西安市2011年中考数学专题拔高训练——综合性问题

合集下载

西北5省自治区2011年中考数学试题分类解析专题(1-12)

西北5省自治区2011年中考数学试题分类解析专题(1-12)

西北5省自治区2011年中考数学专题3:方程(组)和不等式(组)一、选择题1. (宁夏自治区3分)一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是A .⎩⎨⎧x +y =8,xy +18=yx .B .⎩⎨⎧x +y =8,x +10y +18=10x +y .C .⎩⎨⎧x +y =8,10x +y +18=yx .D .⎩⎨⎧x +y =8,10(x +y)+18=yx .【答案】B 。

【考点】由实际问题抽象出二元一次方程组(数字问题)。

【分析】设这个两位数的个位数字为x ,十位数字为y ,则两位数可表示为10y+x ,对调后的两位数为10x+y ,根据题中的两个数字之和为8及对调后的等量关系可列出方程组⎩⎨⎧x +y =8,x +10y +18=10x +y .故选B 。

2.(甘肃兰州4分)下列方程中是关于x 的一元二次方程的是A.2210x x+= B.20ax bx c ++= C. (1)(2)1x x -+= D.223250x xy y --=【答案】C 。

【考点】一元二次方程的定义。

【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数。

由这四个条件对四个选项进行验证,满足这四个条件者为正确答案:A 、2210x x +=不是整式方程,故本选项错误; B 、当a =0时,方程就不是一元二次方程,故本选项错误;C 、由原方程,得230x x +-=,符合一元二次方程的要求,故本选项正确; D 、方程223250x xy y --=中含有两个未知数;故本选项错误。

故选C 。

3.(甘肃兰州4分)用配方法解方程x 2﹣2x ﹣5=0时,原方程应变形为A 、(x+1)2=6B 、(x+2)2=9C 、(x ﹣1)2=6D 、(x ﹣2)2=9【答案】C 。

2011年陕西省中考数学模拟试卷(一)

2011年陕西省中考数学模拟试卷(一)

2011年陕西省中考数学模拟试卷(一)2011年陕西省中考数学模拟试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.春暖花开,世园开幕,组委会以每日游览7万人为基准,将某日游览人数10万人记作+3万人,那么实际游览人数为5万人时应记作()A.+2万人B.﹣2万人C.﹣3万人D.+5万人2.(2009•山西)如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.5 B.6 C.7 D.83.(2009•武汉)函数y=中自变量x的取值范围是()A.x≥﹣B.x≥C.x≤﹣D.x≤4.某校足球队12名队员的身高情况统计如下表:则这12名队员身高的众数和中位数分别是()A.160cm,161cm B.160cm,164cm C.163cm,164cm D.163cm,163cm5.正比例函数y=﹣2x的图象过A(x1,y1),B(x2,y2)两点,若x1﹣x2=3,则y1﹣y2的值为()A.3 B.﹣3 C.6 D.﹣66.下列性质正方形具有而菱形不具有的是()A.四条边相等B.对角线互相垂直平分C.对角线相等D.对角线平分一组对角7.方程x2﹣2=0的根是()A.x=2 B.C.x 1=2,x2=﹣2 D.8.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是()A.点E B.点F C.点G D.点H9.(2008•孝感)Rt△ABC中,∠C=90°,AC=8,BC=6,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为()A.πB.πC.πD.π10.(2004•乌鲁木齐)如图,AD∥BC,∠D=90°,DC=7,AD=2,BC=4.若在边DC上有点P使△PAD和△PBC相似,则这样的点P存在的个数有()A.1 B.2 C.3 D.4二、填空题(共6小题,每小题3分,满分18分)11.计算:=_________.12.如图,∠COD=∠AOB=90°.若∠COA=40°,则∠DOB的大小为_________.13.(2009•陕西)在一次函数y=(1﹣m)x+1中,若y的值随x值的增大而减小,则m的取值范围_________.14.(2010•巴中)点A(x1,y1),点B(x2,y2)是双曲线上的两点,若x1<x2<0,则y1_________y2(填“=”、“>”、“<”).15.如图,在边长为1的菱形ABCD中,E是AD的中点,若tanA=2,则四边形ABCE的面积是_________.16.如图(1),从正方体的3个不同方向圴匀地各切1刀,可得8个小正方体;如图(2),从正方体的3个不同方向均匀地各切2刀,可得27个小正方体;…那么,沿正方体的3个不同方向均匀地各切n刀,得到正方体的个数应该为_________.三、解答题(共9小题,计72分,解答应写出过程)17.(2009•黄冈)解不等式组18.如图,在平行四边形ABCD中,AB⊥AC,AB=1,BC=,对角线AC,BD相交于点O,将直线AC绕点O 顺时针旋转,分别交BC、AD于点E、F.(1)求证:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等.19.某地区教育部门从2011年参加中考的6000名初中毕业生中随机抽取200名学生进行了一次视力调查,以调查数据为样本,绘制出部分频数分布表和部分频数分布直方图(部分末完成)(每组数据含最小值,不含最大值,组距取0.3)(1)表中a和b所表示的数分别为a=_________,b=_________.(2)请将部分频数分布直方图补充完整;(3)若视力在4.9以上(含4.9)均属正常,那么估计该区6000名初中毕业生视力正常的学生有多少人?20.某实验中学甲、乙、丙三个数学兴趣小组制定了一个测量校园物体的方案.于同一时刻在阳光下对标杆及校园中的某些物体进行了测量,下面是他们通过测量得到一些信息:甲组:如图(1),测得一根直立于平地,长为0.8m的标杆的影长为0.6m.丙组:如图(3),测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗线忽略不计)的高度为2.6m,影长为2.1m,请根据以上信息解答下列问题.(1)请根据甲、乙两组得到的信息计算出学校水塔的高度.(2)如图(3),设太阳光NH与圆O相切于点M,请根据甲、丙两组得到的信息,求景灯灯罩的半径.21.(2009•陕西)某工程队承担了一项2100米的排水管道铺设任务.在施工过程中,前30天使按原计划进行施工的,后期提高了工效.铺设排水管道的长度y(米)与施工时间x(天)之间的关系如图所示.(1)求原计划多少天完成任务?(2)求提高功效后,y与x之间的函数表达式;(3)实际完成这项任务比原计划提前了多少天?22.(2010•锦州)小刚和小明玩“石头”、“剪子”、“布”的游戏,游戏的规则为:“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”,若两人所出手势相同,则为平局.(1)玩一次小刚出“石头”的概率是多少?(2)玩一次小刚胜小明的概率是多少,用列表法或画树状图法加以说明.23.如图,线段AB经过圆心O,交⊙O于A、C两点,点D在⊙O上,∠A=∠B=30°.(1)求证:BD是⊙O的切线;(2)若点N在⊙O上,且DN⊥AB,垂足为M,NC=10,求AD的长.24.(2009•陕西)如图,一条抛物线经过原点,且顶点B的坐标(1,﹣1).(1)求这个抛物线的解析式;(2)设该抛物线与x轴正半轴的交点为A,求证:△OBA为等腰直角三角形;直角三角形,且∠EOF=90°.25.(2007•中山)如图,正方形ABCD的边长为3a,两动点E、F分别从顶点B、C同时开始以相同速度沿BC、CD运动,与△BCF相应的△EGH在运动过程中始终保持△EGH≌△BCF,对应边EG=BC,B、E、C、G在一直线上.(1)若BE=2a,求DH的长;(2)当E点在BC边上的什么位置时,△DHE的面积取得最小值?并求该三角形面积的最小值.2011年陕西省中考数学模拟试卷(一)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.春暖花开,世园开幕,组委会以每日游览7万人为基准,将某日游览人数10万人记作+3万人,那么实际游览人数为5万人时应记作()A.+2万人B.﹣2万人C.﹣3万人D.+5万人考点:正数和负数。

