《有理数》单元测试题
新人教版七年级数学(上)《第1章 有理数》单元测试卷(四川省自贡市富顺县赵化中学)

新人教版七年级数学上册《第1章有理数》单元测试卷(四川省自贡市富顺县赵化中学)一、选择题:1.(3分)下列各组数中,不是互为相反意义的量的是()A.收入200元与支出20元B.上升10米和下降7米C.超过0.05mm与不足0.03mD.增大2岁与减少2升2.(3分)用﹣a表示的数一定是()A.负数B.正数或负数C.负整数D.以上全不对3.(3分)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数;⑤不仅是有理数,而且是分数;⑥是无限不循环小数,所以不是有理数;⑦无限小数不都是有理数;⑧正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为()A.7个B.6个C.5个D.4个4.(3分)若a为有理数,且满足|a|+a=0,则()A.a>0B.a≥0C.a<0D.a≤05.(3分)若|x|=7,|y|=9,则x﹣y为()A.±2B.±16C.﹣2和﹣16D.±2和±16 6.(3分)下列说法中,正确的是()A.若两个有理数的差是正数,则这两个数都是正数B.两数相乘,积一定大于每一个乘数C.0减去任何有理数,都等于此数的相反数D.倒数等于本身的为1,0,﹣17.(3分)如果两个有理数的和除以它们的积,所得的商为0,那么这两个有理数()A.互为倒数B.互为相反数但均不为0C.有一个数为0D.都等于08.(3分)下列四组数中,其中每组三个都不是负数的是()①2,|﹣7|,﹣(﹣);②﹣(﹣6),﹣|﹣3|,0;③﹣(﹣5),,﹣(﹣|﹣6|);④﹣[﹣(﹣6)],﹣[+(﹣2)],0.A.①、②B.①、③C.②、④D.③、④9.(3分)把﹣1,0,1,2,3这五个数,填入下列方框中,使行、列三个数的和相等,其中错误的是()A.B.C.D.10.(3分)下列运算结果是负值的是()A.(﹣5)×[﹣(﹣3)]B.(﹣7)﹣(﹣12)C.﹣1+2D.(﹣15)÷(﹣3)×(﹣)×(﹣3)11.(3分)计算×(﹣a)÷(﹣)×a等于()A.1B.a2C.﹣a D.12.(3分)在﹣3,4,﹣5,﹣6,7中,任取两个数相乘,积最大的是()A.15B.18C.28D.3013.(3分)绝对值大于而不大于的所有整数的积以及和分别等于()A.60和12B.﹣60和0C.3600和12D.﹣3600和0 14.(3分)的倒数与4的相反数的商是()A.﹣5B.5C.D.15.(3分)若a+b=0,则下列各组中不互为相反数的数是()A.a3和b3B.a2和b2C.﹣a和﹣b D.和16.(3分)已知(﹣mn)(﹣mn)(﹣mn)>0,则()A.mn<0B.m>0,n<0C.mn>0D.m<0,n<0 17.(3分)若m•n≠0,则+的取值不可能是()A.0B.1C.2D.﹣218.(3分)有理数a、b在数轴上分别对应的点为M、N,则下列式子结果为负数的个数是()①a+b;②a﹣b;③﹣a+b;④﹣a﹣b;⑤ab;⑥;⑦;⑧a3b3;⑨b3﹣a3.A.4个B.5个C.6个D.7个19.(3分)某市大约有36万中小学生参加了“校园文明礼仪”的主题活动,将数据36万用科学记数法记成a×10n﹣1的形式后,则n的值为()A.3B.4C.5D.620.(3分)近似数3.70所表示的准确值x的取值范围是()A.3.695≤x<3.705B.3.60<x<3.80C.3.695<x≤3.705D.3.700<x≤3.70521.(3分)计算:(﹣﹣)×(﹣34)的结果为()A.﹣21B.21C.﹣24D.24二、填空题:22.(3分)相反数等于本身的数有,倒数等于本身的数有,奇次幂等于本身的数有,绝对值等于本身的数有.23.(3分)如图的数轴上有两处不小心被墨水淹没了,所标注的数据是墨水部分边界与数轴相交点的数据;则被淹没的整数点有个,负整数点有个,被淹没的最小的负整数点所表示的数是.24.(3分)在数轴上把点A(﹣5)沿数轴移动6个单位后得到点B,则B所表示的数为.25.(3分)比较大小:①﹣0.﹣(+);②+(﹣5)﹣|﹣17|;③﹣32(﹣2)3.26.(3分)下列各数按大小顺序排列后,用“<”连接起来:﹣(﹣5),﹣(+3),﹣1,4,0,﹣2,﹣22,|﹣0.5|..27.(3分)填“>”或“<”或“=”号:①若m>0,n>0,且|m|<|n|,则m+n0,m﹣n0,mn0,0;②若m<0,n<0,且|m|<|n|,则m+n0,m﹣n0,mn0,0;③若m>0,n<0,且|m|<|n|,则m+n0,m﹣n0,mn0,0;④若m>0,n<0,且|m|>|n|,则m+n0,m﹣n0,mn0,0;⑤若m、n互为相反数,则m+n=.28.(3分)①()﹣(﹣3)=﹣11;②﹣5﹣()=17;③()+(﹣)=﹣;④(﹣22)+()=﹣13;⑤()÷=﹣3;⑥()×(﹣3)=32;⑦32﹣10=();⑧﹣22+1=();⑨()÷(﹣3)4=﹣.29.(3分)①125÷(﹣)×=;②1﹣2+3﹣4+5﹣…﹣2014+2015﹣2016+2017=.30.(3分)①比﹣9大﹣3的数是;②5比﹣16小;③数与的积为14.31.(3分)若|x|=5,|y|=9,则x+y=,x﹣y=.32.(3分)a是最大的负整数,b是最小的正整数,c为绝对值最小的数,则6a ﹣2b+4c=.33.(3分)若|6﹣x|与|y+9|互为相反数,则x=,y=,(x+y)÷(x﹣y)=.34.(3分)地球上的海洋面积约为361 000 000km2,用科学记数法表示应为km2.35.(3分)若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为,现已知x1=﹣,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2017=.36.(3分)已知:,,,…,观察上面的计算过程,寻找规律并计算C106=.三、计算题37.①(﹣5)+9+(﹣4);②(﹣)+3.25+2+(﹣5.875)+1.15③(﹣33)+|﹣56|+|﹣44|+(﹣67);④(+7.563)+[(﹣3.76)+(﹣3.563)+(﹣0.03)+(﹣1.24)].38.①(﹣5)﹣(﹣2.25)﹣(﹣2)﹣(+5);②(5﹣12)﹣(13﹣5).③0﹣(﹣2)+(﹣7)﹣(+1)+(﹣10);④﹣0.5﹣5﹣1+3﹣4+2.39.①(+1)×(﹣2.4)×(﹣0.125);②0.1×(﹣100)×(﹣0.001)×(﹣10)×(﹣1000)×(﹣0.01);③(+2)×(﹣1)×(+2)×(﹣4);④(﹣375)×(﹣8)+(﹣375)×(﹣9)+375×(﹣7).40.①399×(﹣6);②﹣99×3;③﹣60×(3﹣+﹣).41.①(﹣4)÷(﹣14)×(﹣4.5)②(+﹣)÷(﹣);③365÷(﹣13)+565÷13+1100÷13;④÷(﹣)×().42.①2×(﹣5)+23﹣3÷;②﹣14﹣(2﹣0.5)××[﹣].43.①1﹣2+3﹣4+5﹣6+7﹣8+9﹣…﹣2012+2013﹣2014+2015﹣2016;②(﹣1)×(﹣1)×(﹣1)×…×(﹣1)×(﹣1)×(﹣1);③1﹣﹣﹣﹣﹣…﹣﹣﹣.(提示:﹣=﹣1+,…﹣=﹣+,…以此类推!)四、解答题:44.已知:a、b、c、d是互不相等的整数,且abcd=9,求代数式a+b+c+d的值.45.a的相反数为b,c的倒数d,m的绝对值为6,试求6a+6b﹣9cd+m的值.46.规定○是一种新的运算符号,且a○b=a2+a×b﹣a+2,例如:2○3=22+2×3﹣2+2=10.请你根据上面的规定试求:①﹣2○1的值;②1○3○5的值.五、应用题:47.小车司机蔡师傅某天下午的营运全是在东西走向的富泸公路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+14,﹣3,+7,﹣3,+11,﹣4,﹣3,+11,+6,﹣7,+9(1)蔡师傅这天最后到达目的地时,距离下午出车时的出发地多远?(2)蔡师傅这天下午共行车多少千米?(3)若每千米好有0.1L,则这天下午蔡师傅用了多少升油?48.气象资料表明,高度每增加1km,气温大约升高﹣6℃.(1)我国著名风景区黄山的天都峰的高度约为1700米,当山下的地面温度约为18℃时,求山顶气温?(2)若某地地面的温度为20℃时,高空某处的气温为﹣22℃,求此处的高度.六、探究题:49.如图的图例是一个方阵图,每行的3个数、每列的3个数、斜对角的3个数相加的和均相等.如果将方阵图的每个数都加上同一个数,那么方阵中每行的3个数、每列的3个数、斜对角的3个数相加的和仍然相等,这样就形成新的方阵图.根据图①②③中给出的数,对照原来的方阵图,请你完成图①②③的方阵图?50.十几年前我国曾经流行有一种叫“二十四点”的数学趣味算题,方法是给出1~13之间的自然数,从中任取四个,将这四个数(四个数都只能用一次)进行“+”“﹣”“×”“÷”运算,可加括号使其结果等于24.例如:对1,2,3,4可运算(1+2+3)×4=24,也可以写成4×(1+2+3)=24,但视作相同的方法.现有郑、付两同学的手中分别握着四张扑克牌(见下图);若红桃、方块上的点数记为负数,黑桃、梅花上的点数记为正数.请你对郑、付两同学的扑克牌的按要求进行记数,并按前面“二十四点”运算方式对郑、付两同学的记数分别进行列式计算,使其运算结果均为24.(分别尽可能提供多种算法)依次记为:、、、依次记为:、、、.(1)帮助郑同学列式计算:(2)帮助付同学列式计算:.51.观察下列三行数:﹣2,4,﹣8,16,﹣32,…①0,6,﹣6,18,﹣30,…②﹣1,2,﹣4,8,﹣16,…③(1)第①行的数按什么规律排列?写出第①行的第n个数;(2)第②、③行数与第①行数分别有什么关系?(3)取每行第7个数,计算这三个数的和.新人教版七年级数学上册《第1章有理数》单元测试卷(四川省自贡市富顺县赵化中学)参考答案一、选择题:1.D;2.D;3.B;4.D;5.D;6.C;7.B;8.B;9.D;10.A;11.B;12.D;13.D;14.C;15.B;16.A;17.B;18.B;19.D;20.A;21.B;二、填空题:22.0;±1;±1,0;非负数;23.69;52;﹣72;24.1或﹣11;25.=;>;<;26.﹣22<﹣(+3)<﹣2<﹣1<0<|﹣0.5|<4<﹣(﹣5);27.>;<;>;>;<;>;>;>;<;>;<;<;>;>;<;<;0;28.﹣14;﹣22;﹣;+9;﹣;﹣10;﹣1;﹣3;﹣9;29.﹣180;1009;30.﹣12;﹣21;﹣6;31.4或﹣14或14或﹣4;﹣14或4或﹣4或14;32.﹣8;33.6;﹣9;﹣;34.3.61×108;35.﹣;36.210;三、计算题37.;38.;39.;40.;41.;42.;43.;四、解答题:44.;45.;46.;五、应用题:47.;48.;六、探究题:49.;50.﹣9;7;﹣6;2;7;﹣13;﹣5;3;(﹣9+7﹣2)×(﹣6);[﹣5×(﹣13)+7]÷3;51.;。
