发电厂氢冷发电机和制氢设备的防火措施

发电厂氢冷发电机和制氢设备的防火措施
发电厂氢冷发电机和制氢设备的防火措施

发电厂氢冷发电机和制氢

设备的防火措施

Written by Peter at 2021 in January

发电厂氢冷发电机和制氢设备的防火措施

1.氢冷发电机及其氢冷系统和制氢设备中的氢气纯度和含氧量,必须在运行中按专用规程的要求进行分析化验,氢纯度和含氧量必须符合规定的标准。氢冷系统中氢气纯度须不低于96%,含氧量不应大于2%;制氢设备中,气体含氢量不应低于99.5%,含氧量不应超过0.5%。如不能达到标准,应立即进行处理,直到合格为止。

2氢冷发电机的轴封必须严密,当机组开始起动时,无论有无充氢气,轴封油都不准中断,油压应大于氢压,以防空气进入发电机外壳或氢气充入汽轮机的油系统中而引起爆炸起火。

3氢冷发电机运行时,排烟机应保持经常运行,并定期(每周一次)从排烟机出口

和主油箱顶取样(漏氢增大时应随时取样检查),监视含氢量是否超过制造厂规定(无制造厂规定的按2%)。如超过则应查明原因并予消除。

4密封油系统应运行可靠,并设自动投入双电源或交直流密封油泵联动装置,备用泵(直流泵)必须经常处于良好备用状态,并应定期校验。两泵电源线应用埋线管或外露部分用耐燃材料外包。

5氢冷发电机密封油箱应设置火灾检测和水喷雾灭火设施。

6在氢冷发电机及其氢冷系统上不论进行动火作业还是进行检修、试验工作,都必须断开氢气系统,并与运行系统有明确的断开点。充氢侧加装法兰短管,并加装金属盲(堵)板。

7动火前或检修试验前,应对检修设备和管道用氮气或其他隋性气体吹洗置换。

在置换过程中应有专职人员定期取样,分析混合气体的成分。取样点应选在排出母管和气体不易流动的死区。取样前先放气1~2MIN,以排出管内余气。

氮气置换时,氮气中含氧量不得超过3%。置换结束后,系统内混合气体的含量必须连续三次分析合格,并应有二台以上测爆仪进行现场监测。

8气体介质的置换避免在起动、并列过程中进行。氢气置换过程中不得进行预防性试验和拆卸螺丝等检修工作。

9机组漏氢量实测计算每月进行一次,用以考核漏氢水平。

10设备和阀门等连接点泄漏检查,可采用肥皂水或合格的携带式可燃气体防爆检测仪,禁止使用明火。

660MW等级发电机介绍(水冷+水氢冷)

660MW双水内冷发电机发电机介绍 1、概述 QFS-660-2型汽轮发电机是在总结135MW、300MW等级双水内冷发电机制造运行经验基础上,结合600MW级水氢冷发电机设计技术,以及拥有稳定运行经验的1000MW火电发电机成熟结构,吸取了近年来国内外大型汽轮发电机的先进成熟技术,进行的优化设计的产品。产品开发方案于2014年7月8日国内行业资深专家评审会一致通过评审。 双水内冷发电机具有运输重量轻,成本低,价格便宜,交货进度快等特点,对电厂安装、运行、维修、厂房投资也均具有独特的优越性。 2、性能参数 660MW双水内冷发电机设计风格参考有稳定生产、运行经验的660MW水氢氢发电机,性能参数与660MW水氢冷发电机相当。 3、可靠性 660MW双水内冷发电机采用660MW级水氢冷发电机和百万千瓦级水氢冷

发电机相同的先进技术进一步提高性能和可靠性。包括: 定子: 全补偿、抗蠕变定子铁心防松技术 采用无机涂层的硅钢片、激光点焊风道板结构,内倾式齿压板结构、阶梯段冲片偏小槽结构等全新结构,避免铁心局部松动。 定子端部整体灌胶技术 降低端部线棒应力,提高抗突然短路能力;提高整机防晕性能;防油、防水、防异物。 定子槽内弹性防松技术 定子槽内紧固采用高强度槽楔、楔下双层波纹板,槽底和上、下层线棒之间垫有适形垫条,并采用了涨管热压工艺,使槽内线棒固定更加牢固,直线段端

部采用鱼尾形关门槽楔就地锁紧,防止轴向位移。 球形接头机械式水电连接技术 既确保100%电接触,且抗冲击能力强,防止松动,可适应定子嵌线过程中 鼻端六个方向的装配误差,减少线圈所受应力。 转子: 转子线圈 采用水直接冷却,冷却效果好,利于提高绝缘寿命;采用连续绝缘,无转子匝间短路问题。 4、经济性 由于660MW双水内冷转子采用水冷却方式,与传统水氢冷发电机相比,没有与氢气相关的防护及辅助系统,经济性上相较于传统水氢冷发电机有较大优势。 一次性投资 制造成本与相同容量的水氢冷发电机相比价格低。 运行维护 投运后运行维护较水氢冷发电机维护工作简单,维护成本低。

汽轮发电机结构及原理

第四节汽轮发电机 汽轮发电机是同步发电机的一种,它是由汽轮机作原动机拖动转子旋转,利用电磁感应原理把机械能转换成电能的设备。 汽轮发电机包括发电机本体、励磁系统及其冷却系统等。 一、汽轮发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。汽轮发电机转子与汽轮机转子高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电流后,便建立一个磁场,这个磁场称主磁极,它随着汽轮发电机转子旋转。其磁通自转子的一个极出来,经过空气隙、定子铁芯、空气隙、进入转子另一个极构成回路。 根据电磁感应定律,发电机磁极旋转一周,主磁极的磁力线北装在定子铁芯内的U、V、W三相绕组(导线)依次切割,在定子绕组内感应的电动势正好变化一次,亦即感应电动势每秒钟变化的次数,恰好等于磁极每秒钟的旋转次数。 汽轮发电机转子具有一对磁极(即1个N极、一个S极),转子旋转一周,定子绕组中的感应电动势正好交变一次(假如发电机转子为P对磁极时,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次,这样发电机转子以每秒钟50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。这时若将发电机定子三相绕组引出线的末端(即中性点)连在一起。绕组的首端引出线与用电设备连接,就会有电流流过,这个过程即为汽轮机转子输入的机械能转换为电能的过程。 二、汽轮发电机的结构 火力发电厂的汽轮机发电机皆采用二极、转速为3000r/min的卧式结构。发电机与汽轮机、励磁机等配套组成同轴运转的汽轮发电机组。 发电机最基本的组成部件是定子和转子。 为监视发电机定子绕组、铁芯、轴承及冷却器等各重要部位的运行温度,在这些部位埋置了多只测温元件,通过导线连接到温度巡检装置,在运行中进行监控,并通过微机进行显示和打印。