2011年陕西省初中毕业学业考试标准命题卷(2)

2011年陕西省初中毕业学业考试标准命题卷(2)

数学试卷(二) 第 1 页 共 10 页 绝密★启用前 试卷类型:A 2011年陕西省初中毕业学业考试标准命题卷 数学试卷(二) 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页,第Ⅱ卷3至10页, 全卷共120分。考试时间为120分钟。

第Ⅰ卷(选择题 共30分) 注意事项: 1.答第Ⅰ卷前,请你千万别忘记了将自己的姓名、准考证号、考试科目、试卷类型用2B铅笔和钢笔准确涂写在答题卡上;并将本试卷左侧的项目填写清楚。 2.当你选出每题的答案后,请用2B铅笔把答题卡上对应题号的答案标号涂黑。如需改动,请用橡皮檫干净后,再选涂其它答案标号。 3.考试结束后,本卷和答题卡一并交给监考老师收回。

一、选择题(共10小题,每小题3分,计30分。每小题只有一个选项是符合题意的) 1.2的相反数是

A.2 B. 2 C.22 D. 22 2.如图,△ABC和 △ADE均为正三角形,则图中可看作是旋转关系的三角形是 A. △ABC和 △ADE B. △ABC和 △ABD C. △ABD和 △ACE D. △ACE和 △ADE 3.下列算式中,正确的是( )

A. 523121 B. 532

C.(a-b)2=a2-b2 D. 632 4. 如图,把边长为2的正方形的局部进行图①~图④的变换,拼成图⑤,则图⑤的面积是( )

A.18 B.16 C.12 D. 8 数学试卷(二) 第 2 页 共 10 页

5.某市2010年生产总值比2009年增长了12℅,由于国际金融危机的影响,预计2011年比2010年增长7℅,若这两年年平均增长率为 x℅,则x℅满足的关系为: ( )

A. 12℅+7℅= x℅ B.(1+12℅)(1+7℅)=2(1+ x℅) C. 12℅+7℅= 2x℅ D.(1+12℅)(1+7℅)=(1+ x℅)2

6. 式子xx21有意义的条件是( ) A. 1≤x≤2 B.-2≤x≤-1 C. -1≤x≤2 D. x≤-1

2011中考数学真题解析101 与圆有关的综合题(含答案)

2011中考数学真题解析101 与圆有关的综合题(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编与圆有关的综合题一、选择题1. (2011山东日照,11,4分)已知AC ⊥BC 于C ,BC=a ,CA=b ,AB=c ,下列选项中⊙O 的半径为ba ab+的是( ) A . B . C . D .考点:三角形的内切圆与内心;解一元一次方程;正方形的判定与性质;切线的性质;相似三角形的判定与性质。

专题:计算题。

分析:连接OE 、OD ,根据AC 、BC 分别切圆O 于E 、D ,得到∠OEC=∠ODC=∠C=90°,证出正方形OECD ,设圆O 的半径是r ,证△ODB ∽△AEO ,得出ODAEBD OE =,代入即可求出r=ba ab+;设圆的半径是x ,圆切AC 于E ,切BC 于D ,且AB 于F ,同样得到正方形OECD ,根据a ﹣x+b ﹣x=c ,求出x 即可;设圆切AB 于F ,圆的半径是y ,连接OF ,则△BCA ∽△OFA 得出ABAOBC OF =,代入求出y 即可.解答:解:C 、连接OE 、OD , ∵AC 、BC 分别切圆O 于E 、D , ∴∠OEC=∠ODC=∠C=90°, ∵OE=OD ,∴四边形OECD 是正方形, ∴OE=EC=CD=OD , 设圆O 的半径是r ,∵OE ∥BC ,∴∠AOE=∠B ,∵∠AEO=∠ODB , ∴△ODB ∽△AEO ,∴OD AEBD OE =, rrb r a r -=-, 解得:r=ba ab+,故本选项正确;A 、设圆的半径是x ,圆切AC 于E ,切BC 于D ,且AB 于F ,如图(1)同样得到正方形OECD ,AE=AF ,BD=BF ,则a ﹣x+b ﹣x=c ,求出x=2cb a -+,故本选项错误; B 、设圆切AB 于F ,圆的半径是y ,连接OF ,如图(2),则△BCA ∽△OFA ,∴ ABAOBC OF =,∴cy b a y -=,解得:y=b a ab+,故本选项错误;D 、求不出圆的半径等于ba ab+,故本选项错误;故选C .点评:本题主要考查对正方形的性质和判定,切线的性质,全等三角形的性质和判定,三角形的内切圆与内心,解一元一次方程等知识点的理解和掌握,能根据这些性质求出圆的半径是解此题的关键.2. (2011•台湾24,4分)如图,△ABC 的外接圆上,AB ,BC ,CA 三弧的度数比为12:13:11.自BC 上取一点D ,过D 分别作直线AC ,直线AB 的并行线,且交于E ,F 两点,则∠EDF 的度数为( )A 、55°B 、60°C 、65°D 、70°考点:圆心角、弧、弦的关系;平行线的性质。

陕西2011中考数学(word版,含扫描答案)

陕西2011中考数学(word版,含扫描答案)

例 2011年上海市闵行区中考模拟第24题如图1,已知:抛物线y=x2+bx-3与x轴相交于A、B两点,与y轴相交于点C,并且OA = OC.(1)求这条抛物线的解析式;(2)过点C作CE// x轴,交抛物线于点E,设抛物线的顶点为点D,试判断△CDE 的形状,并说明理由;(3)设点M在抛物线的对称轴l上,且△MCD的面积等于△CDE的面积,请写出点M的坐标(无需写出解题步骤).图1动感体验请打开几何画板文件名“11闵行24”,拖动点A在x轴的负半轴上运动,可以体验到,△DCE的形状保持DC=DE,当OA=OC时,△DCE是等腰直角三角形.拖动点M在抛物线的对称轴上运动,可以体验到,△MCD与△ECD是同底的三角形,当M落在与CD平行的两条直线上时,两个三角形的面积相等,这两个点M关于点D中心对称.请打开超级画板文件名“11闵行24”,思路点拨1.求抛物线的解析式,关键是求点A的坐标,根据已知条件,数形结合.2.判断△CDE的形状是等腰直角三角形,可以方便第(3)求解点M的坐标.满分解答(1)因为抛物线y=x2+bx-3与y轴交于点C(0,-3),OA=OC,所以点A的坐标为(-3,0).将A (-3,0)代入y=x2+bx-3,解得b=2.因此抛物线的解析式为y=x2+2x-3.(2)由y=x2+2x-3=(x+1) 2-4,得顶点D的坐标为(-1,-4) .因为CE // x轴,所以点C与点E关于抛物线的对称轴对称.因此CE=2,DE=DC.由两点间的距离公式,求得DC=2.于是可得DE2+DC2=CE2.所以△CDE是等腰直角三角形.(3)M1(-1,-2),M2(-1,-6).考点伸展第(3)题的解题思路是这样的:如图2,如图3,因为△MCD与△CDE是同底的两个三角形,如果面积相等,那么过点E作CD的平行线,与抛物线的对称轴的交点就是要探求的点M.再根据对称性,另一个符合条件的点M在点D的下方,这两个点M关于点D对称.还有更简单的几何说理方法:因为△CDE是等腰直角三角形,对于点D上方的点M,四边形CDEM是正方形,容易得到点M的坐标为(-1,-2).再根据对称性,得到另一个点M的坐标为(-1,-6).图2 图3。

