最新仪器分析[第十四章红外光谱和拉曼光谱分析法]山东大学期末考试知识点复习

最新仪器分析[第十四章红外光谱和拉曼光谱分析法]山东大学期末考试知识点复习
最新仪器分析[第十四章红外光谱和拉曼光谱分析法]山东大学期末考试知识点复习

第十四章红外光谱和拉曼光谱分析法

1.红外光谱法及特点

(1)利用物质分子对红外辐射的吸收,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基本态到激发态的跃迁,得到分子振动能级和转动能级变化产生的振动一转动光谱,又称为红外光谱,红外光谱属于分子吸收光谱的范畴。

(2)有机化合物的红外光谱能提供丰富的结构信息,因此红外光谱是有机化合物结构解析的重要手段之一。

(3)红外吸收谱带的谱峰的位置、谱峰的数目及其强度,反映了分子结构上的特点,通过官能团、顺反异构、取代基位置、氢键结合以及配合物的形成等结构信息可以推测未知物的分子结构。吸收谱带的吸收强度与分子组成或其化学基团的含量有关。

(4)在发生振动跃迁的同时,分子转动能级也发生改变,因而红外光谱形成的是带状光谱。

2.红外光谱的产生条件

(1)照射光的能量E=hν等于两个振动能级间的能量差△E时,分子才能由低

振动能级E

1跃迁到高振动能级E

2

。即△E=E

1

一E

2

,则产生红外吸收光谱。

(2)分子振动过程中能引起偶极矩变化的红外活性振动才能产生红外光谱。 3.分子振动模型及振动方程

可以将多原子分子看成是双原子分子的集合,采用谐振子模型来研究双原子分子的振动,体系的分子振动方程:

其中μ为折合质量,若设A和B的质量分别为m

1和m

2

,则

通过振动方程可以看出振动频率ν随力常数k的增加或μ的减少(取决于m

1

和m

2

中较小的一个)而增大。

真实分子的振动并不完全符合胡克定律,不是理想的谐振子,所以谐振子模型应用于真实分子时应加以修正。

4.分子振动自由度

由N个原子构成的复杂分子内的原子振动有多种形式,通常称为多原子分子的简正振动。多原子分子简正振动的数目称为振动自由度,每个振动自由度对应于红外光谱图上一个基频吸收带。

在直角坐标系中,每个质点都可以在x,y,z三个方向上运动,所以N个质点运动的自由度为3N个,除去整个分子平动的3个自由度和整个分子转动的3个自由度,则分子内原子振动自由度为(3N一6)个。

对于直线形分子,若贯穿所有原子的轴是在戈方向,则整个分子只能绕y、z轴转动,因此,线性分子的振动形式为(3N一5)个。

由N个原子构成的非线性分子有(N一1)个化学键,所以伸缩振动(键长变化)有(N一1)种,剩余的(2N一5)种称为变形振动(键角变化),线性分子的伸缩振动和变形振动的个数分别为(N一1)和(2N一4)种。

5.分子的振动类型

振动类型基本上可分为两大类,即伸缩振动和变形振动。

6.红外光谱吸收频率

①基频吸收峰

通常ν=0→ν=1跃迁概率最大,所以出现相应吸收峰的强度也最强,称为基频吸收峰,一般特征峰都是基频吸收。其他跃迁的概率较小,吸收峰强度弱。

②倍频

振动能级由基态(ν=0)跃迁至第二激发态(ν=2)、第三激发态(ν=3)……,所产生的吸收峰称为倍频吸收峰(又称为泛频峰)。由于振动的非谐性,故能级的间隔不是等距离,所以倍频往往不是基频波数的整数倍,而是略小些。

③合频吸收峰

是两个(或更多)不同频率(如ν

1+ν

2

,2ν

1

2

)之和,这是由于吸收光子

同时激发两种频率的振动。

④差频吸收峰

是两个频率之差(如ν

2一ν

1

),是已处于一个激发态的分子在吸收足够的

外加辐射而跃迁到另一激发态。合频和差频统称为组合频。

7.基团特征频率

8.基团特征频率红外光谱区域的关系

(c)双键伸缩振动区(1 900一l 200 cm-1)。C==0伸缩振动出现在1 900~1 650

),根据C==0 cm-1,是红外光谱中最特征的谱带,且强度往往也是最强的谱带(v

s

伸缩振动的谱带很容易判断酮类、醛类、酸类、酯类以及酸酐等有机化合物。酸酐和酰亚胺中的羰基(C==0)吸收带由于振动耦合而呈现双峰。C==C伸缩振动、烯烃C=C的伸缩振动在1 620~1 680 cm-1范围内产生吸收峰,一般很弱。单环芳烃的C==C伸缩振动在1 600 cm-1和1 500 cm-1附近范围内产生两个峰(有时裂分成4个峰),这是芳环骨架结构的特征谱带,用于确认有无芳环存在。取代苯的碳氢(==C—H)变形振动的倍频谱带,在l 650—2 000 cm -1范围内产生吸收峰,虽然强度很弱,但它们的谱带形状在确定芳环取代位置有一定的作用。

(2)指纹区(1 300—400 cm-1)

(a)1 300—900 cm-1区域主要是C—O、C—N、C—F、C—P、C—S、P—O、Si—O等单键的伸缩振动和C==S、S==O、P==0等双键的伸缩振动吸收频率区,以及一些变形振动吸收频率区其中甲基(CH,)对称变形振动在~1 380 cm-1 >附近产生吸收峰,对判断是否存在甲基十分有价值;C—O的伸缩振动在1 000~1 300 cm-1范围内产生吸收峰,是该区域最强的吸收谱带(vs非常容易识别。

(b)900—400 cm-1区域是一些重原子伸缩振动和一些变形振动的吸收频率区。利用这一区域苯环的==C~H面外变形振动吸收峰和在l 650—2 000 cm-1区域苯环的==C—H变形振动的倍频(或组合频)吸收峰,可以共同配合确定苯环的取代类型。某些吸收峰也可以用来确认化合物的顺反构型。

9.常见官能团的特征频率

常见官能团的特征频率数据见表14—1。详细的特征频率数据请参考有关参考书。

10.红外分光光度计

红外分光光度计可分为两大类,色散形和干涉型。色散型又有棱镜分光型和光栅分光型两种红外光谱仪;干涉型为傅里叶变换红外光谱仪。

傅里叶交换红外分光光度计(FTIR)的工作原理和色散型的红外分光光度计是完全不同的,它没有单色器和狭缝,是利用一个迈克耳逊干涉仪获得入射光的干涉图,通过数学运算(傅里叶变换)把干涉图变成红外光谱图。傅里叶交换红外分光光度计(FTIR)主要由光源(硅碳棒、高压汞灯等)、干涉仪、检测器、计算机和记录系统组成。