氢冷发电机的防火防爆参考文本

氢冷发电机的防火防爆参 考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

氢冷发电机的防火防爆参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 氢冷发电机组需用氢气冷却,发电机的轴密封及汽轮 机调速等均大量用油,由于以上物质的客观存在及运行中 的种种原因,均可能发生氢冷发电机组油系统火灾和氢气 爆炸,造成人身伤亡和国家财产的严重损失。氢冷发电机 组的火灾和氢爆应引起人们的充分重视。 1.氢冷发电机组的防火 (1)火灾易发部位。汽轮发电机的调速、轴瓦润滑、 发电机的轴密封均大量用油,虽新型机组调速用油采用燃 点高的调速油,但也有起火的可能。因此,调速、润滑、 轴密封用油的油管一旦漏油,均有发生火灾的可能;此 外,油压表管断裂或接头松动,调速油溢出等也可能引起 火灾;发电机轴密封的油氢压差过大,使油封遭破坏,氢

气窜入主油箱,遇明火产生爆炸起火。 (2)防火注意事项。氢冷发电机组防火注意事项如下: 1)运转中的发电机,必须保证密封油系统正常供油。无论发电机是否充氢,只要发电机在转动,就必须保证密封油系统的正常供油。并按运行规程的规定,维持相应的氢气压力,保持规定的油氢压差,严防氢气窜入主油箱,防止氢爆起火。 2)直流密封油泵能自动投入。发电机运行时,一般是交流密封油泵工作,直流密封油泵备用,当交流密封油泵因故停运时,则直密封油泵能自动投入,使发电机的轴封维持正常。 3)改变发电机的氢压时,应相应调整密封油的油压,防止氢气向外泄漏。 2.氢冷发电机组的防爆

300MW氢冷发电机氢气及密封油系统操作维护

300MW氢冷发电机氢气及密封油系统操作维护 来源:未知作者:日期:07-12-21 15:59:46 关键词: 密封油密封油系统300MW 1.概述 宝鸡第二发电有限责任公司4×300MWQFSN300-2型汽论发电机氢油系统是发电机的辅助系统。它分为三个部分:即氢气控制系统、密封油系统和定子线圈冷却水系统。 1.1氢气控制系统用以置换发电机内气体,有控制的向发电机内输送空气,保持机内氢气压力稳定,监视机内氢气纯度及液体的泄漏,干燥机内氢气。 1.2密封油系统用以保证密封瓦所需压力油不间断地供给,以密封发电机内的氢气不外泄,润滑、冷却密封瓦。 1..3定子线圈冷却水系统用以保证向定子线圈不间地供水,监视水压、流量和导电度等参数。 2.发电机密封油系统 2.1系统概述及工作原理 汽轮发电机组密封瓦均采用双流环式瓦,其供油系统有两路各自独立而又互相联系的油路组成。一路向密封瓦空气侧供油,密封油与空气接触,称为空侧油路。另一路向密封瓦氢气侧供油,密封油与氢气接触,称为氢侧油路。 2.1.1空侧油路 设有两路油源,向两台交流油泵,一台直流油泵供油。主工作油源取自汽机轴承润滑压力油,备用油源取自汽机主油箱及汽机轴承润滑压力油管路接至空侧密封油泵滤网出口门后,可直接向空侧密封油系统供油,大大提高了空侧供油系统的可靠性。正常运行中,一台交流油泵运行,另一台交流油泵作为第一备用,直流油泵作为第二备用。主工作油源向油泵入口供油,备用油源各手动门均应开启作为油泵主油源断流后的备用。第三路油源仅作为密封油系统投运初期及空侧密封油系统因故无法向密封瓦供油的故障情况下使用,但在此情况下,发电机内氢压≯0.15MPa。各油源供出的密封油经油-气压差阀调节至系统所需压力,然后进入发电机两端密封瓦空侧油室,回油与发电机轴承回油混和后流经专设的隔氢装置内,进行油氢分离,再流回汽机主油箱。 隔氢装置是为防止空侧回油中可能含有的氢气进入汽轮机主油箱而设置的,当密封瓦内氢侧油窜入空侧或氢侧密封油箱排油时,含有氢气的密封油与发电机轴承润滑油回油流入隔氢装置,分离出的氢气由排氢风机抽出排至汽机房外的大气中。 2.1.2氢侧油路 自成独立的闭式循环系统。系统设有两台交流油泵,一台运行,另一台作为备用。油泵从氢侧密封油箱中吸油,油泵加压后经冷油器、滤网,再经过油压平衡阀调整到所需压力,进入密封瓦的氢侧油室,其回油流回氢侧密封油箱。 氢侧密封油箱是氢侧油路的独立油箱,接收氢侧密封瓦的回油,为氢侧密封油泵提供油源,进行油氢分离。分离出来的氢气通过油箱顶部的回气管回到发电机内,

