线性回归的显著性检验

线性回归的显著性检验
线性回归的显著性检验

线性回归的显著性检验 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

线性回归的显着性检验

1.回归方程的显着性

在实际问题的研究中,我们事先并不能断定随机变量y 与变量p x x x ,,,21 之间确有线性关系,在进行回归参数的估计之前,我们用多元线性回归方程去拟合随机变量y 与变量p x x x ,,,21 之间的关系,只是根据一些定性分析所作的

一种假设。因此,和一元线性回归方程的显着性检验类似,在求出线性回归方程后,还需对回归方程进行显着性检验。

设随机变量Y 与多个普通变量p x x x ,,,21 的线性回归模型为

ε++++=p p x b x b b Y 110

其中ε服从正态分布),0(2σN

对多元线性回归方程的显着性检验就是看自变量若接受p x x x ,,,21 从整体

上对随机变量y 是否有明显的影响。为此提出原假设

0,,0,0:210===p b b b H

如果0H 被接受,则表明随机变量y 与p x x x ,,,21 的线性回归模型就没有意义。

通过总离差平方和分解方法,可以构造对0H 进行检验的统计量。正态随机变量n y y y ,,,21 的偏差平方和可以分解为:

∑∑∑∑====-+-=-+-=-n i i i n i i n i n i i i i i y y y y y y y y y y

12121

122)?()?()??()( ∑=-=n i i T y y S 1

2)(为总的偏差平方和,∑=-=n i i R y y

S 12)?(为回归平方和,∑=-=n i i i E y

y S 1

2)?(为残差平方和。因此,平方和分解式可以简写为: E R T S S S +=

回归平方和与残差平方和分别反映了0≠b 所引起的差异和随机误差的影响。构造F 检验统计量则利用分解定理得到:

)

1(--=p n Q p Q F E R 在正态假设下,当原假设0,,0,0:210===p b b b H 成立时,F 服从自由度为)1,(--p n p 的F 分布。对于给定的显着水平α,当F 大于临界值)1,(--p n p 时,拒绝0H ,说明回归方程显着,y x 与有显着的线性关系。

实际应用中,我们还可以用复相关系数来检验回归方程的显着性。复相关系数R 定义为:

T

R S S R = 平方和分解式可以知道,复相关系数的取值范围为10≤≤R 。R 越接近1表明E S 越小,回归方程拟合越好。

2.回归系数的显着性

若方程通过显着性检验,仅说明p b b b b ,,,210不全为零,并不意味着每个自变量对y 的影响都显着,所以就需要我们对每个自变量进行显着性检验。若某个系数0=j b ,则j x 对y 影响不显着,因此我们总想从回归方程中剔除这些次要的,无关的变量。检验i x 是否显着,等于假设

p j b H j j ,,2,1,0:0 ==

已知])(,[~?12-'X X B N B σ,p j i c X X ij ,,2,1,0,)(1 =='-)(记,可知

],[~?2σij

j j c b N b ,,,2,1,0p j =据此可构造t 统计量 δjj j

j c b t ?-=

其中回归标准差为

∑∑==---=--=n i i i n i i y y p n e p n 1

212)?(1111δ 当原假设0:0=j j b H 成立时,则j t 统计量服从自由度为1--p n 的t 分布,给定显着性水平α,当2αt t j ≥时拒绝原假设0:0=j j b H ,认为j x 对y 影响显着,当2αt t j <时,接受原假设0:0=j j b H ,认为j x 对y 影响不显着。

SPSS中的相关分析及假设检验

相关分析及假设检验 spss 1.概念 变量之间相关,但是又不能由一个或几个变量值去完全和唯一确定另一个变量值的这种关系称为相关关系。相关关系是普遍存在的,函数关系仅仅是相关关系的特例。事物之间有相关关系,不一定是因果关系,也可能仅是伴随关系,但是事物之间有因果关系,则两者必然相关。 相关分析用于分析两个随机变量的关系,可以检验两个变量之间的相关度或多个变量两两之间的相关程度,也可以检验 两组变量之间的相关程度 偏相关分析是指在控制了其他变量的效应以后,对两个变量相关程度的分析。、 2.皮尔逊积差相关系数pearson product-moment correlation coefficient 变量之间的相关程度由相关系数来度量,pearson相关系数是应用最广的一种。它用于检验连续型变量之间的线性相关程度 2.1前提假设 1)正态分布皮尔逊积差相关只适用于双元正态分布的变量,即两个变量都是正态分布,注意只有pearson要求正态分布 如果正态分布的前提不满足,两变量间的关系可能属于非线性相关 2)样本独立样本必须来自总体的随机样本,而且样本必须相互独立 3)替换极值变量中的极端值如极值、离群值对相关系数的影响较大,最好加以删除或代之以均值或中数 2.2相关分析的前提假设检验 一般情况下是对是否满足正态分布进行检验,对于正态分布的检验有好几种方法,总的可分为非参数检验和图形检验法 1)非参数检验法 spss中的1-sample K-S检验,检验样本数据是否服从某种特定的分布,方法有三种 a. Asymptotic only 是一种基于渐进分布的显著性水平的检验指标,通常显著性水平小于0.05则认为显著,适用于大样本。如果 样本过小或分布不好,该指标的适用性会降低 b.Monte Carlo 精确显著性水平的无偏估计,适用于样本过大无法使用渐进方法估计显著性水平的情况,可以不必依赖渐近方法的假设前提 c.Exact 精确计算观测结果的概率值,通常小于0.05即被认为显著,表明横变量和列变量之间存在相关,同时允许用户键入每次检验的最长 时间显著,可以键入1到9999999999之间的数字,但只要一次检验超过指定时间的30分钟,就应该用monte carlo 假设是服从某种分布 所以如果计算出的值比如Asymp. Sig 小于0.05,那么拒绝原假设,说明样本为非正态分布,否则值越大越服从某种分布 单样本K-S首先计算每一阶段实际值与观察值的差异值,再计算每一阶段差异值的绝对值Z,即K-S的Z值,Z值越大,样本服从理论分布的可能性越小 还有一个是2 -sample Kolmogorov—Smirnov用于检验2个样本的分布是相同的假设 2)图形法 spss中graph a.Q-Q正态检验图