11.频率位移的影响因素

产生频率位移的因素可分为分子结构有关的内部因素和测定状态有关

的外部因素。外部因素包括试样的状态、粒度、溶剂、重结晶条件及制样方法等都会引起红外光谱吸收频率的改变。

内部因素包括电子效应(诱导、共轭和中介效应)、空间效应、环张力效应、氢键效应和偶合效应等。

溶剂影响:极性基团如一OH、一NH、C==O、CN等的伸缩振动频率随溶剂极性的增大(相互作用增强)而向低波数移动,且强度增强,而变形振动则向高波数移动。

诱导效应(I效应):诱导效应能够引起分子中电子分布发生改变,从而改变了化学键的力常数,使基团的特征频率发生了位移。随着取代原子电负性的增大或取代数目的增加,诱导效应越强,吸收峰向高波数移动的程度越显著。

共轭效应(C效应):共轭效应使共轭体系中的电子云密度趋于平均化,结果使原来的双键略有伸长(即电子云密度降低)、力常数减小,使其吸收频率向低波数方向移动。

空间位阻:由于空间位阻的影响,使分子间羟基不容易缔合(形成氢键),因而羟基伸缩振动随着空间位阻变大向高波数位移。空间位阻变大,使不能很好地共平面,使共轭不完全,向高波数位移。

环张力效应:环张力即键角张力,环越小张力效应越大,向高波数位移。

12.红外活性振动和拉曼活性振动

拉曼(Raman)光谱和红外光谱都属于分子振动光谱,所不同的是拉曼光谱是分子的散射光谱,红外光谱是吸收光谱

红外活性振动:伴随瞬时偶极矩变化的振动可以产生红外光谱,称为红外活性振动。具有红外活性振动的分子,偶极矩作周期性变化产生交变的偶极场,其频率与匹配的红外辐射交变电磁场产生偶合,分子吸收红外辐射的能量从低的振动能级跃迁到高的振动能级。

拉曼活性振动:在电场E的作用下,由于电子云的移动使分子极化,可形成

诱导偶极矩,伴有极化率变化的振动是拉曼活性振动。CO

2

分子的对称伸缩振动时键偶极矩的矢量和为零,是非红外活性振动;但极化率有变化,是拉曼活性振

动(1 351 cm-1)。同理同核的双原子分子H

2、N

2

和O

2

等由于在振动过程中无偶极

矩的变化,因此同核双原子分子的振动是非红外活性的;但它们是拉曼活性振动的。

13.红外光谱与拉曼光谱的比较

红外光谱和拉曼光谱同属分子光谱范畴,在化学领域中研究的对象大致相同,但是在产生光谱的机理方面、选律、实验技术和光谱解释等方面有较大的差别。

(1)红外和拉曼光谱法的相同点在于,对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。

(2)红外和拉曼光谱法两者的产生机理不同。红外吸收是由于振动引起分子偶极矩或电荷分布变化产生的。拉曼活性振动是由于电子云的移动使分子极化,可形成诱导偶极矩,伴有极化率变化的振动。

(3)红外光谱的入射光及检测光均是红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光。红外光谱测定的是光的吸收,横坐标用波数或波长表示,而拉曼光谱测定的是光的散射,横坐标是拉曼位移。拉曼光谱的常规范围是40—4 000 cm-1,一台拉曼光谱仪就包括了完整的振动频率范围。而红外光谱包括近、中、远范围,通常需要用几台仪器或者用一台仪器分几次扫描才能完成整个光谱的记录。

(4)拉曼光谱可以分析固体,液体和气体样品,固体样品可以直接进行测定,

不需要研磨或制成KBr压片。虽然红外光谱可用于任何状态的样品(气、固和液),但对于水溶液、单晶和聚合物是比较困难的。

(5)红外光谱一般不能用水作溶剂,因为红外池窗片都是金属卤化物,大多溶水且水本身有红外吸收。但是水的拉曼散射是极弱的,所以水是拉曼光谱的一种优良的溶剂。

(6)拉曼光谱是利用可见光获得的,所以拉曼光谱可用普通的玻璃毛细管作样品池(也可以用石英池),拉曼散射光能全部透过玻璃,而红外光谱的样品池需要特殊材料做成。

(7)一般说来极性基因的振动和分子非对称振动使分子的偶极矩变化,所以是红外活性的。

非极性基因的振动和分子的全对称振动使分子极化率变化,所以是拉曼活性的。同核双原子分子N≡N,Cl—C1,H—H等无红外活性却有拉曼活性是由于这些分子平衡态或伸缩振动引起核

间距变化但无偶极矩改变,对振动频率(红外光)不产生吸收。但两原子间键的极化度在伸缩振动时会产生周期性变化(核间距最远时极化度最大,最近时极化度最小),由此产生拉曼位移。可见这两种光谱方法是互相补充的。

14.红外光谱图解析步骤

用红外光谱图确定化合物的结构时,一般要求使用纯化合物的正确谱图,一般的原则是:

(1)解析前应了解尽可能多的信息;

(2)根据质谱、元素分析结果得到分子式。由分子式计算不饱和度U;

(3)先观察官能团区,找出存在的官能团,再看指纹区。如果是芳香族化合物,应定出苯环取代位置,确定所含的化学键或基团;

(4)根据频率位移值考虑邻接基团及其连接方式,根据官能团及化学合理性,拼凑可能的结构;

(5)与标准谱图对照;

(6)配合其他分析方法综合解析。

近红外光谱分析及其应用简介

近红外光谱分析及其应用简介 1、近红外光谱分析及其在国际、国内分析领域的定位 近红外光谱分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。近红外分析复杂样品时,通常首先需要将样品的近红外光谱与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。 近红外光谱分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把近红外光谱分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON 会议上近红外光谱方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、AACC(American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia美国药典)均收入了近红外光谱方法;我国2005年版的药典也将该方法收入。在应用方面近红外光谱分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。 我国对近红外光谱技术的研究及应用起步较晚,上世纪70年代开始,进行了近红外光谱分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用近红外光谱分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。目前国内能够提供完整近红外光