发电机氢系统介绍

发电部培训专题(发电机氢系统简介修改版)*本介绍参照了技术协议部分内容

1发电机氢气系统简介说明: 1.1发电机由于存在着损耗的原因,会导致发电机本体及线圈发热,如果不 及时将这些热量及时释放掉,将会导致发电机绝缘老化,影响发电机使用寿命,甚至引发其它恶性的电气事故的发生。因此大、小发电机都有自己的一套冷却装置。 1.2大型发电机是一种高电压、大电流的电气设备,因此对于它的冷却方式 的选择,是确保发电机安全运行的一项重要手段,发电机根据容量等技术参数选择不同的冷却方式,如空冷、氢冷、水氢氢、双水内冷等。在这些方式中,双水内冷冷却效果是最好的,但由于双水内冷存在着连接部件漏水这一难以解决的问题,在我国80年代投产的多台引进的捷克机组中多次发生此类事故,所以目前我国发电机至今仍多采用的是氢气冷却这种方式,我厂发电机用的是水-氢-氢冷却方式。 1.3之所以目前多采用氢气冷却的原因是氢气有着以下优点: a.氢气比重比较小,相对于其它气体来说它的阻力损耗比较小。 b.氢气是不助燃的气体。 c.氢气比热较其它气体来说大一些。 d.氢气化学价比较稳定。 1.4但用氢气冷却这种方式也存在很大的缺点: a.它是可燃物,使的生产危险点控制更加严格。 b.它需要专用的密封装置,增加了系统的复杂性。

2主要技术参数 2.1发电机内额定运行参数: a.氢气压力:0.414MPa. b.氢气温度:不大于46℃ c.氢气纯度:大于98% d.氢气耗量:小于13~19立方米/天 e.氢气含氧量:小于2% f.氢气含水量:不大于25克/立方米 2.2对供给发电机的氢气要求 a.供氢气压力不高于3.2MPa.(g) b.供氢气纯度不低于99.5% c.氢气露点温度.≤–21℃ 2.3置换时的损耗值: 备注 序号内容单位数 值 1 发电机充氢容积立方米117 2 驱赶机内空气时耗用二氧化碳立方米300 CO2纯度98% 以上 3 驱赶机内二氧化碳时耗用的氢气立方米300

双水内冷发电机故障分析及预防

双水内冷电机的特点、故障及预防 1双水内冷发电机的特点 双水内冷冷却方式:定子线圈和转子线圈双水内冷,定子铁心及其他结构件空冷,定子端部铜屏蔽冷却为水内冷。 20世纪30年代末期以前,汽轮发电机基本上处于单一的空气冷却阶段。空气冷却在结构上最简单,费用最低廉,维护最方便,这些显著的优点使得空气冷却首先得到了应用和发展。随着电网容量的增大,要求提高汽轮发电机的容量。为了提高容量,需要增加电磁负荷,导致电磁损耗增大,从而引起电机发热量的增加,要强化冷却就必须加大通风量,这必然引起通风损耗的增大,而通风损耗(含风摩耗)占总损耗的40%,这就使得电机的效率降低。另外,空气冷却的定转子绕组的温升也较高,影响绝缘的寿命。同时,水的比热容大、化学稳定性好、便于获得,是理想的液体冷却介质。 1958年中国上海电机厂制成了第一台定子和转子绕组都用水在内部直接冷却的12 MW双水内冷发电机。此后上海电机厂生产的50 MW、60 MW、125 MW、300 MW发电机也采用这种冷却方式。氢气比热容大、导热性能好、密度小,是良好的气体冷却介质。水的比热容大、化学稳定性好、便于获得,是理想的液体冷却介质。当前,功率超过250 MW的发电机广泛地采用氢、水或几种冷却介质分别冷却各个部件。 双水内冷发电机结构简单,外部辅助系统单一。由于双水内冷发电机采用水、水、空冷却方式,因此与水氢冷相比,取消了氢系统和密封油系统,仅有水系统。外部辅助系统单一,安装、运行、维护方便,可维护性好。由于转子线圈采用水内冷。线圈绕组温度低,匝间采用连续绝缘,不与冷却介质接触,运行可靠。由于定子铁心采用空冷。无氢爆和漏油可能性,机座设计不需防氢爆措施和氢密封结构。结构简单,重量轻,发电机最大运输件定子的运输重量和尺寸减少,便于运输和降低运输成本。 但是于转子内冷水系统的密封非常困难, 从转子出水支座中不断溶入新鲜空气, 造成内冷水PH值不断下降, 在氧的作用下铜芯导线的腐蚀就持续发生, 从而导致内冷水水质的控制相当困难。内冷水的水质超标问题会导致发电机定子线芯过热被迫停机进行酸洗。同时,双水内冷机组的水电故障问题也是值得关注的。 QFS2型汽轮发电机是在总结QFS双水内冷发电机制造运行经验基础上,移植了西屋公司联合优化设计技术,吸取了近年来国内外大型汽轮发电机的先进成熟技术,进行的优化设计,在95年试制成功的改型产品。该设计的技术性能比原QFS型发电机的许多

双水内冷汽轮发电机

双水内冷汽轮发电机 编辑 双水内冷汽轮发电机,是巨型汽轮发电机的一种,因定子绕组和转子绕组都用空心铜线并通以水冷却而得名。因水的比热大,且可直接带走热量,故可提高发电机的效率。与其他冷却方式的电机相比,用相同的材料,可制造功率更大的电机。 目录 1研制背景 2科研 3结构方案 4工程师 5浙江省委的大力支持 6世界上第一台 7运行发电 8成立水内冷电机研究室 1研制背景 编辑 1958年,第二个五年计划开始时,电力供应不足的矛盾突出。为此,国家要求上海电机厂制造更多的汽轮发电机支援工农业生产。但是,制造汽轮发电机需要转轴和护环,这两个重要部件当时国内生产尚未过关,须从国外进口。人家给几根转轴、几套护环,就只能生产几台汽轮发电机。在这种情况下,满足国家对电站设备的需要,只有在冷却介质和冷却方式上想办法。因为冷却介质和方式直接影响发电机的发电能力。空气冷却效能最低,氢气冷却比空气冷却高3~4倍,水冷比空冷高40~50倍。冷却方式上还有内冷和外冷之分,内冷效果又比外冷为好。但是,在制造技术上,水冷比氢冷困难,内冷比外冷困难,特别是转子绕组水内冷,世界上还没有先例。上海电机厂学会制造汽轮发电机才4年历史,最大的单机容量只造到1.2万千瓦,但为了满足国家的需要,他们打破世界各国发展汽轮发电机生产的老路,决心采用水内冷,试制定子和转子双水内冷汽轮发电机。年初,该厂总工程师孟庆元组织交通大学和浙江大学部分教授、讲师及本厂的王作民、金传琪等探讨试制的可行性。与会同志所看到一些国外资料,对双水内冷问题都没有定论。特别对转子在每分钟3000转高速旋转的情况下,由于离心力的作用,水流能否顺利通过?即使水流能够通过高速旋转的转子,会不会由于水路中产生气泡破坏转子的动平衡?都是外国专家所担心的问题。所以,讨论中有同志认为:我国工业基础薄弱,如带头试制双水内冷汽轮发电机必然会遇到许多困难。最后,决定先试制一台定子水内冷、转子氢内冷的汽轮发电机。制造这种发电机,已有国外的成功经验可以借鉴,容易成功。于是,上海电机厂从定子水内冷着手,于1958年5月间开始设计试制,并预定于1962年试制出来。后来经过反浪费反保守的“双反”运动,又把制成目标定在1960年。 2科研 编辑 与此同时,浙江大学电机教研组确定以“电机的冷却”为科研方向,由教研组主任郑光华负责领导这项研究工作。郑光华查阅了美国、英国、匈牙利的大量有关转子水内冷的研究资料。这些资料认为转子水内冷有很好的冷却效果,但很难实现。郑光华针对“很难实现”的难点进行了深入研究。终于提出了转子绕组水内冷的试验方案。1958年6月26日,模型试验证