中考数学二轮复习拔高训练卷专题汇编附解析

中考数学二轮复习拔高训练卷专题汇编附解析

B.
C.
D.
二、填空题(共 5 题;共 15 分)
11.计算 1+4+9+16+25+…的前 29 项的和是________.
12.若 a 是一个完全平方数,则比 a 大的最小完全平方数是________。 13.在有理数范围内分解因式:(x+1)(x+2)(2x+3)(x+6)-20x4=________.
A. (5,3)
B. (3,5)
C. (0,2)
7.若正整数按如图所示的规律排列,则第 8 行第 5 列的数字是( )
D. (2,0)
A. 64 8.已知 a+ =
B. 56 ,则 a- 的值为( )
C. 58
D. 60
A. ±2
B. 8
C.
D. ±
9.如图,在平面直角坐标系中,点 P 坐标为(-2,3),以点 O 为圆心,以 OP 的长为半径画弧,交 x 轴的 负半轴于点 A,则点 A 的横坐标介于( )
19.设

的乘积不含三次项与一次项,求 a、b 的值.
20.已知 a , b 是有理数,试说明 a +b -2a-4b+8 的值是正数.
21.若
,且 4x-5y+2z=10,求 2x-5y+z 的值.
22.先化简:
÷
+
,再求当 x+1 与 x+6 互为相反数时代数式的值.
23.某快递公司有甲、乙、丙三个机器人分配快件,甲单独完成需要 x 小时,乙单独完成需要 y 小时,丙单 独完成需要 z 小时. (1)求甲单独完成的时间是乙丙合作完成时间的几倍? (2)若甲单独完成的时间是乙丙合作完成时间的 a 倍,乙单独完成的时间是甲丙合作完成时间的 b 倍,

陕西省中考数学真题

2011年陕西省中考数学真题(word 版)及答案第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.32-的倒数为 【 】 A . 23- B .23 C .32 D . 32-2.下面四个几何体中,同一几何体的主视图和俯视图相同的共有 【 】A 、1个B 、2个C 、3个D 、4个3.我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学计数法表示为 【 】 A 、 91037.1⨯B 、71037.1⨯ C 、81037.1⨯ D 、 101037.1⨯4、下列四个点,在正比例函数X Y 52-=的图像上的点是 【 】 A 、( 2, 5 ) B 、( 5, 2) C 、(2,-5)D 、 ( 5 , -2 )5.在△ABC 中,若三边BC ,CA,AB 满足 BC :CA :AB=5:12:13,则cosB= 【 】A 、125B 、512 C 、135 D 、13126.某校男子男球队10名队员的身高(厘米)如下:179,182,170,174,188,172,180,195,185,182,则这组数据的中位数和众数分别是 【 】 A 、181,181 B 、182,181 C 、180,182 D 、181,1827.同一平面内的两个圆,他们的半径分别为2和3 ,圆心距为d,当51ππd 时,两圆的位置关系是 【 】 A 、外离 B 、相交 C 、内切或外切 D 、内含正方体 圆锥 球 圆柱 (第二题图)8.如图,过y轴上任意一点p,作x轴的平行线,分别与反比例函数xyxy24=-=和的图像交于A点和B点,若C为x轴上任意一点,连接AC,BC则△ABC的面积为【】9、如图,在ABCDY中EF分别是AD、CD 边上的点,连接BE 、AF,他们相交于G,延长BE交CD的延长线于点H,则图中的全等三角形有【】A、2对B、3对C、4对D、5对10、若二次函数cxxy+-=62的图像过)321,23(),,2(),,1(YCYBYA+-,则321,,yyy的大小关系是【】A、321yyyφφB、321yyyφφC、312yyyφφD、213yyyφφ第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,计18分)11.计算:23-= .(结果保留根号)12.如图,AC∥BD,AE平分∠BAC交BD于点E ,若0641=∠则=∠1.13、分解因式:=+-aabab442.14、一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价为元15、若一次函数mxmy23)12(-+-=的图像经过一、二、四象限,则m的取值范围是.16、如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,若AD=3,BC=7,则梯形ABCD 面积的最大值(第8题图)(第9题图)三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分) 解分式方程:xx x -=--2312418.(本题满分6分)在正方形ABCD 中,点G 是BC 上任意一点,连接AG ,过B,D 两点分别作BE ⊥AG ,DF ⊥AG ,垂足分别为E,F 两点,求证:△ADF ≌△BAE19.(本题满分7分)某校有三个年级,各年级的人数分别为七年级600人,八年级540人,九年级565人,学校为了解学生生活习惯是否符合低碳观念,在全校进行了一次问卷调查,若学生生活习惯符合低碳观念,则称其为“低碳族”;否则称其为“非低碳族”,经过统计,将全校的低碳族人数按照年级绘制成如下两幅统计图:(1)根据图①、图②,计算八年级“低碳族”人数,并补全上面两个统计图;(2)小丽依据图①、图②提供的信息通过计算认为,与其他两个年级相比,九年级的“低碳族”人数在本年级全体学生中所占的比例较大,你认为小丽的判断正确吗?说明理由。

2011中考数学复习及备考指导(1)

2011 中考数 学复习指导
西安交大附中分校
励志数学组
2011 中考数 学复习指导
星期日
星期二
星期三
星期四
星期五
星期六
6月5日
材 料 内 容 作 业 数学印记 二、三 基础达标 一、四章 数学印记六
6月7日
数学印记 二、三 基础达标 二、五章 数学印记六
6月8日
数学印记 二、三 基础达标 三章 数学印记六
空 间 与 图 形
图 形 的 认 识 与 证 明
三角形的有 关概念及全 等三角形
三角形 等腰三角形 直角三角形 锐角三角函 数
西安交大附中分校
励志数学组
2011 中考数 学复习指导
西安交大附中分校
励志数学组
2011 中考数 学复习指导
1、启动思维。 7、退步分析。 2、浏览全卷。 8、正难则反。 3、仔细审题。 9、先改后划。 4、由易到难。 10、联想猜押。 5、分段得分。 11、速书严查。 6、跳跃解答。 12、调整心态。
西安交大附中分校
励志数学组
2011 中考数 学复习指导
1、审题不全,匆忙作答 2、解题思路单调,耗时费力 3、不做全面分析,盲目模仿 4、张冠李戴,混淆相似概念或公式、法则 5、解题书写不规范,次序混乱 6、填空开放题答案过繁 7、解题方法过于独特 8、字迹潦草,卷面不整 9、难题太难与我无缘,自信不够,写写停停,草草收场。
西安交大附中分校 励志数学组
2011 中考数 学复习指导
推荐复习读书程序
1、参照平时总结架建的知识结构,先看附后的八章 知识点. 2、通过老师推荐题目检测知识点掌握情况。 建议解答推荐题目的程序如下: ①、写出正确解答; ②、分析错因或不会做的原因; ③、进行题型归类或解题方法小结; 3、对照附后的考点分析表,看看自己哪些考点不熟 悉,利用陕西中考数学真题分析考点,结合知识点 进行自我肯定评价。