仪器分析_紫外-可见分光光度和红外光谱法习题及参考答案.docx

第三章紫外可见吸收光谱法 1人眼能感觉到的可见光的波长范围是( )。 A 、400nm ?760nm B 、200nm ?400nm C 、200nm ?600nm D 、360nm ?800nm 2、 在分光光度法中,透射光强度 (I )与入射光强度(∣0)之比l∕∣0称为( )。 A 、吸光度 B 、吸光系数 C 、透光度 D 、百分透光度 3、 符合朗伯-比尔定律的有色溶液在被适当稀释时,其最大吸收峰的波长位置 ( )。 A 、向长波方向移动 B 、向短波方向移动 C 、不移动 D 、移动方向不确定 4、 对于符合朗伯-比尔定律的有色溶液,其浓度为 C 0时的透光度为 T 0;如果其浓度增大 1 倍,则此溶液透光度的对数为 ( )。 A 、T 0∕2 B 、2T 0 C 、2lgT 0 D 、0.5lgT 0 5、 在光度分析中,某有色物质在某浓度下测得其透光度为 T ;若浓度增大1倍,则透光度 为 ()。 2 1/2 A 、T B 、T/2 C 、2T D 、T 6、 某物质的摩尔吸光系数很大,则表明 ( )。 A 、该物质溶液的浓度很大 B 、光通过该物质溶液的光程长 C 、 该物质对某波长的光的吸收能力很强 D 、 用紫外-可见光分光光度法测定该物质时其检出下限很低 7、在用分光光度法测定某有色物质的浓度时,下列操作中错误的是 ( )。 B 、待测溶液注到比色皿的 2/3高度处 D 、将比色皿透光面置于光路中 B 、吸光度与浓度成正比 D 、玻璃棱镜适用于紫外光区 9、在分光光度分析中,常出现工作曲线不过原点的情况。与这一现象无关的情况有 ( )。 A 、试液和参比溶液所用吸收池不匹配 B 、参比溶液选择不当 C 、显色反应的灵敏度太低 D 、被测物质摩尔吸光系数太大 10、 质量相等的A 、B 两物质,其摩尔质量 M A > M B O 经相同方式发色后,在某一波长下测 得其吸光度相等,则在该波长下它们的摩尔吸光系数的关系是 ( )O A A 、 B Pel A, B ZB A B^ — A 、 B 选择题 A 、比色皿外壁有水珠 C 、光度计没有调零 8、下列说法正确的是( )。 A 、透光率与浓度成正比

仪器分析红外吸收光谱法习题及答案

红外吸收光谱法 一.填空题 1.一般将多原子分子的振动类型分为伸缩振动和变形振动,前者又可分为对称伸缩振动和反对称伸缩振动,后者可分为面内剪式振动(δ)、面内摇摆振动(ρ) 和面外摇摆振动(ω)、面外扭曲振动(τ) 。2.红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 远红外区,中红外区和近红外区 ,其中中红外区的应用最广。 3.红外光谱法主要研究振动中有偶极矩变化的化合物,因此,除了单原子和同核分子等外,几乎所有的化合物在红外光区均有吸收。 4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为红外活性 ,相反则 称为红外非活性的。一般来说,前者在红外光谱图上出现吸收峰。5.红外分光光度计的光源主要有能斯特灯和硅碳棒。 6.基团一OH、一NH;==CH的一CH的伸缩振动频率范围分别出现在 3750—3000 cm-1, 3300—3000 cm-1, 3000—2700 cm-1。 7.基团一C≡C、一C≡N ;—C==O;一C=N,一C=C—的伸缩振动频率范围分别出现在 2400—2100 cm-1, 1900—1650 cm-1, 1650—1500 cm-1。 8.4000—1300 cm-1 区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为官能团区;1300—600 cm-1 区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的指纹一样,故称为指纹区。 二、选择题 1.二氧化碳分子的平动、转动和振动自由度的数目分别(A) A. 3,2,4 B. 2,3,4 C. 3,4,2 D. 4,2,3 2.乙炔分子的平动、转动和振动自由度的数目分别为(C) A. 2,3,3 B. 3,2,8 C. 3,2,7 D. 2,3,7 4.下列数据中,哪一组数据所涉及的红外光谱区能够包括CH 3CH 2 COH的吸收 带?(D) A. 3000—2700cm-1,1675—1500cm-1,1475—1300cm一1。 B. 3300—3010cm-1,1675—1500cm-1, 1475—1300cm-1。 C. 3300—3010cm-1, 1900—1650cm-l,1000——650cm-1。 D. 3000—2700cm-1, 1900—1650cm-1, 1475——1300cm-1。 1900—1650cm-1为 C==O伸缩振动,3000—2700cm-1为饱和碳氢C—H伸缩振动(不饱和的其频率高于3000 cm-1),1475——1300cm-1为C—H变形振动(如—CH 3 约在1380—1460cm-1)。

红外光谱法习题[1]

第九章红外光谱法 基本要求:了解红外吸收光谱和吸收峰特征的表达, 掌握红外吸收光谱产生的条件,影响吸收峰位置、峰数和强度的因素, 掌握主要的IR谱区域以及在这些区域里引起吸收的键振动的类型, 掌握常见基团的特征吸收频率,利用IR谱鉴别构造异构体并能够解析简单化合物的结构,了解红外 吸收光谱的实验技术,了解拉曼光谱的原理及应用。 重点:IR光谱产生的条件,影响吸收峰位置,峰数和强度的因素,常见基团的特征吸收频率。 难点:键振动的类型,IR谱解析,FT-IR的原理和特点。 部分习题解答 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么? 条件:(1)分子的振动或转动必须伴随偶极矩的变化;(2)红外辐射应具有能满足分子产生振动跃迁所需的能量(红外辐射频率等于振动量子数差值和振动频率的乘积) 不是所有的分子振动都会产生红外吸收光谱。只有满足上述两个条件的分子振动才会产生红外吸收光谱。例如,同核双原子分子(O2、N2、Cl2)等的振动没有红外活性。 5. 计算CO2和H2O的分子振动自由度,它们分别有几种振动形式,在红外吸收光谱中能看到几个吸收普带?数目是否相符?为什么? CO2:线性分子振动自由度3N-5=3*3-5=4 四种振动形式两个吸收带数目不符对称伸缩振动无偶极矩变化,无红外活性,无吸收峰;面内弯曲和面外弯曲振动简并,只显示一个吸收峰。 H2O:非线性分子振动自由度3N-6=3*3-6=3 三种振动形式三个吸收带数目相符 6.判断正误。 (1)对(2)错(3)错(4)对(5)错(6)错 7、下列同分异构体将出现哪些不同的特征吸收带? (1)CH3 CO2H CO2CH3 (2)C2H3COCH3CH3CH2CH2CHO (3) 解:(1)CH3——COH 在3300~2500cm-1处有v O—H, 其v C=O位于1746~1700cm-1 COCH3无v OH吸收,其v C=O位于1750~1735cm-1(2)C2H5CCH3其v C=O位于1720~1715cm-1 CH3CH2CH2CH 其2820cm-1及2720cm-1有醛基费米共振双峰。 O O O