氢冷发电机漏氢问题的分析及探讨全解

氢冷发电机漏氢问题的分析及探讨 [摘要] 本文从氢冷发电机结构部件方面分析了发电机漏氢的原因,并提出了综合处理方法,以提高机组安全运行水平。 [关键词] 漏氢分析探讨 前言 韶关发电厂#10、#11发电机是东方电机厂生产的QFSN-300-2-20B型发电机组,其定子绕组、转子绕组及铁芯均采用氢内冷的冷却方式。氢气由装在转子两端的风扇强制循环,并通过设置在定子机座上部的四组氢气冷却器进行冷却。氢气系统由发电机定子外壳、端盖、氢气冷却器、密封瓦以及氢气管路构成全封闭气密结构。但发电机漏氢问题时有发生,影响了机组的安全稳定运行。本文对发电机漏氢问题进行原因分析,并对综合处理方法进行了探讨,以提高机组安全运行水平。 1.发电机漏氢原因分析 氢冷发电机的漏氢部位归纳起来讲总归有两部分;一是氢冷发电机内部本体结构部件的漏氢,二是发电机外部附属系统的漏氢。氢冷发电机本体结构部件的漏氢涉及四个系统;包括:水电连接管和发电机线棒的水内冷系统,发电机密封瓦及氢侧回油管接头的油系统,发电机氢气冷却器的循环水系统,发电机人孔、端盖、手孔、二次测量引出线端口、出线套管法兰及瓷套管内部密封、出线罩、氢冷器法兰、转子导电杆等的氢密封系统。发电机外部附属系统的漏氢包括氢管路阀门及表计、氢油差压调节系统、氢油分离器、氢器干燥装置、氢湿度监测装置、绝缘过热检测装置等。下面结合我厂发电机氢气系统的结构,对检修过程中影响到漏氢的关键结构部件进行分析。 1.1机壳结合面

机壳结合面主要包括:端盖与机座的结合面、上下端盖的结合面、固定端盖的螺孔、出线套管法兰与套管台板的结合面及进出风温度计的结合面等。为防止这些部位漏氢,在检修中应注意以下事项: (1)端盖与机座的结合面及上下端盖的结合面结合面积大,密封难度大,是防漏氢的薄弱环节。应注意,在检修过程中,为解体及回装所做的标记不能伤及密封面;要对结合面进行详细检查,对所采用的橡胶密封条的尺寸、耐热性能、耐油性能、弹性及耐腐蚀性能进行严格验收。现在该厂的发电机端盖密封条应采用一次成形的氟橡胶密封条,密封胶采用硅橡胶密封胶,可以有效解决了上下端盖结合面的密封条在端盖处与下端盖密封条因衔接不良而引起的漏氢问题。 (2)紧端盖螺丝时,应均匀紧固大盖螺栓,防止出现紧偏,以保证结合面严密。要检查水平、垂直中分面的间隙,在把紧1/3螺栓状态下,用0.03mm塞尺检查应不入。 (3)出线套管法兰与套管台板的结合面是防止漏氢的关键部位。由于该处受定子端部漏磁影响,温度较高,加上机内进油的腐蚀,因此,该处需用耐油橡胶圈和橡胶垫加以双重密封。由于漏入机内的密封油多积存于此,因而该处的密封材料易老化变质失效,每次大修时必须进行检查。另外,在拆装引线的过程中,应避免套管导体受侧力过大,引起密封垫位置的变化而造成漏氢。 1.2密封油系统 (1)密封瓦座与端盖的垂直结合面是较易漏氢的部位之一,对该处的密封垫质量必须严格把关。上、下半端盖组装时,接缝应对齐,防止由于错口使密封垫受力不均。上、下半端盖的密封条顺端盖垂直面留出1~2mm的长度,安装后修成半圆型,使装配密封瓦座后此处接合严密不漏。 (2)密封瓦的间隙必须调整合格,间隙控制在0.18~0.20mm。 (3)为防止密封油进入机内,应控制好油档间隙。发电机两端轴瓦油挡顶部间隙控制在0.50±0.05mm,底部间隙控制在0~0.05mm,两侧间隙控制在