沪科版七年级上数学《第1章有理数》单元测试(含答案)

《有理数》单元测试一.选择题(共12小题)1.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×1062.﹣2的倒数是()A.2B.﹣3C.﹣ D.3.计算(﹣16)÷的结果等于()A.32 B.﹣32 C.8 D.﹣84.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A.1个 B.2个 C.3个 D.4个5.如图,点A、B在数轴上表示的数的绝对值相等,且AB=4,那么点A表示的数是()A.﹣3 B.﹣2 C.﹣1 D.36.对于任何有理数a,下列各式中一定为负数的是()A.﹣(﹣3+a)B.﹣a C.﹣|a+1| D.﹣|a|﹣17.如图,现有3×3的方格,每个小方格内均有不同的数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P 处对应的数字是()A.7 B.5 C.4 D.18.下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和19.已知a,b,c为非零的实数,则的可能值的个数为()A.4 B.5 C.6 D.710.“△”表示一种运算符号,其意义是:a△b=2a﹣b,如果x△(1△3)=2,那么x等于()A.1 B.C.D.211.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)12.当a=﹣1时,n为整数,则﹣a n+1(a2n+3﹣a2n+1﹣3a n+1+6a n)的值是()A.9 B.3 C.﹣3 D.﹣9二.填空题(共4小题)13.当a,b互为相反数,则代数式a2+ab﹣2的值为.14.计算﹣2+3×4的结果为15.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是.16.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为三.解答题(共7小题)17.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0,试回答下列问题:(1)求a,b,c的值(2)a、b、c所对应的点分别为A、B、C,若点A以每秒1个单位长度的速度向左运动,点C以每秒5个点位长度的速度向右运动,试求几秒后点A与点C 距离为12个点位长度?18.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是.(2)经过几秒,点M、点N分别到原点O的距离相等?19.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.20.(1)﹣|﹣7+1|+3﹣2÷(﹣)(2)()÷(﹣)×(3)21.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数c,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,),都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是;(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)22.如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.23.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.参考答案与试题解析一.选择题(共12小题)1.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×106【解答】解:316 000 000用科学记数法可表示为3.16×108,故选:C.2.﹣2的倒数是()A.2B.﹣3C.﹣ D.【解答】解:﹣2的倒数是﹣.故选:C.3.计算(﹣16)÷的结果等于()A.32 B.﹣32 C.8 D.﹣8【解答】解:(﹣16)÷=(﹣16)×2=﹣32,故选:B.4.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A.1个 B.2个 C.3个D.4个【解答】解:|﹣2|=2,﹣(﹣2)2=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,﹣4,﹣8是负数,∴负数有2个.故选:B.5.如图,点A、B在数轴上表示的数的绝对值相等,且AB=4,那么点A表示的数是()A.﹣3 B.﹣2 C.﹣1 D.3【解答】解:如图,AB的中点即数轴的原点O.根据数轴可以得到点A表示的数是﹣2.故选:B.6.对于任何有理数a,下列各式中一定为负数的是()A.﹣(﹣3+a)B.﹣a C.﹣|a+1| D.﹣|a|﹣1【解答】解:A、﹣(﹣3+a)=3﹣a,a≤3时,原式不是负数,故A错误;B、﹣a,当a≤0时,原式不是负数,故B错误;C、∵﹣|a+1|≤0,∴当a≠﹣1时,原式才符合负数的要求,故C错误;D、∵﹣|a|≤0,∴﹣|a|﹣1≤﹣1<0,所以原式一定是负数,故D正确.故选:D.7.如图,现有3×3的方格,每个小方格内均有不同的数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P 处对应的数字是()A.7 B.5 C.4 D.1【解答】解:设下面中间的数为x,如图所示:p+6+8=7+6+5,解得P=4.故选:C.8.下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和1【解答】解:A、B、D均正确,绝对值等于它自身的数是所有非负数,所以C 错误,故选:C.9.已知a,b,c为非零的实数,则的可能值的个数为()A.4 B.5 C.6 D.7【解答】解:①a、b、c三个数都是正数时,a>0,ab>0,ac>0,bc>0,原式=1+1+1+1=4;②a、b、c中有两个正数时,设为a>0,b>0,c<0,则ab>0,a c<0,bc<0,原式=1+1﹣1﹣1=0;设为a>0,b<0,c>0,则ab<0,ac>0,bc<0,原式=1﹣1+1﹣1=0;设为a<0,b>0,c>0,则ab<0,ac<0,bc>0,原式=﹣1﹣1﹣1+1=﹣2;③a、b、c有一个正数时,设为a>0,b<0,c<0,则ab<0,ac<0,bc>0,原式=1﹣1﹣1+1=0;设为a<0,b>0,c<0,则ab<0,ac>0,bc<0,原式=﹣1﹣1+1﹣1=﹣2;设为a<0,b<0,c>0,则ab>0,ac<0,bc<0,原式=﹣1+1﹣1﹣1=﹣2;④a、b、c三个数都是负数时,即a<0,b<0,c<0,则ab>0,ac>0,bc>0,原式=﹣1+1+1+1=2.综上所述,的可能值的个数为4.故选:A.10.“△”表示一种运算符号,其意义是:a△b=2a﹣b,如果x△(1△3)=2,那么x等于()A.1 B.C.D.2【解答】∵x△(1△3)=2,x△(1×2﹣3)=2,x△(﹣1)=2,2x﹣(﹣1)=2,2x+1=2,∴x=.11.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)【解答】解:A、a1+a2+a3+a7+a8+a9=(a4+a5+a6)﹣21+(a4+a5+a6)+21=2(a4+a5+a6),正确,不符合题意;B、a1+a4+a7+a3+a6+a9=a1+a3+a4+a6+a7+a9=2(a2+a5+a8),正确,不符合题意;C、a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5,正确,不符合题意D、(a3+a6+a9)﹣(a1+a4+a7)=6,错误,符合题意.故选:D.12.当a=﹣1时,n为整数,则﹣a n+1(a2n+3﹣a2n+1﹣3a n+1+6a n)的值是()A.9 B.3 C.﹣3 D.﹣9【解答】解:当n是偶数时,原式=1×(﹣1+1+3+6)=9,当n是奇数时,原式=﹣1×(﹣1+1﹣3﹣6)=9.故选:A.二.填空题(共4小题)13.当a,b互为相反数,则代数式a2+ab﹣2的值为﹣2.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2+ab﹣2=a(a+b)﹣2=0﹣2=﹣2,故答案为:﹣2.14.计算﹣2+3×4的结果为10【解答】解:﹣2+3×4=﹣2+12=10,故答案为:10.15.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是﹣2或﹣1或0或1或2.【解答】解:①﹣1<x<﹣0.5时,[x]+(x)+[x)=﹣1+0﹣1=﹣2;②﹣0.5<x<0时,[x]+(x)+[x)=﹣1+0+0=﹣1;③x=0时,[x]+(x)+[x)=0+0+0=0;④0<x<0.5时,[x]+(x)+[x)=0+1+0=1;⑤0.5<x<1时,[x]+(x)+[x)=0+1+1=2.故答案为:﹣2或﹣1或0或1或2.16.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为465【解答】解:200的所有正约数之和可按如下方法得到:因为200=23×52,所以200的所有正约数之和为(1+2+22+23)×(1+5+52)=465.故答案为:465.三.解答题(共7小题)17.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0,试回答下列问题:(1)求a,b,c的值(2)a、b、c所对应的点分别为A、B、C,若点A以每秒1个单位长度的速度向左运动,点C以每秒5个点位长度的速度向右运动,试求几秒后点A与点C 距离为12个点位长度?【解答】解:(1)由题意得,b=1,c﹣5=0,a+b=0,则a=﹣1,b=1,c=5;(2)设x秒后点A与点C距离为12个点位长度,则x+5x=12﹣6,解得,x=1,答:1秒后点A与点C距离为12个点位长度.18.