现代近红外光谱分析仪工作原理

现代近红外光谱分析仪工作原理 现代近红外光谱分析仪工作原理 2011年02月08日 20世纪90年代初,外国厂商开始在我国销售近红外光谱分析仪器产品,但在很长时间内,进展不大,其原因主要是:首先,近红外光谱分析要求光谱仪器、光谱数据处理软件(主要是化学计量学软件)和应用样品模型结合为一体,缺一不可。但被分析样品会由于样品产地的不同而不同,国内外的样品通常有差异,因此,进口仪器的应用模型一般不适合分析国内样品。如果自己建立模型,就需要操作人员了解和熟悉化学计量学知识和软件,而外商在中国的代理机构缺乏这方面的专业人才,不能有效地根据用户的需要组织培训,因此,用户对这项技术缺乏全面了解,影响到了它的推广使用。其次,进口仪器价格昂贵,售后技术服务费用也往往超出大多数用户的承受能力。 现代近红外光谱分析技工作原理 近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的。近红外光谱记录的是分子中单个化学键的基频振动的倍频和合频信息,它常常受含氢基团X-H(X-C、N、O)的倍频和合频的重叠主导,所以在近红外光谱范围内,测量的主要是含氢基团X-H振动的倍频和合频吸收。 由于倍频和合频跃迁几率低,而有机物质在NIR光谱区为倍频与合频吸收,所以消光系数弱,谱带重叠严重。因此从近红外光谱中提取有用信息属于弱信息和多元信息,需要充分利用现有的光机技术、电子技术和计算机技术进行处理。计算机技术主要包括光谱数据处理和数据关联技术。光谱数据处理是消除仪器因素(灯及测量方式等)环境因素(如温度等)和样品物态(如颜色、形态等)等对光谱的影响。常采用的方法有平滑、微分、基线漂移扣减、多元散射校正(MSC)和有限脉冲响应滤波(FIR)等也可以用小波变换来进行部分处理。数据关联技术主要是化学计量学方法。化学计量学的发展使多组分分析中多元信息处理理论和技术日益成熟,解决了近红外光谱区重叠的问题。通过关联技术可以实现近红外光谱的快速分析。在近红外光谱的应用中我们所关心的是被测样品的组成或各种物化性质,因此,如何提取这些有用信息是近红外光谱分析的技术核心。现在的许多研究与应用表明,

仪器分析实验有机化合物的红外光谱分析解读

仪器分析实验有机化合物的红外光谱分析 2015年4月21日 有机化合物的红外光谱分析 开课实验室:环境资源楼312 【实验目的】 1、初步掌握两种基本样品制备技术及傅里叶变换光谱仪器的简单操作; 2、通过谱图解析及网上标准谱图的检索,了解由红外光谱鉴定未知物的一般过程; 3、掌握有机化合物红外光谱测定的制样方法,回顾基础有机化学光谱的相关知识。 【基本原理】 ? 原理概述:物质分子中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对物质进行定性和定量分析。特别是对化合物结构的鉴定,应用更为广泛。 ? 红外吸收法: 类型:吸收光谱法; 原理:电子的跃迁:电子由于受到光、热、电等的激发,从一个能级转移到另一个能级的现象。这是因为分 子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。当这些电子有选择地吸收了不同频率的红外辐射的能量,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对化合物进行定性和定量分析; 条件:分子具有偶极矩。 【仪器与试剂】 1、仪器: 傅里叶变换红外光谱仪(德国Bruker公司,TENSOR 27型; 美国Thermo Fisher 公司, Nicolet 6700型);压片机; 玛瑙研钵; 红外灯。 2、试剂:NaCl窗片、KBr晶体,待分析试样液体及固体。 【实验步骤】 1、样品制备 (1)固体样品:KBr压片法 在玛瑙研钵将KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀。在一个具有抛光面的金属模具上放一个圆形纸环,用刮勺将研磨好的

红外吸收光谱法试题和答案解析

红外吸收光谱法 一、选择题 1. CH 3—CH 3的哪种振动形式是非红外活性的(1) (1)υC-C (2)υC-H (3)δasCH (4)δsCH 2. 化合物中只有一个羰基.却在1773cm -1和1736 cm -1处出现两个吸收峰.这是因 为(3) (1)诱导效应 (2)共轭效应 (3)费米共振 (4)空间位阻 3. 一种能作为色散型红外光谱仪的色散元件材料为(4) (1)玻璃 (2)石英 (3)红宝石 (4)卤化物晶体 4. 预测H 2S 分子的基频峰数为(2) ~ (1)4 (2)3 (3)2 (4)1 5. 下列官能团在红外光谱中吸收峰频率最高的是(4) (1) (2)—C ≡C — (3) (4)—O —H 二、解答及解析题 1. 把质量相同的球相连接到两个不同的弹簧上。弹簧B 的力常数是弹簧A 的力常数的两倍.每个球从静止位置伸长1cm.哪一个体系有较大的势能。 答:M h hv E k 2π= = ;所以B 体系有较大的势能。 2. 红外吸收光谱分析的基本原理、仪器.同紫外可见分光光度法有哪些相似和不同之处 答: 红外 \ 紫外 基本原理 当物质分子吸收一定波长的光能.能引起分子振动和转动的能及跃迁.产生的吸收光谱一般在中红外区.称为红外光谱 当物质分子吸收一定波长的光能.分子外层电子或分子轨道电子由基态跃迁到激发态.产生的吸收光谱一般在紫外-可见光区。 仪器 傅立叶变换红外光谱仪 紫外可见光分光光度计 相同:红外光谱和紫外光谱都是分子吸收光谱。 不同:紫外光谱是由外层电子跃迁引起的。电子能级间隔一般约为1~20eV; 而红外光谱是分子的振动能级跃迁引起的.同时伴随转动能级跃迁.一般振动能级间隔约为