中学考试初三数学冲刺拔高专题训练(含问题详解)

中考数学冲刺拔高专题训练目录专题提升(一) 数形结合与实数的运算 (1)专题提升(二) 代数式的化简与求值 (5)专题提升(三) 数式规律型问题 (9)专题提升(四) 整式方程(组)的应用 (16)专题提升(五) 一次函数的图象与性质的应用 (23)专题提升(六) 一次函数与反比例函数的综合 (33)专题提升(七) 二次函数的图象和性质的综合运用 (44)专题提升(八) 二次函数在实际生活中的应用 (51)专题提升(九) 以全等为背景的计算与证明 (57)专题提升(十) 以等腰或直角三角形为背景的计算与证明 (63)专题提升(十一) 以平行四边形为背景的计算与证明 (72)专题提升(十二) 与圆的切线有关的计算与证明 (81)专题提升(十三) 以圆为背景的相似三角形的计算与 (87)专题提升(十四) 利用解直角三角形测量物体高度或宽度 (96)专题提升(十五) 巧用旋转进行证明与计算 (103)专题提升(十六) 统计与概率的综合运用 (110)专题提升(一) 数形结合与实数的运算类型之一数轴与实数【经典母题】如图Z1-1,通过画边长为1的正方形的边长,就能准确地把2和-2表示在数轴上.图Z1-1【思想方法】(1)在实数范围内,每一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都可以表示一个实数.我们说实数和数轴上的点一一对应;(2)数形结合是重要的数学思想,利用它可以比较直观地解决问题.利用数轴进行实数的大小比较,求数轴上的点表示的实数,是中考的热点考题.【中考变形】1.[2017·北市区一模]如图Z1-2,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是 ( C )图Z1-2A.5+1B. 5C.5-1 D.1- 5【解析】∵AD长为2,CD长为1,∴AC=22+12=5,∵A点表示-1,∴E点表示的数为5-1.2.[2016·娄底]已知点M,N,P,Q在数轴上的位置如图Z1-3,则其中对应的数的绝对值最大的点是 ( D )图Z1-3A.M B.N C.P D.Q3.[2016·天津]实数a,b在数轴上的对应点的位置如图Z1-4所示,把-a,-b,0按照从小到大的顺序排列,正确的是 ( C )图Z1-4A.-a<0<-b B.0<-a<-bC.-b<0<-a D.0<-b<-a【解析】∵从数轴可知a<0<b,∴-b<0,-a>0,∴-b<0<-a. 4.[2017·余姚模拟]如图Z1-5,数轴上的点A,B,C,D,E表示连续的五个整数,若点A,E表示的数分别为x,y,且x+y=2,则点C表示的数为( B )图Z1-5A.0 B.1 C.2 D.3【解析】根据题意,知y-x=4,即y=x+4,将y=x+4代入x+y=2,得x+x +4=2,解得x=-1,则点A表示的数为-1,则点C表示的数为-1+2=1. 5.如图Z1-6,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,以OP 为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于 ( A )图Z1-6A.-4和-3之间B.3和4之间C.-5和-4之间D.4和5之间【解析】∵点P的坐标为(-2,3),∴OP=22+32=13.∵点A,P均在以点O为圆心,以OP为半径的圆上,∴OA=OP=13,∵9<13<16,∴3<13<4.∵点A在x轴的负半轴上,∴点A的横坐标介于-4和-3之间.故选A.6.[2017·成都改编]如图Z1-7,数轴上点A表示的实数是.图Z1-7【中考预测】如图Z1-8,数轴上的点A,B分别对应实数a,b,下列结论中正确的是( C )图Z1-8A.a>b B.|a|>|b|C.-a<b D.a+b<0【解析】由图知,a<0<b且|a|<|b|,∴a+b>0,即-a<b,故选C.类型之二实数的混合运算【经典母题】计算:2×(3+5)+4-2× 5.解:2×(3+5)+4-2×5=2×3+2×5+4-2×5=6+4+2×5-2×5=10.【中考变形】1.[2016·台州]计算: 4-⎪⎪⎪⎪⎪⎪-12+2-1. 解:原式=2-12+12=2. 2.[2017·临沂]计算:|1-2|+2cos45°-8+⎝ ⎛⎭⎪⎫12-1. 解:|1-2|+2cos45°-8+⎝ ⎛⎭⎪⎫12-1=2-1+2×22-22+2=2-1+2-22+2=1.3.[2017·泸州]计算:(-3)2+2 0170-18×sin45°.解:(-3)2+2 0170-18×sin45°=9+1-32×22=10-3=7.【中考预测】 计算:12-3tan30°+(π-4)0-⎝ ⎛⎭⎪⎫12-1. 解:12-3tan30°+(π-4)0-⎝ ⎛⎭⎪⎫12-1=23-3×33+1-2=3-1.专题提升(二) 代数式的化简与求值类型之一 整式的化简与求值【经典母题】已知x +y =3,xy =1,你能求出x 2+y 2的值吗?(x -y )2呢?解:x 2+y 2=(x +y )2-2xy =32-2×1=7;(x -y )2=(x +y )2-4xy =32-4×1=5.【思想方法】 利用完全平方公式求两数平方和或两数积等问题,在化简求值、一元二次方程根与系数的关系中有广泛应用,体现了整体思想、对称思想,是中考热点考题.完全平方公式的一些主要变形有:(a +b )2+(a -b )2=2(a 2+b 2),(a +b )2-(a -b )2=4ab ,a 2+b 2=(a +b )2-2ab =(a -b )2+2ab ,在四个量a +b ,a -b ,ab 和a 2+b 2中,知道其中任意的两个量,能求出(整体代换)其余的两个量.【中考变形】1.已知(m -n )2=8,(m +n )2=2,则m 2+n 2的值为( C ) A .10 B .6 C .5 D .32.已知实数a 满足a -1a =3,则a 2+1a 2的值为__11__. 【解析】 将a -1a =3两边平方,可得a 2-2+1a 2=9,即a 2+1a 2=11. 3.[2017·重庆B 卷]计算:(x +y )2-x (2y -x ).解:原式=x 2+2xy +y 2-2xy +x 2=2x 2+y 2.4.[2016·漳州]先化简(a +1)(a -1)+a (1-a )-a ,再根据化简结果,你发现该代数式的值与a 的取值有什么关系(不必说明理由)?解:原式=a 2-1+a -a 2-a =-1.故该代数式的值与a 的取值没有关系.【中考预测】先化简,再求值:(a -b )2+a (2b -a ),其中a =-12,b =3.解:原式=a 2-2ab +b 2+2ab -a 2=b 2.当a =-12,b =3时,原式=32=9. 类型之二 分式的化简与求值【经典母题】计算:(1)a b -b a -a 2+b 2ab; (2)⎝ ⎛⎭⎪⎫3x x -2-x x +2·x 2-4x . 解:(1)原式=a 2-b 2ab -a 2+b 2ab =-2b 2ab =-2b a; (2)原式=3x (x +2)-x (x -2)(x -2)(x +2)·x 2-4x =2x 2+8x x 2-4·x 2-4x=2x +8. 【思想方法】 (1)进行分式混合运算时,一定要注意运算顺序,并结合题目的具体情况及时化简,以简化运算过程;(2)注意适当地利用运算律,寻求更合理的运算途径;(3)分子分母能因式分解的应进行分解,并注意符号的处理,以便寻求组建公分母而约分化简;(4)要注意分式的通分与解分式方程去分母的区别.【中考变形】1.[2017·重庆A 卷]计算:⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2. 解:原式=⎝ ⎛⎭⎪⎫3a +2+a 2-4a +2÷(a -1)2a +2 =(a +1)(a -1)a +2·a +2(a -1)2=a +1a -12.[2017·攀枝花]先化简,再求值:⎝ ⎛⎭⎪⎫1-2x +1÷x 2-1x 2+x ,其中x =2.解:原式=x +1-2x +1·x (x +1)(x +1)(x -1)=x -1x +1·x (x +1)(x +1)(x -1)=x x +1. 当x =2时,原式=22+1=23. 【中考预测】先化简,再求值:⎝ ⎛⎭⎪⎫x 2-4x +3x -3-13-x ⎝ ⎛⎭⎪⎫x 2-2x +1x 2-3x +2-2x -2,其中x =4. 解:原式=⎝ ⎛⎭⎪⎫x 2-4x +3x -3+1x -3⎣⎢⎡⎦⎥⎤(x -1)2(x -1)(x -2)-2x -2 =(x -2)2x -3·⎝⎛⎭⎪⎫x -1x -2-2x -2=(x -2)2x -3·x -3x -2 =x -2.当x =4时,原式=x -2=2.类型之三 二次根式的化简与求值【经典母题】已知a =3+2,b =3-2,求a 2-ab +b 2的值.解:∵a =3+2,b =3-2,∴a +b =23,ab =1,∴a 2-ab +b 2=(a +b )2-3ab =(23)2-3=9.