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是30.(2)经过几秒,点M、点N分别到原点O的距离相等?【解答】(1)∵OB=3OA=30,∴B对应的数是30.故答案为:30.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x﹣10,点N对应的数为2x.①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则,3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.19.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.20.(1)﹣|﹣7+1|+3﹣2÷(﹣)(2)()÷(﹣)×(3)【解答】解:(1)原式=﹣6+3+6=3;(2)原式=﹣×(﹣)×=1;(3)原式===2.2.21.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数c,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,),都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是(5,);(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)不是“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(6,1.4)(注意:不能与题目中已有的“椒江有理数对”重复)【解答】解:(1)﹣2+1=﹣1,﹣2×1﹣1=﹣3,∴﹣2+1≠﹣2×1﹣1,∴(﹣2,1)不是“共生有理数对”,∵5+=,5×﹣1=,∴5+=5×﹣1,∴(5,)中是“椒江有理数对”;(2)由题意得:a+3=3a﹣1,(3)不是.理由:﹣n+(﹣m)=﹣n﹣m,﹣n•(﹣m)﹣1=mn﹣1∵(m,n)是“椒江有理数对”∴m+n=mn﹣1∴﹣n﹣m=﹣(mn﹣1)m∴(﹣n,﹣m)不是“椒江有理数对”,(4)(5,1.5)等.故答案为:(5,);不是;(5,1.5).22.如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.【解答】解:(1)﹣2+4=2.故点B所对应的数;(2)(﹣2+6)÷2=2(秒),4+(2+2)×2=12(个单位长度).故A,B两点间距离是12个单位长度.(3)运动后的B点在A点右边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12﹣4,运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12+4,解得x=8.故经过4秒或8秒长时间A,B两点相距4个单位长度.23.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D 的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.【解答】解:(1)∵|a+8|与(b﹣16)2互为相反数,∴|a+8|+(b﹣16)2=0,∴a+8=0,b﹣16=0,解得a=﹣8,b=16.∴此时刻快车头A与慢车头C之间相距16﹣(﹣8)=24单位长度;(2)(24﹣8)÷(6+2)=16÷8=2(秒).或(24+8)÷(6+2)=4(秒)答:再行驶2秒或4秒两列火车行驶到车头AC相距8个单位长度;(3)∵PA+PB=AB=2,当P在CD之间时,PC+PD是定值4,t=4÷(6+2)=4÷8=0.5(秒),此时PA+PC+PB+PD=(PA+PB)+(PC+PD)=2+4=6(单位长度).故这个时间是0.5秒,定值是6单位长度.。
广州市第六中学七年级数学上册第一单元《有理数》测试卷(含答案解析)

一、选择题1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( ) A .94分B .85分C .98分D .96分2.13-的倒数的绝对值( )A .-3B .13-C .3D .133.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=-A .1个B .2个C .3个D .4个 4.若1<a <2,则化简|a -2|+|1-a |的结果是( )A .a -1B .1C .a +1D .a -35.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a6.下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 7.用计算器求243,第三个键应按( )A .4B .3C .y xD .=8.若a ,b 互为相反数,则下面四个等式中一定成立的是( ) A .a+b=0 B .a+b=1C .|a|+|b|=0D .|a|+b=0 9.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( ) A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m10.6-的相反数是( )A .6B .-6C .16D .16-11.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( ) A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃12.已知有理数a ,b 满足0ab ≠,则||||a b a b+的值为( ) A .2± B .±1 C .2±或0 D .±1或0 13.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .214.下面说法中正确的是 ( ) A .两数之和为正,则两数均为正 B .两数之和为负,则两数均为负 C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数15.若2020M M +-=+,则M 一定是( ) A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数二、填空题16.在有理数3.14,3,﹣12 ,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x ,正整数的个数为y ,则x+y 的值等于__. 17.绝对值小于2018的所有整数之和为________.18.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件所有x 的值是___.19.若有理数a ,b 满足()26150a b -+-=,则ab =__________. 20.在如图所示的运算流程中,若输出的数y=5,则输入的数x=_____.21.计算1-2×(32+12)的结果是 _____. 22.若m ﹣1的相反数是3,那么﹣m =__. 23.化简﹣|+(﹣12)|=_____.24.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.25.(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____; (2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____; (3)用四舍五入法,把36.547精确到百分位的近似数是____. 26.绝对值小于4.5的所有负整数的积为______.三、解答题27.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数. 28.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦29.计算: (1)()21112424248⎛⎫-+--+⨯-⎪⎝⎭ (2)()()1178245122-÷-⨯--⨯+÷ 30.某校七年级(1)至(4)班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:班级 1班2班 3班 4班 实际购买量(本)a 33c21实际购买量与计划购买量的差值(本)12+ b8-9-a =c =(2)这4个班实际共购书多少本?(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书的售价为30元,请计算这4个班整体购书的最低总花费是多少元?。
(必考题)七年级数学上册第一单元《有理数》-选择题专项测试题(专题培优)

