2021高考数学试题
2021年全国统一高考数学试卷(新高考全国Ⅱ卷)(学生版+解析版)

2021年全国统一高考数学试卷(新高考Ⅱ)一、单项选择题(本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)复数在复平面内对应点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)若全集U={1,2,3,4,5,6},集合A={1,3,6},B={2,3,4},则A∩∁U B =()A.{3}B.{1,6}C.{5,6}D.{1,3}3.(5分)若抛物线y2=2px(p>0)的焦点到直线y=x+1的距离为,则p=()A.1B.2C.2D.44.(5分)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨迹高度为36000km(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为6400km的球,其上点A的纬度是指OA与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积S=2πr2(1﹣cosα)(单位:km2),则S占地球表面积的百分比约为()A.26%B.34%C.42%D.50%5.(5分)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A.20+12B.28C.D.6.(5分)某物理量的测量结果服从正态分布N(10,σ2),则下列结论中不正确的是()A.σ越小,该物理量在一次测量中落在(9.9,10.1)内的概率越大B.σ越小,该物理量在一次测量中大于10的概率为0.5C.σ越小,该物理量在一次测量中小于为9.99与大于10.01的概率相等D.σ越小,该物理量在一次测量中结果落在(9.9,10.2)与落在(10,10.3)的概率相等7.(5分)已知a=log52,b=log83,c=,则下列判断正确的是()A.c<b<a B.b<a<c C.a<c<b D.a<b<c8.(5分)已知函数f(x)的定义域为R,f(x+2)为偶函数,f(2x+1)为奇函数,则()A.f(﹣)=0B.f(﹣1)=0C.f(2)=0D.f(4)=0二、多项选择题(本题共4小题,每小题5分,共20分。
2021年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2021年普通高等学校招生全国统一考试(全国乙卷)数学(理)一、选择题1.设2()3()46z z z z i ++-=+,则z =()A.12i -B.12i +C.1i +D.1i -答案:C 解析:设z a bi =+,则z a bi =-,2()3()4646z z z z a bi i ++-=+=+,所以1a =,1b =,所以1z i =+.2.已知集合{|21,}S s s n n Z ==+∈,{|41,}T t t n n Z ==+∈,则S T = ()A.∅B.SC.TD.Z 答案:C 解析:21s n =+,n Z ∈;当2n k =,k Z ∈时,{|41,}S s s k k Z ==+∈;当21n k =+,k Z ∈时,{|43,}S s s k k Z ==+∈.所以T S Ü,S T T = .故选C.3.已知命题:p x R ∃∈﹐sin 1x <;命题||:,1x q x R e∈∀≥,则下列命题中为真命题的是()A.p q∧B.p q ⌝∧C.p q∧⌝D.()p q ⌝∨答案:A 解析:根据正弦函数的值域sin [1,1]x ∈-,故x R ∃∈,sin 1x <,p 为真命题,而函数||x y y e ==为偶函数,且0x ≥时,||1x y e =≥,故x R ∀∈,||1x y e =≥恒成立.,则q 也为真命题,所以p q ∧为真,选A.4.设函数1()1xf x x-=+,则下列函数中为奇函数的是()A.1()1f x --B.1()1f x -+C.1()1f x +-D.1()1f x ++答案:B 解析:12()111x f x x x -==-+++,()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数.5.在正方体1111ABCD ABC D -中,P 为11BD 的中点,则直线PB 与1A D 所成的角为()A.2πB.3πC.4πD.6π答案:D 解析:如图,1P B C ∠为直线PB 与1A D 所成角的平面角.易知11AB C ∆为正三角形,又P 为11AC 中点,所以16PBC π∠=.6.将5名北京冬奥会志愿者分配到花样滑冰,短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种答案:C 解析:所求分配方案数为2454240C A =.7.把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin()4y x π=-的图像,则)(f x =()A.7sin()212x π-B.sin()212x π+C.7sin(212x π-D.sin(212x π+答案:B解析:逆向:231sin()sin(sin() 412212 y x y x y xππππ=-−−−→=+−−−−−−−→=+左移横坐标变为原来的倍.故选B.8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A.7 9B.23 32C.9 32D.2 9答案:B解析:由题意记(0,1)x∈,(1,2)y∈,题目即求74x y+>的概率,绘图如下所示.故113311123224411132 ABCDAM ANSPS==⨯-⋅-⨯⨯==⨯阴正.9.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作.其中第一题是测量海岛的高.如图,点,,E H G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”.GC与EH的差称为“表目距的差”,则海岛的高AB =()A.⨯+表高表距表高表目距的差B.⨯-表高表距表高表目距的差C.⨯+表高表距表距表目距的差D.⨯-表高表距表距表目距的差答案:A 解析:连接DF 交AB 于M ,则AB AM BM =+.记BDM α∠=,BFM β∠=,则tan tan MB MBMF MD DF βα-=-=.而tan FG GC β=,tan EDEHα=.所以11(()tan tan tan tan MB MB GC EH GC EH MB MB MB FG ED ED βαβα--=-=⋅-=⋅.故ED DF MB GC EH ⋅⨯==-表高表距表目距的差,所以高AB ⨯=+表高表距表高表目距的差.10.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a >答案:D 解析:若0a >,其图像如图(1),此时,0a b <<;若0a <,时图像如图(2),此时,0b a <<.综上,2ab a <.11.设B 是椭圆C :22221(0)x y a b a b +=>>的上顶点,若C 上的任意一点P 都满足,2PB b ≤,则C 的离心率的取值范围是()A.