仪器分析之红外吸收光谱法试题及答案

红外吸收光谱法习题 一、填空题 1. 在分子的红外光谱实验中,并非每一种振动都能产生一种红外吸收带,常常是实际吸收带比预期的要少得多。其原因是(1)_______; (2)________; (3)_______; (4)______。 2.乳化剂OP-10的化学名称为:烷基酚聚氧乙烯醚, 化学式: IR谱图中标记峰的归属:a_____, b____, c______, d____。 3.化合物的红外光谱图的主要振动吸收带应为: (1)3500~3100 cm-1处,有 ___________________振动吸收峰 (2)3000~2700 cm-1处,有 ___________________振动吸收峰 (3)1900~1650 cm-1处,有 ___________________振动吸收峰 (4)1475~1300 cm-1处,有 ___________________振动吸收峰 4.在苯的红外吸收光谱图中 (1) 3300~3000cm-1处,由________________________振动引起的吸收峰 (2) 1675~1400cm-1处,由________________________振动引起的吸收峰 (3) 1000~650cm-1处,由________________________振动引起的吸收峰 二、选择题 分子在红外光谱图上基频吸收峰的数目为 ( ) 1. Cl 2 (1) 0 (2) 1 (3) 2 (4) 3 2.下列关于分子振动的红外活性的叙述中正确的是 ( ) (1)凡极性分子的各种振动都是红外活性的,非极性分子的各种振动都不是红外活性的 (2)极性键的伸缩和变形振动都是红外活性的 (3)分子的偶极矩在振动时周期地变化,即为红外活性振动 (4)分子的偶极矩的大小在振动时周期地变化,必为红外活性振动,反之则不是 4.用红外吸收光谱法测定有机物结构时,试样应该是 ( ) (1)单质 (2)纯物质 (3)混合物 (4)任何

近红外光谱分析技术及发展前景

近红外光谱分析技术及发展前景 陈丽菊 刘 巍 近红外光(near infrared,N IR)是介于可见光(VL S)和中红外光(M IR)之间的电磁波,美国材料检测协会(ASTM)将波长780~2526nm的光谱区定义为近红外光谱区。近红外光谱主要应用两种技术获得:透射光谱技术和反射光谱技术。透射光谱波长一般在780~1l00nm范围内;反射光谱波长在1100~2526nm范围内。近红外光谱区(N IR)是由赫歇尔(Herschel)在1800年发现的。卡尔?诺里斯(Karl Norris)等人首先用近红外光谱区测定谷物中的水分、蛋白质。但是由于分子在该谱区倍频和合频吸收弱,且谱带重叠严重,难以分析和鉴定,以致N IR分析技术的研究曾一度陷入低谷,甚至处于停滞。20世纪80年代,随着计算机技术、仪器硬件的迅速发展,以及化学计量学方法在解决光谱信息提取和消除背景干扰方面取得的良好效果,使得近红外分析技术不仅用于农产品、食品和生物科学,而且还应用到石油化工、烟草、纺织、环保等行业。 近红外光谱分析的原理 近红外光谱是由于分子振动能级的跃迁(同时伴随转动能级跃迁)而产生的。近红外分析技术是依据被检测样品中某一化学成分对近红外光谱区的吸收特性而进行定量检测的一种方法。它记录的是分子中单个化学键的基频振动的倍频和合频信息,它的光谱是在700~2500nm范围内分子的吸收辐射。这个事实与常规的中红外光谱定义一样,吸收辐射导致原子之间的共价键发生膨胀、伸展和振动。中红外吸收光谱中包括有C-H键、C-C键以及分子官能团的吸收带。然而在N IR测量中显示的是综合波带与谐波带,它是R-H分子团(R是O、C、N和S)产生的吸收频率谐波,并常常受含氢基团X-H(C-H、N-H、O-H)的倍频和合频的重叠主导,所以在近红外光谱范围内,测量的主要是含氢基团X-H振动的倍频和合频吸收。使用N IR技术是因为它与样品相互作用时输出的能量效率比中红外光更为实用。N IR的辐射源(仪器上的灯)要比用在中红外的能量高得多,而且它的检测器也具有更高检测效率。这些因素意味着N IR仪器的信噪比值远高于中红外仪器。较高的信噪比意味着样品的观测时间可比中红外仪器短得多。近红外辐射对于样品的穿透性也较高,因此样品的前处理常较中红外简单。近红外光谱根据其检测对象的不同分成近红外透射光谱(N IT)和近红外反射光谱(N IR)两种。N IT是根据透射光与入射光强的比例关系来获得在近红外区的吸收光谱。N IR根据反射光与入射光强的比例获得在近红外光谱区的吸收光谱。近红外分析技术是综合多学科(光谱学、化学计量学和计算机等)知识的现代分析技术,使用包括N IR 分析仪、化学计量学光谱软件和被测物质的各种性质或浓度分析模型成套近红外分析技术等。经过对这种模型的校正,就可以根据被测样品的近红外光谱,快速计算出各种数据。建立被测样品成分的模型时,主要用到的校正方法有多元线性回归法(ML R)、主成分分析法(PCA)、偏最小二乘法(PL S)、人工神经网络法(ANN)。 近红外光谱分析方法的特点 近红外光谱分析方法有下列特点。 可采用光学方法进行。鉴于近红外具有较大的散射效应和较强的穿透性,近红外光谱的分析方法比较独特,可根据样品物态和透光能力的强弱采用透射、漫反射和散射等多种测谱技术进行物质检测。 近红外光子的能量比可见光低,不会对人体造成伤害,而且整个分析过程不会对环境造成任何污染,属于绿色分析技术。 近红外分析技术可在数分钟内完成多项参数的测定,分析速度可提高上百倍,分析成本可降低数十倍。用于传输近红外辐射光的光纤可长达200m, 新结构的固态电子和光电子器件。半导体低维结构已成为推动整个半导体科学技术迅猛发展的主要动力。低维材料不同于自然界中的物质,具有各种量子效应和独特的光、电、声、力、化学和生物性能,在未来的各种功能器件的应用中将发挥重要作用,并随理论和技术的发展得到更加广泛的应用。 (上海市东华大学理学院应用物理系 200051) ? 1 ?现代物理知识