一、选择题1.绝对值大于1小于4的整数的和是( )A .0B .5C .﹣5D .10A 解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A .2.下列各式计算正确的是( )A .826(82)6--⨯=--⨯B .434322()3434÷⨯=÷⨯C .20012002(1)(1)11-+-=-+D .-(-22)=-4C 解析:C【分析】原式各项根据有理数的运算法则计算得到结果,即可作出判断.【详解】A 、82681220--⨯=--=-,错误,不符合题意;B 、433392234448÷⨯=⨯⨯=,错误,不符合题意; C 、20012002(1)(1)110-+-=-+=,正确,符合题意;D 、-(-22)=4,错误,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.3.下列计算结果正确的是( )A .-3-7=-3+7=4B .4.5-6.8=6.8-4.5=2.3C .-2-13⎛⎫- ⎪⎝⎭=-2+13=-213 D .-3-12⎛⎫-⎪⎝⎭=-3+12=-212D 解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A 选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.4.计算(-2)2018+(-2)2019等于( )A.-24037B.-2 C.-22018D.22018C 解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.5.在数3,﹣13,0,﹣3中,与﹣3的差为0的数是()A.3 B.﹣13C.0 D.﹣3D解析:D【分析】与-3的差为0的数就是0+(-3),据此即可求解.【详解】解:根据题意得:0+(﹣3)=﹣3,则与﹣3的差为0的数是﹣3,故选:D.【点睛】本题考查了有理数的运算.熟练掌握有理数减法法则是解本题的关键.6.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a+b<0 B.a+b>0 C.a﹣b<0 D.ab>0A解析:A【分析】根据数轴判断出a、b的符号和取值范围,逐项判断即可.解:从图上可以看出,b <﹣1<0,0<a <1,∴a+b <0,故选项A 符合题意,选项B 不合题意;a ﹣b >0,故选项C 不合题意;ab <0,故选项D 不合题意.故选:A .【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a 、b 的符号,熟知有理数的运算法则是解题关键.7.下面说法中正确的是 ( )A .两数之和为正,则两数均为正B .两数之和为负,则两数均为负C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数C 解析:C【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1,故选C.【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.8.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( )A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m B解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m , 所以28nm 用科学记数法可表示为:2.8×10﹣8m ,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.下列说法中正确的是( )A .a -表示的数一定是负数B .a -表示的数一定是正数C .a -表示的数一定是正数或负数D .a -可以表示任何有理数D【分析】直接根据有理数的概念逐项判断即可.【详解】解:A. a-表示的数不一定是负数,当a为负数时,-a就是正数,故该选项错误;B. a-表示的数不一定是正数,当a为正数时,-a就是负数,故该选项错误;C. a-表示的数不一定是正数或负数,当a为0时,-a也为0,故该选项错误;D. a-可以表示任何有理数,故该选项正确.故选:D.【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.10.下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则ab=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.11.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( )A .少5B .少10C .多5D .多10D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D .12.若|a |=1,|b |=4,且ab <0,则a +b 的值为( )A .3±B .3-C .3D .5± A 解析:A【分析】通过ab <0可得a 、b 异号,再由|a |=1,|b |=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a +b 的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab <0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.13.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为( )A .8个B .16个C .32个D .64个D 解析:D【分析】每半小时分裂一次,一个变为2个,实际是21个.分裂第二次时,2个就变为了22个.那么经过3小时,就要分裂6次.根据有理数的乘方的定义可得.【详解】26=2×2×2×2×2×2=64.故选D .【点睛】本题考查了有理数的乘方在实际生活中的应用,应注意观察问题得到规律.14.若2020M M +-=+,则M 一定是( )A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数B 解析:B【分析】直接利用绝对值的性质即可解答.解:∵M+|-20|=|M|+|20|,∴M≥0,为非负数.故答案为B.【点睛】本题考查了绝对值的应用,灵活应用绝对值的性质是正确解答本题的关键.15.绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.4C 解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C.16.13-的倒数的绝对值()A.-3 B.13-C.3 D.13C解析:C 【分析】首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】13-的倒数为-3,-3绝对值是3,故答案为:C.【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.17.下列有理数的大小比较正确的是()A.1123<B.1123->-C.1123->-D.1123-->-+ B解析:B【分析】根据有理数大小的比较方法逐项判断即得答案.【详解】解:A、1123>,故本选项大小比较错误,不符合题意;B、因为1122-=,1133-=,1123>,所以1123->-,故本选项大小比较正确,符合题意;C、因为1122-=,1133-=,1123>,所以1123-<-,故本选项大小比较错误,不符合D 、因为1122--=-,1133-+=-,1123-<-,所以1123--<-+,故本选项大小比较错误,不符合题意.故选:B .【点睛】本题考查了有理数的大小比较和有理数的绝对值,属于基础题型,掌握比较大小的方法是解题的关键.18.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( )A .提高20元B .减少20元C .提高10元D .售价一样B解析:B【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解.【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元),所以现在的售价与原售价相比减少20元,故选:B .【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.19.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B B解析:B【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.20.在数轴上距原点4个单位长度的点所表示的数是( ).A .4B .-4C .4或-4D .2或-2C【解析】解:距离原点4个单位长度的点在原点的左边和右边各有一个,分别是4和-4,故选C.21.如果|a|=-a,下列成立的是()A.-a一定是非负数B.-a一定是负数C.|a|一定是正数D.|a|不能是0A解析:A【分析】根据绝对值的性质确定出a的取值范围,再对四个选项进行逐一分析即可.【详解】∵|a|=-a,∴a≤0,A、正确,∵|a|=-a,∴-a≥0;B、错误,-a是非负数;C、错误,a=0时不成立;D、错误,a=0时|a|是0.故选A.【点睛】本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.22.计算11212312341254 2334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值()A.54 B.27 C.272D.0C解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27=27×1 2=272.故选:C.【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.23.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.24.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a D 解析:D【解析】【分析】根据数轴表示数的方法得到a <0<b ,且|a|>b ,则-a >b ,-b >a ,然后把a ,b ,-a ,-b 从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.25.已知n 为正整数,则()()2200111n -+-=( ) A .-2B .-1C .0D .2C解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n为正整数,∴2n为偶数.∴(-1)2n+(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1. 26.下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3600C.6.610精确到千分位D.2.708×104精确到千分位C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A、近似数1.50和1.5是不同的,A错B、3520精确到百位是3500,B错D、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.27.有理数a、b在数轴上,则下列结论正确的是()A.a>0 B.ab>0 C.a<b D.b<0C解析:C【分析】根据数轴的性质,得到b>0>a,然后根据有理数乘法计算法则判断即可.【详解】根据数轴上点的位置,得到b>0>a,所以A、D错误,C正确;而a和b异号,因此乘积的符号为负号,即ab<0所以B错误;故选C.【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a和b的位置正确判断a和b的大小.28.如果a=14-,b=-2,c=324-,那么︱a︱+︱b︱-︱c︱等于()A.-12B.112C.12D.-112A解析:A【分析】逐一求出三个数的绝对值,代入原式即可求解.【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A .【点睛】 本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.29.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.30.一个数的绝对值是3,则这个数可以是( )A .3B .3-C .3或者3-D .13C 解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a ,∴|a|=3,∴a=±3故选C .。