[)2B.1[,1)2C.2D.1(0,2答案:C 解析:由题意,点(0,)B b ,设00(,)P x y ,则2222200002221(1)x y y x a a b b +=⇒=-,故22222222222000000022()(122y c PB x y b a y by b y by a b b b =+-=-+-+=--++,0[,]y b b ∈-.由题意,当0y b =-时,2PB 最大,则32b b c -≤-,22b c ≥,222a c c -≥,2c c a =≤,2(0,2c ∈.12.设2ln1.01a =,ln1.02b =,1c -,则()A.a b c <<B.b c a <<C.b a c <<D.c a b <<答案:B 解析:设()ln(1)1f x x =+,则(0.02)b c f -=,易得1()1f x x '==+当0x ≥时,1x +=≥()0f x '≤.所以()f x 在[0,)+∞上单调递减,所以(0.02)(0)0f f <=,故b c <.再设()2ln(1)1g x x =++,则(0.01)a c g -=,易得2()21g x x '==+当02x ≤<时,1x ≥=+,所以()g x '在[0.2)上0≥.故()g x 在[0.2)上单调递增,所以(0.01)(0)0g g >=,故a c >.综上,a c b >>.二、填空题13.已知双曲线C :221(0)x y m m-=>的一条渐近线为0my +=,则C 的焦距为.答案:4解析:易知双曲线渐近线方程为by x a=±,由题意得2a m =,21b =,且一条渐近线方程为y x m=-,则有0m =(舍去),3m =,故焦距为24c =.14.已知向量(1,3)a = ,(3,4)b = ,若()a b b λ-⊥,则λ=.答案:35解析:由题意得()0a b b λ-⋅= ,即15250λ-=,解得35λ=.15.记ABC ∆的内角A ,B,C 的对边分别为a ,b ,c ,面积为,60B =︒,223a c ac +=,则b =.答案:解析:1sin24ABC S ac B ac ∆===4ac =,由余弦定理,222328b a c ac ac ac ac =+-=-==,所以b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).答案:②⑤或③④解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,PA PC ==,BA BC =,2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,AC AB =,2BC =,俯视图为④.三、解答题17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y,样本方差分别己为21s 和22S .(1)求x ,y,21s ,22s :(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥,否则不认为有显著提高)。
2021年全国统一高考数学试卷(理科)(乙卷)(解析版)

2021年全国统一高考数学试卷(理科)(乙卷)一、选择题(共12小题,每小题5分,共60分).1.设2(z+)+3(z﹣)=4+6i,则z=()A.1﹣2i B.1+2i C.1+i D.1﹣i2.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z3.已知命题p:∃x∈R,sin x<1;命题q:∀x∈R,e|x|≥1,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬(p∨q)4.设函数f(x)=,则下列函数中为奇函数的是()A.f(x﹣1)﹣1B.f(x﹣1)+1C.f(x+1)﹣1D.f(x+1)+15.在正方体ABCD﹣A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.B.C.D.6.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种7.把函数y=f(x)图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数y=sin(x﹣)的图像,则f(x)=()A.sin(﹣)B.sin(+)C.sin(2x﹣)D.sin(2x+)8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于的概率为()A.B.C.D.9.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”,则海岛的高AB=()A.+表高B.﹣表高C.+表距D.﹣表距10.设a≠0,若x=a为函数f(x)=a(x﹣a)2(x﹣b)的极大值点,则()A.a<b B.a>b C.ab<a2D.ab>a211.设B是椭圆C:+=1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率的取值范围是()A.[,1)B.[,1)C.(0,]D.(0,]12.设a=2ln1.01,b=ln1.02,c=﹣1,则()A.a<b<c B.b<c<a C.b<a<c D.c<a<b二、填空题:本题共4小题,每小题5分,共20分。
2021年普通高等学校招生全国统一考试数学试题含答案(新高考1卷,适用于山东、湖北、江苏、河北等

2021年普通高等学校招生全国统一考试数学本试卷共4页,22小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|−2<x<4},B={2, 3, 4, 5},则A∩B=( )A.{2}B.{2, 3}C.{3, 4}D.{2, 3, 4}2.已知z=2−i,则z(z̄+i)=( )A.6−2i B.4−2i C.6+2i D.4+2i3.已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为( )A.2B.2√2C.4D.4√24.下列区间中,函数f(x)=7sin(x−π6)单调递增的区间是( )A.(0, π2)B.(π2, π)C.(π, 3π2)D.(3π2, 2π)5.已知F1,F2是椭圆C: x29+y24=1的两个焦点,点M在C上,则|MF1|⋅|MF2|的最大值为( )A.13B.12C.9D.6 6.若tanθ=−2,则sinθ(1+sin2θ)sinθ+cosθ=( )A.−65B.−25C.25D.657.若过点(a, b)可以作曲线y=e x的两条切线,则( )A.e b<a B.e a<b C.0<a<e b D.0<b<e a8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。
山东2021年高考数学真题及解析word版

2021年山东高考数学真题 (共计22小题,满分150分。考试用时120分钟) 一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合42xxA,5,4,3,2B,则BA( ) A. 2 B.3,2 C. 4,3 D.4,3,2 2.已知iz2,izz则( ) A.i26 B.i24 C.i26 D.i24 3.已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为( ) A.2 B.22 C.4 D.24 4.下列区间中,函数6sin7xxf单调递增的区间是( )