线性回归的显著性检验

线性回归的显着性检验 1.回归方程的显着性 在实际问题的研究中,我们事先并不能断定随机变量y与变量人,乂2,…,x p之间确有线 性关系,在进行回归参数的估计之前,我们用多元线性回归方程去拟合随机变量y与变量 X「X2,…,X p之间的关系,只是根据一些定性分析所作的一种假设。因此,和一元线性回归方程的显着性检验类似,在求出线性回归方程后,还需对回归方程进行显着性检验。 设随机变量丫与多个普通变量x1, x2^ ,x p的线性回归模型为 其中;服从正态分布N(0,;「2) 对多元线性回归方程的显着性检验就是看自变量若接受X i,X2,…,X p从整体上对随机变 量y是否有明显的影响。为此提出原假设如果H。被接受,则表明随机变量y与x「X2,…,X p的 线性回归模型就没有意义。通过总离差平方和分解方法,可以构造对H o进行检验的统计量。正 态随机变量y i,y2/ , y n的偏差平方和可以分解为: n n n S r f (y—y)2为总的偏差平方和,S R=為(懈-y)2为回归平方和,S E f (% - ?)2为残 i 1i# im 差平方和。因此,平方和分解式可以简写为: 回归平方和与残差平方和分别反映了b = 0所引起的差异和随机误差的影响。构造F检验统计量则利用分解定理得到: 在正态假设下,当原假设H o :b i =0, b2 =0,…,b p =0成立时,F服从自由度为(p,n -p-1)的F分布。对于给定的显着水平[,当F大于临界值(p, n-p-1)时,拒绝H。,说明回归方程显着,x与y有显着的线性关系。 实际应用中,我们还可以用复相关系数来检验回归方程的显着性。复相关系数R定义为: 平方和分解式可以知道,复相关系数的取值范围为0空R乞1。R越接近1表明S E越小,回归方程拟合越好。 2.回归系数的显着性

常用显著性检验.

常用显著性检验 1.t检验 适用于计量资料、正态分布、方差具有齐性的两组间小样本比较。包括配对资料间、样本与均数间、两样本均数间比较三种,三者的计算公式不能混淆。 2.t'检验 应用条件与t检验大致相同,但t′检验用于两组间方差不齐时,t′检验的计算公式实际上是方差不齐时t检验的校正公式。 3.U检验 应用条件与t检验基本一致,只是当大样本时用U检验,而小样本时则用t检验,t检验可以代替U检验。 4.方差分析 用于正态分布、方差齐性的多组间计量比较。常见的有单因素分组的多样本均数比较及双因素分组的多个样本均数的比较,方差分析首先是比较各组间总的差异,如总差异有显著性,再进行组间的两两比较,组间比较用q检验或LST检验等。 5.X2检验 是计数资料主要的显著性检验方法。用于两个或多个百分比(率)的比较。常见以下几种情况:四格表资料、配对资料、多于2行*2列资料及组内分组X2检验。 6.零反应检验 用于计数资料。是当实验组或对照组中出现概率为0或100%

时,X2检验的一种特殊形式。属于直接概率计算法。 7.符号检验、秩和检验和Ridit检验 三者均属非参数统计方法,共同特点是简便、快捷、实用。可用于各种非正态分布的资料、未知分布资料及半定量资料的分析。其主要缺点是容易丢失数据中包含的信息。所以凡是正态分布或可通过数据转换成正态分布者尽量不用这些方法。 8.Hotelling检验 用于计量资料、正态分布、两组间多项指标的综合差异显著性检验。 计量经济学检验方法讨论 计量经济学中的检验方法多种多样,而且在不同的假设前提之下,使用的检验统计量不同,在这里我论述几种比较常见的方法。 在讨论不同的检验之前,我们必须知道为什么要检验,到底检验什么?如果这个问题都不知道,那么我觉得我们很荒谬或者说是很模式化。检验的含义是要确实因果关系,计量经济学的核心是要说因果关系是怎么样的。那么如果两个东西之间没有什么因果联系,那么我们寻找的原因就不对。那么这样的结果是没有什么意义的,或者说是意义不大的。那么检验对于我们确认结果非常的重要,也是评价我们的结果是否拥有价值的关键因素。所以要做统计检验。 t检验,t检验主要是检验单个ols估计值或者说是参数估计值的显著性,什么是显著性?也就是给定一个容忍程度,一个我们可以犯