【思想方法】 在进行二次根式化简求值时,常常用整体思想,把a +b ,a -b ,ab 当作整体进行代入.整体思想是很重要的数学思想,利用其解题能够使复杂问题变简单.整体思想在化简、解方程、解不等式中都有广泛的应用,是中考重点考查的数学思想方法之一.【中考变形】1.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( C )A .9B .±3C .3D .52.[2016·仁寿二模]先化简,再求值:a 2-2ab +b 2a 2-b 2÷⎝ ⎛⎭⎪⎫1a -1b ,其中a =2+1,b =2-1.解:原式=(a -b )2(a +b )(a -b )÷b -a ab =a -b a +b ·ab b -a =-ab a +b, 当a =2+1,b =2-1时,原式=-122=-24. 3.[2017·绵阳]先化简,再求值:⎝ ⎛⎭⎪⎫x -y x 2-2xy +y 2-x x 2-2xy ÷y x -2y,其中x =22,y = 2.解:原式=⎣⎢⎡⎦⎥⎤x -y (x -y )2-x x (x -2y )÷y x -2y=⎝ ⎛⎭⎪⎫1x -y -1x -2y ÷y x -2y=⎣⎢⎡⎦⎥⎤(x -2y )-(x -y )(x -y )(x -2y )÷y x -2y=-y (x -y )(x -2y )·x -2y y =-1x -y . 当x =22,y =2时,原式=-1x -y =-12=-22. 【中考预测】先化简,再求值:1a +b +1b +b a (a +b ),其中a =5+12,b =5-12. 解:原式=ab +a (a +b )+b 2ab (a +b )=(a +b )2ab (a +b )=a +b ab, ∵a +b =5+12+5-12=5,ab =5-12×5+12=1, ∴原式= 5.专题提升(三) 数式规律型问题【经典母题】观察下列各式:52=25;152=225;252=625;352=1 225;…你能口算末位数是5的两位数的平方吗?请用完全平方公式说明理由.解:把末位数是5的自然数表示成10a+5的一般形式,其中a为自然数,则(10a+5)2=100a2+100a+25=100a(a+1)+25,因此在计算末位数是5的自然数的平方时,只要把100a与a+1相乘,并在积的后面加上25即可得到结果.【思想方法】模型化思想和归纳推理的思想在中考中应用广泛,是热点考题之一.【中考变形】1.小明在做数学题时,发现下面有趣的结果:3-2=1;8+7-6-5=4;15+14+13-12-11-10=9;24+23+22+21-20-19-18-17=16;…根据以上规律可知第10行左起第1个数是 ( C ) A.100 B.121 C.120 D.82【解析】根据规律可知第10行等式的右边是102=100,等式左边有20个数加减.∵这20个数是120+119+118+…+111-110-109-108-…-102-101,∴左起第1个数是120.2.[2016·邵阳]如图Z3-1,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是 ( B )图Z3-1A.y=2n+1 B.y=2n+nC.y=2n+1+n D.y=2n+n+1【解析】∵观察可知:左边三角形的数字规律为1,2,…,n,右边三角形的数字规律为21,22…,2n,下边三角形的数字规律为1+2,2+22,…,n+2n,∴最后一个三角形中y与n之间的关系为y=2n+n.3.[2018·中考预测]根据图Z3-2中箭头的指向规律,从2 017到2 018再到2 019,箭头的方向是下列选项中的 ( D )图Z3-2【解析】由图可知,每4个数为一个循环组依次循环,2 017÷4=504……1,∴2 017是第505个循环组的第2个数,∴从2 017到2 018再到2 019,箭头的方向是.故选D.4.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其他棒条压着时,就可以把它往上拿走.如图Z3-3中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…则第6次应拿走( D )A.②号棒B.⑦号棒图Z3-3C .⑧号棒D .⑩号棒【解析】 仔细观察图形,第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒.5.[2017·烟台]用棋子摆出下列一组图形(如图Z3-4):图Z3-4按照这种规律摆下去,第n 个图形用的棋子个数为( D )A .3nB .6nC .3n +6 D.3n +3 【解析】 ∵第1个图需棋子3+3=6;第2个图需棋子3×2+3=9;第3个图需棋子3×3+3=12;…∴第n 个图需棋子(3n +3)个.6.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第1个三角形数,3是第2个三角形数,6是第3个三角形数,…以此类推,那么第9个三角形数是__45__,2 016是第__63__个三角形数.【解析】 根据所给的数据发现:第n 个三角形数是1+2+3+…+n ,则第9个三角形数是1+2+3+4+5+6+7+8+9=45;由1+2+3+4+…+n =2 016,得n (n +1)2=2 016,解得n =63(负数舍去).7.操场上站成一排的100名学生进行报数游戏,规则是:每位同学依次报自己的顺序数的倒数加1.如:第1位同学报⎝ ⎛⎭⎪⎫11+1,第2位同学报⎝ ⎛⎭⎪⎫12+1,第3位同学报⎝ ⎛⎭⎪⎫13+1,…这样得到的100个数的积为__101__. 【解析】 ∵第1位同学报的数为11+1=21,第2位同学报的数为12+1=32,第3位同学报的数为13+1=43,…∴第100位同学报的数为1100+1=101100,∴这样得到的100个数的积=21×32×43×…×101100=101.8.[2017·潍坊]如图Z3-5,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为__9n+3__.图Z3-5【解析】∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+3;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+3;∵第3个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=30=9×3+3,…∴第n个图中正方形和等边三角形的个数之和=9n+3.9.观察下列等式:第一个等式:a1=11+2=2-1;第二个等式:a2=12+3=3-2;第三个等式:a3=13+2=2-3;第四个等式:a4=12+5=5-2;…按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n=1n+n+1=n+1-n ;(2)a 1+a 2+a 3+…+a n =【解析】 a 1+a 2+a 3+…+a n =(2-1)+(3-2)+(2-3)+(5-2)+…+(n +1-n )=n +1-1.10.[2016·山西]如图Z3-6是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有__4n +1__个涂有阴影的小正方形(用含有n 的代数式表示).图Z3-6【解析】 由图可知,涂有阴影的小正方形有5+4(n -1)=4n +1(个).11.如图Z3-7是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…则第n 个图案中有__5n +1__根小棒.图Z3-7【解析】 ∵第1个图案中有6根小棒,第2个图案中有6+5×1=11根小棒,第3个图案中有6+5×2=16根小棒,…∴第n 个图案中有6+5(n -1)=5n +1根小棒.12.《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭.”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图Z3-8所示.由图易得12+122+123+…+12n =__1-12n __.图Z3-813.[2016·安徽](1)观察图Z3-9中的图形与等式的关系,并填空:图Z3-9【解析】 1+3+5+7=16=42,观察,发现规律:1+3=22,1+3+5=32,1+3+5+7=42,…∴1+3+5+…+(2n-1)=n2.(2)观察图Z3-10,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:图Z3-101+3+5+…+(2n-1)+__2n+1__+(2n-1)+…+5+3+1=__2n2+2n+1__.