图1 - 3部分图.对于一般的直角三角形是否也有这样的关系?你是如何计算的?【问题】(1)正方形A的面积是多少个方格?正方形B的面积是多少个方格?(2)怎样求出正方形C的面积是多少个方格?(3)三个正方形的面积之间有什么关系?同桌交流、小组讨论,共同探讨如何求正方形的面积,找到三边平方之间的关系.【提示】在正方形C的四周再补上三个相等的直角三角形,变成一个新的大正方形.【拓展】如果直角三角形的两直角边分别为1.6个单位长度和2.4个单位长度,上面所猜想的数量关系还成立吗?说明你的理由.学生思考、交流,教师请学生口答,并板书,指出这就是这节课要学习的勾股定理.【学生总结】直角三角形两直角边的平方和等于斜边的平方.如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.[思考](1)运用此定理的前提条件是什么?(2)公式a2+b2=c2有哪些变形公式?(3)由(2)知直角三角形中,只要知道条边,就可以利用求出.[设计意图]让学生经历“独立思考——小组讨论——合作交流”的环节,进一步加深对勾股定理的理解,并激发学生的爱国热情.[知识拓展]1.由勾股定理的基本形式a2+b2=c2可以得到一些变形关系式,如a2=c2-b2=(c+b)(c-b);b2=c2-a2=(c+a)(c-a).2.在钝角三角形中,三角形三边长分别为a,b,c,若c为最大边长,则有a2+b2<c2,在锐角三角形中,三角形三边长分别为a,b,c,若c为最大边长,则有a2+b2>c2.1.勾股定理的由来.2.勾股定理的探索方法:测量法和数格子法.3.勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.。

数学:第一章 探索勾股定理(一)教案(北师大版八年级上)

数学:第一章 探索勾股定理(一)教案(北师大版八年级上)

第一章勾股定理1.探索勾股定理(一)一、学生起点分析八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.二、教学任务分析本节课是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第一节第1课时.勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值.三、教学目标分析●知识与技能目标用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.●数学思考让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.●解决问题进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.●情感与态度在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习.四、教法学法1.教学方法:引导—探究—发现法.2.学习方法:自主探究与合作交流相结合.五、教学过程设计本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.第一环节:创设情境,引入新课内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)意图:紧扣课题,自然引入,同时渗透爱国主义教育.效果:激发起学生的求知欲和爱国热情.第二环节:探索发现勾股定理1.探究活动一:内容:(1)投影显示如下地板砖示意图,让学生初步观察:(2)引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.2.探究活动二:内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢? (1)观察下面两幅图:(2)填表:(3)你是怎样得到正方形C 的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)图1 图2 图3 学生的方法可能有: 方法一:如图1,将正方形C 分割为四个全等的直角三角形和一个小正方形, 13132214=+⨯⨯⨯=C S .如图2,在正方形C 外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,133221452=⨯⨯⨯-=C S . 方法三:如图3,正方形C 中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,13542=+⨯=C S . (4)分析填表的数据,你发现了什么? 学生通过分析数据,归纳出:结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积. 意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C 的面积计算是一个难点,为此设计了一个交流环节.效果:学生通过充分讨论探究,在突破正方形C 的面积计算这一难点后得出结论2. 3.议一议:内容:(1)你能用直角三角形的边长a 、b 、c 来表示上图中正方形的面积吗? (2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理(gou-gu theorem ):如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+.即直角三角形两直角边的平方和等于斜边的平方.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的 直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名. (在西方称为毕达哥拉斯定理)意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理. 效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力.2.通过作图培养学生的动手实践能力.第三环节:勾股定理的简单应用弦股勾例 如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下, 树顶落在离树根24m 处. 大树在折断之前高多少?(教师板演解题过程) 练习:1、基础巩固练习:(口答)求下列图形中未知正方形的面积或未知边的长度:2、生活中的应用:小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.第四环节:课堂小结内容:教师提问:1.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?请与你的同伴交流. 在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+. 2.方法:① 观察—探索—猜想—验证—归纳—应用; ② 面积法;③ “割、补、拼、接”法.3.思想:① 特殊—一般—特殊; ② 数形结合思想.意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.?225100x17第五环节:布置作业内容:作业:1.教科书习题1.1; 2.阅读《读一读》——勾股世界;3.观察下图,探究图中三角形的三边长是否满足222c b a =+.意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.效果:学生进一步加强对本课知识的理解和掌握.六、教学设计反思(1)设计理念依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.(2)突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.(3)分层教学,拓展资源 基础训练1.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刚搬来一架高为2.5a bcabc CB米的木梯,准备把拉花挂到2.4米的墙上,则梯脚与墙角的距离应为 米.2.如图,小张为测量校园内池塘A ,B 两点的距离,他在池塘边选定一点 C ,使∠ABC =90°,并测得AC 长26m ,BC 长24m ,则A ,B 两点间的距离 为 m .3.如图,阴影部分是一个半圆,则阴影部分的面积为 .(π不取 近似值)4.底边长为16cm ,底边上的高为6cm 的等腰三角形的腰长为 cm .5.一艘轮船以16km/h 的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km/h 的速度向东南方向航行,它们离开港口半小时后相距 km .提高训练6.一个长为10m 为梯子斜靠在墙上,梯子的顶端距地面的垂直高度为8m ,梯子的顶端下滑2m 后,底端滑动 m .7.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角 三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积的和 是 cm 2.8.已知Rt △ABC 中,∠C =90°,若14=+b a cm ,10=c cm ,则Rt △ABC 的面积为( ). (A )24cm 2(B )36cm 2(C )48cm 2(D )60cm 29.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个 正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S 1,S 2,S 3,则S 1,S 2,S 3之间的关系是( ).(A )321S S S >+ (B )321S S S =+ (C )321S S S <+ (D )无法确定10.暑假中,小明和同学们到某海岛去探宝旅游,按照如图所示的 路线探宝. 他们登陆后先往东走8km ,又往北走2km ,遇到障碍后又往 西走3km ,再折向北走6km 处往东一拐,仅走1km 就找到了宝藏,则 登陆点到埋宝藏点的直线距离为 km .知识拓展11.如图,已知直角△ABC 的两直角边分别为6,8,分别以其三边为直径作半圆,求图中阴影部分的面积.321S S S 32168埋宝藏点登陆点7cmDACB 86C25712.如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它恰好落在斜边AB 上,且与AE 重合,求CD 的长.意图:进行分层训练,既满足了不同学生的需求,同时也便于老师及时地了解学生的情况.老师可以根据学生的情况选择上述题目进行练习,也可留作家庭作业.效果:通过分层练习,充分激发学生的学习热情,教师应留给学生充分的时间思考,在独立思考的基础上,鼓励学生相互讨论,得出结果.(4)评价方式根据新课标的评价理念,在本课主要从以下几个方面对学生学习情况进行评价:首先,在探索勾股定理的过程中,对学生的参与热情、情感态度、探究的积极性、探究的效果等学习情况进行评价.其次,在“勾股定理的简单应用”这一教学环节中,通过例题和练习,可有效地评价学生理解和掌握知识的情况.第三,在“课堂小结”这一环节中,教师可从学生的自由发言和交流中,了解到各个教学目标的达成情况.第四,通过课后作业的完成情况,进一步了解学生对勾股定理的理解和掌握的程度.教师根据这些评价结果做出相应的反馈和调节,调整、设计下节课或下阶段的教学内容,以达到尽可能好的教学效果.B ADE。