总结:线性回归分析的基本步骤

总结:线性回归分析的基本 步骤 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

线性回归分析的基本步骤 步骤一、建立模型 知识点: 1、总体回归模型、总体回归方程、样本回归模型、样本回归方程 ①总体回归模型:研究总体之中自变量和因变量之间某种非确定依赖关系的计量模型。Y X U β=+ 特点:由于随机误差项U 的存在,使得Y 和X 不在一条直线/平面上。 例1:某镇共有60个家庭,经普查,60个家庭的每周收入(X )与每周消费(Y )数据如下: 作出其散点图如下:

②总体回归方程(线):由于假定0EU =,因此因变量的均值与自变量总处于一条直线上,这条直线()|E Y X X β=就称为总体回归线(方程)。 总体回归方程的求法:以例1的数据为例 由于01|i i i E Y X X ββ=+,因此任意带入两个X i 和其对应的E (Y |X i )值,即可求出01ββ和,并进而得到总体回归方程。

如将()()222777100,|77200,|137X E Y X X E Y X ====和代入 ()01|i i i E Y X X ββ=+可得:0100117710017 1372000.6ββββββ=+=?????=+=?? 以上求出01ββ和反映了E (Y |X i )和X i 之间的真实关系,即所求的总体回归方程为:()|170.6i i i E Y X X =+,其图形为: ③样本回归模型:总体通常难以得到,因此只能通过抽样得到样本数据。如在例1中,通过抽样考察,我们得到了20个家庭的样本数据: 那么描述样本数据中因变量Y 和自变量X 之间非确定依赖关系的模型 ?Y X e β =+就称为样本回归模型。

显著性检验(Significance Testing)

显著性检验(Significance T esting) 显著性检验就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(原假设)是否合理,即判断总体的真实情况与原假设是否显著地有差异。或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。 显著性检验是针对我们对总体所做的假设做检验,其原理就是“小概率事件实际不可能性原理”来接受或否定假设。 抽样实验会产生抽样误差,对实验资料进行比较分析时,不能仅凭两个结果(平均数或率)的不同就作出结论,而是要进行统计学分析,鉴别出两者差异是抽样误差引起的,还是由特定的实验处理引起的。 [编辑] 显著性检验的含义 显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法。 常把一个要检验的假设记作H0,称为原假设(或零假设) (null hypothesis) ,与H0对立的假设记作H1,称为备择假设(alternative hypothesis) 。 ⑴在原假设为真时,决定放弃原假设,称为第一类错误,其出现的概率通常记作α; ⑵在原假设不真时,决定接受原假设,称为第二类错误,其出现的概率通常记作β。 通常只限定犯第一类错误的最大概率α,不考虑犯第二类错误的概率β。这样的假设检验又称为显著性检验,概率α称为显著性水平。 最常用的α值为0.01、0.05、0.10等。一般情况下,根据研究的问题,如果犯弃真错误损失大,为减少这类错误,α取值小些,反之,α取值大些。 [编辑] 显著性检验的原理 无效假设

相关系数检验表

自由度自由度n -m -10.10 0.05 0.01 n -m -10.10 0.05 0.01 10.987690.996920.999882010.018230.010910.0028820.900000.950000.990002020.050680.043320.0258130.805380.878340.958742030.068740.066150.0518940.729300.811400.917202040.079150.080690.0725350.669440.754490.874532050.085730.090380.0880760.621490.706730.834342060.090190.097180.0998670.582210.666380.797682070.093370.102170.1089880.549360.631900.764592080.095730.105950.1161890.521400.602070.734792090.097520.108880.12197100.497260.575980.707892100.098910.111200.12670110.476160.552940.683532110.100010.113070.13062120.457500.532410.661382120.100890.114600.13390130.440860.513980.641142130.101600.115860.13667140.425900.497310.622592140.102170.116900.13903150.412360.482150.605512150.102640.117770.14106160.400030.468280.589712160.103020.118500.14281170.388730.455530.575072170.103320.119110.14432180.378340.443760.561442180.103560.119620.14564190.368740.432860.548712190.103760.120060.14679200.359830.422710.536802200.103910.120420.14780210.351530.413250.525622210.104020.120720.14869220.343780.404390.515102220.104100.120970.14946230.336520.396070.505182230.104160.121170.15015240.329700.388240.495812240.104190.121340.15075250.323280.380860.486932250.104200.121470.15127260.317220.373890.478512260.104190.121570.15173270.311490.367280.470512270.104170.121640.15214280.306060.361010.462892280.104130.121690.15249290.300900.355050.455632290.104080.121720.15279300.295990.349370.448702300.104020.121730.15306310.291320.343960.442072310.103950.121730.15328320.286860.338790.435732320.103870.121700.15348330.282590.333840.429652330.103780.121670.15364340.278520.329110.423812340.103680.121620.15377350.274610.324570.418212350.103580.121560.15388360.270860.320220.412822360.103470.121490.15396370.267270.316030.407642370.103360.121410.15403380.263810.312010.402642380.103240.121320.15407390.260480.308130.397822390.103120.121220.15409400.257280.304400.393172400.103000.121120.15410410.254190.300790.388682410.102870.121010.1541042 0.251210.297320.38434242 0.102740.120900.15408 显著性水平(a ) 显著性水平(a ) 相关系数检验临界值表