氢内冷发电机漏氢的综合治理

摘要:氢冷电机'>发电机漏氢量的大小直接影响到电机'>发电机组的安全稳定运行,这也是电机'>发电机安评的一个重要指标,本文着重介绍了内蒙古国华准格尔发电有限责任公司(以下简称准电)北重产两台330MW机组漏氢量超标的原因分析以及在检修中根据分析方案查找和治理的成功方法,在2005年检修后两台机组漏氢量都达到法国ALSTOM10m3/d的优良标准,给国内发电企业氢冷机组漏氢治理提供借鉴。 关键词:氢冷电机'>发电机含氢量气密试验 1、概述: 内蒙古国华准格尔发电有限责任公司(以下简称准电)2×330MW机组,是北重引进法国ALSTOM技术和部件,由北重组装生产的“水氢”冷却的无刷励磁机组,即定子绕组水内冷、转子绕组氢内冷、铁芯及其它构件氢冷。氢气由装在转子两端的旋浆式风扇强制循环,并通过设置在定子机座顶部两组氢气冷却器进行冷却。氢气系统由电机'>发电机定子外壳、端盖、氢气冷却器、密封瓦、密封油系统以及氢气管路构成全封闭气密结构。型号为T255-460额定功率为388.2MVA,额定电流为9339A,功率因数为0.85,Y型接法,励磁电压为542V,励磁电流为2495A,额定氢压为0.3MPa,冷却水流量为475m3/h,冷却水温为33℃。其结构图如下: 电机漏氢的部位 氢冷发电机的漏氢部位归纳起来讲总归有两部分;一是氢冷发电机内部本体结构部件的漏氢,二是发电机外部附属系统的漏氢。氢冷发电机本体结构部件的漏氢涉及四个系统;包括:水电连接管和发电机线棒的水内冷系统,发电机密封瓦及氢侧回油管接头的油系统,发电机氢气冷却器的循环水系统,发电机人孔、端盖、手孔、二次测量引出线端口、出线套管法兰及瓷套管内部密封、出线罩、氢冷器法兰、转子导电杆等的氢密封系统。发电机外部附属系统的漏氢包括氢管路阀门及表计、氢油差压调系统、氢油分离器、氢器干燥装置、氢湿度监测装置、绝缘过热检测装置等。 3、发电机漏氢的典型事例及处理 氢冷发电机漏氢部位的查找是很繁琐的工作,需要工作人员作反复细致查找和长期跟踪记录分析,确证漏氢的根源和途径,根据漏氢的根源和途径的不同,漏氢又可分为内漏和外漏,氢气直接漏到大气中称为外漏,外漏点比较直观易查找和处理;氢气通过其它介质和空间泄漏掉称为内漏,内漏一般不易查找和处理,以下就准电出现过的漏氢事例的查找处理作一介绍,以供参考。 3.1发电机定冷水箱内含氢超标的处理 准电一号机2002年4月投产,2002年7月5日从漏氢检测仪显示发电机定冷水箱处含有氢气,当时氢气含量为1.3%,为了确证这一点的漏氢情况,我们使用M77-PHP-100便携式氢气纯度分析仪从定冷水箱取样管口处取样化验,含氢量是1.4%,到2002年9月定冷水箱含氢量最大达到6,确证水箱含氢后,这期间我们多次组织国内专家进行现场会诊,并加强现场跟踪记录,并对定冷水箱含氢量、定冷水箱回水温度、负荷和时间的对应关系绘成曲线进行分析研究,可能造成这一现象的原因分析如下: (1)定子线棒的接头封焊处漏水,其原因是焊接工艺不良,有虚焊,砂眼。

MW等级发电机介绍水冷水氢冷

660MV双水内冷发电机发电机介绍 1、概述 QFS-660-2型汽轮发电机是在总结135MW 300MV等级双水内冷发电机制造运行经验基础上,结合600MW级水氢冷发电机设计技术,以及拥有稳定运行经验的1000MV火电发 电机成熟结构,吸取了近年来国内外大型汽轮发电机的先进成熟技术,进行的优化设计的 产品。产品开发方案于2014年7月8日国内行业资深专家评审会一致通过评审。 双水内冷发电机具有运输重量轻,成本低,价格便宜,交货进度快等特点,对电厂安装、运行、维修、厂房投资也均具有独特的优越性。 2、性能参数 660MW R水内冷发电机设计风格参考有稳定生产、运行经验的660MV水氢氢发电机, 性能参数与660MV水氢冷发电机相当。

3、可靠性 660MW双水内冷发电机采用660MW级水氢冷发电机和百万千瓦级水氢冷发电机相同的先进技术进一步提高性能和可靠性。包括: 定子: 全补偿、抗蠕变定子铁心防松技术 采用无机涂层的硅钢片、激光点焊风道板结构,内倾式齿压板结构、阶梯段冲片偏小槽结构等全新结构,避免铁心局部松动。 定子端部整体灌胶技术 降低端部线棒应力,提高抗突然短路能力;提高整机防晕性能;防油、防水、防异物。 定子槽内弹性防松技术 定子槽内紧固采用高强度槽楔、楔下双层波纹板,槽底和上、下层线棒之间垫有适形垫条,并采用了涨管热压工艺,使槽内线棒固定更加牢固,直线段端部采用鱼尾形关门槽楔就地锁紧,防止轴向位移。 球形接头机械式水电连接技术 既确保100池接触,且抗冲击能力强,防止松动,可适应定子嵌线过程中鼻端六个

方向的装配误差,减少线圈所受应力。 转子: 转子线圈 采用水直接冷却,冷却效果好,利于提高绝缘寿命;采用连续绝缘,无转子匝间短路问题。 4、经济性 由于660MW^水内冷转子采用水冷却方式,与传统水氢冷发电机相比,没有与氢气相关的防护及辅助系统,经济性上相较于传统水氢冷发电机有较大优势。 一次性投资 制造成本与相同容量的水氢冷发电机相比价格低。 运行维护 投运后运行维护较水氢冷发电机维护工作简单,维护成本低。 5、结论 双水内冷发电机有许多成功的运营业绩,技术是成熟可靠的,不存在技术风险。总体经济效益由于水氢冷机组,因无氢气重大危险源,双水内冷发电机在安全方面也占明显优势,并且具有安装、运行、维护方便等优点。 660MV级QFSN型水氢冷汽轮发电机的技术特点介绍 QFSN型水氢氢660MW级汽轮发电机是在上海电气和西门子合资公司的技术基础上进行自