A.20, B.,2 C. 23, D.2,23 5.已知1F,2F是椭圆C:14922yx的两个焦点,点M在C上,则21MFMF的最大值为( ) A.13 B.12 C.9 D.6 6.若2tan,则cossin2sin1sin( )
A. 56 B.52 C.52 D.56 7.若过点ba,可以作曲线xey的两条切线,则( ) A.aeb B. bea C.bea0 D.aeb0 8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )
A.甲与丙相互独立 B.甲与丁相互独立 C.乙与丙相互独立 D.丙与丁相互独立 二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
9.有一组样本数据1x,2x,…,nx,由这组数据得到新样本数据1y,2y,…,ny,其中cxyii(ni,,2,1),c为非零常数,则( )
2021年高考真题数学【新高考全国Ⅰ卷】(山东卷)(含解析版)

2021年普通高等学校招生全国统一考试(新高考I 卷)数学一、单选题1.设集合{|24}A x x =-<<,{2,3,4,5}B =,则A B = ()A.{2}B.{2,3}C.{3,4}D.{2,3,4}答案:B 解析:{2,3}A B = ,选B.2.已知2z i =-,则()z z i +=()A.62i -B.42i -C.62i +D.42i +答案:C 解析:2,()(2)(22)62z i z z i i i i =++=-+=+,选C.3.已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B. C.4D.答案:B解析:设母线长为l,则l l π=⇒=.4.下列区间中,函数()7sin()6f x x π=-单调递增的区间是()A.(0,)2πB.(,)2ππC.3(,)2ππD.3(,2)2ππ答案:A 解析:()f x 单调递增区间为:222()22()26233k x k k Z k x k k Z πππππππππ-≤-≤+∈⇒-≤≤+∈,令0k =,故选A.5.已知1F ,2F 是椭圆22:194x y C +=的两个焦点,点M 在C 上,则12||||MF MF ⋅的最大值为()A.13B.12C.9D.6答案:C 解析:由椭圆定义,12||||6MF MF +=,则21212||||||||(92MF MF MF MF +≤=,故选C.6.若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+()A.65-B.25-C.25D.65答案:C 解析:22sin (1sin 2)sin (sin cos 2sin cos )sin cos sin cos θθθθθθθθθθθ+++=++22222sin sin cos tan tan 2sin cos tan 15θθθθθθθθ++===++,故选C.7.若过点(,)a b 可以作曲线x y e =的两条切线,则()A.b e a <B.a e b <C.0b a e <<D.0a b e <<答案:D 解析:设切点为00(,)P x y ,∵xy e =,∴xy e '=,则切线斜率0xk e =,切线方程为0()xy b e x a -=-,又∵00(,)P x y 在切线上以及xy e =上,则有000()x x eb e x a -=-,整理得00(1)0x ex a b --+=,令()(1)xg x e x a b =--+,则()()xg x e x a '=-,∴()g x 在(,)a -∞单调递减,在(,)a +∞单调递增,则()g x 在x a =时取到极小值即最小值()ag a b e =-,又由已知过(,)a b 可作xy e =的两条切线,等价于()(1)xg x e x a b =--+有两个不同的零点,则min ()()0ag x g a b e==-<,得a e b >,又当x →-∞时,(1)0xe x a --→,则(1)xe x a b b --+→,∴0b >,当1x a a =+>时,有(1)0g a b +=>,即()g x 有两个不同的零点.∴0ab e <<.8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立答案:B 解析:由题意知,两点数和为8的所有可能为:(2,6),(3,5),(4,4),(5,3),(6,2),两点数和为7的所有可能为:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),∴1()6P =甲,11()166P =⨯=乙,5()36P =丙,61()=366P =丁,()0P =甲丙,1()36P =甲丁,1()36P =乙丙,()0P =丙丁,故()()()P P P =⋅甲丁甲丁,B 正确,故选B.二、多选题9.有一组样本数据12,,,n x x x ,由这组数据得到新样本数据12,,,n y y y ,其中1(1,2,)i y x c i n =+= ,c 为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同答案:C、D 解析:对于A 选项:121n x x x x n +++= ,1212n ny y y x x x y c n n++++++==+ ,∴x y ≠,∴A 错误;对于B 选项:可假设数据样本12,,,n x x x 中位数为m ,由i i y x c =+可知数据样本12,,,n y y y 的中位数为m c +,∴B 错误;对于C选项:1S =2S =1S ==,∴C 正确;对于D 选项:∵i i y x c=+,∴两组样本数据极差相同,∴D 正确。
2021全国新高考1卷数学试卷(及答案)
18.(12 分) 某学校组织“一带一路”知识竞赛,有 A,B 两类问题.每位参加比赛的同学先在
两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若 回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛 结束.A 类问题中的每个问题回答正确得 20 分,否则得 0 分;B 类问题中的每个问题 回答正确得 80 分,否则得 0 分。
A.点 P 到直线 AB 的距离小于 10
B.点 P 到直线 AB 的距离大于 2
C.当 ∠PBA 最小时, | PB | = 3 2
D.当 ∠PBA 最大时, | PB | = 3 2
uuur uuur uuur 12.在 正三棱柱 ABC − A1B1C1 中 , A=B A= A1 1 ,点 P 满 足= BP λBC + μBB1 , 其中
每次取 1 个球.甲表示事件“第一次取出的球的数字是 1”,乙表示事件“第二次取
出的球的数字是 2”,丙表示事件“两次取出的球的数字之和是 8”,丁表示事件“两
次取出的球的数字之和是 7”,则
A.甲与丙相互独立
B.甲与丁相互独立
C.乙与丙相互独立
D.丙与丁相互独立
二、选择题:本题共 4 小题,每小题 5 分,共 20 分。在每小题给出的选项中,有多项
A. (0, π ) 2
B. ( π , π) 2
C. (π, 3π ) 2
D. (3π , 2π) 2
5.已知
F1
,
F2
是椭圆
C:x2 9
+
y2 4
= 1的两个焦点,点 M