勾股定理—教学设计及点评

勾股定理—教学设计及点评

义务教育课程标准实验教科书北师大版八年级上册第一章第一节探索勾股定理(第一课时)重庆市珊瑚初级中学校程小娟一、教学内容解析1. 内容探索勾股定理(第一课时)2. 内容解析勾股定理是学生在已经掌握了直角三角形有关角的性质基础上进行学习的,它从边的角度进一步揭示直角三角形三边之间存在的数量关系,是解决直角三角形问题的依据之一.在数学发展史上,东西方很早就展开了对勾股定理的研究,产生了各种各样证明勾股定理的方法,并由此导出了无理数的概念,引发了数学史上的第一次数学危机.因此,勾股定理具有丰富的文化内涵,学习勾股定理可以引发学生对数学文化、数学历史的思考.同时,勾股定理的发现、验证中,蕴含着发展学生探究能力不可多得的思维材料.本节课是义务教育课程标准实验教科书北师大版八年级上册第一章《勾股定理》第一节第一课时.教材在编写时重视对学生动手操作能力和观察分析问题能力的培养,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过练习比较、推理论证,表征方式的转换,理解勾股定理。

本节是已学习直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.二、教学目标与目标解析1.学习目标(1)经历用方格子计算面积的办法探索勾股定理以及利用图形面积验证勾股定理的过程,渗透“特殊到一般”、“数形结合”的数学思想,培养学生分析问题和解决问题的能力,提升学生几何直观的数学素养.(2)能准确利用文字语言、几何图形语言、字母符号语言表述勾股定理,会初步运用勾股定理进行简单的计算和解释生活中的简单现象.(3)利用古代中外勾股定理的发现故事,感受数学文化,热爱我国悠久文化的同时,学习多元文化,了解不同民族为人类的发展所做的贡献.2.目标解析勾股定理作为平面几何有关度量的最基本定理,既是对直角三角形的进一步探究,又是后续学习三角函数、四边形和圆,以及平面解析几何中两点间距离公式等的基础,它具有承上启下的作用.因此能准确地表述勾股定理,并能运用勾股定理进行简单的计算.本课是本章的第一课时,学习内容主要是探索勾股定理而不是证明,因此需要学生通过“观察——操作——猜想——验证”的过程,在此过程中自然发展发现问题、提出问题、分析问题、解决问题的能力.体会从特殊到一般、数形结合的思想,以及对勾股定理历史的认识.三、学生学情分析我任教的学校是重庆市首批示范初中,所教学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已经学习了一些几何图形面积的计算方法(包括割补法),但运用面积的割补法解决问题的意识和能力还有待提高.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.综合以上分析,确定了如下的教学重点和教学难点.教学重点:探索和验证勾股定理.教学难点:在方格纸上利用割补法计算面积探索勾股定理.四、教学策略分析本节课中采用启发式教学方法,小组讨论式合作学习方法,合理地使用多媒体和教具分解学生学习的难度.学生遇到的第一个难点可能是在方格纸中,求利用一般直角三角形斜边构造的正方形的面积.解决这个难点的策略是设置问题台阶,先通过求等腰直角三角形斜边构造的正方形面积时,启发学生用多种方法:数格子和拼图;再通过小组合作研究“割”、“补”的方式;最后在交流展示时,利用喷绘纸描出“割”、“补”后的所求的正方形的面积,同时将面积的表示方法展示在黑板上帮助学生理解.第二个难点可能是在直角边是小数的情况下探究勾股定理.解决这个难点的策略是引导学生回忆画数轴时如何根据实际情况选取单位长度,学生选取合适单位长度,坐标纸中完成画图,能帮助学生有效完成探究.同时,利用板书和课件能生动、有效地帮助学生有条理开展探究活动和梳理本节课的主要学习内容,板书与课件随着学生的思维同步展开.五、教学过程设计(一)引入1.幻灯片展示2002年国际数学大会的会标:会标中四个直角三角形中的三边存在怎样的数量关系?《周髀算经》中谈到“勾三股四弦五”(画出图形),为什么两直角边分别是3和4,斜边一定是5?【设计意图】看到会标,部分学生会想到“勾三股四弦五”.这样以学生的认知为基础引入,激发学习兴趣的同时,自然向学生渗透与勾股定理有关的历史文化,增强民族自豪感.根据教材的介绍,此时,老师可直接告诉学生:事实上,古人发现,直角三角形三条边长度的平方存在一种特殊的关系.为活动1为什么要计算直角三角形的三边平方作铺垫.2.引出课题《探索勾股定理》——研究直角三角形三边关系.简单介绍本章内容:探索并证明勾股定理及其逆定理,并运用这两个定理去解决有关问题,以此加深对直角三角形的认识.【设计意图】本节是勾股定理的章起始课,应该让学生简单了解本章的学习内容和学习目标,明确探索和学习勾股定理的必要性.(二)探究活动1:(1)请在方格纸上任意画一个直角三角形;(2)用直尺测量....它们的三条边长度;(3)计算三边长度的平方;(4)探究三边长度的平方有什么数量关系.师生活动:学生先自己操作,然后老师展示几何画板度量,得到基本的猜想.问:通过计算,你画的直角三角形三边长度的平方有什么数量关系?