第1讲 函数的图象与性质(解析版)

第1讲 函数的图象与性质(解析版)
第1讲 函数的图象与性质(解析版)

第1讲函数的图象与性质

[考情考向分析] 1.高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.2.对图象的考查主要有两个方面:一是识图,二是用图,即利用函数的图象,通过数形结合的思想解决问题.3.对函数性质的考查,主要是将单调性、奇偶性、周期性等综合在一起考查,既有具体函数也有抽象函数.常以选择题、填空题的形式出现,且常与新定义问题相结合,难度较大.

热点一函数的性质及应用

1.单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.

2.奇偶性

(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.

(2)在公共定义域内:

①两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数;

②两个偶函数的和函数、积函数都是偶函数;

③一个奇函数、一个偶函数的积函数是奇函数.

(3)若f(x)是奇函数且在x=0处有定义,则f(0)=0.

(4)若f(x)是偶函数,则f(x)=f(-x)=f(|x|).

(5)图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称.

3.周期性

定义:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f(a+x)=f(x)(a≠0),则其一个周期T=|a|.

常见结论:

(1)若f (x +a )=-f (x ),则函数f (x )的最小正周期为2|a |,a ≠0. (2)若f (x +a )=

1

f (x )

,则函数f (x )的最小正周期为2|a |,a ≠0. (3)若f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b

2

对称.

例1 (1)(2018·贵州省黔东南州模拟)设函数f (x )=cos ???

2-πx +(x +e )2x 2

+e 2的最大值为M ,最小值为N ,则(M +N -1)2018的值为( ) A .1B .2C .22018D .32018 答案 A

解析 由已知x ∈R ,f (x )=cos ???

2-πx +(x +e )2x 2+e 2

=sin πx +x 2+e 2+2e x x 2+e 2=sin πx +2e x x 2+e 2

+1, 令g (x )=sin πx +2e x

x 2+e 2

,易知g (x )为奇函数,

由于奇函数在对称区间上的最大值与最小值的和为0,

M +N =f (x )max +f (x )min =g (x )max +1+g (x )min +1=2,(M +N -1)2018=1,故选A.

(2)(2018·上饶模拟)已知定义在R 上的函数f (x )满足:函数y =f (x -1)的图象关于点(1,0)对称,且x ≥0时恒有f (x +2)=f (x ),当x ∈[0,1]时,f (x )=e x -1,则f (-2017)+f (2018)=________. 答案 1-e

解析 因为函数y =f (x -1)的图象关于点(1,0)对称,所以y =f (x )的图象关于原点对称, 又定义域为R ,所以函数y =f (x )是奇函数,因为x ≥0时恒有f (x +2)=f (x ), 所以f (-2 017)+f (2 018)=-f (2 017)+f (0) =-f (1)+f (0)=-(e 1-1)+(e 0-1)=1-e.

思维升华 (1)可以根据函数的奇偶性和周期性,将所求函数值转化为给出解析式的范围内的函数值.

(2)利用函数的单调性解不等式的关键是化成f (x 1)

跟踪演练1 (1)定义在R 上的函数f (x )满足f (-x )=f (x ),且当x ≥0时,f (x )=

?

????

-x 2+1,0≤x <1,2-2x ,x ≥1,若对任意的x ∈[m ,m +1],不等式f (1-x )≤f (x +m )恒成立,则实数m 的最大值为( ) A .-1 B .-1

2

C .-13

D.13

答案 C

解析 函数f (x )为偶函数,且当x ≥0时,函数为减函数,当x <0时,函数为增函数.若对任意的x ∈[m ,m +1],不等式f (1-x )≤f (x +m )恒成立,则|1-x |≥|x +m |,即(1-x )2≥(x +m )2,所以2(1+m )x ≤(1+m )(1-m ).当m +1>0时,x ≤1-m 2,所以m +1≤1-m 2,解得m ≤-1

3,

所以-1

3;当m +1=0时,不等式成立;当m +1<0时,x ≥1-m 2,所以m ≥1-m 2,

m ≥13,与m <-1矛盾,此时无解.故-1≤m ≤-13,m 的最大值为-1

3

.

(2)(2018·全国Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)等于( ) A .-50B .0C .2D .50 答案 C

解析 ∵f (x )是奇函数,∴f (-x )=-f (x ), ∴f (1-x )=-f (x -1).∵f (1-x )=f (1+x ), ∴-f (x -1)=f (x +1),∴f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), ∴函数f (x )是周期为4的周期函数. 由f (x )为奇函数且定义域为R 得f (0)=0, 又∵f (1-x )=f (1+x ),

∴f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=0,∴f (-2)=0. 又f (1)=2,∴f (-1)=-2,

∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0,

∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50)

=0×12+f(49)+f(50)=f(1)+f(2)=2+0=2.