一元线性回归分析法

一元线性回归分析法 一元线性回归分析法是根据过去若干时期的产量和成本资料,利用最小二乘法“偏差平方和最小”的原理确定回归直线方程,从而推算出a(截距)和b(斜率),再通过y =a+bx 这个数学模型来预测计划产量下的产品总成本及单位成本的方法。 方程y =a+bx 中,参数a 与b 的计算如下: y b x a y bx n -==-∑∑ 222 n xy x y xy x y b n x (x)x x x --==--∑∑∑∑∑∑∑∑∑ 上式中,x 与y 分别是i x 与i y 的算术平均值,即 x =n x ∑ y =n y ∑ 为了保证预测模型的可靠性,必须对所建立的模型进行统计检验,以检查自变量与因变量之间线性关系的强弱程度。检验是通过计算方程的相关系数r 进行的。计算公式为: 22xy-x y r= (x x x)(y y y) --∑∑∑∑∑∑ 当r 的绝对值越接近于1时,表明自变量与因变量之间的线性关系越强,所建立的预测模型越可靠;当r =l 时,说明自变量与因变量成正相关,二者之间存在正比例关系;当r =—1时,说明白变量与因变量成负相关,二者之间存在反比例关系。反之,如果r 的绝对值越接近于0,情况刚好相反。 [例]以表1中的数据为例来具体说明一元线性回归分析法的运用。 表1: 根据表1计算出有关数据,如表2所示: 表2:

将表2中的有关数据代入公式计算可得: 1256750x == (件) 2256 1350y ==(元) 1750 9500613507501705006b 2=-??-?=(元/件) 100675011350a =?-=(元/件) 所建立的预测模型为: y =100+X 相关系数为: 9.011638 10500])1350(3059006[])750(955006[1350 750-1705006r 22==-??-???= 计算表明,相关系数r 接近于l ,说明产量与成本有较显著的线性关系,所建立的回归预测方程较为可靠。如果计划期预计产量为200件,则预计产品总成本为: y =100+1×200=300(元)

显著性检验卡方检验等

第十章 研究资料的整理与分析 本章学习目标: 1.理解量化资料整理与分析中的几个基本概念。 2.掌握几种常用的量化分析方法。 3.掌握质性资料的整理分析方法。 无论采用什么研究方法进行研究,都会搜集到大量的、杂乱的、复杂的研究资料。因此,对大量的、复杂的研究资料进行科学、合理的整理和分析,就成为教育科学研究活动的必不可少的一个环节。这一环节体现着研究者的洞见,是研究者对研究资料进行理性思维加工的过程。通过这一过程,产出研究结果。 根据研究资料的性质,研究资料可以分为质性研究资料和量化研究资料。对研究资料的整理和分析就相应的分为:质性研究资料的整理与分析和量化资料的整理与分析。 第一节 定量资料的整理与分析 一、定量资料分析中的几个基本概念 1.随机变量 在相同条件下进行试验或观察,其可能结果不止一个,而且事先无法确定,这类现象称为随机现象。表示随机现象中各种可能结果(事件)的变量就称为随机变量。教育研究中的变量,大多数都是随机变量。如身高、智商、学业测验分数等。 2.总体和样本 总体是具有某种或某些共同特征的研究对象的总和。样本是总体中抽出的部分个体,是直接观测和研究的对象。例如,要研究西安市5岁儿童的智力发展问题,西安市的5岁儿童就是研究的总体,从中抽取500名儿童,这500名儿童就成为研究的样本。 3.统计量和参数 统计量:反映样本数据分布特征的量称为统计量。例如:样本平均数、样本标准差、样本相关系数等,都属于统计量,它们分别用 表示。统计 量一般是根据样本数据直接计算而得出的。 参数:反映总体数据分布特征的量称为参数。例如:总体平均数、总体标准差、总体相关系数等。它们分别用ρσμ,,等符号来表示。总体参数常常需要根据样本统计量进行估计和推断。 4.描述统计与推断统计 描述统计是指对获得的杂乱的数据进行分类、整理和概括,以揭示一组数据

