近世代数的基础知识
近世代数知识点教学文稿

近世代数知识点近世代数知识点第一章基本概念1.1集合●A的全体子集所组成的集合称为A的幂集,记作2A.1.2映射●证明映射:●单射:元不同,像不同;或者像相同,元相同。
●满射:像集合中每个元素都有原像。
Remark:映射满足结合律!1.3卡氏积与代数运算●{(a,b)∣a∈A,b∈B }此集合称为卡氏积,其中(a,b)为有序元素对,所以一般A*B不等于B*A.●集合到自身的代数运算称为此集合上的代数运算。
1.4等价关系与集合的分类★等价关系:1 自反性:∀a∈A,a a;2 对称性:∀a,b∈R, a b=>b a∈R;3 传递性:∀a,b,c∈R,a b,b c =>a c∈R.Remark:对称+传递≠自反★一个等价关系决定一个分类,反之,一个分类决定一个等价关系★不同的等价类互不相交,一般等价类用[a]表示。
第二章群2.1 半群1.半群=代数运算+结合律,记作(S,)Remark: i.证明代数运算:任意选取集合中的两个元素,让两元素间做此运算,观察运算后的结果是否还在定义的集合中。
ii.若半群中的元素可交换,即a b=b a,则称为交换半群。
2.单位元i.半群中左右单位元不一定都存在,即使存在也可能不唯一,甚至可能都不存在;若都存在,则左单位元=右单位元=单位元。
ii.单位元具有唯一性,且在交换半群中:左单位元=右单位元=单位元。
iii.在有单位元的半群中,规定a0=e.3.逆元i.在有单位元e的半群中,存在b,使得ab=ba=e,则a为可逆元。
ii.逆元具有唯一性,记作a-1且在交换半群中,左逆元=右逆元=可逆元。
iii.若一个元素a既有左逆元a1,又有右逆元a2,则a1=a2,且为a的逆元。
4.子半群i.设S是半群,≠T S,若T对S的运算做成半群,则T为S的一个子半群ii.T是S的子半群a,b T,有ab T2.2 群1.群=半群+单位元+逆元=代数运算+结合律+单位元+逆元Remark:i. 若代数运算满足交换律,则称为交换群或Abel群.ii. 加群=代数运算为加法+交换群iii.单位根群Um={m=1},数域P上全体n阶可逆(满秩)矩阵集合GL(n,P),数域P上全体n阶的行列式为1的矩阵集合SL(n,p).2. 群=代数运算+结合律+左(右)单位元+左(右)逆元=代数运算+结合律+单位元+逆元=代数运算+结合律+∀a,b G,ax=b,ya=b有解3. 群的性质i. 群满足左右消去律ii.设G是群,则∀a,b G,ax=b,ya=b在G中有唯一解iii.e是G单位元⇔ e2=eiv.若G是有限半群,满足左右消去律,则G是一个群4. 群的阶群G的阶,即群G中的元素个数,用表示。
近世代数(复习duo)

6、等价关系,举例说明。
【定义】设 R 是某个集合上的一个二元关系。若满足以下条件: (1)自反性: ∀x ∈ A , xRx ; (2)对称性: ∀x, y ∈ A , xRy ⇒ yRx ;
〖例子〗
G 是全体整数的集合, G 对于普通加法来说作成一个群。 G 是所有不等于零的整数的集合, G 对于普通乘法来说不作成一个群。(不满足 4) G 是全体不等于零的有理数的集合,那么 G 对于普通乘法来说作成一个群。 G 是全体整数的集合, G 对于普通减法来说不作成一个群。(不满足 2) 4、什么是一个群 G 的生成元,给出一个子集合会判断该子集是不是子群。 【定义】若一个群 G 的每一个元都是 G 的某一个固定元 a 的乘法,我们就把 G 叫做循环群;我们也说, G 是由 a 所生成的,并且用符号 G = (a) 表示。 a 叫做 G 的一个生成元。 【定义】一个群 G 的一个子集 H 叫做 G 的一个子群,假如对于 G 的乘法来说做成一个群。一个群 G 的一 个不空子集 H 做成 G 的一个子集的充分必要条件是: (1) a,b ∈ H ⇒ ab ∈ H ; (2) a ∈ H ⇒ a−1 ∈ H ; (3) a, b ∈ H ⇒ ab−1 ∈ H 。
【定义】一个集合 A 的代数运算 适合结合律,假如对于 A 的任何三个元 a, b, c 来说,都有:
(a b) c = a (b c) 。
〖例子〗
(1) A = {所有不等于零的实数} , 是普通除法,a b = a / b ,这个运算 不适合结合律。(4 / 2) / 2
(完整版)近世代数复习知识点

一、二、(45分)
单项选择题和填空题的知识点:
1.