故选C.

热点二函数图象及应用

1.作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.

2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.

例2 (1)(2018·全国Ⅱ)函数f (x )=e x -e -

x

x 2

的图象大致为( )

答案 B

解析 ∵y =e x -e -x 是奇函数,y =x 2是偶函数, ∴f (x )=e x -e -x

x 2是奇函数,图象关于原点对称,排除A.

当x =1时,f (1)=e -e -11=e -1

e >0,排除D.

又e>2,∴1e <12,∴e -1e >3

2,排除C.

故选B.

(2)(2018·河南省中原名校模拟)函数f (x )=e x +a e -

x 与g (x )=x 2+ax 在同一坐标系内的图象不可

能是( )

答案 C

解析 因为g (x )=x 2+ax 的图象过原点,所以图象中过原点的抛物线是函数g (x )的图象,在选项C 中,上面的图象是函数f (x )的图象,下面的是函数g (x )的图象,所以-a

2>0,所以a <0,

因为f ′(x )=e x -a e -x ,所以f ′(x )>0在R 上恒成立,所以函数f (x )在定义域内单调递增,不是选项C 中的图象,故选C.

思维升华 (1)根据函数的解析式判断函数的图象,要从定义域、值域、单调性、奇偶性等方面入手,结合给出的函数图象进行全面分析,有时也可结合特殊的函数值进行辅助推断,这是判断函数图象问题的基本方法.(2)判断复杂函数的图象,常借助导数这一工具,先对原函数进行求导,再利用导数判断函数的单调性、极值或最值,从而对选项进行筛选.要注意函数求导之后,导函数发生了变化,故导函数和原函数定义域会有所不同,我们必须在原函数的定义域内研究函数的极值和最值.

跟踪演练2 (1)(2018·河北省衡水中学调研)函数f (x )=sin ? ??

??ln

x -1x +1的图象大致为( )

答案 B

解析 由于x ≠0,故排除A.

f (-x )=sin ? ??

??

ln -x -1-x +1=-f (x ),

又函数f (x )的定义域为(1,+∞)∪(-∞,-1), 所以函数为奇函数,图象关于原点对称,排除C. f (2)=sin ????ln 1

3=-sin(ln 3)<0, 排除D ,故选B.

(2)(2018·东北三省三校模拟)函数f (x )=|x |+a

x

(a ∈R )的图象不可能是( )

答案 C

解析 对于A ,当a =0时,f (x )=|x |,且x ≠0,故可能;对于B ,当x >0且a >0时,f (x )=x +a x

≥2 a ,当且仅当x =a 时等号成立,当x <0且a >0时,f (x )=-x +a

x

在(-∞,0)上为减

函数,故可能;对于D ,当x <0且a <0时,f (x )=-x +a

x ≥2

-x ·a

x

=2

-a ,当且仅当x

=-

-a 时等号成立,当x >0且a <0时,f (x )=x +a

x

在(0,+∞)上为增函数,故可能,且C

不可能.故选C.

热点三 基本初等函数的图象和性质

1.指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分01两种情况,着重关注两函数图象中的公共性质.

2.幂函数y =x α的图象和性质,主要掌握α=1,2,3,1

2,-1五种情况.

例3 (1)(2017·全国Ⅰ)设x ,y ,z 为正数,且2x =3y =5z ,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2x D .3y <2x <5z

答案 D

解析 令t =2x =3y =5z , ∵x ,y ,z 为正数,∴t >1.

则x =log 2t =lg t lg2,同理,y =lg t lg3,z =lg t lg5

.

∴2x -3y =2lg t lg2-3lg t lg3=lg t (2lg3-3lg2)

lg2×lg3

=lg t (lg9-lg8)

lg2×lg3>0,

∴2x >3y .

又∵2x -5z =2lg t lg2-5lg t lg5=lg t (2lg5-5lg2)

lg2×lg5

=lg t (lg25-lg32)

lg2×lg5<0,

∴2x <5z , ∴3y <2x <5z .故选D.

(2)已知函数f (x )=?

????

a x ,x <0,(a -3)x +4a ,x ≥0满足对任意x 1≠x 2,都有f (x 1)-f (x 2)

x 1-x 2<0成立,则a 的

取值范围是( ) A.????0,1

4 B .(1,2] C .(1,3) D.????

12,1

答案 A

解析 由f (x 1)-f (x 2)x 1-x 2<0,得f (x )是减函数,

即????

?

0

得a ∈???

?0,1

4,故选A. 思维升华 (1)指数函数、对数函数、幂函数是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及运算能力. (2)比较代数式大小问题,往往利用函数图象或者函数的单调性.