发电机氢气冷却系统

毕业设计(论文) ` 题目发电机氢气冷却系统报告 院系自动化系 专业班级自动化专业1302班 学生姓名杨晓丹 指导教师马进

发电机氢气冷却系统报告 摘要 发电机在运行的过程中由于能量转换、电磁作用和机械摩擦会产生一定的热量。为了使发电机温度不超过与绝缘耐热等级相应的极限温度,应采取冷却措施使这些部件有效地散热。氢气比重小、比热大、导热系数较大、化学性质较稳定,是冷却发电机转子常用的介质。氢气在发电机的腔室内循环,依次穿过冷热风室,由冷却器冷却。发电机中的氢气容易发生泄漏,需要在轴与静密封瓦之间形成油膜封住气体。在发电机检修后,发电机内充满空气,为防止氢气与空气混合产生安全隐患,充入氢气时应先做气密实验,再从下至上向发电机内充满二氧化碳,最后从上至下向发电机内充满氢气。 关键词:发电机;氢气冷却;气体置换;密封油系统

Report of hydrogen cooling system for generator Abstract Generator in the process of running due to energy conversion, electromagnetic and mechanical friction generates heat.Hydrogen cooling system is used to limited the generator temperature exceed the limiting temperature of thermal class for electric machine insulation.Because of Hydrogen gas has small specific gravity,large specific heat,large coefficient of thermal conductivity and relatively stable chemical properties,it is the commonly used medium cooling generator rotor.Hydrogen is circulated in the generator hydrogen and cooled by corner cooler.In order to limite hydrogen leakage,oil seals the space between the shaft and static seal tile.After the generator maintenance, air is full of inside the generators.There was a safe hidden trouble if hydrogen is mixed into the oxygen.Carbon is blowed from the from the bottom to the full of generator to replace air after Sealing experiment was passed.And hydrogen is blowed from the from the full to the bottom of generator to replace carbon. Keywords:Generator;Hydrogen cooling;Gas replacement;Seal oil system

660MW等级发电机介绍(水冷+水氢冷)

660MW双水冷发电机发电机介绍 1、概述 QFS-660-2型汽轮发电机是在总结135MW、300MW等级双水冷发电机制造运行经验基础上,结合600MW级水氢冷发电机设计技术,以及拥有稳定运行经验的1000MW火电发电机成熟结构,吸取了近年来国外大型汽轮发电机的先进成熟技术,进行的优化设计的产品。产品开发方案于2014年7月8日国行业资深专家评审会一致通过评审。 双水冷发电机具有运输重量轻,成本低,价格便宜,交货进度快等特点,对电厂安装、运行、维修、厂房投资也均具有独特的优越性。 2、性能参数 660MW双水冷发电机设计风格参考有稳定生产、运行经验的660MW水氢氢发电机,性能参数与660MW水氢冷发电机相当。

3、可靠性 660MW双水冷发电机采用660MW级水氢冷发电机和百万千瓦级水氢冷发电机相同的先进技术进一步提高性能和可靠性。包括: 定子: ?全补偿、抗蠕变定子铁心防松技术 采用无机涂层的硅钢片、激光点焊风道板结构,倾式齿压板结构、阶梯段冲片偏小槽结构等全新结构,避免铁心局部松动。 ?定子端部整体灌胶技术

降低端部线棒应力,提高抗突然短路能力;提高整机防晕性能;防油、防水、防异物。 ?定子槽弹性防松技术 定子槽紧固采用高强度槽楔、楔下双层波纹板,槽底和上、下层线棒之间垫有适形垫条,并采用了涨管热压工艺,使槽线棒固定更加牢固,直线段端部采用鱼尾形关门槽楔就地锁紧,防止轴向位移。 ?球形接头机械式水电连接技术

既确保100%电接触,且抗冲击能力强,防止松动,可适应定子嵌线过程 中鼻端六个方向的装配误差,减少线圈所受应力。 转子: ?转子线圈 采用水直接冷却,冷却效果好,利于提高绝缘寿命;采用连续绝缘,无转子匝间短路问题。 4、经济性 由于660MW双水冷转子采用水冷却方式,与传统水氢冷发电机相比,没有与氢气相关的防护及辅助系统,经济性上相较于传统水氢冷发电机有较大优势。 ?一次性投资 制造成本与相同容量的水氢冷发电机相比价格低。 ?运行维护

QFS2型300MW级双水内冷发电机介绍ppt

无限创造上海电站 Creation Beyond Imagination y g Shanghai Electric 上海电气电站集团

型300MW 级双水内冷QFS 2 汽轮发电机介绍

主要内容 11.双水内冷发电机特点 型300MW级双水内冷发电机设计基础 2.QFS 2 型300MW级双水内冷发电机主要技术数据3.QFS 2 双水内冷发电机 型300MW级双水内发电机结构简介 4.QFS 2 5.制造工艺及质保 6.结论

1.双水内冷发电机特点 ?定子绕组水内冷 ?转子绕组水内冷 冷却介质相对比热容相对密度冷却介质相对 消耗量 相对吸热 能力 发电机冷却介质性能比较 空气 1.0 1.0 1.0 1.0氢气 14350281040 (0.31MPa表压) 14.350.28 1.0 4.0 绝缘油 2.098480.01221.0水 4.1610000.01250.0

优点: ?转子绕组温度低,绝缘寿命长 ?无氢气,无氢爆问题 ?没有氢系统及密封油系统,外部辅助系统简单安装运行维护及检修方便运行成本低?安装、运行、维护及检修方便,运行成本低 ?节约原材料,降低制造成本 ?定子重量轻,便于内陆运输

2.QFS型300MW级双水内冷发电机设计基础 2 ?国内双水内冷发电机成熟的设计、制造和运行经验1958年试制成功世界第一台12MW双水内冷汽轮发电机 1969年试制成功国内第一台125MW双水内冷汽轮发电机 1971年试制成功国内第一台300MW双水内冷汽轮发电机 1980年试制成功径向尺寸1:1的模拟600MW双水内冷发电机 已生产的产品中双水内冷发电机共六百多台, , 年底,,已生产的产品中双水内冷发电机共六百多台到2008年底 总容量超过60000MW,其中300MW级有72台。