任何有限群G 的子群H 的阶数是G 阶数的因子 2.
任何素数阶数的群是循环群,而循环群是交换群 3.
群的定义是什么?给出一些集合和集合上的运算,能判断集合关于运算是不是群。
4.
什么是一个群G 的生成元,给出一个子集合会判断该子集是不是子群。
5. 什么叫做结合律?给出一个集合和集合上的运算,会判断该运算是不是可结合的。
6. 已知群G 的元素a 的阶是n, 那么m a 的阶是(,)
n n m 。
7. 环、整环、除环、域的定义。
8. 什么是单位元,什么是一个元的逆元素,单位元和一个元素的逆元素唯一吗?
9. 什么叫做一个群的左、右陪集, 有限群的左、右陪集的个数是什么关系?
10. 环无零因子是什么意思?
11. 无零因子的特征是什么意思?
12. 有限群G 的任何元素的阶数都是G 阶数的因子。
13. 集合的直积是怎么定义的。
14. 循环群的子群是循环群吗?
15. 一个集合可以和其真子集建立一一对应吗?
三、问答题知识点(25分)
1. 正规子群,举例说明
2. 循环群, 举例说明
3. 有限域,举例说明
5 . 群的左、右陪集,举例说明
6. 原根,举例说明
7. 等价关系,举例说明
8. 系统同态,举例说明
9. 检错和纠错
10.理想和商环
四、证明题知识点(30分)
1. lagrange 定理。
P .69
2. 例1. P .94
3. 定理1 p.72
4. 定理 p.88。
《近世代数》课件

近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。
近世代数基础1

S
1 p
gS
2 p
g
1
(其中S
1 p
,
S p2为sylow
p子群)
8.对{e}≠G,若 G 没有非平凡正规子群,称为单群。
9.交换群 G 是单群⇔ G Z p ,p 为素数。 10.阶数最小的非交换单群是 60 阶的 5 元交代群 A5。
第 8 页 共 29 页
近世代数基础
2.6 群在集上的作用
2.4 同态
第 5 页 共 29 页
近世代数基础
1.设群(G,·)和(H,×),φ 是 G 到 H 的映射,若对 x, y G 有
(x y) (x) (y) 则称 φ 是群(G,·)到(H,×)的同态。当 φ 是单/满射时称 φ 为单/满同态。φ 的像(G 的同态像)为 Im {(x) | x G} H ;φ 的核为 Ker {x G | (x) e,e为H的恒等元} G 。当 φ 为满 同态时 Imφ=H;当 φ 为单同态时 Kerφ={e}。
是双射,且 (1) S T (S) (T ) (2) S G (S) G (3)若 S G 则 G / S G /(S)
2.5 有限群 设有限群 G 的阶为 n,子群 H、元素 a 阶为 m。
1.m|n 且 an=e。 2.设 H 在 G 中不同左陪集的个数为[G:H],称[G:H]为 H 在 G 中的指数,则 n=[G:H]m, 即|G|=|H|[G:H]。若 H G,则|G/H|=t,即|G|=|H||G/H|。
(x y) (y) (x) 则称 φ 是群(G,·)到(H,×)的反同构,称群(G,·)反同构于(H,×),记为 (G,) 1 (H ,) 。反同构关 系具有对称性。
近世代数——精选推荐

近世代数⽬录基本概念元素。
集合。
空集合。
⼦集 。