【设计意图】有学生会猜想到直角三角形三边平方的关系.要验证猜想结果的正确性,需要我们动手操作验证.自然想到画一个直角三角形,通过度量、计算边长的平方,初步获得结论.(因为度量存在一定的误差)我再通过几何画板出示一组直角三角形,让学生进一步观察与猜想.再让学生回忆小学知识:正方形的面积等于边长的平方,因此直角三角形三边的平方结果可以借用正方形的面积来表示,利用几何直观,我们将计算边长的平方转化为计算正方形的面积.学生在方格纸中计算正方形的面积,是有一定基础的.这样既避免了由测量带来的误差,也拓展了计算面积的方法,自然引出活动2.活动2:(1)观察图1-1,正方形A中含有个小方格,即A的面积是个单位面积;正方形B的面积是个单位面积,正方形C的面积是个单位面积.师生活动:学生口答图1-1、图1-2的面积,发现A,B,C面积之间的关系,并回答C 的面积是如何计算得到的.问:A、B、C面积之间的关系能不能分别用中间那个直角三角形的边长表示?【设计意图】等腰直角三角形比较特殊,从“形”上来看,体现探究的过程是一个从特殊到一般的过程,自然引出下一个活动:一般直角三角形的探究.而C的面积,学生有多种算法,本例比较特殊,用凑整的方法较为简单.但学生用补成正方形或是分割成三角形的计算方法,应该要给予展示和鼓励,从而为图1-3和图1-4中C面积的计算方法做铺垫.此时,可介绍古希腊著名数学家毕达哥拉斯从用地砖铺成的地面中发现了等腰直角三角形的某种特性.在西方,勾股定理也称为毕达哥拉斯定理,为纪念毕达哥拉斯学派,1955年,希腊曾发行了一枚邮票.在探究中自然介绍与勾股定理有关的西方文化知识.(2)观察图1-3,图1-4,并填写下表:小组活动:4人小组,两人探究图1-3,两人探究图1-4,主要展示C 面积的算法方法总结:方法一(割):分割为四个直角三角形和一个小正方形.方法二(补):补成大正方形,用大正方形的面积减去四个直角三角形的面积.问:直角三角形周边的三个正方形的面积与中间那个直角三角形三边的关系.师生活动:本活动中,学生的难点是如何通过割补法求C 的面积.因此教学过程中安排了小组活动.课堂中,黑板上会贴上图1-3,图1-4这两个基本图形的喷绘纸,学生用记号笔标记如何用割补法求C 的面积.此时,教师引导学生观察国际数学大会的会标就是方法1中的图,并进一步说明,此图是中国古代数学家赵爽首先绘制的,我们称此图为“勾股圆方图”,赵爽用数形结合的方法,给出了勾股定理的详细证明,比西方国家早了1000多年,下节课我们将来具体研究.【设计意图】对一般直角三角形的探究进一步说明结论的正确性,体现从特殊到一般的数学思想.从毕达哥拉斯发现勾股定理,到引出赵爽弦图,再一次让学生了解勾股定理悠久的历史文化,了解不同民族为人类的发展所做的贡献,渗透爱国主义教育,并为下一课时用“面积法”证明勾股定理奠定基础.活动3:如果直角三角形的两直角边分别为0.4个单位长度和0.6个单位长度,上面猜想的数量关系还成立吗?【设计意图】活动2中,直角三角形的直角边都是整数,为了进一步体现结论的一般性,本活动设计了直角边是小数的情况,从“数”验证结论的一般性.直角边是小数的情况,学生可能会比较困难,此时,引导学生回忆画数轴时如何根据实际情况选取单位长度,学生选取合适单位长度,并在方格纸中完成画图,能帮助学生有效完成探究.活动4:如图,请回答A,B,C面积之间的关系【设计意图】活动2和活动3中,直角三角形的直角边都是有理数,为了进一步体现结论的一般性,本活动设计了直角三角形三边都是无理数的情况.从教材的安排来看,实数是在勾股定理学习之后呈现的,因此在教学中学生对本图了解即可,这也是无理数发现的过程.再回到活动1中几何画板的展示,拖动直角三角形的顶点,进一步让学生了解在任意边长的情况下,直角边的平方和仍然等于斜边的平方.从等腰直角三角形到一般直角三角形,从直角边是整数到小数再到无理数,活动中体现了基于数学核心素养“直观想象”的教学理念.同时,在本活动中完善了探究方法:观察——操作——猜想——验证.通过活动2、3、4,得到如下结论:结论:S A +S B=S c222a b c += 隐去直角三角形周边的正方形,得到勾股定理:☆勾股定理:如果 的两直角边分别为a 和b ,斜边为c ,那么 . 几何语言:∵ ,∴ .归纳总结勾股定理过程: (1)结合探索过程,学生用自己的语言叙述,直角三角形的两条直角边与斜边的关系;(2)阅读教材,勾画关键词;(3)结合图形,用数学符号表示勾股定理.(三)应用跟踪练习:教材第3页随堂练习第1题(口答)【例1】(1)求下列直角三角形的边长.(2)在Rt △ABC 中,∠A =90°,AB =3,54BC AC =,求AC 的长.【设计意图】本例是勾股定理的简单运用.通过讲解,一是老师示范解答过程;二是让学生知道:在直角三角形中,如果知道两条边的长,可用勾股定理求出第三边长.【变式】在Rt △ABC 中,∠C =90°,BC =4,AB+AC =8,求AC 的长.B C A c ba 86B C A B C A B【设计意图】利用勾股定理建立方程求边长是常见的方法.【例2】理解“勾三股四弦五”老师展示肢体语言,同时让学生跟着一起做。