跟踪演练3 (1)(2018·天津)已知a =log 2e ,b =ln2,c =log 12

1

3

,则a ,b ,c 的大小关系为( )

A .a >b >c

B .b >a >c

C .c >b >a

D .c >a >b

答案 D

解析 c =1

2

1

log 3

=log 23>log 2e =a ,即c >a . 又b =ln2=1

log 2e <1b .所以c >a >b .

故选D.

(2)对任意实数a ,b 定义运算“Δ”:a Δb =?

????

a ,a -

b ≤2,b ,a -b >2,设f (x )=3x +

1Δ(1-x ),若函数f (x )

与函数g (x )=x 2-6x 在区间(m ,m +1)上均为减函数,则实数m 的取值范围是( ) A .[-1,2] B .(0,3] C .[0,2] D .[1,3]

答案 C

解析 由题意得f (x )=?????

-x +1,x >0,

3x +1,x ≤0,

∴函数f (x )在(0,+∞)上单调递减,函数g (x )=(x -3)2-9在(-∞,3]上单调递减,若函数

f (x )与

g (x )在区间(m ,m +1)上均为减函数,则?

????

m ≥0,

m +1≤3,得0≤m ≤2,故选

C.

真题体验

1.(2018·全国Ⅲ改编)函数y =-x 4+x 2+2的图象大致为________.(填序号

)

答案 ④

解析 方法一 f ′(x )=-4x 3+2x ,则f ′(x )>0的解集为?

???-∞,-

22∪???

?0,2

2,此时f (x )单调递增;f ′(x )<0的解集为?

???-

22,0∪???

?22,+∞,此时f (x )单调递减.

方法二 当x =1时,y =2,所以排除①②.当x =0时,y =2,而当x =12时,y =-116+1

4+2

=2 3

16>2,

所以排除③.

2.(2017·天津改编)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为________. 答案 b

解析 依题意a =g (-log 25.1) =(-log 25.1)·f (-log 25.1) =log 25.1f (log 25.1)=g (log 25.1).

因为f (x )在R 上是增函数,可设0

从而x 1f (x 1)0,20.8>0,3>0, 且log 25.1log 25.1>20.8>0,所以c >a >b .

3.(2017·山东改编)设f (x )=???

x ,0

若f (a )=f (a +1),则f ????1a =________. 答案 6

解析 若0

∴a =1

4

,∴f ????1a =f (4)=2×(4-1)=6.

若a ≥1,由f (a )=f (a +1), 得2(a -1)=2(a +1-1),无解. 综上,f ????

1a =6.

4.(2017·全国Ⅱ)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=________. 答案 12

解析 方法一 令x >0,则-x <0. ∴f (-x )=-2x 3+x 2.

∵函数f (x )是定义在R 上的奇函数, ∴f (-x )=-f (x ). ∴f (x )=2x 3-x 2(x >0). ∴f (2)=2×23-22=12. 方法二 f (2)=-f (-2) =-[2×(-2)3+(-2)2]=12. 押题预测

1.在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是( )

押题依据 指数、对数、幂函数的图象识别问题是高考命题的热点,旨在考查其基本性质的灵活运用,题目难度一般不大,位于试卷比较靠前的位置. 答案 D

解析 方法一 分a >1,0

当a >1时,y =x a 与y =log a x 均为增函数,但y =x a 递增较快,排除C ;

当01,而此时幂函数g (x )=x a 的图象应是增长越来越快的变化趋势,故C 错.

2.设函数y =f (x )(x ∈R )为偶函数,且?x ∈R ,满足f ????x -32=f ????x +1

2,当x ∈[2,3]时,f (x )=x ,则当x ∈[-2,0]时,f (x )等于( ) A .|x +4| B .|2-x | C .2+|x +1|

D .3-|x +1|

押题依据 利用函数的周期性、奇偶性求函数值是高考的传统题型,考查学生思维的灵活性. 答案 D

解析 由f ????x -32=f ???

?x +1

2, 可得f (x +2)=f (x ),则当x ∈[-2,-1]时, x +4∈[2,3],f (x )=f (x +4)=x +4=x +1+3; 当x ∈[-1,0]时,-x ∈[0,1],2-x ∈[2,3], f (x )=f (-x )=f (2-x )=2-x =3-x -1,故选D.

3.已知函数f (x )=1

ln (x +1)-x

,则y =f (x )的图象大致为( )

押题依据 图象的识别和变换是高考的热点,此类问题既考查了基础知识,又考查了学生的灵活变换能力. 答案 B

解析 方法一 由题意得?????

x +1>0,

x ≠0,

∴f (x )的定义域为{x |x >-1且x ≠0}.