发电机漏氢率说明

发电机漏氢量(率)控制 【摘要】:氢内冷汽轮发电机漏氢量(率)的大小直接影响机组的安全运行,这个指标是汽轮发电机组运行的主要技术指标之一,所以对发电机组漏氢量(率)的控制很重要。影响发电机漏氢的因素很多,牵涉到制造、安装、调试、运行等各方面,本文主要介绍益阳电厂一期工程 2×300MW氢内冷汽轮发电机组安装阶段控制其漏氢量(率)的措施和实施情况,以及实际效果。 一.概况 益阳电厂一期工程2×300MW汽轮发电机组采用哈尔滨电机厂生产的QFSN-300-2型发电机,该型发电机为三相隐极式同步发电机,发电机主要由定子、转子、端盖及轴承、氢气冷却器、密封瓦装置、座板、刷架、隔音罩等部件组成;采用“水氢氢”冷却方式,即定子绕组水内冷、转子绕组氢内冷、铁芯及其它构件氢冷。氢气由装在转子两端的浆式风扇强制循环,并通过设置在定子机座顶部汽励两端的氢气冷却器进行冷却。氢气系统由发电机定子外壳、端盖、氢气冷却器、密封瓦以及氢气管路构成全封闭气密结构。 发电机漏氢的途径有很多,归纳起来是两种:一是漏到大气中,二是漏到发电机油水系统中和封母外壳内。前者可以通过各种检漏方法找到漏点加以消除,如发电机端盖、出线罩、发电机机座、氢气管路系统、测温元件接线柱板等处的漏氢;后者基本属于“暗漏”,漏点具体位置不明,检查处理较为复杂,且处理时间要长,比如氢气通过密封瓦漏入密封油系统、通过定子线圈漏入内冷水系统中等,为此要求在安装阶段就要特别要把好质量关。 二.在安装阶段控制发电机漏氢的主要措施 1.发电机本体在安装过程中必须严格按照制造厂图纸说明书和《电力建设施工及验收技术规范》(以下简称《规范》)做好以下现场试验: a.发电机定子绕组水路水压试验。该试验必须在电气主引线及柔性连接线安装后进行,主要检查定子端部接头、绝缘引水管、汇水管、过渡引线及排水管等处有无渗漏现象。 b.发电机转子气密性试验。试验时特别要用无水乙醇检查导电螺钉处是否有渗漏现象。 c.氢气冷却器水压试验。 d.发电机定子单独气密性试验。试验时用堵板封堵密封瓦座,试验范围包括:定子、出线瓷套管、出线罩、测温元件接线柱板、氢冷器、氢冷器罩、端盖、机座等。试验介质应为无油、干净、干燥的压缩空气或氮气,试验压力为0.3Mpa,历时24小时,要求漏气量小于0.73m3/24h(或漏氢率小于0.3%)。 2.发电机外端盖安装:

氢冷发电机组及氢系统的防火防爆措施

氢冷发电机组及氢系统的防火防爆措施 氢冷发电机级及氢系统的防火防爆措施,应采取以下防爆措施: (1)提高设计、制造水平,严格检修工艺和质量标准,尽力降低发电机本体(包括冷却器密封垫、冷却器铜 管、发电机端盖、出线套管、热工引出线及相连的氢管道)、密封油系统、密封瓦、氢气系统的管道和阀门的 泄漏程度,并用测氢仪和肥皂水检测,应没有指示,从根本上杜绝氢爆炸的可能。 (2)氢冷发电机进行冷却介质置换时,应严格按照规程进行操作,在置换过程中必须及时、准确化验。冷却介质置换避免与起动升电压、并列、电气试验等项目工作同时进行。 (3)当发电机为氢气冷却运行时,应将补空气管路隔断,并加严密的堵板;当发电机为空气冷却运行时,应 将补充氢气管路隔断并加装严密的堵板。这样做才能以防止阀门不严密发生漏氢气或漏空气而引起爆炸。 (4)严格监视密封油系统的正常运行,密封油压应高于氢压 0.03?0.05MPa,严防氢气留入主油箱系统,引 起爆炸着火。主油箱上的徘烟机应保持经常运行,如排烟机故障时,应采取措施佼油箱内人积存氢气。 氢气设备、管道必须保持正压,否则空气易进入形成有爆炸危险的混合气体。 (5)认真检查和监视油封箱、浮筒的工作情况,应正常并起油封作用。一旦浮筒泄漏或浮筒阀在开起位置失 灵,氢气将大量窜入主油箱,可能引起爆炸,甚至起火,酿成重大火灾事故。 (6)改变发电机氢气压力,或者改变密封油系统运行方式,应严格按照规程操作,严防氢压升高超过泊压后 氢气进入主油箱或大量偏氢。操作时应有操作票、安全措施和监护人员。 (7)排污和氢气置换时,开门应缓慢,速度一般应控制在1m / s 左右,最大不超过3m / s,防止排氢速度过 高,磨擦产生静电,引起着火或爆炸。排氢管应引至室外,室外排氢口应设置固定遮栏,防止周围有明火作业而引起爆燃事故。