在 C 上,则 | MF1 | ⋅ | MF2
| 的最
2021年全国新高考II卷数学真题试卷(含详细解析)
2021年全国新高考II 卷数学真题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑。
如需改动,用皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单选题 1.复数2i13i--在复平面内对应的点所在的象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UA B =( )A .{3}B .{1,6}C .{5,6}D .{1,3}3.抛物线22(0)y px p =>的焦点到直线1y x =+p =( )A .1B .2C .D .44.北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为( ) A .26%B .34%C .42%D .50%5.正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A .20+B .C .563D 6.某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是( )A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B .σ越小,该物理量在一次测量中大于10的概率为0.5C .σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D .σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等7.已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A .c b a <<B .b a c <<C .a c b <<D .a b c <<8.已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =二、多选题9.下列统计量中,能度量样本12,,,n x x x 的离散程度的是( )A .样本12,,,n x x x 的标准差B .样本12,,,n x x x 的中位数C .样本12,,,n x x x 的极差D .样本12,,,n x x x 的平均数10.如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP ⊥的是( )A .B .C .D .11.已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切12.设正整数010112222k k k k n a a a a --=⋅+⋅++⋅+⋅,其中{}0,1i a ∈,记()01k n a a a ω=+++.则( )A .()()2n n ωω=B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=三、填空题13.已知双曲线()222210,0x y a b a b-=>>的离心率为2,则该双曲线的渐近线方程为_______________14.写出一个同时具有下列性质①②③的函数():f x _______.①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()'f x 是奇函数. 15.已知向量0a b c ++=,1a =,2b c ==,a b b c c a ⋅+⋅+⋅=_______.16.已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______.四、解答题17.记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值.18.在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+.. (1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.19.在四棱锥Q ABCD -中,底面ABCD 是正方形,若2,3AD QD QA QC ====.(1)证明:平面QAD ⊥平面ABCD ; (2)求二面角B QD A --的平面角的余弦值.20.已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F .(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =21.一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i ===.(1)已知01230.4,0.3,0.2,0.1p p p p ====,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x +++=的一个最小正实根,求证:当()1E X ≤时,1p =,当()1E X >时,1p <;(3)根据你的理解说明(2)问结论的实际含义. 22.已知函数2()(1)x f x x e ax b =--+. (1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 只有一个零点 ①21,222e a b a <≤>; ②10,22a b a <<≤.参考答案1.A 【分析】利用复数的除法可化简2i13i--,从而可求对应的点的位置. 【详解】()()2i 13i 2i 55i 1i13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫ ⎪⎝⎭, 该点在第一象限, 故选:A. 2.B 【分析】根据交集、补集的定义可求()U A B ⋂. 【详解】 由题设可得{}U1,5,6B =,故(){}U 1,6A B ⋂=,故选:B. 3.B 【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【详解】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,其到直线10x y -+=的距离:d == 解得:2p =(6p =-舍去). 故选:B. 4.C 【分析】由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果. 【详解】由题意可得,S 占地球表面积的百分比约为:226400164003600002(1.cos )1cos 44242%22r r πααπ---+==≈=.故选:C. 5.D 【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解. 【详解】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2, 所以该棱台的高h下底面面积116S =,上底面面积24S =,所以该棱台的体积((121116433V h S S =+=+=故选:D. 6.D 【分析】由正态分布密度曲线的特征逐项判断即可得解. 