真⼦集 。
A =B ⟺A ⊆B ∧B ⊆A 。
幂集:⼀个集合所有⼦集组成的集合, P (A ) 。
交集。
并集。
性质:幂等性;交换律;结合律;⼆者之间有分配律。
关系:M ×M 的⼦集。
即 ∀a ,b ∈M ,法则 R 可以确定 a 和 b 符合/不符合这个法则。
记做 aRb 和 a ¯R b 。
等价关系:满⾜⾃反性(∀a ∈M ,aRa )、对称性( aRb ⇔bRa )和传递性( aRb ,bRc ⇒aRc )的关系,⽤ ∼ 表⽰,即 a ∼b 。
分类:把集合 M 的全体元素分为若⼲互不相交的⼦集。
每个分类与⼀个等价关系⼀⼀对应。
映射:集合 A ,B ,有⼀个 法则 φ 使得所有的 x ∈A 存在唯⼀的 y ∈B 与之对应。
记作 φ:x ⟶y 或 y =φ(x ) 。
y 叫做 x 在映射 φ 下的像,把 x 叫做 y 在映射 φ 下的原像或逆像。
满射:B 中每个元素在 A 中都有原像。
单射:A 中不同的元素在 B 中像不同。
双射:满射+单射。
逆映射:只有双射才有逆映射,记为 φ−1 。
有限集合满⾜ |A |=|B | 且 φ 是 A 到 B 的⼀个映射,则 φ 是满射 ⟺ φ 是单射;推论:得出 φ 是双射。
相等映射 : A 到 B 的映射 σ 和 τ 满⾜ ∀x ∈A ,σ(x )=τ(x ) 。
映射合成/映射乘法: τ:A ⟶B ,σ:B ⟶C ,则 x ⟶σ(τ(x ))(∀x ∈A ) 是 A 到 C 的⼀个映射,记为 στ(x ) 。
代数运算:集合 M 的对应法则 M ×M ⟶M ,即任意两个有次序的元素 a 和 b 有唯⼀确定的元素 d 与它们对应。
代数系统:有代数运算的集合。
(注意代数运算的封闭性。
即 d ∈M )。
⽤“乘法表”法表⽰有限集合的代数运算时,注意每列⾏⾸(第⼀列)是参与运算第⼀个元素,每列列⾸(第⼀⾏)是第⼆个元素。
密码学基础--近世代数
导言
参考文献: 参考文献: 1)贾中平,张焕国,信息安全数学基础,清华大学 )贾中平,张焕国,信息安全数学基础, 出版社, 出版社,2006。 。 2)冯登国,信息安全中的数学方法与技术,清华大 )冯登国,信息安全中的数学方法与技术, 学出本社, 学出本社,2009.
导言
(1) 代数运算 (2) 群 (3) 环与域 (4) 整环中的因子分解 (5) 扩域
= a + (b + c) = a + b + c = a + (b + c ),
所以结合律成立.
§2.1 群的概念 (3) 对任意的 a , b ∈ Z m ,
a + b = a + b = b + a = b + a,
所以交换律成立. (4) 对任意的 a ∈ Zm ,
a + 0 = a + 0 = a,
每个元素都有逆元, 律 , G 中有单位元并且 G 中 每个元素都有逆元 , 则 是一个群. 称 (G, ⋅ ) 是一个群.
Company Logo
§2.2 群的性质
性质3 性质3
为群, 设 G为群,则有
−1 −1
(1) 对任意的 a ∈ G ,有 ( a )
=a ;
(2) 对任意的 a, b ∈ G ,有 ( ab) −1 = b −1 a −1 ; (3) 在群中消去律成立,即设 a , b, c ∈ G , 如果 ab = ac ,或 ba = ca ,则 b = c .