《第1章 有理数》单元测试卷北京课改版七年级上册数学

2021-2022学年北京课改新版七年级上册数学《第1章有理数》单元测试卷一.选择题1.四个数﹣1,0,1,中为负数的是()A.﹣1B.0C.1D.2.如果规定收入为正,那么支出为负,收入2元记作+2元,支出5元记作()A.5元B.﹣5元C.﹣3元D.7元3.在15,﹣0.23,0,5,﹣0.65,2,﹣,316%这几个数中,非负数的个数是()A.4个B.5个C.6个D.7个4.数轴上表示﹣5和3的点分别是A和B,则线段AB的长为()A.﹣8B.﹣2C.2D.85.6的相反数是()A.﹣B.C.﹣6D.66.数轴上,点A表示的数是1,点B与点A距离2个单位长度,则点B表示的数是()A.3B.﹣1C.2D.3或﹣17.下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃﹣183﹣253﹣196﹣268.9则沸点最高的液体是()A.液态氧B.液态氢C.液态氮D.液态氦8.﹣2的绝对值是()A.4B.﹣4C.2D.﹣29.已知a+2b+3c=m,a+3b+4c=m,则b和c的关系为()A.互为相反数B.互为倒数C.相等D.无法确定10.若|a+2|+|b﹣7|=0,则a+b的值为()A.﹣1B.1C.5D.﹣5二.填空题11.若某商品每件涨价10元记作+10元,那么该商品每件降价12元记作元.12.如果图中的2300.00表示存入2300元,那么﹣1800.00表示.13.已知在数轴上点A所表示的数是﹣2,如果将点A向左移动3个单位长度得到点B,那么点B所表示的数是.14.﹣2021的相反数是.15.如果收入20元记作+20元,那么支出30元记作元.16.数轴上到表示数﹣4点距离为3的点所表示的数为.17.若m是﹣6的相反数,则m的值是.18.把125%化成分数是.19.已知|x﹣1|+|y+2|=0,则(2x+y)(2x﹣y)=.20.若a+b+c<0,abc>0,则的值为.三.解答题21.某文具店在一周的销售中,盈亏情况如下表(盈为正,单位:元):星期一星期二星期三星期四星期五星期六星期日合计﹣27.8﹣50.3162138.1●●188458表中星期五和星期六的盈亏数被墨水污染了.(1)能看到数据的这5天中,哪天赚的最多?哪天赚的最少?差距是多少?(2)星期五和星期六这两天一共是盈还是亏?盈亏是多少?(3)若周六的盈亏数比周五的盈亏数大62,求周五的盈亏数是多少?22.把下列各数的序号填入相应的大括号内(少答、多答、错答均不得分):①﹣13;②0.1;③﹣2.23;④+27;⑤0;⑥﹣,⑦﹣15%;⑧﹣1,⑨.整数数集{…};非负数集{…};分数集{…};非负整数集{…}.23.在单位长度为1的数轴上,点A表示的数为﹣2.5,点B表示的数为4.(1)求AB的长度;(2)若把数轴的单位长度扩大30倍,点A、点B所表示的数也相应的发生变化,已知点M是线段AB的三等分点,求点M所表示的数.24.某粮库3天内粮食进、出库的吨数如下(“+”表示进库,“﹣”表示出库):+27,﹣32,﹣18,+34,﹣38,+20.(1)经过这3天,仓库里的粮食是增加了还是减少了?变化了多少吨?(2)如果进出的装卸费都是每吨30元,那么这3天要付装卸费多少元?25.画出数轴,并在数轴上画出表示下列各数的点.﹣1,3,0,﹣.26.股市一周内周六、周日两天不开市,股民小王上周五以每股25.20元的价格买进某公司股票10000股,买进或卖出时都得支付交易额的0.5%作为手续费,下表为本周内每天该股票的涨跌情况:星期一二三四五﹣0.1+0.4﹣0.2﹣0.4+0.5每股涨跌注:正号表示股价比前一天上涨,负号表示股价比前一天下跌.(1)星期四收盘时,每股多少元?(2)本周内哪一天股价最高,是多少元?若股民小王本周末将该股票全部售出,小王在本次交易中是赚了还是亏了?请你算算,如果是赚了,赚了多少钱?如果亏了,亏了多少钱?27.若a的相反数等于2,|b|=3,则求a+b的值.参考答案与试题解析一.选择题1.解:,负数是﹣1.故选:A.2.解:如果规定收入为正,那么支出为负,收入2元记作+2,支出5元记作﹣5元.故选:B.3.解:在15,﹣0.23,0,5,﹣0.65,2,﹣,316%这几个数中,非负数有15,0,5,2,316%,共5个.故选:B.4.解:线段AB的长为:3﹣(﹣5)=8.故选:D.5.解:相反数指的是两个数符号不同但绝对值相同,所以6的相反数为﹣6.故选:C.6.解:1﹣2=﹣1,1+2=3,∴点B表示的数是3或﹣1.故选:D.7.解:因为﹣268.9<﹣253<﹣196<﹣183,所以沸点最高的液体是液态氧.故选:A.8.解:|﹣2|=2,即﹣2的绝对值是2,故选:C.9.解:由题意得,a+2b+3c=m,a+3b+4c=m,则a+2b+3c=a+3b+4c,所以b+c=0,所以b与c互为相反数.故选:A.10.解:∵|a+2|+|b﹣7|=0,∴|a+2|=0,|b﹣7|=0,∴a+2=0,b﹣7=0,解得,a=﹣2,b=7,则a+b=5,故选:C.二.填空题11.解:若某商品每件涨价10元记作+10元,那么该商品每件降价12元记作﹣12元.故答案为:﹣12.12.解:如果图中的2300.00表示存入2300元,那么﹣1800.00表示支出1800元.故答案为:支出1800元.13.解:由题意可知:﹣2﹣3=﹣5.故答案为﹣5.14.解:﹣2021的相反数是:2021.故答案为:2021.15.解:由收入为正数,则支出为负数,故收入20元记作+20元,那么支出30元记作﹣30元.故答案为:﹣30.16.解:距离点数﹣4为3个单位长度的点有两个,它们分别是﹣4+3=,﹣4﹣3=,故答案为﹣或.17.解:∵m是﹣6的相反数,∴m=6.故答案为:6.18.解:125%=;故答案为:.19.解:根据题意得,x﹣1=0,y+2=0,解答:x=1,y=﹣2,∴(2x+y)(2x﹣y)=4x2﹣y2=4﹣4=0,故答案为:0.20.解:∵a+b+c<0,abc>0,∴a、b、c三个数中必定是一正两负,∴当a<0,b<0,c>0时,ab>0,此时=﹣1+2+3=4;当a<0,b>0,c<0时,ab<0,此时=﹣1﹣2+3=0当a>0,b<0,c<0时,ab<0,此时=1﹣2+3=2故答案为:4或0或2.三.解答题21.(1)周日最多188,周二最少﹣50.3,差距188﹣(﹣50.3)=238.3(元);(2)458﹣[﹣27.8+(﹣50.3)+162+138.1+188]=48(元),∵48为正数,∴这两天一共是盈利,盈利48元;(3)设周五的盈亏数为x,根据题意得,x+(x+62)=48∴x=﹣7,∴周五的盈亏数是﹣7.22.解:整数数集{①﹣13,④+27,⑤0…};非负数集{②0.1,④+27,⑤0,⑨…};分数集{②0.1,③﹣2.23,⑥﹣,⑦﹣15%,⑧﹣1,⑨…};非负整数集{④+27,⑤0…}.故答案为:①,④,⑤;②,④,⑤,⑨;②,③,⑥,⑦,⑧,⑨;④,⑤.23.解:(1)AB=4﹣(﹣2.5)=6.5(2)若把数轴的单位长度扩大30倍⇒点A所表示的数为30×(﹣2.5)=﹣75,点B所表示的数为30×4=120⇒线段AB上靠近A的三等分点所表示的数为+(﹣75)=﹣10,线段AB上靠近B的三等分点所表示的数为120﹣=55∴点M所表示的数为﹣10或55答:(1)AB的长度为6.5(2)点M所表示的数为﹣10或5524.解:(1)+27+(﹣32)+(﹣18)+34+(﹣38)+20=﹣7(吨),答:库里的粮食是减少了,减少了7吨;(2)(|+27|+|﹣32|+|﹣18|+|+34|+|﹣38|+|+20|)×30=169×30=5070(元),答:这3天要付装卸费5070元.25.解:画数轴并表示各数如图:26.解:(1)(﹣0.1)+(+0.4)+(﹣0.2)+(﹣0.4)=(﹣0.1)+(﹣0.2)+(+0.4)+(﹣0.4)=﹣0.3(元)25.20+(﹣0.3)=24.90(元)答:星期四收盘时,每股24.90元.(2)周一的股价:25.20+(﹣0.1)=25.10(元),周二的股价:25.10+(+0.5)=25.50(元),周三的股价:25.50+(﹣0.2)=25.30(元),周四的股价:25.30+(﹣0.4)=24.90(元),周五的股价:24.90+(+0.5)=25.40(元),∵24.90<25.10<25.30<25.40<25.50,∴本周内周二股价最高,是25.50元,25.20×10000×0.5%=1260(元),25.40×10000×0.5%=1270(元),1260+1270=2530(元),(25.40﹣25.20)×10000=2000(元),2000﹣2530=﹣530(元),∴小王在本次交易中是亏了,亏了530元.27.解:∵a的相反数等于2,∴a=﹣2,∵|b|=3,∴b=±3,∴①a=﹣2,b=3时,a+b=﹣2+3=1;②a=﹣2,b=﹣3时,a+b=﹣2+(﹣3)=﹣5.。
《有理数》章末检测1