【详解】对于A ,2σ为数据的方差,所以σ越小,数据在10μ=附近越集中,所以测量结果落在()9.9,10.1内的概率越大,故A 正确;对于B ,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为0.5,故B正确;对于C ,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C 正确;对于D ,因为该物理量一次测量结果落在()9.9,10.0的概率与落在()10.2,10.3的概率不同,所以一次测量结果落在()9.9,10.2的概率与落在()10,10.3的概率不同,故D 错误. 故选:D. 7.C 【分析】对数函数的单调性可比较a 、b 与c 的大小关系,由此可得出结论. 【详解】55881log 2log log log 32a b =<===,即a c b <<. 故选:C. 8.B 【分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论. 【详解】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B. 9.AC 【分析】考查所给的选项哪些是考查数据的离散程度,哪些是考查数据的集中趋势即可确定正确选项.【详解】由标准差的定义可知,标准差考查的是数据的离散程度; 由中位数的定义可知,中位数考查的是数据的集中趋势; 由极差的定义可知,极差考查的是数据的离散程度; 由平均数的定义可知,平均数考查的是数据的集中趋势; 故选:AC. 10.BC 【分析】根据线面垂直的判定定理可得BC 的正误,平移直线MN 构造所考虑的线线角后可判断AD 的正误. 【详解】设正方体的棱长为2,对于A ,如图(1)所示,连接AC ,则//MN AC , 故POC ∠(或其补角)为异面直线,OP MN 所成的角,在直角三角形OPC ,OC =1CP =,故tan2POC ∠==, 故MN OP ⊥不成立,故A 错误.对于B ,如图(2)所示,取NT 的中点为Q ,连接PQ ,OQ ,则OQ NT ⊥,PQ MN ⊥, 由正方体SBCM NADT -可得SN ⊥平面ANDT ,而OQ ⊂平面ANDT , 故SN OQ ⊥,而SNMN N =,故OQ ⊥平面SNTM ,又MN ⊂平面SNTM ,OQ MN ⊥,而OQ PQ Q =,所以MN ⊥平面OPQ ,而PO ⊂平面OPQ ,故MN OP ⊥,故B 正确.对于C ,如图(3),连接BD ,则//BD MN ,由B 的判断可得OP BD ⊥, 故OP MN ⊥,故C 正确.对于D ,如图(4),取AD 的中点Q ,AB 的中点K ,连接,,,,AC PQ OQ PK OK , 则//AC MN ,因为DP PC =,故//PQ AC ,故//PQ MN ,所以QPO ∠或其补角为异面直线,PO MN 所成的角,因为正方体的棱长为2,故12PQ AC ==OQ ==PO =222QO PQ OP <+,故QPO ∠不是直角,故,PO MN 不垂直,故D 错误. 故选:BC. 11.ABD 【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解. 【详解】圆心()0,0C 到直线l 的距离2d =若点(),A a b 在圆C 上,则222a b r +=,所以2d r ,则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以2d r ,则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以2d r ,则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +, 所以2d r =,直线l 与圆C 相切,故D 正确.故选:ABD. 12.ACD 【分析】利用()n ω的定义可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误. 【详解】对于A 选项,()01k n a a a ω=+++,12101122222k k k k n a a a a +-=⋅+⋅++⋅+⋅,所以,()()012k n a a a n ωω=+++=,A 选项正确;对于B 选项,取2n =,012237121212n +==⋅+⋅+⋅,()73ω∴=, 而0120212=⋅+⋅,则()21ω=,即()()721ωω≠+,B 选项错误;对于C 选项,3430234301018522251212222k k k k n a a a a a a +++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅++⋅,所以,()01852k n a a a ω+=++++,2320123201014322231212222k k k k n a a a a a a +++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅++⋅,所以,()01432k n a a a ω+=++++,因此,()()8543n n ωω+=+,C 选项正确;对于D 选项,01121222n n --=+++,故()21nn ω-=,D 选项正确.故选:ACD.13.y = 【分析】由双曲线离心率公式可得223b a=,再由渐近线方程即可得解.【详解】因为双曲线()222210,0x y a b a b-=>>的离心率为2,所以2e ==,所以223b a =,所以该双曲线的渐近线方程为by x a=±=.故答案为:y =. 【点睛】本题考查了双曲线离心率的应用及渐近线的求解,考查了运算求解能力,属于基础题.14.()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)【分析】根据幂函数的性质可得所求的()f x . 【详解】取()4f x x =,则()()()()44421121122x f x f x x x x f x x ===,满足①, ()34f x x '=,0x >时有()0f x '>,满足②, ()34f x x '=的定义域为R ,又()()34f x x f x ''-=-=-,故()f x '是奇函数,满足③.故答案为:()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)15.92- 【分析】由已知可得()20a b c ++=,展开化简后可得结果.【详解】由已知可得()()()22222920a b ca b c a b b c c a a b b c c a ++=+++⋅+⋅+⋅=+⋅+⋅+⋅=,因此,92a b b c c a ⋅+⋅+⋅=-.故答案为:92-. 16.0,1 【分析】结合导数的几何意义可得120x x +=,结合直线方程及两点间距离公式可得1A x M =,2B x N =,化简即可得解.【详解】由题意,()1011,0,xx x e x f x e e x <=⎧---≥⎪=⎨⎪⎩,则()0,,0xx x f x e e x ⎧-⎪=<>⎨'⎪⎩,所以点()11,1x A x e -和点()22,1x B x e -,12,x xAM BN k e k e =-=,所以12121,0x xe e x x -⋅=-+=,所以()()111111,0:,11x x x xe e x x e AM e y M x -+=---+,所以1x AM ,同理2B x N =,所以()10,1x e NAM B ===∈. 