计量经济学-期末考试-简答题

计量经济学期末考试简答题 1.简述计量经济学与经济学、统计学、数理统计学学科间的关系。 2.计量经济模型有哪些应用? 3.简述建立与应用计量经济模型的主要步骤。 4.对计量经济模型的检验应从几个方面入手? 5.计量经济学应用的数据是怎样进行分类的? 6.在计量经济模型中,为什么会存在随机误差项? 7.古典线性回归模型的基本假定是什么? 8.总体回归模型与样本回归模型的区别与联系。 9.试述回归分析与相关分析的联系和区别。 10.在满足古典假定条件下,一元线性回归模型的普通最小二乘估计量有哪些统计性质?11.简述BLUE的含义。 12.对于多元线性回归模型,为什么在进行了总体显著性F检验之后,还要对每个回归系数进行是否为0的t检验? 13.给定二元回归模型:,请叙述模型的古典假定。 14.在多元线性回归分析中,为什么用修正的决定系数衡量估计模型对样本观测值的拟合优度? 15.修正的决定系数及其作用。 16.常见的非线性回归模型有几种情况? 17. 18观察下列方程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。 19.什么是异方差性?试举例说明经济现象中的异方差性。 20.产生异方差性的原因及异方差性对模型的OLS估计有何影响。 21.检验异方差性的方法有哪些? 22.异方差性的解决方法有哪些? 23.什么是加权最小二乘法?它的基本思想是什么? 24.样本分段法(即戈德菲尔特——匡特检验)检验异方差性的基本原理及其使用条件。25.简述DW检验的局限性。 26.序列相关性的后果。 27.简述序列相关性的几种检验方法。 28.广义最小二乘法(GLS)的基本思想是什么? 29.解决序列相关性的问题主要有哪几种方法? 30.差分法的基本思想是什么? 31.差分法和广义差分法主要区别是什么? 32.请简述什么是虚假序列相关。 33.序列相关和自相关的概念和范畴是否是一个意思? 34.DW值与一阶自相关系数的关系是什么? 35.什么是多重共线性?产生多重共线性的原因是什么? 36.什么是完全多重共线性?什么是不完全多重共线性? 37.完全多重共线性对OLS估计量的影响有哪些? 38.不完全多重共线性对OLS估计量的影响有哪些? 39.从哪些症状中可以判断可能存在多重共线性? 40.什么是方差膨胀因子检验法? 41.模型中引入虚拟变量的作用是什么? 42.虚拟变量引入的原则是什么? 43.虚拟变量引入的方式及每种方式的作用是什么? 44.判断计量经济模型优劣的基本原则是什么? 45.模型设定误差的类型有那些? 46.工具变量选择必须满足的条件是什么? 47.设定误差产生的主要原因是什么? 48.在建立计量经济学模型时,什么时候,为什么要引入虚拟变量? 49.估计有限分布滞后模型会遇到哪些困难 50.什么是滞后现像?产生滞后现像的原因主要有哪些? 51.简述koyck模型的特点。 52.简述联立方程的类型有哪几种 53.简述联立方程的变量有哪几种类型

总结:线性回归分析的基本步骤

线性回归分析的基本步骤 步骤一、建立模型 知识点: 1、总体回归模型、总体回归方程、样本回归模型、样本回归方程 ①总体回归模型:研究总体之中自变量和因变量之间某种非确定依赖关系的计量模型。Y X U β=+ 特点:由于随机误差项U 的存在,使得Y 和X 不在一条直线/平面上。 例1:某镇共有60个家庭,经普查,60个家庭的每周收入(X )与每周消费(Y )数据如下: 作出其散点图如下:

②总体回归方程(线):由于假定0EU =,因此因变量的均值与自变量总处于一条直线上,这条直线()|E Y X X β=就称为总体回归线(方程)。 总体回归方程的求法:以例1的数据为例 ,求出E (Y |X 由于01|i i i E Y X X ββ=+,因此任意带入两个X i 和其对应的E (Y |X i )值,即可求出01ββ和,并进而得到总体回归方程。 如将()()22277 7100,|77200,|137X E Y X X E Y X ====和代入 ()01|i i i E Y X X ββ=+可得:0100117710017 1372000.6ββββββ=+=?????=+=?? 以上求出01ββ和反映了E (Y |X i )和X i 之间的真实关系,即所求的总体回归方程为:()|170.6i i i E Y X X =+,其图形为:

③样本回归模型:总体通常难以得到,因此只能通过抽样得到样本数据。如在例1中,通过抽样考察,我们得到了20个家庭的样本数据: 那么描述样本数据中因变量Y 和自变量X 之间非确定依赖关系的模型 ?Y X e β =+就称为样本回归模型。 ④样本回归方程(线):通过样本数据估计出?β ,得到样本观测值的拟合值与解释变量之间的关系方程??Y X β=称为样本回归方程。如下图所示: ⑤四者之间的关系: ⅰ:总体回归模型建立在总体数据之上,它描述的是因变量Y 和自变量X 之间的真实的非确定型依赖关系;样本回归模型建立在抽样数据基础之