第一单元测试卷一、单选题(每小题3分,共39分)1、计算:(﹣12)×(﹣2)的结果等于( ) A 、1 B 、-1 C 、4 D 、-142、下列各式中,计算结果为正的是( )A 、(﹣50)+(+4)B 、2.7+(﹣4.5)C 、(﹣13)+D 、0+(﹣13) 3、下列意义叙述不正确的是( )A 、若上升3米记作+3米,则0米指不升不降B 、鱼在水中高度为﹣2米的意义指鱼在水下2米C 、温度上升﹣10℃是指下降10℃D 、盈利﹣10元是指赚了10元4.若0 ab ,则ba 的值( ) A .是正数 B .是负数C .是非正数D .是非负数5、中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( )A 、44×108B 、4.4×109C 、4.4×108D 、4.4×10106、下列各数﹣2,3,﹣(﹣0.75),﹣5,4,|﹣9|,﹣3,0,4中,属于整数的有m 个,属于正数的有n 个,则m ,n 的值为( )A 、6,4B 、8,5C 、4,3D 、3,67、下列计算结果为负数的是( )A 、﹣1+3B 、5﹣2C 、﹣1×(﹣2)D 、﹣4÷28、2011年8月12日,第26届世界大学生夏季运动会将在深圳开幕.本届大运会的开幕式举办场地和主要分会场深圳湾体育中心总建筑面积达256520m 2 . 数据256520m 2用科学记数法(精确到千位)表示为( )A 、2.565×105m 2B 、0.257×106m 2C 、2.57×105m 2D 、25.7×104m 29.若a 是负数,则下列各式不正确的是( )A .22)(a a -=B .22a a =C .33)(a a -=D .)(33a a --=10、若有理数a ,b 满足a+b <0,ab <0,则( )A 、a ,b 都是正数B 、a ,b 都是负数C 、a ,b 中一个正数,一个负数,且正数的绝对值大于负数的绝对值D 、a ,b 中一个正数,一个负数,且负数的绝对值大于正数的绝对值11、若a =-2×32 , b =(-2×3)2 ,c =-(2×3)2而下列大小关系正确的是( ).A 、a >b >cB 、b >c >aC 、b >a >cD 、c >a >b .12、已知|x|=3,|y|=8,且xy <0,则x+y 的值等于( )A 、±5B 、±11C 、﹣5或11D 、﹣5或﹣1113、如图,数轴上一点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C ,若点C 表示的数为1,则点A 表示的数( )A 、﹣3B 、﹣2C 、3D 、7二、填空题(每小题3分,共30分)1.某蓄水池的标准水位记为0m ,如果水面高于标水位0.23m 表示为0.23m ,那么,水面低于标准水位0.1m 表示为 ;2、已知一个数的绝对值是4,则这个数是________.3、在有理数、﹣5、3.14中,属于分数的个数共有________ 个.4、绝对值大于1而小于5的整数的和是________ .5、把(+5)﹣(﹣7)+(﹣23)﹣(+6)写成省略括号的和的形式为________ .6、|x ﹣3|+(y+2)2=0,则y x 为________.7、数轴上离开原点3个单位长的点所表示的数是________.8.一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度, 到达的终点表示的数是 。
人教版2020年七年级上册第1章《有理数》单元测试卷 含答案
人教版2020年七年级上册第1章《有理数》单元测试卷满分:120分姓名:___________班级:___________考号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.﹣4的绝对值是()A.B.﹣4C.4D.±42.下列各数不是有理数的是()A.0B.﹣C.﹣2D.π3.盈利2000元记作+2000元,那么亏损1500元记作()A.+500元B.﹣500元C.+1500元D.﹣1500元4.截止到8月21日,全球新冠肺炎确诊人数约为2253万,其中数据2253用科学记数法表示为()A.2.253×102B.2.253×103C.22.53×102D.22.53×103 5.若实数a、b互为相反数,则下列等式中成立的是()A.a﹣b=0B.a+b=0C.ab=1D.ab=﹣16.如图,点M表示的数可能是()A.﹣0.5B.﹣1.5C.1.5D.2.57.下列说法中:①两个数的和一定大于其中任何一个加数;②如果两个数的和是正数,那么这两个加数一定都是正数;③如果两个数的和为负数,则必有一个加数是负数;④一个有理数与它的绝对值的和一定不是负数.其中正确的有()A.①②③B.①③C.③④D.②④8.某种鲸鱼的体重约为1.36×105kg,关于这个近似数,下列说法正确的是()A.它精确到百位B.它精确到0.01C.它精确到千分位D.它精确到千位9.下列运算正确的是()A.(﹣3)2=﹣9B.﹣(﹣2)2=4C.32=6D.23=810.点A,B在数轴上的位置如图所示,其对应的有理数分别是a和b.对于下列四个结论:①b﹣a>0;②|a|<|b|;③a+b>0;④>0.其中正确的是()A.①②③④B.①②③C.①③④D.②③④二.填空题(共7小题,满分28分,每小题4分)11.有限小数和无限循环小数都可以化成数,因此,它们都是数.12.若a、b互为倒数,则﹣ab=.13.近似数12.56是精确到位.14.数轴上与表示2的点的距离为5个单位长度的点表示的数为.15.|a|=4,|b|=6,则|a+b|﹣|a﹣b|=.16.规定⊗是一种新运算规则:a⊗b=a2﹣b2,例如:2⊗3=22﹣32=4﹣9=﹣5,则5⊗[1⊗(﹣2)]=.17.数轴上有A、B两点,点A表示5的相反数,点B表示绝对值最小的数,一动点P从点B出发,沿数轴以1单位长度/秒的速度运动,3秒后,点P到点A的距离为单位长度.三.解答题(共8小题,满分62分)18.(6分)计算:(1)﹣9+18+(﹣6)﹣(﹣6)(2)3﹣0.5﹣(﹣)+119.(6分)某升降机第一次上升6m,第二次上升4m,第三次下降5m,第四次又下降7m (记升降机上升为正,下降为负).(1)这时升降机在初始位置的上方还是下方?相距多少米?(2)升降机共运行了多少米?20.(6分)已知:|a|=5,|b﹣1|=8,且a﹣b<0,求a+b的值.21.(8分)计算(1)﹣0.5×+2÷(﹣×)(2)﹣32×(﹣+)﹣(﹣5)2÷()222.(8分)已知下列有理数:﹣(﹣3)、﹣4、0、+5、﹣(1)这些有理数中,整数有个,非负数有个.(2)画数轴,并在数轴上表示这些有理数.(3)把这些有理数用“<“号连接起来:.23.(8分)对于四个数“﹣8,﹣2,1,3”及四种运算“+,﹣,×,÷”,列算式解答:(1)求这四个数的和;(2)在这四个数中选出两个数,按要求进行下列计算,使得:①两数差的结果最小:②两数积的结果最大:(3)在这四个数中选出三个数,在四种运算中选出两种,组成一个算式,使运算结果等于没选的那个数.24.(10分)小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.25.(10分)如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:∵负数的绝对值是它的相反数,﹣4的相反数是4,∴﹣4的绝对值是4.故选:C.2.解:A、是有理数,故A不符合题意;B、是有理数,故B不符合题意;C、是有理数,故C不符合题意;D、是无理数,不是有理数,故符合题意.故选:D.3.解:盈利2000元记作+2000元,那么亏损1500元记作﹣1500元,故选:D.4.解:数据2253用科学记数法表示为2.253×103.故选:B.5.解:∵实数a、b互为相反数,∴a+b=0.故选:B.6.解:根据点M在数轴上的位置,在原点左侧,距原点大约1.5单位,因此点M所表示的数是﹣1.5,故选:B.7.解:因为﹣1+2=1,1不大于2,所以两个数的和不一定大于其中任何一个加数,故①错误;因为﹣1+2=1,两个数的和是正数,这两个加数不一定都是正数,故②错误;因为两个负数相加,其和为负,异号两数相加,当负加数的绝对值较大时,其和为负,两个正数相加时,其和为正.所以两个数的和为负数,则必有一个加数是负数,故③正确;因为正数与其绝对值的和为正数,0与其绝对值的和为0,负数与其绝对值的和为0.所以一个有理数与它的绝对值的和一定不是负数.故④正确.故选:C.8.解:1.36×105精确到千位.故选:D.9.解:A、(﹣3)2=9,故本选项错误;B、﹣(﹣2)2=﹣4,故本选项错误;C、32=9,故本选项错误;D、23=8,故本选项正确.故选:D.10.解:根据图示,可得﹣3<a<0,b>3,∴(1)b﹣a>0,故正确;(2)|a|<|b|,故正确;(3)a+b>0,故正确;(4)<0,故错误.∴正确的是①②③.故选:B.二.填空题(共7小题,满分28分,每小题4分)11.解:有限小数和无限循环小数都可以化成分数,它们都是有理数.故答案为分;有理.12.解:∵a、b互为倒数,∴ab=1.∴﹣ab=﹣×1=﹣.故答案为:﹣.13.解:近似数12.56是精确到百分位,故答案为:百分.14.解:在数轴上与表示2的点距离5个单位长度的点表示的数是2+5=7或2﹣5=﹣3.故答案为:﹣3或7.15.解:∵|a|=4,|b|=6,∴a=±4,b=±6,当a=4,b=6时,|a+b|﹣|a﹣b|=|4+6|﹣|4﹣6|=10﹣2=8;当a=4,b=﹣6时,|a+b|﹣|a﹣b|=|4+(﹣6)|﹣|4﹣(﹣6)|=﹣8;当a=﹣4,b=6时,|a+b|﹣|a﹣b|=|﹣4+6|﹣|﹣4﹣6|=﹣8;当a=﹣4,b=﹣6时,|a+b|﹣|a﹣b|=|﹣4+(﹣6)|﹣|(﹣4)﹣(﹣6)|=8;由上可得,|a+b|﹣|a﹣b|=±8,故答案为:±8.16.解:根据题中的新定义得:原式=5⊗(1﹣4)=5⊗(﹣3)=25﹣9=16.故答案为:16.17.解:∵点A表示5的相反数,点B表示绝对值最小的数,∴点A表示的数是﹣5,点B表示的数是0,点P移动的距离为1×3=3(单位长度),①若点P从点B向右移动,则点P所表示的数为3,此时P A=|﹣5﹣3|=8,②若点P从点B向左移动,则点P所表示的数为﹣3,此时P A=|﹣5+3|=2,故答案为:2或8.三.解答题(共8小题,满分62分)18.解:(1)原式=﹣9+18﹣6+6=9;(2)原式=﹣++1+=+1=5;19.解:(1)(+6)+(+4)+(﹣5)+(﹣7)=﹣2(m)∵﹣2<0,∴这时升降机在初始位置的下方,相距2m.(2)6+4+5+7=22(m)答:升降机共运行了22m.20.解:∵|a|=5,|b﹣1|=8,∴a=±5,b﹣1=±8,∴a=±5,b=9或﹣7,∵a﹣b<0,∴当a=5,b=9时,a+b=5+9=14;当a=﹣5,b=9时,a+b=﹣5+9=4.故a+b的值为4或14.21.解:(1)﹣0.5×+2÷(﹣×)=﹣+2÷(﹣)=﹣﹣=﹣1;(2)﹣32×(﹣+)﹣(﹣5)2÷()2=﹣9×﹣25÷=﹣1﹣9=﹣10.22.解:(1)这些有理数中,整数有:﹣(﹣3)、﹣4、0、+5,共4个,非负数有:﹣(﹣3)、0、+5,共3个.故答案为:4,3;(2)在数轴上表示这些有理数如图:(3)根据数轴可得﹣4<﹣<0<﹣(﹣3)<+5.故答案为:﹣4<﹣<0<﹣(﹣3)<+5.23.解:(1)(﹣8)+(﹣2)+1+3=﹣10+4=﹣6;(2)①根据题意得:(﹣8)﹣3=﹣8﹣3=﹣11;②根据题意得:(﹣8)×(﹣2)=16;(3)根据题意得:(﹣8)÷(﹣2)﹣3=1或(﹣8)÷(﹣2)﹣1=3.24.解:(1)前后两部分互为倒数;(2)先计算后一部分比较方便.()=()×36=9+3﹣14﹣1=﹣3;(3)因为前后两部分互为倒数,所以()=﹣;(4)根据以上分析,可知原式==﹣3.25.解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40综上所述m=8或﹣40.。