1.1探索勾股定理+教学设计2023—2024学年北师大版数学八年级上册

教师引导学生发现三边关系并提出猜想:a 2+ b2=c2教师引导学生对我们的猜想进行验证,所以给定了几组以a,b为直角边的直角三角形,用我们的猜想计算斜边c的长度。

再次引导学生用工具画出满足上图给定直角边的直角三角形,并用刻度尺测量出斜边的长度,检验和公式算出的数值是否一致从而提出猜想。

猜想公式后尝试应用公式计算,求出斜边的长度作图满足条件的直角三角形,并进行测量,发现测量出的斜边和用公式计算出的斜边在误差允许的范围内保持一致。

设计意图:让学生经历作图——测量——猜想——作图——测量——验证的过程,培养学生的动手实践能力和数学探究能力。

并且,作图和测量是数学操作中的两项基本技能,在此环节中得以多次训练,教学结构完整而统一。

同时,也引导传授学生遇到陌生的问题时,要先进行尝试,再大胆猜想,最后进行验证的数学学习思路。

本环节运用了数形结合的思想和从特殊到一般的思想,让学生感受数学探究的方法与乐趣。

环节三.严谨证明,欣赏教师活动:引导学生使用赵爽弦图对勾股定理进行证明,并强调数形结合的思想方法。

同时,展示第二十四届数学家大会的会徽,再次渗透数学文化。

教师继续带领大家欣赏刘徽的“青朱出入图”、欧几里得《几何原本》中的证明,和达芬奇的证明。

并在课件中展示相应的人物简历、文化科普,激发学生兴趣的同时补充数学文化知识。

学生活动:利用“赵爽弦图”尝试证明勾股定理,并在教师的引导下完成定理的证明。

欣赏其他名人的证法,感受数形结合之美。

体会“算两次”和割补法在勾股定理证明中的妙用。

思考讨论是否还有其他的证明方法,激发数学思教师继续带领学生欣赏其他美妙的证法,并且告诉学生勾股定理有500多种证明方法,是证法最多的定理之一,从而引发学生强烈的求知欲望,想要去查找或探索其他证明方法。

考和潜能设计意图: 通过严谨的数学证明教导学生“先猜后证”是数学之道,一个定理的提出除了猜想和尝试外,还需要逻辑严谨的数学证明.定理的证明可以使本节课的思路更加严谨和清晰。

北师大版八年级数学上册第一章第一节:《探索勾股定理》教案

北师大版八年级数学上册《探索勾股定理》教学设计一、课题:勾股定理二、课型:新授课三、课时:一课时四、教材分析:(一)主要内容本章是北师大版《数学》八年级上册册第1章第一节,本节的主要内容是勾股定理的探究,教材从实践探索入手,给学生创设学习情境。

(二)相关要求掌握勾股定理的证明方法,会初步运用勾股定理进行简单的计算和实际运用(三)教材的地位和作用在本节课以前,学生学习了一些图形的面积公式,还学习了三角形全等的判定和性质、直角三角形的有关性质以及整式运算中的完全平方公式(a+b)2=a2+2ab+b2。

学生在这些原有的认知水平基础上,探索直角三角形的又一条重要性质——勾股定理。

这一定理揭示了直角三角形三边之间的数量关系,为以后学习怎样解直角三角形和二次根式做铺垫。

通过探索还掌握新的数学证明方法——等面积法。

(四)数学思想和方法掌握等面积方法和数形结合的数学思想。

五、学情分析:由于该堂课采用了“等面积”方法来证明勾股定理,这种方法在以前的学习中不常用,如果只是老师讲授,学生不会留下深刻印像。

因此,我们采用分组探索的方式。

又考虑到学生的情况不同,将学生进行合理分配,在活动前对学生进行鼓励,告诉他们该节课的学与以前的基础知识联系不大,并且要求学生多动口、动手、动脑,以学生自主探究为主。

六、教学目标:(一)知识与技能:了解勾股定理的面积证法和数形结合的思想,理解和掌握勾股定理内容及简单应用;培养学生动口、动手、动脑和合作探究的综合能力,提升学生自主学习能力、思考能力和创新能力。

(二)情感与价值:学生动手探究出数学的奥妙,感受到数形结合的美,达到学生爱学、会学、学会的目标。

七、教学重点和难点:(一)教学重点:勾股定理的在解决数学问题中的灵活应用(二)教学难点:勾股定理的证明八、教学方法:学生自己探究,将课堂以学生为主,进行分组讨论。