§2.2 群的性质 (3) 因为 a 是 a 的逆元,所以 a a = aa
−1 −1
−1 −1 −1
= e.
a 是a −1的逆元.又由逆元的 从而由逆元的定义知,
近世代数文档
近世代数引言近世代数是数学中一个重要的分支,研究代数结构及其性质的理论体系。
通常包括群论、环论、域论等内容。
近世代数的发展对于数学的各个领域产生了深远的影响,也在应用数学和计算机科学中起着重要作用。
群论群论是近世代数的一个基础概念和重要分支。
群由三个基本要素组成:集合、运算和满足一定性质(结合律、封闭性、单位元、逆元)的公理。
群论研究集合中的元素如何进行运算,并研究这些运算的性质。
•子群:给定一个群,若一个集合中的元素满足群的性质和封闭性,则称其为一个子群。
•循环群:由一个元素生成的群称为循环群,循环群的结构相对简单。
•群的同态:将一个群的元素映射到另一个群中,并保持运算结构,称为群的同态。
同态的研究对于理解群之间的关系和性质非常重要。
环论环论是近世代数的另一个重要分支,研究满足特定性质的运算集合和运算规则。
环由两个基本要素组成:集合和满足一定性质(结合律、封闭性、零元、乘法交换律、分配律)的公理。
环论的研究主要关注集合中的元素之间的加法和乘法运算。
•子环:给定一个环,若一个集合中的元素满足环的定义和封闭性,则称其为一个子环。
•理想:一个环中的子集,满足特定运算性质(左右理想、乘法吸收律)的集合。
•商环:对于一个环和其中的一个理想,可以通过模运算构建一个新的环,称为商环。
商环中的元素相当于原环中的一个等价类。
域论域论是近世代数中的一个重要分支,研究满足一定性质的运算集合和运算规则。
域是一个满足加法和乘法交换律、分配律以及存在加法和乘法的单位元和乘法的逆元的环。
域是一种结构相对简单但非常重要的代数结构。
•子域:给定一个域,若一个集合中的元素满足域的定义和封闭性,则称其为一个子域。
•拓展域:给定一个域F,在F中添加一个新的元素,并扩展运算规则,得到的新的集合和运算称为拓展域。
•有限域:域中的元素个数是有限的,则称该域为有限域。
有限域具有特殊的性质和应用。
应用领域近世代数的研究对于数学的各个领域产生了深远的影响,也在应用数学和计算机科学中起着重要作用。
近世代数——精选推荐
近世代数1.1集合1、B 包含于A ,但B 不是A 的真⼦集,这个情况什么时候能出现?解由题设及真⼦集定义得,A 的每⼀个元都属于B ,因此A 属于B ,B 属于A ,得A=B 。
所以上述情形在A=B 的情况下出现。
2、假设A 包含于B,A ∩B=? A ∪B=?解(i )由于A 包含于B ,所以A 的每⼀个元都属于B ,即A 的每⼀个元都是A 和B 的公共元,因⽽由交集的定义得 A 包含于A ∩B ,但显然有A ∩B 包含于A ,所以A ∩B=A(ii )由并集的定义,A ∪B 的每⼀个元都属于A 和B 之⼀,但A 包含于B ,所以A ∪B 的每⼀元都属于B :A ∪B 包含于B 。
另⼀⽅⾯B 包含于A ∪B ,所以A ∪B=B 。
1.2映射1、A={1,2,……,100}。
找⼀个AxA 到A 的映射。
解⽤(a ,b )表⽰AxA 的任意元素,a 和b 都属于A 。
按照定义做⼀个满⾜要求的映射即可,例如 Ф:(a ,b )→a 就是这样的⼀个,因为Ф替AxA 的任何元素(a ,b )规定了⼀个唯⼀的象a ,⽽a ∈A 。
2、习题1的映射下是不是每⼀个元都是AxA 的⼀个元的象?解映射Ф之下,A 的每⼀个元素都是AxA 的⼀个元的象,因为(a ,b )中的a 可以是A 的任⼀元素。
1.3 代数运算1、A={所有不等于零的偶数}。
找⼀个集合D ,使得普通乘法是AxA 到D 的代数运算。
是不是找得到⼀个这样的D ?解⼀个不等于零的偶数除⼀个不等于零的偶数所得结果总是⼀个不等于零的有理数。
所以取 D={所有不等于零的有理数},普通除法就是⼀个AxA 到D 的代数运算。
2、A={a,b,c}. 规定A 的两个不同的代数运算。
解(i )⽤运算表给出A 的⼀个代数运算: o按照这个表,通过o ,对于A 的⼈和两个元素都可以得出⼀个唯⼀确定的结果a 来,⽽a 仍属于A 。