令g (x )=ln(x +1)-x ,则g ′(x )=1

x +1-1=-x

x +1,

当-10;当x >0时,g ′(x )<0.

∴f (x )在区间(-1,0)上为减函数,在区间(0,+∞)上为增函数,对照各选项,只有B 符合. 方法二 取特殊值,用排除法求解, f (2)=1

ln3-2<0,排除A.

f ???

?-12=1ln 12+12=1

ln e 2

<0, 排除C ,D ,故选B.

4.已知函数h (x )(x ≠0)为偶函数,且当x >0时,h (x )=?????

-x 2

4,0

4-2x ,x >4,若h (t )>h (2),则实

数t 的取值范围为________.

押题依据 分段函数是高考的必考内容,利用函数的单调性求解参数的范围,是一类重要题型,是高考考查的热点.本题恰当地应用了函数的单调性,同时考查了函数的奇偶性的性质. 答案 (-2,0)∪(0,2)

解析 因为当x >0时,h (x )=?????

-x 2

4,0

4-2x ,x >4.

所以函数h (x )在(0,+∞)上单调递减, 因为函数h (x )(x ≠0)为偶函数,且h (t )>h (2), 所以h (|t |)>h (2),所以0<|t |<2,

所以????? t ≠0,|t |<2,即?????

t ≠0,

-2

解得-2

综上,所求实数t 的取值范围为(-2,0)∪(0,2).

A 组 专题通关

1.(2018·北京石景山区模拟)下列函数中既是奇函数,又在区间(0,+∞)上是减函数的为( ) A .y =x B .y =-x 3 C .y =12

log x

D .y =x +1

x

答案 B

解析 由题意得,对于函数y =x 和函数y =12

log x 都是非奇非偶函数,排除A ,C.

又函数y =x +1

x 在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,排除D ,故选B.

2.(2018·合肥质检)已知函数f (x )=a -2x

a +2x 是奇函数,则f (a )的值等于( )

A .-13

B .3

C .-1

3或3

D.13

或3 答案 C

解析 函数f (x )为奇函数,则f (-x )=-f (x ),

即a -2-x a +2-x =-a -2x a +2x 在定义域内恒成立, 整理可得a ·2x -1a ·2x +1=-a +2x a +2x ,

即a 2=1恒成立,∴a =±1, 当a =1时,函数f (x )的解析式为 f (x )=1-2x 1+2x ,f ()a =f ()1=1-211+21=-1

3,

当a =-1时,函数f (x )的解析式为 f (x )=-1-2x -1+2x ,f ()a =f ()

-1=-1-2-1

-1+2

-1=3. 综上可得f ()a 的值为-1

3或3.

3.(2018·安庆模拟)函数f (x )=

x +1

||x +1log a

||x (0

)

答案 C 解析 f (x )=

x +1

||

x +1log a ||x

=????

?

-log a (-x ),x <-1,log a ()-x ,-1

x ,x >0.

故选C.

4.(2018·合肥质检)已知函数f (x )=1-2x 1+2x

,实数a ,b 满足不等式f (2a +b )+f (4-3b )>0,则下

列不等式恒成立的是( ) A .b -a <2 B .a +2b >2 C .b -a >2 D .a +2b <2

答案 C

解析 由题意得f (-x )=1-2-x 1+2-x =2x -12x +1=-1-2x

2x +1=-f (x ),故函数f (x )为奇函数.

又f (x )=-2x -11+2x =-(2x +1)-21+2x =-1+2

1+2x

, 故函数f (x )在R 上单调递减. ∵f (2a +b )+f (4-3b )>0, ∴f (2a +b )>-f (4-3b )=f (3b -4), ∴2a +b <3b -4,∴b -a >2.故选C.

5.(2018·天津市十二重点中学联考)已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上单调递增,若a =15

(log 3)f ,b =f (log 35),c =f (0.20.5),则a ,b ,c 的大小关系为( )

A .a

B .c

C .b

D .c

答案 C

解析 ∵f (x )是定义在(-∞,+∞)上的偶函数, ∴a =15

(log 3)f =f ()

-log 53=f ()log 53,

∵1

2

=log 55

55<12

, ∴0.20.5

∵f (x )在(-∞,0]上是增函数, f (x )是定义在R 上的偶函数, ∴f (x )在[0,+∞)上为减函数,

则f ()0.20.5

>f ()log 53>f ()log 35,

即b

6.若函数f (x )=?

????

2x +1,x ≥1,

-x 2+ax +1,x <1在R 上是增函数,则a 的取值范围为( )

A .[2,3]

B .[2,+∞)

C .[1,3]

D .[1,+∞) 答案 A

解析 由题意得?????

a 2≥1,

-1+a +1≤2+1,

∴a ∈[2,3],故选A.