学生利用新的数学思想来证明本节课的定理。

学生能够灵活的掌握勾股定理的应用,感受等面积法和数形结合的美。

北师大版八年级数学上册:1.1 探索勾股定理 教学设计1

《探索勾股定理》教学设计教学目标:(一)知识与技能①经历探索勾股定理的过程,发展合情推理能力,体会数形结合的思想。

②会初步应用勾股定理解决实际问题。

(二)过程与方法①经历“测量——猜想——总结——验证”等一系列过程体会数学定理发现的过程。

②在观察、猜想、归纳、验证等过程中培养语言表达能力和初步的逻辑推理能力。

③在探索过程中,体会数形结合、由特殊到一般及化归等数学思想方法。

(三)情感、态度与价值观目标①通过让学生参加探索活动,激发学生对学习数学的兴趣。

②通过毕达哥拉斯发现勾股定理的小故事,激发学生发现问题的欲望和意识。

③通过我国古代发现勾股定理的历史,培养学生的民族自豪感和使命感。

教学重点:勾股定理的探索过程。

教学难点:勾股定理的应用。

教学过程:讲授新课【探究一】:1、每两人一小组,一位同学在老师发的方格纸上任意画一个直角三角形,并测量出三边的长度。

2、另一位同学记录数据,并计算出每条边长的平方是多少。

3、小组讨论三边的平方之间有什么关系。

教师引导学生对测量结果进行分析。

总结出三边平方的关系。

学生动手作图,测量,计算每条边长的平方,讨论三边平方的关系。

学生展示测量结果。

让学生经历“观察——测量——猜想”的过程。

培养学生的动手能力、合作探究能力和发现问题的能力。

讲授新【探究二】:在边长为1个单位的方格纸中画出了下列四幅图形,分别求出每幅图中正方形A、B、C的面积。

图1 图2A的面积B的面积C的面积图1图2图3 图4学生按步骤进行合作探究。

进一步验证勾股定理。

分步骤实施,使学生探究活动能够做到有序进行。

步骤一:步骤二:课A的面积B的面积C的面积图3图4步骤三:你发现面积之间有什么关系吗?可以通过你发现的这个面积关系进一步猜想直角三角形三边的关系吗?教师与学生一起结合这四幅图形交流探究成果。