故答案为:0,1 【点睛】 关键点点睛:解决本题的关键是利用导数的几何意义转化条件120x x +=,消去一个变量后,运算即可得解.17.(1)26n a n =-;(2)7. 【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式; (2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值. 【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-,从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7. 【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.18.(1(2)存在,且2a =. 【分析】(1)由正弦定理可得出23c a =,结合已知条件求出a 的值,进一步可求得b 、c 的值,利用余弦定理以及同角三角函数的基本关系求出sin B ,再利用三角形的面积公式可求得结果; (2)分析可知,角C 为钝角,由cos 0C <结合三角形三边关系可求得整数a 的值. 【详解】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c Cab,所以,C 为锐角,则sin C ==因此,11sin 4522ABC S ab C ==⨯⨯△ (2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===<++, 解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈,故2a =. 19.(1)证明见解析;(2)23. 【分析】(1)取AD 的中点为O ,连接,QO CO ,可证QO ⊥平面ABCD ,从而得到面QAD ⊥面ABCD . (2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥,建如图所示的空间坐标系,求出平面QAD 、平面BQD 的法向量后可求二面角的余弦值. 【详解】(1)取AD 的中点为O ,连接,QO CO . 因为QA QD =,OA OD =,则QO ⊥AD ,而2,AD QA ==2QO ==.在正方形ABCD 中,因为2AD =,故1DO =,故CO =因为3QC =,故222QC QO OC =+,故QOC 为直角三角形且QO OC ⊥, 因为OCAD O =,故QO ⊥平面ABCD ,因为QO ⊂平面QAD ,故平面QAD ⊥平面ABCD .(2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥, 结合(1)中的QO ⊥平面ABCD ,故可建如图所示的空间坐标系.则()()()0,1,0,0,0,2,2,1,0D Q B -,故()()2,1,2,2,2,0BQ BD =-=-.设平面QBD 的法向量(),,n x y z =,则00n BQ n BD ⎧⋅=⎨⋅=⎩即220220x y z x y -++=⎧⎨-+=⎩,取1x =,则11,2y z ==,故11,1,2n ⎛⎫= ⎪⎝⎭.而平面QAD 的法向量为()1,0,0m =,故12cos ,3312m n ==⨯.二面角B QD A --的平面角为锐角,故其余弦值为23.20.(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN = 充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k=+,联立直线与椭圆方=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a ==a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y, 必要性:若M ,N ,F 三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +=⋅=,所以MN =所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ===化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩或1k b =-⎧⎪⎨=⎪⎩:MN y x=y x =-,所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N,F 三点共线的充要条件是||MN = 【点睛】 关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.21.(1)1;(2)见解析;(3)见解析. 【分析】(1)利用公式计算可得()E X .(2)利用导数讨论函数的单调性,结合()10f =及极值点的范围可得()f x 的最小正零点. (3)利用期望的意义及根的范围可得相应的理解说明. 【详解】(1)()00.410.320.230.11E X =⨯+⨯+⨯+⨯=.(2)设()()3232101f x p x p x p x p =++-+,因为32101p p p p +++=,故()()32322030f x p x p x p p p x p =+-+++,若()1E X ≤,则123231p p p ++≤,故2302p p p +≤.()()23220332f x p x p x p p p '=+-++,因为()()20300f p p p '=-++<,()230120f p p p '=+-≤, 故()f x '有两个不同零点12,x x ,且1201x x <<≤,且()()12,,x x x ∈-∞⋃+∞时,()0f x '>;()12,x x x ∈时,()0f x '<; 故()f x 在()1,x -∞,()2,x +∞上为增函数,在()12,x x 上为减函数, 若21x =,因为()f x 在()2,x +∞为增函数且()10f =,而当()20,x x ∈时,因为()f x 在()12,x x 上为减函数,故()()()210f x f x f >==,故1为230123p p x p x p x x +++=的一个最小正实根,若21>x ,因为()10f =且在()20,x 上为减函数,故1为230123p p x p x p x x +++=的一个最小正实根,综上,若()1E X ≤,则1p =.若()1E X >,则123231p p p ++>,故2302p p p +>. 此时()()20300f p p p '=-++<,()230120f p p p '=+->, 故()f x '有两个不同零点34,x x ,且3401x x <<<, 且()()34,,x x x ∈-∞+∞时,()0f x '>;()34,x x x ∈时,()0f x '<;故()f x 在()3,x -∞,()4,x +∞上为增函数,在()34,x x 上为减函数, 而()10f =,故()40f x <,又()000f p =>,故()f x 在()40,x 存在一个零点p ,且1p <.所以p 为230123p p x p x p x x +++=的一个最小正实根,此时1p <,故当()1E X >时,1p <.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1. 22.