7.(2018·广东省六校联考)函数y =1-ln|x |

1+ln|x |

·sin x 的部分图象大致为( )

答案 A

解析 设f (x )=1-ln|x |

1+ln|x |·sin x ,

由1+ln|x |≠0,得x ≠±1

e ,

则函数f (x )的定义域为

????-∞,-1e ∪????-1e ,0∪????0,1e ∪???

?1e ,+∞.

∵f (-x )=1-ln|-x |

1+ln|-x |·sin(-x )

=-1-ln|x |1+ln|x |·sin x =-f (x ),

∴函数f (x )为奇函数,排除D.

又1>1

e ,且

f (1)=sin 1>0,故可排除B.

0<1e 2<1e ,且f ????1e 2=1-ln ????1e 21+ln ????1e 2·sin 1e 2 =1-(-2)1-2·sin 1e 2=-3·sin 1

e 2<0,

故可排除C.故选A.

8.(2018·德阳二诊)已知log 2x =log 3y =log 5z <0,则2x ,3y ,5

z 的大小排序为( )

A.2x <3y <5z

B.3y <2x <5z

C.5z <2x <3y

D.5z <3y <2x

答案 A

解析 x ,y ,z 为正实数,且log 2x =log 3y =log 5z <0, 令log 2x =log 3y =log 5z =k (k <0), ∴x 2=2k -1,y 3=3k -1,z

5=5k -1, 可得2x =21-k ,3y =31-k ,5

z =51-k ,

又1-k >0,

∴函数f (x )=x 1-k 在(0,+∞)上单调递增, ∴2x <3y <5

z

.故选A.

9.(2017·全国Ⅲ)设函数f (x )=?

????

x +1,x ≤0,2x ,x >0,则满足f (x )+f ????x -1

2>1的x 的取值范围是______________. 答案 ???

?-1

4,+∞ 解析 由题意知,对不等式分x ≤0,01

2三段讨论.

当x ≤0时,原不等式为x +1+x +1

2>1,

解得x >-1

4,

∴-1

4

当0

2

>1,显然成立.

当x >1

2

时,原不等式为2x +1

22x ->1,显然成立.

综上可知,x 的取值范围是???

?-1

4,+∞. 10.已知定义在R 上的函数f (x )满足:①函数f (x )的图象的对称中心为(1,0),且对称轴为x =

-1;②当x ∈[-1,1]时,f (x )=???

1-x ,x ∈(0,1],1-x 2,x ∈[-1,0],

则f ????72=________. 答案 -

3

2

解析 由题意作出f (x )的部分图象如图所示,

则f ????72=-

1-????-122=-3

2

. 11.(2018·全国Ⅲ)已知函数f (x )=ln(1+x 2-x )+1,f (a )=4,则f (-a )=________. 答案 -2

解析 ∵f (x )+f (-x )=ln(

1+x 2-x )+1+ln(

1+x 2+x )+1=ln(1+x 2-x 2)+2=2,

∴f (a )+f (-a )=2,∴f (-a )=-2.

12.已知函数f (x )是奇函数,当x <0时,f (x )=-x 2+x .若不等式f (x )-x ≤2log a x (a >0且a ≠1)

对?x ∈?

??

?

0,

22恒成立,则实数a 的取值范围是________. 答案 ????

14,1

解析 由已知得当x >0时,f (x )=x 2+x , 故x 2≤2log a x 对?x ∈?

??

?

0,

22恒成立, 即当x ∈?

??

?0,

22时, 函数y =x 2的图象不在y =2log a x 图象的上方, 由图(图略)知0

2

, 解得1

4

≤a <1.

B 组 能力提高

13.(2018·河北衡水中学模拟)已知函数f (x )=2

2019x +1+sin x ,其中f ′(x )为函数f (x )的导数,

则f (2018)+f (-2018)+f ′(2019)-f ′(-2019)等于( ) A .2 B .2019 C .2018 D .0 答案 A

解析 由题意得f (x )+f (-x )=2, ∴f (2 018)+f (-2 018)=2,

由f (x )+f (-x )=2可得f (x )-1+f (-x )-1=0, ∴y =f (x )-1为奇函数, ∴y =f (x )-1的导函数为偶函数,

即y =f ′(x )为偶函数,其图象关于y 轴对称, ∴f ′(2 019)-f ′(-2 019)=0,

∴f (2 018)+f (-2 018)+f ′(2 019)-f ′(-2 019)=2. 故选A.