教师总结归纳勾股定理的内容。

A的面积+B的面积=C的面积a2 + b2 = c2在直角三角形中,两直角边的平方和等于斜边的平方教师讲勾股定理的发现及证明的历史。

北师大版八年级数学上册《勾股定理的应用》示范课教学设计

第一章勾股定理3 勾股定理的应用一、教学目标1.会灵活运用勾股定理求解立体图形上两点之间路线最短的问题.体会勾股定理在代数问题和几何问题中的应用.2.能正确运用勾股定理及直角三角形的判别方法解决简单的实际问题.3.能够运用勾股定理解决实际生活中的问题,熟练运用勾股定理进行计算,增强数学知识的应用意识.4.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.二、教学重难点重点:会用勾股定理求解立体图形上两点之间路线最短的问题.难点:能正确运用勾股定理及直角三角形的判别方法解决简单的实际问题.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】教师活动:教师引导学生回顾勾股定理,并通过简单的提问,回顾勾股定理逆定理以及勾股数的内容,接着通过小情境引入本节课要讲解的内容.勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a²+b²=c².如果三角形的三边长a、b、c满足a²+b²=c²,那么这个三角形是.预设答案:直角三角形.满足a²+b²=c²的三个正整数,称为.预设答案:勾股数.观察思考:小明要去野外郊游,走哪条路最近呢?为什么呢?教师活动:教师提出问题,观察学生如何思考,再让学生说明理由.关注学生能否都认真看题积极思考,能否立刻利用两点之间线段最短确定最短路径.答案:线路③.【问题探究】有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm.在圆柱下底面的点A有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物,沿圆柱侧面蚂蚁怎么爬行的路程最短呢?做一做自己做一个圆柱,尝试从A点到B点沿圆柱侧面画出几条路线,你觉得哪条路线最短呢?教师活动:让学生说出自己规划的蚂蚁的路线,然后用课件展示.③A→B的路线长为:AA′+A′B ;③A→B的路线长为:AA′+曲线A′B;③A→B的路线长为:曲线AP +曲线PB;③A→B的路线长:曲线AB.将圆柱侧面剪开展成一个长方形,从点A到点B的最短路线是什么?你画对了吗?教师活动:对照圆柱上的线路,用课件展示侧面剪开图,让学生观察并说出哪条线路最近.教师活动:将圆柱的侧面展开,把曲线分别转化为对应线段,然后结合两点之间线段最短,得出结论:第(4)种方案路程最短.追问:蚂蚁从点A出发,想吃到点B上的食物,它沿圆柱侧面爬行的最短路程是多少?该如何计算呢?答案:在Rt③A′AB中,利用勾股定理,得AB²=AA′²+A′B².其中AA′是圆柱体的高,A′B是底面圆周长的一半(πr) .已知圆柱体高为12 cm,底面周长为18 cm,则AB=15cm.做一做如图,在棱长为10 cm的正方体的一个顶点A处有一只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是1 cm/s,且速度保持不变,问蚂蚁能否在20 s内从A爬到B?教师活动:先由学生独立完成,教师及时给予指导,在此活动中,教师应重点关注学生能否进一步理解蚂蚁最近线路该如何走.多媒体展示答题过程解:将正方体展开得到如下图形,由勾股定理得,22AB2.=10+20=50020×1=20(cm).③202<500.③蚂蚁不能在20 s内从A爬到B.【思考探究】教师活动:多媒体演示课件,引导学生观察并思考:李叔叔想要检测雕塑底座正面的边AD和边BC是否分别垂于底边AB,但他随身只带了卷尺.你能替他想办法完成任务吗?提示:连接BD,如果能算出AD2+AB2=BD2 ,就可以说明边AD和边BC分别垂于底边AB.提示:连接AC,如果能算出AB2+BC2=AC2 ,就可以说明边BC垂于底边AB.问题:李叔叔想要检测雕塑底座正面的边AD 和边BC是否分别垂直于底边AB,但他随身只带了卷尺.李叔叔量得边AD长是30 cm,边AB长是40 cm,边BD长是50 cm.边AD垂直于边AB 吗?教师活动:引导学生通过勾股定理证得BC垂直于AB得出结论.巡视同学做题过程,对于有困难的学生给予指导,然后用多媒体展示答题过程.解:连接BD③AD=30,AB=40,BD=50又③AD2+AB2=302+402=502=BD2③ΔABD为直角三角形,③A=90°③AD⊥AB同理可证得:BC⊥AB.问题:小明随身只有一个长度为20cm的刻度尺,他能有办法检验边AD是否垂直于边AB吗?解:在AD上取点M,使AM=9,在AB上取点N,使AN=12,92+122=152【典型例题】教师提出问题,学生先独立思考,解答.然后再在小组内交流探讨,教师巡视,如遇到有困难的学生适当点拨,最终教师展示答题过程.