所以o 是A 的⼀个代数运算。
近世代数笔记
近世代数笔记世代数,也称为代数学,是数学中的一个重要分支,研究代数结构及其上的操作。
在近代数学发展中,代数学作为数学的基础学科,发挥着重要作用。
以下是一些关于近世代数的笔记:一、代数结构代数结构是代数学中的一个重要概念,指具有某种代数运算的数学结构。
常见的代数结构包括群、环、域等。
群是一种具有封闭性、结合律、单位元和逆元的代数结构;环是一种具有加法和乘法运算的代数结构;域是一种具有加法、乘法、单位元和逆元的代数结构。
研究代数结构可以帮助我们更深入地理解数学中的抽象概念和结构。
二、线性代数线性代数是代数学的一个重要分支,研究向量空间及其上的线性变换和矩阵。
线性代数在科学和工程领域有着广泛的应用,如解线性方程组、求特征值和特征向量、研究线性映射等。
掌握线性代数知识可以帮助我们更好地理解和应用代数学中的相关概念。
三、代数方程代数方程是代数学中的一个重要内容,研究方程及其根的性质和解法。
在代数方程中,常见的问题包括一元多项式方程的解法、代数方程组的求解、代数方程的根与系数之间的关系等。
通过学习代数方程,我们可以更好地理解和应用代数学中的代数概念和方法。
四、代数拓扑代数拓扑是代数学和拓扑学的交叉领域,研究代数结构与拓扑结构的关系。
代数拓扑在数学中有着重要的地位,如同调理论、同伦论、拓扑群等都是代数拓扑的经典应用。
通过学习代数拓扑,我们可以更深入地理解代数学和拓扑学的交叉点,为数学研究提供新的视角和方法。
总之,代数学作为数学的基础学科,对于数学的发展和应用具有重要意义。
通过学习代数学,我们可以更好地理解和应用数学中的抽象概念和方法,为数学研究和实际应用提供新的思路和途径。
希望以上的笔记内容可以帮助大家更好地理解近世代数的相关知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。
近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。
近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。
下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。
3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。
“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ∉”表示“x 不是集合A 的元”。
设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈∀)均有B a ∈,则称A 是B 的子集,记作B A ⊆。
若B A ⊆且A B ⊆,即A 和B 有完全相同的元素,则称它们相等,记作B A =。
若B A ⊆,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ⊂。
不含任何元素的集合叫空集,空集是任何一个集合的子集。
集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。
例如:{}c b a A ,,=;{})(x p x S =,其中)(x p 表示元素x 具有的性质。
本文中常用的集合及记号有:整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ; 正整数(自然数)集合{} ,3,2,1=+Z ;有理数集合Q ,实数集合R ,复数集合C 等。
一个集合A 的元素个数用A 表示。
当A 中有有限个元素时,称为有限集,否则称为无限集。
用∞=A 表示A 是无限集,∞<A 表示A 是有限集。
3.1.2 映射映射是函数概念的推广,它描述了两个集合的元素之间的关系。
定义1 设A ,B 为两个非空集合,若存在一个A 到B 的对应关系f ,使得对A 中的每一个元素x ,都有B 中唯一确定的一个元素y 与之对应,则称f 是A 到B 的一个映射,记作y=f(x)。