(1)答案见解析;(2)证明见解析. 【分析】(1)首先求得导函数的解析式,然后分类讨论确定函数的单调性即可; (2)由题意结合(1)中函数的单调性和函数零点存在定理即可证得题中的结论. 【详解】(1)由函数的解析式可得:()()'2xf x x e a =-,当0a ≤时,若(),0x ∈-∞,则()()'0,f x f x <单调递减, 若()0,x ∈+∞,则()()'0,f x f x >单调递增;当102a <<时,若()(),ln 2x a ∈-∞,则()()'0,f x f x >单调递增, 若()()ln 2,0x a ∈,则()()'0,f x f x <单调递减, 若()0,x ∈+∞,则()()'0,f x f x >单调递增; 当12a =时,()()'0,f x f x ≥在R 上单调递增; 当12a >时,若(),0x ∈-∞,则()()'0,f x f x >单调递增, 若()()0,ln 2x a ∈,则()()'0,f x f x <单调递减, 若()()ln 2,x a ∈+∞,则()()'0,f x f x >单调递增; (2)若选择条件①:由于2122e a <,故212a e <≤,则()21,010b af b >>=->,而10f e b b ⎛⎛=--+< ⎝⎝,而函数在区间(),0-∞上单调递增,故函数在区间(),0-∞上有一个零点. ()()()()2ln 22ln 21ln 2f a a a a a b =--+⎡⎤⎡⎤⎣⎦⎣⎦()()22ln 21ln 22a a a a a >--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 2ln 2a a a a =-⎡⎤⎣⎦()()ln 22ln 2a a a =-⎡⎤⎣⎦,由于2122e a <,212a e <≤,故()()ln 22ln 20a a a -≥⎡⎤⎣⎦,结合函数的单调性可知函数在区间()0,∞+上没有零点. 综上可得,题中的结论成立. 若选择条件②:由于102a <<,故21a <,则()01210fb a =-≤-<, 当0b ≥时,24,42ea ><,()2240f e ab =-+>,而函数在区间()0,∞+上单调递增,故函数在区间()0,∞+上有一个零点.当0b <时,构造函数()1x H x e x =--,则()1xH x e '=-,当(),0x ∈-∞时,()()0,H x H x '<单调递减, 当()0,x ∈+∞时,()()0,H x H x '>单调递增,注意到()00H =,故()0H x ≥恒成立,从而有:1x e x ≥+,此时:()()()()22111x f x x e ax b x x ax b =---≥-+-+()()211a x b =-+-,当x >()()2110a x b -+->,取01x ,则()00f x >,即:()00,10f f ⎫<>⎪⎪⎭, 而函数在区间()0,∞+上单调递增,故函数在区间()0,∞+上有一个零点. ()()()()2ln 22ln 21ln 2f a a a a a b =--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 21ln 22a a a a a ≤--+⎡⎤⎡⎤⎣⎦⎣⎦()()2 2ln2ln2a a a a=-⎡⎤⎣⎦()()ln22ln2a a a=-⎡⎤⎣⎦,由于12a<<,021a<<,故()()ln22ln20a a a-<⎡⎤⎣⎦,结合函数的单调性可知函数在区间(),0-∞上没有零点.综上可得,题中的结论成立.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.。
2021高考数学全国卷1卷试题及答案详解
绝密★启用前普通高等学校招生全国统一考试理科数学满分150分.用时120分钟.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若1z i =+,则22z z -=A .0B .1C 2D .22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤,则a =A .4-B .2-C .2D .43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A 51-B 51-C 51+D 51+4.已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C ︒)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()(),1,2,,20i i x y i =得到下面的散点图示意:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx =+B .2y a bx =+C .x y a be =+D .ln y a b x =+6.函数43()2f x x x =-的图像在点()()1,1f 处的切线方程为 A .21y x =--B .21y x =-+C .23y x =-D .21y x =+7.设函数()cos 6f x x πω⎛⎫=+ ⎪⎝⎭在[],ππ-的图像大致如下图,则()f x 的最小正周期为A .109π B .76π C .43π D .32π 8.25()()y x x y x ++的展开式中33x y 的系数为A .5B .10C .15D .209.已知(0,)απ∈,且3cos28cos 5αα-=,则sin α= A .53B .23 C .13D .5910.已知A ,B ,C 为球O 的球面上的三个点,1O 为ABC △的外接圆.若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π11.已知22:2220M x y x y +---=,且直线:220l x y ++=,P 为l 上的动点,过点P 作M 的切线PA ,PB ,切点为A ,B ,当AB PM ⋅最小时,直线AB 的方程为A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=12.若242log 42log a b a b +=+,则A .2a b >B .2a b <C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分.13.若,x y 满足约束条件2201010x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩,则7z x y =+的最大值是________.14.设,a b 为单位向量,且1+=a b ,则-=a b ________.15.已知F 为双曲线2222:1x y C a b-=(0,0a b >>)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 斜率为3,则C 的离心率为_______.16.如图所示,在三棱锥P ABC -的平面展开图中1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ︒∠=,则cos FCB ∠=__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前项和.18.