14.(2018·江西省分宜中学、玉山一中、临川一中等九校联考)若函数y =f (x ),x ∈M 对于给定的非零实数a ,总存在非零常数T ,使得定义域M 内的任意实数,都有af (x )=f (x +T )恒成

一次函数的图象与性质

一次函数图象和性质 【知识梳理】 1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0). 2. 一次函数y kx b =+的图象是经过(k b -,0)和(0,b )两点的一条直线. 3. 一次函数y kx b =+的图象与性质 【思想方法】数形结合 【例题精讲】 例1. 已知一次函数物图象经过A(-2,-3),B(1,3)两点. (1)求这个一次函数的解析式; (2)试判断点P(-1,1)是否在这个一次函数的图象上; (3)求此函数与x 轴、y 轴围成的三角形的面积. 例2. 已知一次函数y=(3a+2)x -(4-b),求字母a 、b 为何值时: (1)y 随x 的增大而增大; (2)图象不经过第一象限; (3)图象经过原点; (4)图象平行于直线y=-4x+3; (5)图象与y 轴交点在x 轴下方. 例3. 如图,直线l 1 、l 2相交于点A ,l 1与x 轴的交点坐标为(-1,0),l 2与y 轴的交点坐标为(0,-2),结合图象解答下列问题: (1)求出直线l 2表示的一次函数表达式; (2)当x 为何值时,l 1 、l 2表示的两个一次函数的函数值都大于0? k 、b 的符号 k >0,b >0 k >0,b <0 k <0,b >0 k <0,b <0 图像的大致位 置 经过象限 第 象限 第 象限 第 象限 第 象限 性质 y 随x 的增大 而 y 随x 的增大而而 y 随x 的增大 而 y 随x 的增大 而

x y O 3 2y x a =+ 1y kx b =+ y x O B A 【当堂检测】 1.直线y =2x +8与x 轴和y 轴的交点的坐标分别是_______、_______; 2.一次函数1y kx b =+与2y x a =+的图象如图,则下列 结论:①0k <;②0a >;③当3x <时,12y y <中, 正确的个数是( ) A .0 B .1 C .2 D .3 3.一次函数(1)5y m x =++,y 值随x 增大而减小,则m 的取值范围是( ) A .1m >- B . 1m <- C .1m =- D .1m < 4.一次函数23y x =-的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( ) 6.已知整数x 满足-5≤x≤5,y 1=x+1,y 2=-2x+4对任意一个x ,m 都取y 1,y 2中的较小值,则m 的最大值是( ) A.1 B.2 C.24 D.-9 7.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为 ( ) A.(0,0) B.( 22,2 2-) C.(-21,-2 1 ) D.(-22,-22) 8.一次函数y =2x -2的图象不经过... 的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y = -x 图象上两点,则下列判断正确的是 ( ) A .y 1>y 2 B .y 1y 2 D .当x 1

一次函数概念图像及性质

一次函数概念、图像及性质 【教学目标】 1. 了解认识一次函数定义、图像,并能根据函数解析式画出图像 2. 理解一次函数的截距概念,会根据直线的表达式指出它在y 轴上的截距 3. 理解、掌握一次函数性质,熟悉图像所经过的象限及y 随x 变化而变化的情况 4. 能运用一次函数的图像及性质解综合型问题 【教学重难点】 1. 根据一次函数的图像确定解析式 2. 掌握一次函数性质,并能灵活运用于解题 3. 能结合一次函数知识点灵活求解综合型问题 【教学内容】 ★ 知识梳理 一、概念 定义:解析式形如)0( ≠+=k b kx y 的函数叫做一次函数 二、图像 一次函数的图象满足:(1)形状是一条直线;(2)始终经过(0 , b )和(k b - , 0)两点 三、截距 定义:直线)0( ≠+=k b kx y 与y 轴的交点坐标是) , 0 (b ,截距是b 四、性质 1. 一次函数)0( ≠+=k b kx y ,当0>k 时,函数值y 随自变量x 的值增大而增大;当0k ,且0>b 时,直线)0( ≠+=k b kx y 经过第一、二、三象限 (2)当0>k ,且0b 时,直线)0( ≠+=k b kx y 经过第一、二、四象限 (4)当0

一、概念 例1. 下列关于x 的函数中,是一次函数的是( ) (A )1)1(32+-=x y (B )x x y 1+ = (C )x y 3-= (D )x y 5-= 例2. 下列各式中,y 与x 成正比例关系的是 ;成一次函数关系的是 (1)x y 43= (2)x y 2 2-= (3)x y 29-= (4)x y 4= (5)52=+xy (6)765=+y x 例3. 下列说法中,不正确的是( ) (A )一次函数不一定是正比例函数 (B )不是一次函数就一定不是正比例函数 (C )正比例函数是特殊的一次函数 (D )不是正比例函数不一定不是一次函数 例4. 下列说法不正确的是( ) (A )在32--=x y 中,y 是x 的正比例函数 (B )在x y 21-=中,y 与x 成正比例 (C )在1=xy 中,y 与x 1成正比例 (D )在圆的面积公式2r S π=中,S 与2r 成正比例 例5. 已知b kx y +=,当3-=x 时,0=y ;当1=x 时,4=y ,求k 、b 的值