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显著性检 验及预测问题 例子; x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; 增加一个常数项 Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回 归模型 y=+ 成立. 这个是一元的,如果是多元就增加X的行数! function [beta_hat,Y_hat,stats]=regress(X,Y,alpha) % 多元线性回归(Y=Xβ+ε)MATLAB代码 % % 参数说明 % X:自变量矩阵,列为自变量,行为观测值 % Y:应变量矩阵,同X % alpha:置信度,[0 1]之间的任意数据 % beta_hat:回归系数 % Y_beata:回归目标值,使用Y-Y_hat来观测回归效果 % stats:结构体,具有如下字段 % =[fV,fH],F检验相关参数,检验线性回归方程是否显著 % fV:F分布值,越大越好,线性回归方程 越显著 % fH:0或1,0不显著;1显著(好) % =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是 否与Y有显著线性关系 % tV:T分布值,beta_hat(i)绝对值越大, 表示Xi对Y显著的线性作用 % tH:0或1,0不显著;1显著 % tW:区间估计拒绝域,如果beta(i)在对 应拒绝区间内,那么否认Xi对Y显著的线性作用 % =[T,U,Q,R],回归中使用的重要参数 % T:总离差平方和,且满足T=Q+U % U:回归离差平方和 % Q:残差平方和 % R∈[0 1]:复相关系数,表征回归离差占总 离差的百分比,越大越好 % 举例说明 % 比如要拟合 y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程 线化 % x1=rand(10,1)*10;

显著性检验

一、计量资料的常用统计描述指标 1.平均数平均数表示的是一组观察值(变量值)的平均水平或集中趋势。平均数 计算公式: 式中:X为变量值、Σ为总和,N为观察值的个数。 2.标准差(S) 标准差表示的是一组个体变量间的变异(离散)程度的大小。S愈小,表示观察值的变异程度愈小,反之亦然,常写成。标准差计算公式: 式中:∑X2 为各变量值的平方和,(∑X)2为各变量和的平方,N-1为自由度3.标准误(S?x)标准误表示的是样本均数的标准差,用以说明样本均数的分布情况,表示和估量群体之间的差异,即各次重复抽样结果之间的差异。S?x愈小,表示抽样误差愈小,样本均数与总体均数愈接近,样本均数的可靠性也愈大,反之亦然,常写 作。标准误计算公式: 三、显著性检验 抽样实验会产生抽样误差,对实验资料进行比较分析时,不能仅凭两个结果(平均数或率)的不同就作出结论,而是要进行统计学分析,鉴别出两者差异是抽样误差引起的,还是由特定的实验处理引起的。 1.显著性检验的含义和原理显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法。 2.无效假设显著性检验的基本原理是提出“无效假设”和检验“无效假设”成立的机率(P)水平的选择。所谓“无效假设”,就是当比较实验处理组与对照组的结果时,假设两组结果间差异不显著,即实验处理对结果没有影响或无效。经统计学分析后,如发现两组间差异系抽样引起的,则“无效假设”成立,可认为这种差异为不显著(即实验处理无效)。若两组间差异不是由抽样引起的,则“无效假设”不成立,可认为这种差异是显著的(即实验处理有效)。 3.“无效假设”成立的机率水平检验“无效假设”成立的机率水平一般定为5%(常写为p≤0.05),其含义是将同一实验重复100次,两者结果间的差异有5次以上是由抽样误差造成的,则“无效假设”成立,可认为两组间的差异为不显著,常记为p>0.05。若两者结果间的差异5次以下是由抽样误差造成的,则“无效假设”不成立,可认为两组间的差异为显著,常记为p≤0.05。如果p≤0.01,则认为两组间的差异为非常显著。 (一)计量资料的显著性检验 1.t 检验 (1)配对资料(实验前后)的比较假设配对资料差数的总体平均数为零。其计算公

线性回归分析的基本步骤

步骤一、建立模型 知识点: 1、总体回归模型、总体回归方程、样本回归模型、样本回归方程 ①总体回归模型:研究总体之中自变量和因变量之间某种非确定依赖关系的计量模型。Y X U β=+ 特点:由于随机误差项U 的存在,使得Y 和X 不在一条直线/平面上。 例1:某镇共有60个家庭,经普查,60个家庭的每周收入(X )与每周消费(Y )数据如下: 作出其散点图如下: ②总体回归方程(线):由于假定0EU =,因此因变量的均值与自变量

总处于一条直线上,这条直线()|E Y X X β=就称为总体回归线(方程)。 总体回归方程的求法:以例1的数据为例 ,求出E (Y |X 由于01|i i i E Y X X ββ=+,因此任意带入两个X i 和其对应的E (Y |X i )值,即可求出01ββ和,并进而得到总体回归方程。 如将()()2227 77100,|77200,|137X E Y X X E Y X ====和代入 ()01|i i i E Y X X ββ=+可得:0100117710017 1372000.6ββββββ=+=?????=+=?? 以上求出01ββ和反映了E (Y |X i )和X i 之间的真实关系,即所求的总体回归方程为:()|170.6i i i E Y X X =+,其图形为: ③样本回归模型:总体通常难以得到,因此只能通过抽样得到样本数据。

如在例1中,通过抽样考察,我们得到了20个家庭的样本数据: 那么描述样本数据中因变量Y 和自变量X 之间非确定依赖关系的模型 ?Y X e β =+就称为样本回归模型。 ④样本回归方程(线):通过样本数据估计出?β ,得到样本观测值的拟合值与解释变量之间的关系方程??Y X β=称为样本回归方程。如下图所示: ⑤四者之间的关系: ⅰ:总体回归模型建立在总体数据之上,它描述的是因变量Y 和自变量X 之间的真实的非确定型依赖关系;样本回归模型建立在抽样数据基础之上,它描述的是因变量Y 和自变量X 之间的近似于真实的非确定型依赖