【解析】观察图形发现:图中黑球可分为三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n-1)+[2(n+1)-1]+(2n-1)+…+5+3+1=1+3+5+…+(2n-1)+(2n+1)+(2n-1)+…+5+3+1=n2+2n+1+n2=2n2+2n+1.【中考预测】一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图Z3-11方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?图Z3-11解:(1)把4张餐桌拼起来能坐4×4+2=18(人);把8张餐桌拼起来能坐4×8+2=34(人);(2)设这样的餐桌需要x张,由题意,得4x+2=90,解得x=22.答:这样的餐桌需要22张.专题提升(四) 整式方程(组)的应用类型之一 一元一次方程的应用【经典母题】汽车队运送一批货物.若每辆车装4 t ,还剩下8 t 未装;若每辆车装4.5 t ,恰好装完.这个车队有多少辆车?解:设这个车队有x 辆车,依题意,得4x +8=4.5x ,解得x =16.答:这个车队有16辆车.【思想方法】 利用一元一次方程解决实际问题是学习二元一次方程组、分式方程、一元二次方程、一元一次不等式(组)等的基础,是课标要求,也是热门考点.【中考变形】1.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是( C )A .25台B .50台C .75台D .100台 【解析】 设今年购置计算机的数量是x 台,去年购置计算机的数量是(100-x )台,根据题意可得x =3(100-x ),解得x =75.2.[2016·盐城校级期中]小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”.爸爸说:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”.小明说:爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?请你通过列一元一次方程求解这天萝卜、排骨的单价(单位:元/斤).解:设上月萝卜的单价是x 元/斤,则排骨的单价36-3x 2元/斤,根据题意,得3(1+50%)x +2(1+20%)⎝ ⎛⎭⎪⎫36-3x 2=45, 解得x =2,则36-3x 2=36-3×22=15. ∴这天萝卜的单价是(1+50%)×2=3(元/斤),这天排骨的单价是(1+20%)×15=18(元/斤).答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.【中考预测】[2016·株洲模拟]根据如图Z4-1的对话,分别求小红所买的笔和笔记本的价格.图Z4-1解:设笔的价格为x 元/支,则笔记本的价格为3x 元/本,由题意,得10x +5×3x =30,解得x =1.2,∴3x =3.6.答:笔的价格为1.2元/支,笔记本的价格为3.6元/本.类型之二 二元一次方程组的应用【经典母题】用如图Z4-2①中的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式两种无盖纸盒.现在仓库里有1 000张正方形纸板和2 000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?图Z4-2解:设做竖式纸盒x 个,横式纸盒y 个,可恰好将库存的纸板用完.根据题意,得⎩⎨⎧4x +3y =2 000,x +2y =1 000,解得⎩⎨⎧x =200,y =400. 答:竖式纸盒做200个,横式纸盒做400个,恰好将库存的纸板用完.【思想方法】 利用方程(组)解决几何计算问题,是较好的方法,体现了数形结合思想.【中考变形】1.小华写信给老家的爷爷,问候“八·一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸按图Z4-3①连续两次对折后,沿着信封口边线装入时宽绰3.8 cm ;若将信纸按图②三等分折叠后,同样方法装入时宽绰1.4 cm.试求出信纸的纸长与信封的口宽.①②图Z4-3解:设信纸的纸长为x cm ,信封口的宽为y cm.由题意,得⎩⎪⎨⎪⎧y =x 4+3.8,y =x 3+1.4,解得⎩⎨⎧x =28.8,y =11. 答:信纸的纸长为28.8 cm ,信封的口宽为11 cm.2.某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2 min 内可以通过560名学生;当同时开启一个正门和一个侧门时,4 min 内可以通过800名学生.(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5 min 内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.解:(1)设一个正门平均每分钟通过x 名学生,一个侧门平均每分钟通过y 名学生,由题意,得⎩⎨⎧2x +4y =560,4x +4y =800,解得⎩⎨⎧x =120,y =80. 答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生;(2)由题意得共有学生45×10×4=1 800(人),学生通过的时间为1 800÷[(120+80)×0.8×2]=458(min). ∵5<458,∴该教学楼建造的这4个门不符合安全规定. 【中考预测】随着“互联网+”时代的到来,一种新型的手机打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/km 计算,耗时费按q 元/min 计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如下表:(1)求p ,q 的值; (2)如果小华也用该打车方式,车速55 km/h ,行驶了11 km ,那么小华的打车总费用为多少?解:(1)小明的里程数是8 km ,时间为8 min ;小刚的里程数为10 km ,时间为12 min.由题意得⎩⎨⎧8p +8q =12,10p +12q =16,解得⎩⎨⎧p =1,q =12;(2)小华的里程数是11 km ,时间为12 min.则总费用是11p +12q =17(元).类型之三 一元二次方程的应用【经典母题】某租赁公司拥有汽车100辆,据统计,当每辆车的月租金为3 000元时,可全部租出,每辆车的月租金每增加50元,未租出的车将会增加1辆.租出的车每辆每月需要维护费为150元,未租出的车每辆每月只需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆?(2)当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到306 600元?解:(1)100-3 600-3 00050=88(辆). 答:当每辆车的月租金定为3 600元时,能租出88辆.(2)设每辆车的月租金定为(3 000+x )元,则⎝⎛⎭⎪⎫100-x 50[(3 000+x )-150]-x 50×50=306 600, 解得x 1=900,x 2=1 200,∴3 000+900=3 900(元),3 000+1 200=4 200(元).答:当每辆车的月租金为3 900元或4 200元时,月收益可达到306 600元.【思想方法】利润=收入-支出,即利润=租出去车辆的租金-租出去车辆的维护费-未租出去车辆的维护费.【中考变形】1.[2017·眉山]东坡某烘焙店生产的蛋糕礼盒分为6个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品? 解:(1)设此批次蛋糕属第a 档次产品,则10+2(a -1)=14,解得a =3.答:此批次蛋糕属第3档次产品.⎝ ⎛⎭⎪⎫或:∵14-102+1=3,∴此批蛋糕属第3档次产品.(2)设该烘焙店生产的是第x档次的产品,根据题意,得[10+2(x-1)][76-4(x-1)]=1 080,解得x1=5,x2=11(舍去).答:该烘焙店生产的是第5档次的产品.2.[2017·重庆B卷]某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400 kg,其中枇杷的产量不超过樱桃的产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售.该果农去年樱桃的市场销售量为100 kg,销售均价为30元/kg,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200 kg,销售均价为20元/kg,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【解析】 (1)根据“枇杷的产量不超过樱桃的产量的7倍”即可列出不等式求得今年收获樱桃的质量;(2)抓住关键语句,仔细梳理,根据去年、今年樱桃销售量、销售均价,求出各自的销售额,可以用一张表格概括其中数量关系:然后根据“今年樱桃和枇杷的销售总金额与去年樱桃和枇杷的市场销售总金额相同”可列方程求解.