必修4正弦函数和余弦函数的图像与性质

必修4正弦函数和余弦函数的图像与性质 例1 用五点法做出下列函数的图像 11(1)2sin ,[0,2];(2)cos(),[,]666 y x x y x x ππππ=-∈=+∈- 例2 求下列函数的定义域和值域 (1)lgsin ;(2)y x y == 练:求函数sin ()log (12cos )x f x x =+的定义域。 例3 已知函数()y f x =的定义域是1 [0,]4 ,求下列函数的定义域 221(1)(cos );(2)(sin )2 f x f x - 例4 求下列函数的最大值与最小值 22(1)2sin();(2)2cos 5sin 4;42(3)3cos 4cos 1,[,]33 y x y x x y x x π ππ=--=+-=-+∈

例5 设1 sin sin 3x y +=,求2sin cos M x y =-的最小值和最大值 例6 求下列函数的值域 2cos 2sin cos (1);(2)2cos 11sin x x x y y x x ==++ 例7已知a 是实数,则函数f (x )=1+asinax 的图象不可能是( ) A . B . C . D . 例8 求下列函数的周期。 (1)|sin ||cos |;(2)cos |2|(3)cos()6y x x y x y x π =+==-- 例9 判断函数7())2f x x π =+的奇偶性 例10 判断函数()lg(sin f x x =+的奇偶性

例11求函数1sin 2 x y π-=的单调区间 提升训练题 1.下列四个函数的图像中关于y 轴对称的是( ) .sin ;.cos ;.1sin ;.cos()2 A y x B y x C y x D y x π ==-=-=- 2.函数sin 2x y =的单调增区间是( ) 3.[2,2]();.[2,2]()2222 .[2,2]();.[2,2]()A k k k Z B k k k Z C k k k Z D k k k Z π πππππππππππππ- +∈++∈-∈+∈ 3.下列函数中是奇函数的是( ) .|sin |;.sin(||);.sin ||;.sin ||A y x B y x C y x D y x x =-=-== 4.sin()3y x π =-的单调减区间是( ) 55.[,]();[2,2]()666677.[,]();.[2,2]();6666A k k k Z B k k k Z C k k k Z D k k k Z ππππππππππππππππ-+ ∈-+∈--∈--∈ 5.函数2cos 3cos 2y x =-+的最小值为______________________ 6.函数|sin |2x y =的最小正周期____________________ 7.cos1,cos2,cos3的大小关系____________________ 8.函数3cos 1cos 2 x y x += +的值域是____________________

4.4.1正弦函数图像与性质练习题.doc

正弦、余弦函数的图像及性质习题 一、选择题 1、若[]π2,0∈x ,函数x x y cos sin -+=的定义域是 A .[]π,0 B .???? ??23,2ππ C . ?? ?? ??ππ,2 D .?? ? ? ??ππ2,23 2、函数x y sin 1-=的最小值是 A .1- B .0 C .2- D .1 3、若cosx=0,则角x 等于( ) A .k π(k ∈Z ) B . 2π+k π(k ∈Z ) C .2 π +2k π(k ∈Z ) D .- 2 π +2k π(k ∈Z ) 4、使cosx=m m -+11有意义的m 的值为( ) A .m ≥0 B .m ≤0 C .-1<m <1 D .m <-1或m >1 5、已知函数f(x)=2sin x(>0)在区间[,]上的最小值是-2,则的最小值等于( )A. B. C.2 D.3 6.若函数的图象相邻两条对称轴间距离为 ,则等于 . A . B . C .2 D .4 7.函数y=3cos ( 52x -6 π )的最小正周期是( ) A . 5 π2 B . 2 π 5 C .2π D .5π 8.下列函数中,同时满足①在(0, 2 π )上是增函数,②为奇函数,③以π为最小正周期的函数是( ) A .y=tanx B .y=cosx C .y=tan 2 x D .y=|sinx| 9、函数??? ?? ?- ∈=32,6,sin ππx x y 的值域是 ??3π- 4 π ?322 3 cos()3 y x π ω=+ (0)ω>2 π ω12 12