《仪器分析》教案7 - 红外吸收光谱法

第十章红外吸收光谱法 10.1教学建议 一、从应用实例入手,介绍红外吸收光谱法的基本原理和红外光谱仪结构特征。 二、依据红外谱图确定有机化合物结构,推断未知物的结构为目的,介绍红外光谱分析方法在定性及定量分析的方面的应用。 10.2主要概念 一、教学要求: (一)、掌握红外吸收光谱法的基本原理; (二)、掌握依据红外谱图确定有机化合物结构,推断未知物的结构方法; (三)、了解红外光谱仪的结构组成与应用。 二、内容要点精讲 (一)基本概念 红外吸收光谱——当用红外光照射物质时,物质分子的偶极矩发生变化而吸收红外光光能,有振动能级基态跃迁到激发态(同时伴随着转动能级跃迁),产生的透射率随着波长而变化的曲线。 红外吸收光谱法——利用红外分光光度计测量物质对红外光的吸收及所产生的红外光谱对物质的组成和结构进行分析测定的方法,称为红外吸收光谱法。 振动跃迁——分子中原子的位置发生相对运动的现象叫做分子振动。不对称分子振动会引起分子偶极矩的变化,形成量子化的振动能级。分子吸收红外光从振动能级基态到激发态的变化叫做振动跃迁。 转动跃迁——不对称的极性分子围绕其质量中心转动时,引起周期性的偶极矩变化,形成量子化的转动能级。分子吸收辐射能(远红外光)从转动能级基态到激发态的变化叫做转动跃迁。 伸缩振动——原子沿化学键的轴线方向的伸展和收缩的振动。 弯曲振动——原子沿化学键轴线的垂直方向的振动,又称变形振动,这是键长不变,键角发生变化的振动。 红外活性振动——凡能产生红外吸收的振动,称为红外活性振动,不能产生红外吸收的振动则称为红外非活性振动。 诱导效应——当基团旁边连有电负性不同的原子或基团时,通过静电诱导作用会引起分子中电子云密度变化,从而引起键的力常熟的变化,使基团频率产生位移的现象。 共轭效应——分子中形成大 键使共轭体系中的电子云密度平均化,双键力常数减小,使基团的吸收频率向低波数方向移动的现象。 氢键效应——氢键使参与形成氢键的原化学键力常数降低,吸收频率将向低波数方向移动的现象。 溶剂效应——由于溶剂(极性)影响,使得吸收频率产生位移现象。 基团频率——通常将基团由振动基态跃迁到第一振动激发态所产生的红外吸收频率称为基团频率,光谱上出现的相应的吸收峰称为基频吸收峰,简称基频峰。 振动偶合——两个相邻基团的振动之间的相互作用称为振动偶合。 基团频率区——红外吸收光谱中能反映和表征官能团(基团)存在的区域。 指纹区——红外吸收光谱中能反映和表征化合物精细结构的区域。

红外吸收光谱分析

第三章红外吸收光谱分析 3.1概述 3.1.1红外吸收光谱的基本原理 红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。 图3-1为正辛烷的红外吸收光谱。红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。图中的各个吸收谱带表示相应基团的振动频率。各种化合物分子结构不同,分子中各个基团的振动频率不同。其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。 图3-1 正辛烷的红外光谱图 几乎所有的有机和无机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。

仪器分析红外光谱法

第8章红外光谱分析法 教学时数:6学时 教学要求: 1、理解产生红外吸收的条件。 2、了解分子的振动类型,红外光谱中吸收峰增减的原因。 3、理解影响吸收峰的位置、峰数、峰强的主要因素。 4、掌握基团频率和特征吸收峰,主要有机化合物的红外吸收光谱特征。 5、理解影响基团频率位移的因素 6、掌握红外吸收光谱法的定性、定量方法。 7、了解红外光谱的构造与红外制样技术。 教学重点与难点: 重点:红外吸收的条件,影响吸收峰强度的因素,基团频率和特征吸收峰,典型有机化合物的红外光谱主要特征,定性分析。 难点:分子的振动,影响基团频率的因素,结构推断。 §8-1 概述 一、分子光谱与红外光区的划分 E分子= E电子+E振动+ E转动 其中E电子属于紫外,可见研究的范围,分子的振动,转动光谱属于红

外光谱研究的范围。其波长范围约为0.75—1000nm 根据仪器技术及应用不同,习惯上把红外光谱分成三个区: 1、近红外区(λ=0.75—2.5μm ) 主要低能电子跃迁,含氢原子团的倍频吸收,用于研究稀土及其它过渡金属化合物,含氢(-OH 、N-N 、C-H )原子团的吸收 2、中红外区(λ=2.5 —25μm ) 大多有机化合物及无机离子的基频吸收带出现在该光区,主要由分子的振动和转动跃迁引起的,最适用于定性定量分析,且仪器及分析测试技术最成熟。 3、远红外区(λ= 25—1000μm ) 主要是分子的纯转动能级跃迁以及晶体振动很少应用。红外光谱中一般以波数表示谱带的位置,而不是用波长 σ(cm 1-)=) (1cm λ 二、 红外光谱研究的对象及特点 1、研究对象: 红外光谱是振动—转动光谱,但它只能研究震动中伴有偶极矩变化的化合物。 极性分子 有偶极矩变化—红外 μ≠0

近红外光谱

近红外光谱在果蔬品质无损检测中的应用研究进展 摘要 本论文介绍了近红外光谱无损检测机理,近红外光谱在果实品质的定量分析和定性分析的研究概况,并对近红外光谱对果实品质无损检测存在问题及前景做了简单的分析。 关键词 无损检测;近红外光谱;内部品质;果蔬 1 引言 1.1 果蔬无损检测研究概况 果蔬品质主要是指果蔬形态、颜色、密度、硬度以及含糖量、水分、酸度、病变等。果蔬品质检测技术作为保障果蔬质量、提升产品市场竞争力的一种手段,可以分为有损检测和无损检测两种。有损检测一般需要借助传统的化学分析测定方法或是现代仪器分析方法( 如高效液相色谱分析、气相色谱分析、质谱分析等) ,测定过程比较烦琐、人力物力耗费大、检测成本非常高。无损检测又称为非破坏性检测,是利用果蔬的物理性质,如力学性质、热学性质、电学性质、光学性质和声学性质等,在获取样品信息的同时保证了样品的完整性,检测速度较传统的化学方法迅速,且能有效地判断出从外观无法获得的样品内部品质信息。目前,果蔬品质与安全的无损检测技术主要包括: 光谱分析技术、光谱成像技术、机器视觉技术、介电特性检测技术、声学特性及超声波检测技术、力学检测技术、核磁共振检测技术、生物传感器技术、电子鼻与电子舌技术等等。针对不同的检测对象和检测指标,这些无损检测技术各具优势。 1.2 近红外光谱无损检测研究概况 近红外光谱分析( Near Infrared Spectroscopy,NIR) 技术是近十年来发展最为迅速的高新分析技术之一,以其快速、简便、高效等优势已被人们认识和接受,并且其应用范围也由谷物、饲料扩展到食品和果蔬等领域。水果是重要的农产品,消费者在选购水果时对于内部品质如口感、糖度和酸度等极为看重。而近红外光谱分析技术将其用于水果内部品质检测具有快速、非破坏性、无需前处