y 称为x 的像,x 称为y 的原像,A 称为f 的定义域,B 称为f 的定值域。
定义2 设f 是A 到B 的一个映射(1) 若A x x ∈∀21,和21x x ≠均有)()(21x f x f ≠,则称f 是一个单射。
(2) 若B y ∈∀均有A x ∈使y x f =)(,则称f 是满射。
(3) 若f 既是单射又是满射,则称f 是双射。
3.1.3 二元运算3.1.3.1 集合的笛卡儿积由两个集合可以用如下方法构造一个新的集合。
定义3 设A ,B 是两个非空集合,由A 的一个元素a 和B 的一个元素b 可构成一个有序的元素对(a,b ),所有这样的元素对构成的集合,称为A 与B 的笛卡儿积,记作B A ⨯,即{}B b A a b a B A ∈∈=⨯,),(。
用笛卡儿积还可定义一个集合中的运算。
定义4 设S 是一个非空集合,若有一个对应规则f ,对S 中每一对元素a 和b 都规定了一个唯一的元素S c ∈与之对应,即f 是S S S →⨯的一个映射,则此对应规则就称为S 中的一个二元运算,并表示为c b a =∙,其中“∙”表示运算符,若运算“∙”是通常的加法或乘法,b a ∙就分别记作b a +或ab 。
由定义可见,一个二元运算必须满足:(1) 封闭性:S b a ∈∙;(2) 唯一性:b a ∙是唯一确定的。
定义5 设S 是一个非空集合,若在S 中定义了一种运算∙(或若干种运算+,∙,⨯等),则称S 是一个代数系统,记作(S ,∙)或(S ,+,∙)等。
3.1.3.2 二元关系我们经常需要研究两个集合元素之间的关系或者一个集合内元素间的关系。
定义6 设A ,B 是两个集合,若规定一种规则R :使对A a ∈∀和对B b ∈∀均可确定a 和b 是否适合这个规则,若适合这个规则,就说a 和b 有二元关系R ,记作aRb ,否则就说a 和b 没有二元关系R ,记作b R a '。
3.1.2.3 等价关系和等价类等价关系是集合中一类重要的二元关系。
定义7 设~是集合A 上的一个二元关系,满足以下条件:(1) 对A a ∈∀,有a ~a ; (反身性)(2) 对A b a ∈∀,,有a ~b b ⇒~a ; (对称性)(3) 对A c b a ∈∀,,,有a ~b 和b ~c a ⇒~c 。
(传递性)则称~为A 中的一个等价关系。
子集{}a x A x x a ~,∈=即所有与a 等价的元素的集合,称为a 所在的一个等价类,a 称为这个等价类的代表元。
例如:设n 是一取定的正整数,在整数集合Z 中定义一个二元关系)(mod n ≡如下: )()(mod b a n n b a -⇔≡,这个二元关系称为模n 的同余(关系),a 与b 模n 同余指a 和b 分别用n 来除所得的余数相同。
同余关系是一个等价关系,每一个等价类记作{})(mod ,n a x Z x x a ≡∈=称为一个同余类或剩余类。
3.1.4 整数在近世代数中整数是最基本的代数系。
这里仅重述有关整数的基本性质和常用概念。
3.1.4.1 整数的运算整数的运算包括加、减、乘、除、开方、乘方、取对数等,这些运算及其性质这里不再赘述。
在整数运算中有以下两个基本的定理:带余除法定理 设Z b a ∈,,0≠b ,则存在唯一的整数q ,r 满足: b r r qb a <≤+=0,。
当0=r 时,称a 能被b 整除,或b 整除a ,记作a b ;当0≠r 时,称a 不能被b 整除。
只能被1和它本身整除的正整数称为素数;除1和本身外,还能被其它整数整除的正整数称为合数。
算术基本定理 每一个不等于1的正整数a 可以分解为素数的幂之积:s s p p p a εεε 2121=,其中s p p p ,,,21 为互不相同的素数,),2,1(,s i Z i =∈+ε。
除因子的次序外分解式是唯一的。
此分解式称为整数的标准分解式。
3.1.4.2 最大公因子和最小公倍数设Z b a ∈,,不全为0,它们的正最大公因子记作),(b a ,正最小公倍数记作[]b a ,。