深圳市公明中学七年级数学上册第一单元《有理数》测试题(含答案)
一、选择题1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是()A.94分B.85分C.98分D.96分2.13-的倒数的绝对值()A.-3 B.13-C.3 D.133.数轴上点A和点B表示的数分别为-4和2,若要使点A到点B的距离是2,则应将点A向右移动()A.4个单位长度B.6个单位长度C.4个单位长度或8个单位长度D.6个单位长度或8个单位长度4.某测绘小组的技术员要测量A,B两处的高度差(A,B两处无法直接测量),他们首先选择了D,E,F,G四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A,B之间的高度关系为()A.B处比A处高B.A处比B处高C.A,B两处一样高D.无法确定5.在-1,2,-3,4,这四个数中,任意三数之积的最大值是()A.6 B.12 C.8 D.246.若1<a<2,则化简|a-2|+|1-a|的结果是()A.a-1 B.1 C.a+1 D.a-37.定义一种新运算2x yx yx+*=,如:2212122+⨯*==.则()(42)1**-=()A.1 B.2 C.0 D.-28.计算11212312341254 2334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值()A.54 B.27 C.272D.09.如果|a|=-a,下列成立的是()A.-a一定是非负数B.-a一定是负数C.|a|一定是正数D.|a|不能是0 10.下列各组数中,不相等的一组是()A .-(+7),-|-7|B .-(+7),-|+7|C .+(-7),-(+7)D .+(+7),-|-7|11.下列运算正确的是( ) A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=-12.若|a |=1,|b |=4,且ab <0,则a +b 的值为( ) A .3± B .3- C .3 D .5± 13.计算-3-1的结果是( ) A .2B .-2C .4D .-414.下列各式计算正确的是( ) A .826(82)6--⨯=--⨯ B .434322()3434÷⨯=÷⨯ C .20012002(1)(1)11-+-=-+D .-(-22)=-415.若2020M M +-=+,则M 一定是( ) A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数二、填空题16.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.17.已知四个互不相等的整数a ,b ,c ,d 满足abcd=77,则a+b+c+d=___________. 18.已知a 是7的相反数,b 比a 的相反数大3,则b 比a 大____. 19.若两个不相等的数互为相反数,则两数之商为____. 20.在括号中填写题中每步的计算依据,并将空白处补充完整: (-4)×8×(-2.5)×(-125) =-4×8×2.5×125 =-4×2.5×8×125______ =-(4×2.5)×(8×125)______ =____×____ =____.21.气温由﹣20℃下降50℃后是__℃. 22.若m ﹣1的相反数是3,那么﹣m =__. 23.给下面的计算过程标明运算依据: (+16)+(-22)+(+34)+(-78)=(+16)+(+34)+(-22)+(-78)① =[(+16)+(+34)]+[(-22)+(-78)]② =(+50)+(-100)③ =-50.④①______________;②______________;③______________;④______________. 24.如果数轴上原点右边 8 厘米处的点表示的有理数是 32,那么数轴上原点左边 12 厘米处的点表示的有理数是__________. 25.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.26.某工厂在2018年第一季度的效益如下:一月份获利润150万元,二月份比一月份少获利润70万元,三月份亏损5万元.则: (1)一月份比三月份多获利润____万元; (2)第一季度该工厂共获利润____万元.三、解答题27.计算(1)21145()5-÷⨯- (2)21(2)8(2)()2--÷-⨯-.28.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10. (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米? (3)守门员全部练习结束后,他共跑了多少米? 29.计算: (1)()21112424248⎛⎫-+--+⨯-⎪⎝⎭ (2)()()1178245122-÷-⨯--⨯+÷ 30.表格记录的是龙岗区图书馆上周借书情况:(规定:超过200册记为正,少于200册记为负).(1)上星期五借出多少册书? (2)上星期四比上星期三多借出几册? (3)上周平均每天借出几册?。
沪科版七年级数学上册《第1章有理数》单元测试题含答案
第1章 有理数一、选择题(每小题4分,共32分)1.如果盈利5%记作+5%,那么-3%表示( )A .亏损3%B .亏损8%C .盈利2%D .少赚3%2.下列运算正确的是( )A .-(-2)2=-4B .(-3)2=6C .-|-3|=3D .(-3)2=-23.0.2的相反数的倒数是( )A. B .- C .-5 D .515154.下列说法中正确的是( )A .0不是有理数B .有理数不是整数就是分数C .在有理数中有最小的数D .若a 是有理数,则-a 一定是负数5.有理数a ,b 在数轴上的对应点如图1所示,则下面式子中正确的是()①b <0<a ;②|b |<|a |;③ab >0;④a -b >a +b .图1A .①②B .①④C .②③D .③④6.已知一个数a 的近似值为1.50,那么a 的准确值的范围是( )A .1.495<a <1.505B .1.495≤a <1.505C .1.45≤a <1.55D .1.45<a <1.557.某时刻北京、上海、重庆、宁夏的气温分别是-4 ℃,5 ℃,6 ℃,-8 ℃,则此时这四个城市中气温最低的是( )A .北京B .上海C .重庆D .宁夏8.观察下面各正方形内的数,推测m 的值是( )图2A .38B .52C .66D .74二、填空题(每小题4分,共24分)9.若一种大米的包装袋上标有“(10±0.5)千克”的字样,则两袋这种大米的质量最多相差________千克.10.若一个数的平方等于这个数的立方,则这个数是________.11.在数-5,1,-3,5,-2中任取三个数相乘,其中最大的积是________,最小的积是________.12.“可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿吨用科学记数法可表示为________吨.13.将长方形的纸片对折一次,有1条折痕;再沿相同方向对折一次,有3条折痕;再沿相同方向对折一次,就有7条折痕;若再对折一次,有________条折痕.14.现规定一种运算:a ⊗b =ab -(a -b ),其中a ,b 为有理数,则3⊗(-)的值是1216________.三、解答题(共44分)15.(16分)计算:(1)-12+11-8+39;(2)(-2.5)÷×;(-54)(-32)(3)(+-)×(-12);141612(4)-12+3×(-2)3-(-6)÷(-)2.1316.(6分)小欢和小樱都十分喜欢唱歌,她们两个一起参加社区的文艺会演.在会演前,主持人让她们自己确定出场顺序,可她们俩争着先出场.最后主持人想了一个主意,如图3所示. -|-4|-0.2的倒数0的相反数(-1)5比-2大52的数图317.(6分)我们把“如果a=b,那么b=a”称为等式的对称性.(1)根据等式的对称性,由分配律m(a+b+c)=am+bm+cm可得到等式:____________________;(2)利用(1)中的结论,求-8.57×3.14+1.81×3.14-3.24×3.14的值.18.(8分)已知每袋小麦的标准质量为90千克.10袋小麦的称重记录(单位:千克)如图4所示:图4与标准质量比较,10袋小麦总计超过多少千克?10袋小麦的总质量是多少?小明是这样做的:先计算10袋小麦的总质量:91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=________(千克);再计算总计超过多少千克:________-90×10=________(千克).(1)请你把小明的解答过程补充完整;(2)你还有其他的方法吗?请写出解答过程.19.(8分)为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S-S=2101-1,所以S=2101-1,即1+2+22+23+…+2100=2101-1.仿照以上推理计算1+3+32+33+…+32018的值.1.A 2.A3.C 4.B 5.B 6.B7.D8.D 9.1 10.0或1 12.8×1010 13.15 14.-2 11215.解:(1)原式=(-12-8)+(11+39)=-20+50=30.(2)原式=-××=-3.524532(3)原式=×(-12)+×(-12)-×(-12)=-3-2+6=1.141612(4)原式=-1+3×(-8)-(-6)×9=-1-24+54=29.16.解:因为-|-4|=-4,-0.2的倒数为-5,0的相反数是0,(-1)5=-1,比-2大的数是-2+=0.5,在数轴上表示略.5252-5<-4<-1<0<0.5.17.解:(1)am +bm +cm =m (a +b +c )(2)原式=3.14×(-8.57+1.81-3.24)=3.14×(-10)=-31.4.18.解:(1)905.4 905.4 5.4(2)有.如将超出标准质量的千克数记为正,不足标准质量的千克数记为负,再计算,具体过程略.19.解:设M =1+3+32+33+…+32018①,①式两边都乘3,得3M =3+32+33+34+…+32019②.②-①,得2M =32019-1,两边都除以2,得M =.即1+3+32+3332019-12+…+32018=.32019-12。