红外吸收光谱法习题与答案解析

六、红外吸收光谱法(193题) 一、选择题 ( 共61题 ) 1. 2 分 (1009) 在红外光谱分析中,用 KBr制作为试样池,这是因为: ( ) (1) KBr 晶体在 4000~400cm-1范围内不会散射红外光 (2) KBr 在 4000~400 cm-1范围内有良好的红外光吸收特性 (3) KBr 在 4000~400 cm-1范围内无红外光吸收 (4) 在 4000~400 cm-1范围内,KBr 对红外无反射 2. 2 分 (1022) 下面给出的是某物质的红外光谱(如图),已知可能为结构Ⅰ、Ⅱ或Ⅲ,试问哪 一结构与光谱是一致的?为什么? ( ) 3. 2 分 (1023) 下面给出某物质的部分红外光谱(如图),已知结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构 与光谱是一致的,为什么? 4. 2 分 (1068) 一化合物出现下面的红外吸收谱图,可能具有结构Ⅰ、Ⅱ、Ⅲ或Ⅳ,哪一结构与 光谱最近于一致? 5. 2 分 (1072) 1072 羰基化合物中, C = O 伸缩振动 频率出现最低者为 ( ) (1) I (2) II (3) III (4) IV 6. 2 分 (1075) 一种能作为色散型红外光谱仪色散元件的材料为 ( ) (1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃 7. 2 分 (1088) 并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) (1) 分子既有振动运动,又有转动运动,太复杂 (2) 分子中有些振动能量是简并的 (3) 因为分子中有 C、H、O 以外的原子存在 (4) 分子某些振动能量相互抵消了 8. 2 分 (1097) 下列四组数据中,哪一组数据所涉及的红外光谱区能够包括CH3- CH2-CH = O的吸收带( ) 9. 2 分 (1104) 请回答下列化合物中哪个吸收峰的频率最高? ( ) 10. 2 分 (1114) 在下列不同溶剂中,测定羧酸的红外光谱时,C=O 伸缩振动频率出现最高者为( ) (1) 气体 (2) 正构烷烃 (3) 乙醚 (4) 乙醇 11. 2 分 (1179) 水分子有几个红外谱带,波数最高的谱带对应于何种振动 ? ( ) (1) 2 个,不对称伸缩 (2) 4 个,弯曲 (3) 3 个,不对称伸缩 (4) 2 个,对称伸缩 12. 2 分 (1180) CO2的如下振动中,何种属于非红外活性振动 ? ( ) (1) ←→ (2) →←→ (3)↑↑ (4 )

近红外光谱(NIR)分析技术的应用

近红外光谱(NIR)分析技术的应用 近红外光谱分析是近20年来发展最为迅速的高新技术之一,该技术分析样品具有方便、快速、高效、准确和成本较低,不破坏样品,不消耗化学试剂,不污染环境等优点,因此该技术受到越来越多人的青睐。 一、近红外光谱的工作原理 有机物以及部分无机物分子中各种含氢基团在受到近红外线照射时,被激发产生共振,同时吸收一部分光的能量,测量其对光的吸收情况,可以得到极为复杂的红外图谱,这种图谱表示被测物质的特征。不同物质在近红外区域有丰富的吸收光谱,每种成分都有特定的吸收特征。因此,NIR能反映物质的组成和结构信息,从而可以作为获取信息的一种有效载体。 二、近红外光谱仪的应用 NIR分析技术的测量过程分为校正和预测两部分(如图一所示),(1)校正:①选择校正样品集,②对校正样品集分别测得其光谱数据和理化基础数据,③将光谱数据和基础数据,用适当的化学计量方法建立校正模型;(2)预测:采集未知样品的光谱数据,与校正模型相对应,计算出样品的组分。由此可知,建立一个准确的校正模型是近红外光谱分析技术应用中的重中之重。 图一 2.1定标建模

2.1.1 为什么要建立近红外校正模型 2.1.1.1 建立近红外校正模型的最终目标是获得一个长期稳定的和可预测的模型。 2.1.1.2 近红外光谱分析是间接的(第二手)分析方法,所以①需要定标样品集;②利用定标样品集的参比分析数据与近红外光谱建立校正模型;③近红外分析准确度与参比方法数据准确度高度相关;④近红外分析精度一般优于参比方法分析精度。 2.1.2 模型的建立与验证步骤 2.1.2.1 扫描样品近红外光谱 准确扫描校正样品集中各个样品规范的近红外光谱:为了克服近红外光谱测定的不稳定性的困难,必须严格控制包括制样、装样、测试条件、仪器参数等测量参数在内的测量条件。利用该校正校品集建立的数学模型,也只能适用于按这个的测量条件所测量光谱的样品。 2.1.2.2 测定样品成分(定量) 按照标准方法(如饲料中的粗蛋白GB/T6432、水分GB/T6435、粗脂肪GB/T6433)准确测定样品集中每个样品的各种待测成分或性质(称为参考数据)。这些值测定的精确度是近红外光谱运用数学模型进行定量分析精确度的理论极限。 2.1.2.3 建立数据对应关系 通过2.1.2.1所得光谱与2.1.2.2所得不同性质参数的参考数据相关联,使光谱图和其参考数据之间形成一一对应映射的关系,从而建立一个带参考数据的光谱文件。 2.1.2.4 剔除异常值 2.1.2.3建立的光谱文件中,样品参考值与光谱有可能由于各种随机的原因而有较严重的失真,这些样品的测定值称为异常值。为保证所建数学模型的可靠性,在建立模型时应当剔除这些异常值。 2.1.2.5 建立模型 选择算法、确定模型的参数、建立、检验与评价数字模型:常用的算法有逐步回归分析、偏最小二乘法、主成分回归分析等。这些算法的基本思想

红外光谱解析法

如何分析一张已经拿到手的xx谱图呢? 你可以按如下步骤来: (1)首先依据谱图推出化合物碳架类型: 根据分子式计算不饱和度,公式: 不饱和度=F+1+(T-O)/2其中: F: 化合价为4价的原子个数(主要是C原子), T: 化合价为3价的原子个数(主要是N原子), O: 化合价为1价的原子个数(主要是H原子), 例如: 比如苯: C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度; (2)分析3300~2800cm^-1区域C-H伸缩振动吸收;以3000 cm^-1为界: 高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000cm^-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔2200~2100 cm^-1 烯1680~1640 cm^-1