典型例题【例1】如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3 m,CD=1 m,试求滑道AC的长.分析:根据题意可的AC=AB,可设AC为x m,从而AE是(x-1)m,而③AEC是直角三角形,由勾股定理可得AC的值.解:设滑道AC的长度为x m,则AB的长度为x m,AE的长度为(x-1)m.在Rt③AEC中,③AEC=90°,由勾股定理得AE2+CE2=AC2,即(x-1)2+32= x 2,解得x =5.故滑道AC的长度为5 m.【例2】在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗?教师根据题干分析题中提供的已知条件,并画出图形.解:根据题意可以构建一直角三角形模型,如图.在Rt③ABC中,AC=6米,BC=8米,由勾股定理得AB=10米.③这棵树在折断之前的高度是10+6=16(米).教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.小华和小刚兄弟两个同时从家去同一所学校上学,速度都是每分钟走50米.小华从家到学校走直线用了10分钟,而小刚从家出发先去找小明再到学校(均走直线),小刚到小明家用了6分钟,小明家到学校用了8分钟,小刚上学走了个()A.锐角弯B.钝角弯C.直角弯D.不能确定教师画示意图:222⨯+⨯=⨯(650)(850)(1050)∴所以小刚上学走了个直角弯.答案:C2.如图是一张直角三角形的纸片,两直角边AC=6 cm,BC=8 cm,将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长是.教师提示:因为DE是折痕,所以E为AB的中点,AE=BE=12AB,只要根据勾股定理求出Rt△ABC斜边AB的长,就可求出BE的长.答案:5 cm.3.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,2h后同时停下来,这时A、B两组相距30km.此时,A,B两组行进的方向成直角吗?请说明理由.解:2小时后,A组行驶的路程为:12×2=24(km);B组行驶的路程为:9×2=18(km);又因为A,B两组相距30 km,且有242+182=302所以A,B两组行进的方向成直角.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章勾股定理
1 探索勾股定理
第1课时
一、教学目标
1.经历勾股定理的探究过程,了解关于勾股定理的一些文化历史背景;
2.会用面积法来探索勾股定理,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系,体会数形结合的思想;
3.会用勾股定理进行简单的计算,进一步发展学生的说理和简单推理的意识及能力;
4.通过探究培养学生的观察、归纳和概括能力,激发学生的学习兴趣.
二、教学重难点
重点:会用面积法来探索勾股定理.
难点:会用勾股定理进行简单的计算.
三、教学用具
电脑、多媒体、课件、教学用具等
四、教学过程设计
【观察思考】
教师活动:先提出问题让学生思考一下,然
后播放下面的视频.
问题:同学们,其他星球上是否存在着
“人”呢?
讲解:为了探寻这一点,世界上许多科学家
向宇宙发出了许多信号,如地球上人类的语言、
音乐、各种图形等.
据说我国著名的数学家华罗庚曾建议“发
射”一种勾股定理的图形到宇宙(如图).
很多学者认为如果宇宙“人”也拥有文明的
话,那么他们一定会认识这种语言,因为几乎所有具有古代文化的民族和国家都会对勾股定理有所了解.
勾股定理有着悠久的历史:古代中国人和古巴比伦人看出了这个关系,古希腊的毕达哥拉斯学派也证明了这个关系,下面让我们一起来通过视频了解吧.
观察思考:如图,从电线杆离地面8 m处向地面拉一条钢索,如果这条钢索在地面的固定点距离电线杆底部6 m,那么需要多长的钢索?
追问:电线杆、地面与铁索之间构成了一个怎么样的几何图形呢?
追问:在直角三角形中,已知两边长,如何求第三边?
讲述:在直角三角形中,任意两条边确定了,另外一条边也就随之确定,三边之间存在着一种特定的数量关系.事实上,古人发现直角三角形的三边长度的平方存在一种特殊关系.让我们一起探索吧!
并思考:
问题:如下图,每个小方格的面积均为1,思考下面问题,并填写表格.
(1)正方形A的面积是多少个方格?正方形B的面积是多少个方格?
(2)怎样求出正方形C的面积是多少个方格?
预设答案:
追问:你能发现图1-1和1-2中三个正方形A,B,C的面积之间有什么关系吗?
预设答案:
S A+S B=S C
归纳:两条直角边上的正方形面积之和等于斜边上的正方形的面积.
问题:观察图1-3、图1-4,三个正方形A、B、C是否也有类似的面积关系?
追问:这两幅图中A,B的面积都好求,该怎样
求C的面积呢?
讲解:方法1:补形法(把以斜边为边长的正方形补成各边都在网格线上的正方形):
预设答案:
图1-3:
C
1
7744325
2
S
⎛⎫
=⨯-⨯⨯⨯=