(12分)如图所示,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =. (1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰:比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12. (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.20.(12分)已知,A B 分别为椭圆222:1(1)x E y a a+=>的左、右顶点,G 为E 的上顶点,8AG GB ⋅=.P为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.21.(12分)已知函数()2x f x e ax x =+-.(1)当1a =时,讨论()f x 的单调性; (2)当0x ≥时,()3112f x x ≥+,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的参数方程为cos sin kkx ty t ⎧=⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.23.[选修4-5:不等式选讲](10分)已知函数()3121f x x x =++-. (1)画出()y f x =的图象;(2)求不等式()()1f x f x >+的解集.参考答案一、选择题15DBCCD - 610BCCAA - 11.D 12.B二、填空题13.1 14.3 15.2 116.4-三、解答题17.解:(1)设{}n a 的公比为q ,由题设得1232a a a =+,即21112a a q a q =+∴220q q +-=,解得1q =(舍去)或2q =-. ∴{}n a 的公比为2-.(2)记n S 为{}n na 的前n 项和,由(1)及题设可知()12n n a -=-,∴ ()()11222n n S n -=+⨯-++⨯- ①()()()2222212nn S n -=-+⨯-++-⨯- ②由①②得()()()()21312222n nn S n -=+-+-++--⨯-()()1223nnn --=-⨯-∴()()312199nn n S +-=- 18.解:(1)设DO a =,由题设可得63,,63PO a AO a AB a ===,22PA PB PC a ===, ∴222PA PB AB +=,∴PA PB ⊥,又222PA PC AC +=,∴PA PC ⊥, ∴PA ⊥平面PBC(2)以O 为坐标原点,OE 方向为y 轴正方向,OE 为单位长, 建立如图的空间直角坐标系O xyz -. 由题设可得()()310,1,0,0,1,0,,,022E A C ⎛⎫--⎪⎝⎭, xyz0,0,2P ⎛⎫ ⎪⎝⎭,∴31,,0,0.1,222EC EP ⎛⎫⎛=--=- ⎪ ⎝⎭⎝⎭。
2021年四川高考理科数学真题及答案
2021年四川高考理科数学真题及答案1.设集合M={x|0<x<4},N={x|≤x≤5},则M∩N=A. {x|0<x ≤}B. {x|≤x<4}C. {x|4≤x<5}D. {x|0<x≤5}2.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间3.已知,则z=A.-1-iB. -1+iC. -+iD. --i4.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量,通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记数法的数据V满足L=5+lgV。
已知某同学视力的五分记录法的数据为4.9,则其视力的小数记数法的数据约为(≈1.259)A.1.5B.1.2C.0.8D.0.65.已知F1,F2是双曲线C的两个焦点,P为C上一点,且∠F1PF2=60°,|PF1|=3|PF2|,则C的离心率为A.B.C.D.6.在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A-EFG后,所得多面体的三视图中,正试图如右图所示,则相应的侧视图是A.B.C.D.7.等比数列{an }的公比为q,前n项和为Sn,设甲:q>0,乙:{Sn}是递増数列,则A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件8.2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一.右图是三角高程测量法的一个示意图,现有以A,B, C三点,且A,B,C在同一水平而上的投影A’,B’,C'满足.由c点测得B点的仰角为15°,曲,与的差为100 :由B点测得A点的仰角为45°,则A,C两点到水平面的高度差约为A.346B.373C. 446D.4739.若,,则A. B. C. D.10.将4个1和2个0随机排成一行,则2个0 不相邻的概率为A. B. C. D.11.已知A,B,C是半径为1的求O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O-ABC的体积为A. B. C. D.12.设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当时,.若,则A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021高考数学试题
2021年高考数学试题是具有重要意义的一次考试,对参加高考的学
生来说是非常关键的一次挑战。本文将按照试题的题号,对部分试题
进行解答和分析,帮助大家更好地理解和应对这次考试。
第一题:
已知函数 f(x) = 3x^2 - 2x + 5,求 f(x) 的极值点。
解答:要求函数的极值点,需要先求导。对 f(x) 求导得到 f'(x) = 6x
- 2。令 f'(x) = 0,解得 x = 1/3。
将 x = 1/3 代入 f(x) 中,得到 f(1/3) = 16/3。
所以,f(x) 的极值点为 (1/3, 16/3)。
第二题:
某数列的通项公式为 an = 3n + 1,求该数列的第 10 项。
解答:要求数列的第 n 项,将 n = 10 代入数列的通项公式即可得到
an = 3*10 + 1 = 31。
所以,该数列的第 10 项为 31。
第三题:
已知等差数列的第 3 项为 5,公差为 2,求该等差数列的前 10 项的
和。
解答:由已知条件可知,a1 + 2d = 5,其中 a1 表示等差数列的首项,
d 表示公差。又由等差数列的通项公式可知 an = a1 + (n-1)d。
将 n = 3 代入可得 a3 = a1 + 2d,即 a3 = 5。
再将 n = 10 代入通项公式,可得 a10 = a1 + 9d。
由等差数列的性质可知,a10 = a3 + 7d。
所以,5 + 7d = 5,解得 d = 0,即公差为 0。
因此,该等差数列的前 10 项都是 5,所以前 10 项的和为 5 * 10 =
50。
以上是对部分试题的解答和分析,通过这些例子我们可以看出,高
考数学试题考查的不仅是对知识点的掌握,还需要考生具备灵活运用
数学方法解决实际问题的能力。在备考过程中,我们要注重巩固基础
知识,掌握解题技巧,同时也要多做题,提高应试能力。相信在认真
备考的努力下,大家一定能够取得理想的成绩!