回归研究分析方法总结全面

回归分析方法总结全面

————————————————————————————————作者:————————————————————————————————日期:

一、什么是回归分析 回归分析(Regression Analysis)是研究变量之间作用关系的一种统计分析方法,其基本组成是一个(或一组)自变量与一个(或一组)因变量。回归分析研究的目的是通过收集到的样本数据用一定的统计方法探讨自变量对因变量的影响关系,即原因对结果的影响程度。 回归分析是指对具有高度相关关系的现象,根据其相关的形态,建立一个适当的数学模型(函数式),来近似地反映变量之间关系的统计分析方法。利用这种方法建立的数学模型称为回归方程,它实际上是相关现象之间不确定、不规则的数量关系的一般化。 二、回归分析的种类 1.按涉及自变量的多少,可分为一元回归分析和多元回归分析一元回归分析是对一个因变量和一个自变量建立回归方程。多元回归分析是对一个因变量和两个或两个以上的自变量建立回归方程。 2.按回归方程的表现形式不同,可分为线性回归分析和非线性回归分析 若变量之间是线性相关关系,可通过建立直线方程来反映,这种分析叫线性回归分析。 若变量之间是非线性相关关系,可通过建立非线性回归方程来反映,这种分析叫非线性回归分析。 三、回归分析的主要内容 1.建立相关关系的数学表达式。依据现象之间的相关形态,建立适当的数学模型,通过数学模型来反映现象之间的相关关系,从数量上近似地反映变量之间变动的一般规律。 2.依据回归方程进行回归预测。由于回归方程反映了变量之间的一般性关系,因此当自变量发生变化时,可依据回归方程估计出因变量可能发生相应变化的数值。因变量的回归估计值,虽然不是一个必然的对应值(他可能和系统真值存在比较大的差距),但至少可以从一般性角度或平均意义角度反映因变量可能发生的数量变化。 3.计算估计标准误差。通过估计标准误差这一指标,可以分析回归估计值与实际值之间的差异程度以及估计值的准确性和代表性,还可利用估计标准误差对因变量估计值进行在一定把握程度条件下的区间估计。 四、一元线性回归分析 1.一元线性回归分析的特点 1)两个变量不是对等关系,必须明确自变量和因变量。 2)如果x和y两个变量无明显因果关系,则存在着两个回归方程:一个是以x为自变量,y 为因变量建立的回归方程;另一个是以y为自变量,x为因变量建立的回归方程。若绘出图

相关系数显著性检验表完整版

附表11(1)相关系数界值表 P(2): 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 P(1): 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 1 0.707 0.951 0.988 0.997 1.000 1.000 1.000 1.000 1.000 2 0.500 0.800 0.900 0.950 0.980 0.990 0.995 0.998 0.999 3 0.40 4 0.687 0.80 5 0.878 0.934 0.959 0.974 0.98 6 0.991 4 0.347 0.603 0.729 0.811 0.882 0.917 0.942 0.963 0.974 5 0.309 0.551 0.669 0.755 0.833 0.875 0.90 6 0.935 0.951 6 0.281 0.50 7 0.621 0.707 0.789 0.834 0.870 0.905 0.925 7 0.260 0.472 0.582 0.666 0.750 0.798 0.836 0.875 0.898 8 0.242 0.443 0.549 0.632 0.715 0.765 0.805 0.847 0.872 9 0.228 0.419 0.521 0.602 0.685 0.735 0.776 0.820 0.847 10 0.216 0.398 0.497 0.576 0.658 0.708 0.750 0.795 0.823 11 0.206 0.380 0.476 0.553 0.634 0.684 0.726 0.772 0.801 12 0.197 0.365 0.457 0.532 0.612 0.661 0.703 0.750 0.780 13 0.189 0.351 0.441 0.514 0.592 0.641 0.683 0.730 0.760 14 0.182 0.338 0.426 0.497 0.574 0.623 0.664 0.711 0.742 15 0.176 0.327 0.412 0.482 0.558 0.606 0.647 0.694 0.725 16 0.170 0.317 0.400 0.468 0.542 0.590 0.631 0.678 0.708 17 0.165 0.308 0.389 0.456 0.529 0.575 0.616 0.622 0.693 18 0.160 0.299 0.378 0.444 0.515 0.561 0.602 0.648 0.679 19 0.156 0.291 0.369 0.433 0.503 0.549 0.589 0.635 0.665 20 0.152 0.284 0.360 0.423 0.492 0.537 0.576 0.622 0.652 21 0.148 0.277 0.352 0.413 0.482 0.526 0.565 0.610 0.640 22 0.145 0.271 0.344 0.404 0.472 0.515 0.554 0.599 0.629 23 0.141 0.265 0.337 0.396 0.462 0.505 0.543 0.588 0.618 24 0.138 0.260 0.330 0.388 0.453 0.496 0.534 0.578 0.607 25 0.136 0.255 0.323 0.381 0.445 0.487 0.524 0.568 0.597 26 0.133 0.250 0.317 0.374 0.437 0.479 0.515 0.559 0.588 27 0.131 0.245 0.311 0.367 0.430 0.471 0.507 0.550 0.579 28 0.128 0.241 0.306 0.361 0.423 0.463 0.499 0.541 0.570 29 0.126 0.237 0.301 0.355 0.416 0.456 0.491 0.533 0.562 30 0.124 0.233 0.296 0.349 0.409 0.449 0.484 0.526 0.554 31 0.122 0.229 0.291 0.344 0.403 0.442 0.477 0.518 0.546 32 0.120 0.226 0.287 0.339 0.397 0.436 0.470 0.511 0.539 33 0.118 0.222 0.283 0.334 0.392 0.430 0.464 0.504 0.532 34 0.116 0.219 0.279 0.329 0.386 0.424 0.458 0.498 0.525 35 0.115 0.216 0.275 0.325 0.381 0.418 0.452 0.492 0.519 36 0.113 0.213 0.271 0.320 0.376 0.413 0.446 0.486 0.513 37 0.111 0.210 0.267 0.316 0.371 0.408 0.441 0.480 0.507 38 0.110 0.207 0.264 0.312 0.367 0.403 0.435 0.474 0.501 39 0.108 0.204 0.261 0.308 0.362 0.398 0.430 0.469 0.495 40 0.107 0.202 0.257 0.304 0.358 0.393 0.425 0.463 0.490 41 0.106 0.199 0.254 0.301 0.354 0.389 0.420 0.458 0.484 42 0.104 0.197 0.251 0.297 0.350 0.384 0.416 0.453 0.479 43 0.103 0.195 0.248 0.294 0.346 0.380 0.411 0.449 0.474