44.双水内冷发电机定子端部故障现场处理及分析预防3

双水内冷发电机定子线棒绝缘损伤现场处理及端部故障分析预防 119 双水内冷发电机定子线棒绝缘损伤现场处理 及端部故障分析预防 张 斌 (四川华电西溪河水电开发有限公司) 摘 要:50MW 双水内冷发电机定子线棒出槽口处主绝缘受发电机出口短路电磁力作用断裂的现场处理工艺,发电机定 子线棒端部故障原因分析及预防措施。 关键词:发电机定子线棒 端部故障 现场处理 分析预防 攀枝花发电公司装有4台50MW 双水内冷汽轮发电机组及2台135MW 空冷汽轮发电机组。50MW 机组均为我国70年代初期的产品,由于受当时形势的影响,制造时在线圈结构,端部紧固措施等方面,考虑抗震、防磨及应具备的机械强度不够,在运行中暴露出多种问题,我公司以新庄站2号机问题尤为突出。新庄站2号发电机型号SQF-50-2 50MW,定子额定电压10.5KV,额定电流3440A,冷却方式双水内冷,定子线圈主绝缘为黄绝缘结构,1973年3月北重出品,1977年4月安装移交我厂生产使用。该机投运以来,多次发生漏水、端部松动、脱落黄粉、电腐蚀严重等缺陷,在运行中曾经受过3次出口短路冲击,其中前两次未造成后果,事后检查试验顺利通过,但危害一定是存在的,只是暂时没反应出来。1990年7月定子上层线棒第21槽在小修预试直流试验1.5Ue 时击穿进行更换处理,在更换线棒过程中发现几处黄粉,端部绑线少量垫块松动。1996年9月定子上层线棒第15槽、第32槽在大修前直流试验2Ue 时击穿更换,同时处理了几处端部铁芯松动缺陷。1999年7月及2002年4月两次分别因受潮严重损坏主绝缘及出口短路大面积线棒绝缘击穿,更换了大量线棒。 2002年4月定子线棒绝缘击穿事故中上层线棒全部取出,下层线棒取出10根进行修复处理,部分更换。2003年7月请都江堰电力修造厂主持更换了76根新线棒(有6根下层线棒是2002年4月才更换的新线棒,此次未更换)。2006年8月16日2号发电机开始计划大修,8月19日吹干定子线圈内水后测绝缘三相均超过5000M Ω,绝缘合格,修前试验做直流耐压时励端靠控制室侧18槽上层出槽口处线棒绝缘击穿(B 相),抽出转子将该槽线棒从B 相断开后对其余线棒做耐压试验又陆续发现A、C 两相有线棒绝缘击穿,估计上层线棒大部分都存在绝缘缺陷。上层线棒全部取出后做直流耐压试验只有1、7、22、23号四槽通过,其余38根均在励端出槽口处击穿(其中有两根16、17号汽端出槽口处也有击穿点),检查发现线棒出槽口约30-40 ㎜处宽边及窄边主绝缘均有明显裂纹,测下层线棒绝缘合格,做耐压试验通过。 历次的抢修,使我们逐渐掌握了在现场更换发电机定子线棒的工艺流程及技术要求,在这里我们着重于定子线棒端部故障的现场处理及分析预防,这对我们新机组的检修维护工作也是十分重要的。 一 50MW 发电机定子线棒出槽口处主绝缘裂纹的现场处理 从新庄站2号发电机2006年8月定子线棒故障的现象来看,上层38根线棒均在励端出槽口约30-40㎜处主绝缘均有明显裂纹,而下层线棒无损坏。因此,故障的主要原因应该是端部固定不牢(该发电机为下层线棒直接绑扎在支撑块上,上层线棒绑扎在上下层间垫块上,无压板结构),同时运行中曾发生出口短路,上层线棒出槽口绑扎最薄弱处受切向及径向电磁力作用造成绝缘断裂,因未伤及铜线,故障线棒可在现场进行处理后重新嵌入使用。对上层42根线棒做2.5MPa 1小时水压试验合格后进行故障线棒的修复处理,先用锋钢铲刀铲除损坏的绝缘层,在裂纹处沿周向铲至底见实心铜线长约20㎜,注意用力不能太猛,以免伤及实心扁铜线,然后分别向两边铲出长约60㎜的斜边剖口,斜面应尽量平滑,不能有较大的凹凸断层,斜边应保证足够的长度,以便新旧绝缘的搭接,保证足够的绝缘强度。缠云母带前先在底层刷环氧树脂胶,缠云母带时应沿剖口斜面逐渐向上层层搭接好,用力适度均匀,约半叠包14层,稍高出老绝缘,注意不能高出太多,以保证成型后尺寸与铁芯槽的配合,既要便于下槽,又要防止线棒松动,外包聚四氟乙烯薄膜,便于拆模具。处理好的线棒要立即上模具热压成型,模具根据线棒形状、截面尺寸及新包绝缘长度制作,采用XMJ 250V 500W 120×60㎜电加热器,丝杠拉马手动加压,线棒截面尺寸56.4×28㎜,热压时间为1小时,温度在150-170℃之间,注意模具靠线棒侧表面必须保证足够的光洁度,每次使用前都 发电机本体 第二届全国发电厂电气专业技术交流研讨会论文集

发电厂氢冷发电机和制氢设备的防火措施

发电厂氢冷发电机和制氢设备的防火措施 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

发电厂氢冷发电机和制氢设备的防火措施 1.氢冷发电机及其氢冷系统和制氢设备中的氢气纯度和含氧量,必须在运行中按专用规程的要求进行分析化验,氢纯度和含氧量必须符合规定的标准。氢冷系统中氢气纯度须不低于96%,含氧量不应大于2%;制氢设备中,气体含氢量不应低于99.5%,含氧量不应超过0.5%。如不能达到标准,应立即进行处理,直到合格为止。 2氢冷发电机的轴封必须严密,当机组开始起动时,无论有无充氢气,轴封油都不准中断,油压应大于氢压,以防空气进入发电机外壳或氢气充入汽轮机的油系统中而引起爆炸起火。 3氢冷发电机运行时,排烟机应保持经常运行,并定期(每周一次)从排烟机出口 和主油箱顶取样(漏氢增大时应随时取样检查),监视含氢量是否超过制造厂规定(无制造厂规定的按2%)。如超过则应查明原因并予消除。 4密封油系统应运行可靠,并设自动投入双电源或交直流密封油泵联动装置,备用泵(直流泵)必须经常处于良好备用状态,并应定期校验。两泵电源线应用埋线管或外露部分用耐燃材料外包。 5氢冷发电机密封油箱应设置火灾检测和水喷雾灭火设施。 6在氢冷发电机及其氢冷系统上不论进行动火作业还是进行检修、试验工作,都必须断开氢气系统,并与运行系统有明确的断开点。充氢侧加装法兰短管,并加装金属盲(堵)板。

7动火前或检修试验前,应对检修设备和管道用氮气或其他隋性气体吹洗置换。 在置换过程中应有专职人员定期取样,分析混合气体的成分。取样点应选在排出母管和气体不易流动的死区。取样前先放气1~2MIN,以排出管内余气。 氮气置换时,氮气中含氧量不得超过3%。置换结束后,系统内混合气体的含量必须连续三次分析合格,并应有二台以上测爆仪进行现场监测。 8气体介质的置换避免在起动、并列过程中进行。氢气置换过程中不得进行预防性试验和拆卸螺丝等检修工作。 9机组漏氢量实测计算每月进行一次,用以考核漏氢水平。 10设备和阀门等连接点泄漏检查,可采用肥皂水或合格的携带式可燃气体防爆检测仪,禁止使用明火。

相关文档
最新文档