⎝⎭
图1-4
C
1
5542313
2
S
⎛⎫
=⨯-⨯⨯⨯=

⎝⎭
讲解:方法2:分割法(把以斜边为边长的正方形分割成易求出面积的三角形和四边形):
预设答案:
图1-3:
C
1
4431125 2
S
⎛⎫
=⨯⨯⨯+⨯= ⎪
⎝⎭
图1-4
C
1
4231113 2
S
⎛⎫
=⨯⨯⨯+⨯= ⎪
⎝⎭
问题:根据前面求出的C的面积直接填出下表:
预设答案:
问题:观察所得到的各组数据,你有什么发现?
预设答案:
S A+S B=S C
追问:正方形A、B、C所围成的直角三角形三条边之间有怎样的特殊关系?
预设答案:
a2+b2=c2
【想一想】
如果直角三角形的两直角边分别为1.6个单位长度和2.4个单位长度,上面所猜想的数量关系还成立吗?
出示动图说明猜想的正确性.
【归纳】
如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.
在我国又称商高定理,在外国则叫毕达哥拉斯定理,或百牛定理.
公式变形:
222222
=-=-=+
,
,
a c
b b
c a c a b
a、b、c为正数.
【延伸】
在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”.我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.
勾2+股2=弦2
【做一做】
如图,从电线杆离地面8 m处向地面拉一条钢索,如果这条钢索在地面的固定点距离电线杆底部6 m,那么需要多长的钢索?
预设答案:
解:据勾股定理得
2222
8610010;
c a b
=+=+==
∴需要10米长的钢索.
【典型例题】
【例1】如图,在Rt△ABC中,∠C=90°.
(1)若a=b=5,求c;
(2)若a=1,c=2,求b.
解:(1)据勾股定理得
2222
555052;
c a b
=+=+==
(2)据勾股定理得
2222
21 3.
b c a
=-=-=
【例2】已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.
解:由勾股定理可得
AB2=AC2+BC2
22
34
=+=25,
【随堂练习】
1.直角三角形ABC的两直角BC=12,AC=16,则△ABC的斜边AB的长是()
A.20
B.10
C.9.6
D.8
2.直角三角形两直角边长分别是6和8,则周长与最短边长的比是()
A.7∶1
B.4∶1
C.25∶7
D.31∶7
3.如图,阴影部分是一个半圆,则阴影部分的面积为________________.
7
25
4.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.
5.求下列图中未知数x、y的值:
答案:
1.A;
2. B
3. 72π;
4.74或24.
5.(1)解:由勾股定理可得
81+ 144=x2,
解得x=15.
(2)解:由勾股定理可得
y2+ 144=169,
解得y=5。

相关文档
最新文档