多元线性回归模型的检验

多元性回归模型与一元线性回归模型一样,在得到参数的最小二乘法的估计值之后,也需要进行必要的检验与评价,以决定模型是否可以应用。 1、拟合程度的测定。 与一元线性回归中可决系数r2相对应,多元线性回归中也有多重可决系数r2,它是在因变量的总变化中,由回归方程解释的变动(回归平方和)所占的比重,R2越大,回归方各对样本数据点拟合的程度越强,所有自变量与因变量的关系越密切。计算公式为: 其中, 2.估计标准误差 估计标准误差,即因变量y的实际值与回归方程求出的估计值之间的标准误差,估计标准误差越小,回归方程拟合程度越程。 其中,k为多元线性回归方程中的自变量的个数。 3.回归方程的显著性检验 回归方程的显著性检验,即检验整个回归方程的显著性,或者说评价所有自变量与因变量的线性关系是否密切。能常采用F检验,F统计量的计算公式为: 根据给定的显著水平a,自由度(k,n-k-1)查F分布表,得到相应的临界值Fa,若F > Fa,则回归方程具有显著意义,回归效果显著;F < Fa,则回归方程无显著意义,回归效果不显著。 4.回归系数的显著性检验 在一元线性回归中,回归系数显著性检验(t检验)与回归方程的显著性检验(F检验)是等价的,但在多元线性回归中,这个等价不成立。t检验是分别检验回归模型中各个回归系数是否具有显著性,以便使模型中只保留那些对因变量有显著影响的因素。检验时先计算统计量ti;然后根据给定的显著水平a,自由度n-k-1查t分布表,得临界值ta或ta / 2,t > t ? a或ta / 2,则回归系数bi与0有显著关异,反之,则与0无显著差异。统计量t 的计算公式为: 其中,Cij是多元线性回归方程中求解回归系数矩阵的逆矩阵(x'x) ?1的主对角线上的第j个元素。对二元线性回归而言,可用下列公式计算: 其中, 5.多重共线性判别 若某个回归系数的t检验通不过,可能是这个系数相对应的自变量对因变量的影平不显

多元线性回归模型的各种检验方法

对多元线性回归模型的各种检验方法 对于形如 u X X X Y k k +++++=ββββ 22110 (1) 的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验: 一、 对单个总体参数的假设检验:t 检验 在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0 H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。如果拒绝0H ,说明解释变量j X 对 被解释变量Y 具有显著的线性影响,估计值j β?才敢使 用;反之,说明解释变量j X 对被解释变量Y 不具有显 著的线性影响,估计值j β?对我们就没有意义。具体检验 方法如下: (1) 给定虚拟假设 0H :j j a =β;

(2) 计算统计量 )?(?)?()(?j j j j j j Se a Se E t βββββ-=-= 的数值; 11?)?(++-==j j jj jj j C C Se 1T X)(X ,其中σβ (3) 在给定的显著水平α下(α不能大于1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ; (4) 如果出现 2/αt t >的情况,检验结论为拒绝 0H ;反之,无法拒绝0H 。 t 检验方法的关键是统计量 )?(?j j j Se t βββ-=必须服从已 知的t 分布函数。什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定): (1) 随机抽样性。我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21 =。这保证了误差u 自身的随机性,即无自相关性,

相关文档
最新文档