设+∈Z b a ,,由算术基本定理可将它们表示为:s x s x x p p p a 2121=,s y s y y p p p b 2121=, 其中s p p p ,,,21 为互不相同的素数,i x ,),,2,1(s i y i =为非负整数,某些可以等于0。
令:{}),,2,1(,m in s i y x i i i ==α,{}),,2,1(,m ax s i y x i i i ==β,则s s p p p b a ααα 2121),(=, []s s p p p b a βββ2121,=, 且有 []b a b a ab ,),(∙=。
最大公因子还有以下重要性质:最大公因子定理 设Z b a ∈,,b a ,不全为0,),(b a d =,则存在Z q p ∈,使d qb pa =+。
3.1.4.3 互素若Z b a ∈,,满足1),(=b a ,则称a 与b 互素。
关于整数间的互素关系有以下性质:(1)Z q p b a ∈∃⇔=,1),(,使1=+qb pa 。
(2)bc a 且c a b a ⇒=1),(。
(3)设Z b a ∈,,p 为素数,则有:a p ab p ⇒或b p 。
(4)1),(=b a ,1),(1),(=⇒=bc a c a 。
(5)c a ,c b 且c ab b a ⇒=1),(。
(6) 欧拉函数:设n 为正整数,)(n ϕ为小于n 并与n 互素的正整数的个数,小于n 并与n 互素的正整数的集合记为:{})(2,,,1n n r r P ϕ =。
若n 的标准分解式为:s s p p p n εεε 2121=, 则)11()11)(11()(21sp p p n n ---= ϕ。
3.2 群近世代数的研究对象是代数系,最简单的代数系是在一个集合中只定义一种运算,群是由一个集合和一个二元运算构成的代数系,它在近世代数中是最基本的一个代数系。
3.2.1 群的基本概念定义1 设G 是一个非空集合,若在G 上定义一个二元运算∙满足:(1)结合律:对G c b a ∈∀,,,有)()(c b a c b a ∙∙=∙∙。
则称G 是一个半群,记作),(∙G 。
若),(∙G 还满足:(2)存在单位元e 使对G a ∈∀,有a e a a e =∙=∙;(3)对G a ∈∀有逆元1-a ,使e a a a a =∙=∙--11,则称),(∙G 是一个群。
当二元运算“∙”为通常的加法时,),(∙G 称为加法群或加群;当二元运算“∙”为通常的乘法时,),(∙G 称为乘法群或乘群。
定义中条件(2)可改为:有一个左单位元L e (或右单位元R e ),使a a e L =∙(或a e a R =∙),对G a ∈∀成立。
因为由此可推出R R L L e e e e =∙=。
定义中条件(3)可改为:对G a ∈∀,有一个左逆元1-L a (或右逆元1-R a ),使ea a L =∙-1(或e a a R =∙-1)成立。
因为由此可推出11111111)()(--------=∙=∙∙=∙∙=∙=R R R L R L L L a a e a a a a a a e a a 。
定理1 半群),(∙G 是群的充要条件是:对G b a ∈∀,,方程b ax =和b ya =在G 中均有解。
定理2 半群),(∙G 是群的充要条件是左、右消去律都成立:y x ay ax a =⇒=≠,0,y x ya xa a =⇒=≠,0。
如果半群中含有单位元,则称为含幺半群。
如果群),(∙G 适合交换律:对G b a ∈∀,,有a b b a ∙=∙,则称G 为可换群或阿贝尔(Abel)群。
通常把群的定义概括为四点:封闭性、结合律、单位元和逆元。
如果一个群G 是个有限集,则称G 是有限群,否则称为无限群。
G 的元素个数G 称为群的阶。
元素的倍数和幂定义为:an a a a na 个+++=,an n a a a a 个∙∙∙=, n 为正整数,并规定e a =0。
且有:nab nb a b na ==)()(,m n m n a a a +=,nm m n a a =)(,当ba ab =时有n n n b a ab =)(。