解:(1)设该果农今年收获樱桃至少x kg,今年收获枇杷(400-x)kg,依题意,得400-x≤7x,解得x≥50.答:该果农今年收获樱桃至少50 kg.(2)由题意,得3 000×(1-m %)+4 000×(1 +2m%)×(1-m%)=7 000,解得m1=0(不合题意,舍去),m2=12.5.答:m的值为12.5.【中考预测】某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400 kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20 kg.(1)当每千克涨价多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4 420元,同时又可使顾客得到实惠,每千克应涨价多少元?解:(1)设每千克涨价x元,总利润为y元.则y=(10+x)(400-20x)=-20x2+200x+4 000=-20(x-5)2+4 500.当x=5时,y取得最大值,最大值为4 500元.答:当每千克涨价5元时,每天的盈利最多,最多为4 500元;(2)设每千克应涨价a元,则(10+a)(400-20a)=4 420.解得a=3或a=7,为了使顾客得到实惠,∴a=3.答:每千克应涨价3元.专题提升(五) 一次函数的图象与性质的应用类型之一 一次函数的图象的应用【经典母题】如图Z5-1,由图象得⎩⎨⎧5x -2y +4=0,3x +2y +12=0的解是 ⎩⎨⎧x =-2,y =-3.图Z5-1【思想方法】 (1)每个二元一次方程组都对应着两个一次函数,于是也对应着两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点坐标;(2)一次函数、一元一次方程、一元一次不等式有着独立的概念,但在本质上,后者是前者的特殊情况,从而可以利用函数图象解决方程或方程组问题,体现出数形结合的思想.【中考变形】1.高铁的开通,给衢州市民出行带来了极大的方便.五一期间,乐乐和颖颖相约到杭州市某游乐园游玩,乐乐乘私家车从衢州出发1 h 后,颖颖乘坐高铁从衢州出发,先到杭州火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y (km)与乘车时间t (h)的关系如图Z5-2所示.请结合图象解决下列问题:图Z5-2(1)高铁的平均速度是每小时多少千米?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18 min到达游乐园,问私家车的速度必须达到多少?解:(1)v=2402-1=240(km/h),答:高铁的平均速度为240 km/h;(2)设乐乐离开衢州的距离y与时间t的函数关系为y=kt,则1.5k=120,k=80,∴函数表达式为y=80t,当t=2时,y=160,216-160=56(km).答:乐乐距离游乐园还有56 km;(3)把y=216代入y=80t,得t=2.7,2.7-1860=2.4(h),2162.4=90(km/h).答:乐乐要提前18 min到达游乐园,私家车的速度必须达到90 km/h. 2.[2017·宿迁]小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强7:30从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2 min,校车行驶途中始终保持匀速,当天早上,小刚7:39从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早 1 min 到学校站点,他们乘坐的车辆从安康小区站出发所行驶路程y(km)与行驶时间x(min)之间的函数图象如图Z5-3所示.图Z5-3(1)求点A的纵坐标m的值;(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.解:(1)校车的速度为3÷4=0.75(km/min),点A的纵坐标m的值为3+0.75×(8-6)=4.5.答:点A的纵坐标m的值为4.5;(2)校车到达学校站点所需时间为9÷0.75+4=16(min),出租车到达学校站点所需时间为16-9-1=6(min),出租车的速度为9÷6=1.5(km/min),两车相遇时出租车出发时间为0.75×(9-4)÷(1.5-0.75)=5(min),相遇地点离学校站点的路程为9-1.5×5=1.5(km).答:小刚乘坐出租车出发后经过5 min追到小强所乘坐的校车,此时他们距学校站点的路程为1.5 km.3.方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N 地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图Z5-4①所示.方成思考后发现了图①的部分信息:乙先出发1 h;甲出发0.5 h 与乙相遇…请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程s甲,s乙与时间t的函数表达式,并在图②所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一公路匀速前往M 地,若丙经过43h 与乙相遇,问丙出发后多少时间与甲相遇?图Z5-4解:(1)设直线BC 的函数表达式为y =kt +b ,把⎝ ⎛⎭⎪⎫32,0,⎝ ⎛⎭⎪⎫73,1003分别代入,得⎩⎪⎨⎪⎧0=32k +b ,1003=73k +b ,解得⎩⎨⎧k =40,b =-60, ∴直线BC 的表达式为y =40t -60.设直线CD 的函数表达式为y 1=k 1t +b 1,把⎝ ⎛⎭⎪⎫73,1003,(4,0)分别代入,得⎩⎨⎧1003=73k 1+b 1,0=4k 1+b 1, 解得⎩⎨⎧k 1=-20,b 1=80,∴直线CD 的函数表达式为y 1=-20t +80; (2)设甲的速度为a km/h ,乙的速度为b km/h ,根据题意,得⎩⎨⎧0.5a =1.5b ,a ⎝ ⎛⎭⎪⎫73-1=73b +1003,解得⎩⎨⎧a =60,b =20, ∴甲的速度为60 km/h ,乙的速度为20 km/h ,∴OA 的函数表达式为y =20t (0≤t ≤1),∴点A 的纵坐标为20,OA 段,AB 段没有符合条件的t 值;当20<y <30时,即20<40t -60<30或20<-20t +80<30,解得2<t <94或52<t <3;(3)根据题意,得s 甲=60t -60⎝ ⎛⎭⎪⎫1≤t ≤73, s 乙=20t (0≤t ≤4),所画图象如答图所示;中考变形3答图(4)当t =43时,s 乙=803,此时丙距M 地的路程s 丙与时间t 的函数表达式为s 丙=-40t +80(0≤t ≤2),当-40t +80=60t -60时,解得t =75, 答:丙出发75h 与甲相遇. 【中考预测】[2017·义乌模拟]甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (h)的函数图象如图Z5-5所示.图Z5-5(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式__y=60x(0<x≤6)__;(2)求乙组加工零件总量a的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?解:(1)∵图象经过原点及(6,360),∴设表达式为y=kx,∴6k=360,解得k=60,∴y=60x(0<x≤6);(2)乙2 h加工100件,∴乙的加工速度是每小时50件,∴更换设备后,乙组的工作速度是每小时加工100件,a=100+100×(4.8-2.8)=300;(3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为y=100+100(x-2.8)=100x-180,当0<x≤2时,60x+50x=300,解得x=3011(不合题意,舍去);当2<x≤2.8时,100+60x=300,解得x=103(不合题意,舍去);当2.8<x≤4.8时,60x+100x-180=300,解得x=3,符合题意.答:经过3 h恰好装满第1箱.类型之二一次函数的性质的应用【经典母题】某商场要印制商品宣传材料,甲印刷厂的收费标准是:每份材料收1元印制费,另收1 500元制版费;乙印刷厂的收费标准是:每份材料收2.5元印制费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的关系式;。