芳环1600,1580,1500,1450 cm^-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对); (4)碳骨架类型确定后,再依据其他官能团,如C=O, O-H, C-N 等特征吸收来判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm^-1的三个峰,说明醛基的存在。 至此,分析基本搞定,剩下的就是背一些常见常用的健值了! ……………………………………………………………………………………………………… 1.烷烃: C-H伸缩振动(3000-2850cm^-1) C-H弯曲振动(1465-1340cm^-1) 一般饱和烃C-H伸缩均在3000cm^-1以下,接近3000cm^-1的频率吸收。 2.烯烃: 烯烃C-H伸缩(3100~3010cm^-1) C=C伸缩(1675~1640 cm^-1) 烯烃C-H面外弯曲振动(1000~675cm^1)。 3.炔烃: 伸缩振动(2250~2100cm^-1) 炔烃C-H伸缩振动(3300cm^-1附近)。 4.芳烃:3100~3000cm^-1芳环上C-H伸缩振动 1600~1450cm^-1 C=C骨架振动

红外光谱分析法习题含答案

红外光谱分析法试题 一、简答题 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么? 2.以亚甲基为例说明分子的基本振动模式. 3.何谓基团频率?它有什么重要用途? 4.红外光谱定性分析的基本依据是什么?简要叙述红外定性分析的过程. 5.影响基团频率的因素有哪些? 6.何谓指纹区?它有什么特点和用途? 二、选择题 1.在红外光谱分析中,用 KBr制作为试样池,这是因为 ( ) A KBr晶体在 4000~ 400cm -1 范围内不会散射红外光 B KBr在 4000~ 400 cm -1 范围内有良好的红外光吸收特性 C KBr在 4000~ 400 cm -1 范围内无红外光吸收 D 在 4000~ 400 cm -1 范围内,KBr 对红外无反射 2.一种能作为色散型红外光谱仪色散元件的材料为 ( ) A 玻璃 B 石英 C 卤化物晶体 D 有机玻璃 3.并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) A 分子既有振动运动,又有转动运动,太复杂 B 分子中有些振动能量是简并的 C 因为分子中有 C、H、O以外的原子存在 D 分子某些振动能量相互抵消了 4.下列四种化合物中,羰基化合物频率出现最低者为 ( ) A I B II C III D IV 5.在下列不同溶剂中,测定羧酸的红外光谱时,C=O伸缩振动频率出现最高者为 ( ) A 气体 B 正构烷烃 C 乙醚 D 乙醇 6.水分子有几个红外谱带,波数最高的谱带对应于何种振动? ( )

A 2个,不对称伸缩 B 4个,弯曲 C 3个,不对称伸缩 D 2个,对称伸缩 7.苯分子的振动自由度为( ) A 18 B 12 C 30 D 31 8.在以下三种分子式中C=C双键的红外吸收哪一种最强? (1) CH3-CH = CH2(2) CH3-CH = CH-CH3(顺式)(3) CH3-CH = CH-CH3(反式)( ) A(1)最强 B (2)最强 C (3)最强 D 强度相同 9.在含羰基的分子中,增加羰基的极性会使分子中该键的红外吸收带( ) A 向高波数方向移动 B 向低波数方向移动 C 不移动 D 稍有振动 10.以下四种气体不吸收红外光的是( ) A H2O B CO 2 C HCl D N2 11.某化合物的相对分子质量Mr=72,红外光谱指出,该化合物含羰基,则该化合物可能的分子式为( ) A C4H8O B C3H4O 2 C C3H6NO D (1) 或(2) 12.红外吸收光谱的产生是由于( ) A 分子外层电子、振动、转动能级的跃迁 B 原子外层电子、振动、转动能级的跃迁 C 分子振动-转动能级的跃迁 D 分子外层电子的能级跃迁 13. Cl2分子在红外光谱图上基频吸收峰的数目为( ) A 0 B 1 C 2 D 3 14.红外光谱法试样可以是( ) A 水溶液 B 含游离水 C 含结晶水 D 不含水 15.能与气相色谱仪联用的红外光谱仪为( ) A 色散型红外分光光度计 B 双光束红外分光光度计 C 傅里叶变换红外分光光度计 D 快扫描红外分光光度计 16.试比较同一周期内下列情况的伸缩振动(不考虑费米共振与生成氢键)产生的红外吸收峰,频率最小的是( ) A C-H B N-H C O-H D F-H 17.已知下列单键伸缩振动中C-C C-N C-O键力常数k/(N?cm-1) 4.5 5.8 5.0吸收峰波长λ/μm 6 6.46 6.85问C-C, C-N, C-O键振动能级之差⊿E顺序为( ) A C-C > C-N > C-O B C-N > C-O > C-C C C-C > C-O > C-N D C-O > C-N > C-C 18.一个含氧化合物的红外光谱图在3600~3200cm -1有吸收峰,下列化合物最可能的是( )

红外光谱法习题参考答案

第十二章 红外吸收光谱法 思考题和习题 8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃? 烷烃主要特征峰为2 3 3 ,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1 。 烯烃主要特征峰为H C C C H C -==-=γνν,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1 。νC=C 峰位约在1650 cm -1。H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。 炔烃主要特征峰为H C C C H C -≡≡-≡γνν,,,其中H C -≡ν峰位在3333-3267cm -1 。C C ≡ν峰位在 2260-2100cm -1,是炔烃的高度特征峰。 9.如何在谱图上区别异丙基及叔丁基? 当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3 δ分裂为双峰。如果是异丙基,双峰分别 位于1385 cm -1和1375 cm -1左右,其峰强基本相等。如果是叔丁基,双峰分别位于1365 cm -1 和1395 cm -1左右,且1365 cm -1峰的强度约为1395 cm -1的两倍。 10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定: 芳氢伸缩振动( =C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1 苯环骨架振动( c=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动( =C-H ),910~665cm -1 14.试用红外吸收光谱区别羧酸、酯、酸酐。 羧酸的特征吸收峰为v OH 、v C=O 及OH 峰。v OH (单体)~3550 cm -1 (尖锐),v OH (二聚体)3400~2500(宽而散),v C=O (单体)1760 cm -1 (S),v as C=O (二聚体)1710~1700 cm -1 (S)。羧酸的 OH 峰位在955~915 cm -1 范围内为一宽谱带,其形状较独特。 酯的特征吸收峰为v C=O 、v c-o-c 峰,具体峰位值是:v C=O ~1735cm -1 (S);v c-o-c 1300~1000cm -1 (S)。v as c-o-c

相关文档
最新文档