(人教版)哈尔滨七年级数学上册第一单元《有理数》测试卷(答案解析)
一、选择题1.下列各组运算中,其值最小的是( ) A .2(32)--- B .(3)(2)-⨯- C .22(3)(2)-+- D .2(3)(2)-⨯-2.某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( ) A .B 处比A 处高 B .A 处比B 处高 C .A ,B 两处一样高 D .无法确定 3.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( ) A .-13B .+13C .-3或+13D .+3或-14.下列说法正确的是( ) A .近似数1.50和1.5是相同的 B .3520精确到百位等于3600 C .6.610精确到千分位 D .2.708×104精确到千分位5.已知n 为正整数,则()()2200111n-+-=( )A .-2B .-1C .0D .26.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0 7.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是( ) A .28B .34C .45D .758.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B9.下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个B .2个C .3个D .4个10.下列各组数中,互为相反数的是( )A .(﹣3)2和﹣32B .(﹣3)2和32C .(﹣2)3和﹣23D .|﹣2|3和|﹣23| 11.绝对值大于1且小于4的所有整数的和是( )A .6B .–6C .0D .412.当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,记作( ) A .海拔23米B .海拔﹣23米C .海拔175米D .海拔129米13.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >014.下列分数不能化成有限小数的是( ) A .625B .324C .412D .11615.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元二、填空题16.23(2)0x y -++=,则x y 为______.17.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)18.若两个不相等的数互为相反数,则两数之商为____. 19.把35.89543精确到百分位所得到的近似数为________. 20.计算:3122--=__________;︱-9︱-5=______. 21.计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.22.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm 的圆,它的周长约31.4 cm ,其中是准确数的有_____,是近似数的有_____. 23.有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0.24.已知0a >,0b <,b a >,比较a ,a -,b ,b -四个数的大小关系,用“<”把它们连接起来:_______.25.计算:(-0.25)-134⎛⎫- ⎪⎝⎭+2.75-172⎛⎫+ ⎪⎝⎭=___. 26.绝对值小于4.5的所有负整数的积为______.三、解答题27.某路公交车从起点经过A ,B ,C ,D 站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数)起点 A B C D 终点 上车人数 16 15 12 7 8 0下车人数-3-4-10-11(1)到终点下车还有多少 人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算. 28.如图,数轴上A ,B 两点之间的距离为30,有一根木棒MN ,设MN 的长度为x .MN 数轴上移动,M 始终在左,N 在右.当点N 移动到与点A ,B 中的一个重合时,点M 所对应的数为9,当点N 移动到线段AB 的中点时,点M 所对应的数是多少?29.计算:(1)45(30)(13)+---; (2)32128(2)4-÷-⨯-. 30.定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上); ①21a =(0)a ≠;②对于任何正整数n ,11n =; ③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数.应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式)试一试:将下列除方运算直接写成幂的形式:65=_______;91()2-=________;(4)计算:3341()(2)2(8)24-÷--+-⨯-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
10
b
七年级数学第一章《有理数》单元测试题
(满分120分 时间90分钟)
班级 姓名 学号
一、填空题(每题2分,共20分)
1. -(-5)的相反数是 ;-2的倒数是 .
2.-3-2= ;53 .
3. (-4)×(-2)= ;3)43( .
4. 31277=___________.
5.右图是一数值转换机,若输入的x为-5,则输出的结果为__________.
6.某地一天的气温早上是7℃,中午升高了2℃,半夜时又下降10℃, 半夜时的气温是__ .
7.一个数的相反数的倒数是113,这个数是________ .
8.用科学记数法表示10300000=__________________.
9.数轴上A、B两点表示的有理数分别是 -312和2,则A、B两点间的距离是 .
10.若|a+2|+23b=0,则ba+a·(3-b)=____________.
二、选择题(每题3分,共30分)
11.下列说法正确的是( )
A.所有的整数都是正数 B.不是正数的数一定是负数
C.0不是最小的有理数 D.正有理数包括整数和分数
12.若家用电冰箱冷藏室的温度是4℃,冷冻室比冷藏室的温度低22℃,则冷冻室的温度为( )
A.18℃ B.18℃ C.26℃ D.26℃
13.在2),2(,)2(,222中,负数的个数是( )
A、 l个 B、 2个 C、 3个 D、 4个
14.下列有理数大小关系判断正确的是( )
A、101)91( B、100 C、33 D、01.01
15.有理数a、b在数轴上的位置如图1-1所示,那么下列式子中成立的是( )
A.a=b B.a0 D. ab<0
输 出
×(-3)
输入x
-2
16.下列运算正确的是( )
A.-1-1=0 B. 31128327 C.1352535 D. -22÷(-2)2=-1;
17.下列各项判断正确的是( )
A.a+b一定大于a-b; B.若-ab<0,则a、b异号; C.若a3=b3,则a=b; D.若a2=b2,则a=b
18.若a=-2×32,b=(-2×3)2,c=-(2×3)2,则下列大小关系中正确的是( )
A.a>b>0 B.b>c>a; C.b>a>c D.c>a>b
19.我国国土面积约为9 596 9602km,把我国国土面积用四舍五入法保留3个有效数字,并用科学
记数法表示为( )
A.251096km B. 9.602610km C. 9.62610km D. 0.962710km
20.若2≤│x│≤5,且x是整数,则满足条件的所有x值的个数为( )
A.3 B.4 C.6 D.8
三、解答或计算题(本大题共70分)
21.把下列各数填在相应的大括号里.(6分)
+8, 0.275, -|-2|, 0, -1.04, -(-10), 0.1, -(-2)2, 722, -31, +43.
正整数集合{ ……}
整数集合 { ……}
负数集合 { ……}
22.若2x,92y,求yx的值. (6分)
23.计算((1)—(4)每小题5分,(5)—(8) 每小题6分,共44分)
(1)(-12.8)-(+13.2)+(-7.3)-2.5 (2) 4131211
(3)12131 (4) )12()4332125(
(5)22128(2)2 (6))4955.5(1416.34955.61416.3
(7)1002223)2(32 (8)222121(3)242433
24.(本题满分6分)
观察下列各等式:1111212,1112323,1113434,…
(1)根据你发现的规律,填空:
.
(2)根据你发现的规律,计算下列式子的值:
25.英国股民吉姆上星期买进某公司月股票1000股,每股30 元,下表为本周内每日该股的涨跌情
况 (星期六、日股市休市) (单位:元)
星期 一 二 三 四 五
每股涨跌 +4 +4.5 -1 -2.5 -3
(1) 星期三收盘时,每股是多少元?(2分)
(2) 本周内每股最高价多少元?最低价是多少元?(2分)
(3) 已知吉姆买进股票时付了0.2%的手续费,卖出时还需付成交额0.2%的手续费,如果吉姆在星期五
收盘前将全部股票卖出,他的收益情况如何?(4分)
20082007154143132121
1
)1(1nn