西北5省自治区2011年中考数学试题分类解析专题(1-12)-6

西北5省自治区2011年中考数学专题5:数量和位置变化一、选择题1. (宁夏自治区3分)如图,△ABO 的顶点坐标分别为A (1,4)、B (2,1)、O (0,0),如果将△ABO 绕点O 按逆时针方向旋转90°,得到△A′B′O′,那么点A′、B′的对应点的坐标是A 、A′(﹣4,2),B′(﹣1,1)B 、A′(﹣4,1),B′(﹣1,2)C 、A′(﹣4,1),B′(﹣1,1)D 、A′(﹣4,2),B′(﹣1,2)【答案】D 。

【考点】坐标与图形的旋转变化。

【分析】∵图形旋转后大小不变,∴OA=OA′=221417+=。

∴A、D 显然错误;同理OB=OB′=22215+=。

∴C 错误。

故选D 。

2.(甘肃兰州4分)点M (﹣sin60°,cos60°)关于x 轴对称的点的坐标是 A. (32, 12) B. (32-,12-) C. (32-,12) D. (12-,32-) 【答案】B 。

【考点】特殊角的三角函数值,关于x 轴对称的点的坐标特征。

【分析】根据特殊三角函数值求出M 点坐标,再根据对称性解答: ∵sin60°=32,cos60°=12,∴点M (32-,12)。

∵点P (m ,n )关于x 轴对称点的坐标P′(m ,﹣n ),∴M 关于x 轴的对称点的坐标是(12-,32-)。

故选B 。

3.(青海西宁3分)如图,△DEF 经过怎样的平移得到△ABCA .把△DEF 向左平移4个单位,再向下平移2个单位B .把△DEF 向右平移4个单位,再向下平移2个单位C .把△DEF 向右平移4个单位,再向上平移2个单位D .把△DEF 向左平移4个单位,再向上平移2个单位【答案】A 。

【考点】平移的性质。

【分析】根据网格图形的特点,结合图形找出对应点的平移变换规律,△DEF 向左平移4个单位,向下平移2个单位,即可得到△ABC。

故选A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中唐尚乐——最懂中国的教育
鼓起改变的勇气 我行
西安市中考专题拔高——综合型问题
类型之一 代数类型的综合题

代数综合题是指以代数知识为主的或以代数变形技巧为主的一类综合题.主要包括方程、函
数、不等式等内容,用到的数学思想方法有化归思想、分类思想、数形结合思想以及代人法、
待定系数法等.解代数综合题要注意各知识点之间的联系和数学思想方法、解题技巧的灵活
运用,要抓住题意,化整为零,层层深人,各个击破.

1.(²安徽省)刚回营地的两个抢险分队又接到救灾命令:一分队立即出发往30千米的A镇;
二分队因疲劳可在营地休息a(0≤a≤3)小时再往A镇参加救灾。一分队出发后得知,唯
一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打
通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时。
⑴若二分队在营地不休息,问二分队几小时能赶到A镇?
⑵若二分队和一分队同时赶到A镇,二分队应在营地休息几小时?
⑶下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数
关系,请写出你认为所有可能合理的代号,并说明它们的实际意义。

1.【解析】本题是一道包含着分类思想的应用综合应用题。解题前先认真阅读弄清题意,把
握好时间信息,二分队在营地不休息,几小时能赶到A镇,途中考虑到在塌方地点的停留,
解题时不能忽视;在考虑图像时,同样也要分不同的情况去研究。
中唐尚乐——最懂中国的教育
鼓起改变的勇气 我行
【答案】解:(1)若二分队在营地不休息,则a=0,速度为4千米/时,行至塌方处需
10
2.54=

(小时)
因为一分队到塌方处并打通道路需要10135=(小时),故二分队在塌方处需停留0.5小时,
所以二分队在营地不休息赶到A镇需2.5+0.5+204=8(小时)
(2)一分队赶到A镇共需305+1=7(小时)
(Ⅰ)若二分队在塌方处需停留,则后20千米需与一分队同行,故4+a=5,即a=1,这与
二分队在塌方处停留矛盾,舍去;
(Ⅱ)若二分队在塌方处不停留,则(4+a)(7-a)=30,即a2-3a+2=0,,解得a1=1,a2=2
均符合题意。
答:二分队应在营地休息1小时或2小时。(其他解法只要合理即给分)
(3)合理的图像为(b)、(d)
图像(b)表明二分队在营地休息时间过长(2<a≤3),后于一分队赶到A镇;
图像(d)表明二分队在营地休息时间恰当(1<a≤2),先于一分队赶到A镇。

同步测试:
1.(•沈阳市)一辆经营长途运输的货车在高速公路的A处加满油后,以每小时80千米的速
度匀速行驶,前往与A处相距636千米的B地,下表记录的是货车一次加满油后油箱内余油
量y(升)与行驶时间x(时)之间的关系:

(1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的
一种来表示y与x之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不
要求写出自变量的取值范围)
中唐尚乐——最懂中国的教育
鼓起改变的勇气 我行
(2)按照(1)中的变化规律,货车从A处出发行驶4.2小时到达C处,求此时油箱内余油
多少升?

(3)在(2)的前提下,C处前方18千米的D处有一加油站,根据实际经验此货车在行驶
中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D处至少加
多少升油,才能使货车到达B地.(货车在D处加油过程中的时间和路程忽略不计)

类型之二 几何类型的综合题
几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问
题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力. 解
决几何型综合题的关键是把代数知识与几何图形的性质以及计算与证明有机融合起来,进行
分析、推理,从而达到解决问题的目的.

例2.(²龙岩市)如图,在平面直角坐标系xOy中,⊙O交x轴于A、B两点,直线FA⊥x
轴于点A,点D在FA上,且DO平行⊙O的弦MB,连DM并延长交x轴于点C.
(1)判断直线DC与⊙O的位置关系,并给出证明;
(2)设点D的坐标为(-2,4),试求MC的长及直线DC的解析式.

【解析】此题考查圆的切线的判定方法及一次函数解析式的判定,(1)切线的判定要从定义
上去判定:过半径的外端,且垂直于半径的直线为圆的切线,所以此题要连接OM,然后证明OM
⊥DC,这里平行线对角的转化起到了关键的作用; (2) MC的长借助于勾股定理建立方程而求
中唐尚乐——最懂中国的教育
鼓起改变的勇气 我行
出,要求直线DC的解析式需要再求出点C的坐标根据MC的长即可以求出点C的坐标(A103E A,0),
从而求出直线DC的解析式.
【答案】(1)答:直线DC与⊙O相切于点M .
证明如下:连OM, ∵DO∥MB,


∴∠1=∠2,∠3=∠4 .

∵OB=OM,
∴∠1=∠3 .
∴∠2=∠4 .

在△DAO与△DMO中,24AOOMDODO
∴△DAO≌△DMO .
∴∠OMD=∠OAD .
由于FA⊥x轴于点A,∴∠OAD=90°.
∴∠OMD=90°. 即OM⊥DC .
∴DC切⊙O于M.
(2)解:由D(-2,4)知OA=2(即⊙O的半径),AD=4 .
由(1)知DM=AD=4,由△OMC∽△DAC,
知AMCACE A= AOMADE A= A24E A= A12E A,∴AC=2MC.
在Rt△ACD中,CD=MC+4.
由勾股定理,有(2MC)2+42=(MC+4)2,解得MC= A83E A或MC=0(不合,舍去).
∴MC的长为A83E A,∴点C(A103E A,0).
设直线DC的解析式为y = kx+b .

相关文档
最新文档