正弦函数的图像和性质

1 定义编辑数学术语 正弦函数是三角函数的一种. 定义与定理 定义:对于任意一个实数x 都对应着唯一的角(弧度制中等于这个实数) ,而这个角又对应 着唯一确定的正弦值Sin X ,这样,对于任意一个实数X都有唯一确定的值Sin X与它对应, 按照这个对应法则所建立的函数,表示为f(x)=sin X ,叫做正弦函数。 正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/Sin A=b/Sin B=c/Sin C 在直角三角形ABC中,/ C=90 ,y为一条直角边,r为斜边,X为另一条直角边(在坐标 系中,以此为底),贝U Sin A=y∕r,r= √( x^2+y^2) 2 性质 编辑图像 图像是波形图像(由单位圆投影到坐标系得出) ,叫做正弦曲线(Sine curve) 正弦函数X∈& 定义域 实数集R 值域 [-1,1] (正弦函数有界性的体现) 最值和零点 ①最大值:当X=2k ∏+ ( ∏/2) , k ∈Z 时,y(max)=1 ②最小值:当X=2k ∏+ (3∏/2), k∈Z 时,y(min)=-1 零值点:( kπ ,0) ,k∈Z 对称性 既是轴对称图形,又是中心对称图形。 1) 对称轴:关于直线X= ( π /2) +kπ , k∈Z 对称 2) 中心对称:关于点(k ∏ , 0), k∈Z对称 周期性最小正周期:y=SinX T=2 π 奇偶性 奇函数(其图象关于原点对称) 单调性 在[-∏∕2+2k ∏ , ∏∕2+2k ∏], k∈Z 上是单调递增. 在[∏∕2+2k ∏ , 3∏∕2+2k ∏], k ∈Z 上是单调递减. 3 正弦型函数及其性质 编辑 正弦型函数解析式:y=Asin (ω x+ φ )+h

一次函数的图象和性质知识点和典型例题讲解

一次函数的图象和性质 一、知识要点: 1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。 注意:(1)k≠0,否则自变量x的最高次项的系数不为1; (2)当b=0时,y=kx,y叫x的正比例函数。 2、图象:一次函数的图象是一条直线, (1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0) (2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。 3、性质: (1)图象的位置: (2)增减性 k>0时,y随x增大而增大 k<0时,y随x增大而减小 4.求一次函数解析式的方法 求函数解析式的方法主要有三种 (1)由已知函数推导或推证 (2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。 (3)用待定系数法求函数解析式。

“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况: ①利用一次函数的定义 构造方程组。 ②利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向。 ③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。 ④利用题目已知条件直接构造方程。 二、例题举例: 例1.已知y=,其中=(k≠0的常数),与成正比例,求证y与x也成正比例。 证明:∵与成正比例, 设=a(a≠0的常数), ∵y=, =(k≠0的常数), ∴y=·a=akx, 其中ak≠0的常数, ∴y与x也成正比例。 例2.已知一次函数=(n-2)x+-n-3的图象与y轴交点的纵坐标为-1,判断 =(3-)是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。 解:依题意,得 解得 n=-1, ∴=-3x-1,

正弦函数的图像和性质(一)

正弦函数的图像和性质(一) 【使用说明】1.课前认真完成预习学案的问题导学及例题、深化提高; 2.认真限时完成,规范书写,课上小组合作探讨,答疑解惑。 【重点难点】重点:正弦函数的图像 难点:图像的画法 一、学习目标 1.了解正弦曲线的画法,能用五点法画出正弦函数的图像; 2.能通过函数图像对函数的性质做简单分析; 3.通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同角度观察、研究问题的思维习惯。 二、问题导学 1、函数的图像的画法: 描点法 步骤:列表→描点→连线 补全上述表格,并根据表格中数据在直角坐标系中画出的图像。 几何法 阅读教材25—26页内容,试借助于单位圆,利用正弦函数的定义画出的图像。 五点法

观察的图像,发现有五个点起着关键的作用,它们是图像与轴的交点和图像的最高点及最低点: ______,________,_________,________,__________. 因此,在精度要求不高的情况下,我们通常在直角坐标系中描出这起关键作用的五个点,然后用光滑的曲线连接,做出图像的简图。 请同学们用五点法画出的图像。 2、 因为正弦函数是以为周期的周期函数,所以函数在区间上的图像与在区间上的图像形状完全一样,只是位置不同,因此我们只需将函数的图像向左、向右平行移动(每次移动个单位)就可以得到的图像,正弦函数的图像叫做___________ 请同学们在几何法做出的图像的基础上,画出正弦曲线。 3、 合作探究 例1、用五点法画出下列函数在区间上的简图。 (1) (2) 例2、在上,利用的图像求满足下列不等式的的取值范围。 (1) (2)

一次函数的图像与性质

一次函数的性质和图像

目录一、函数的定义 (一)、一次函数的定义函数。

(二)、正比例函数的定义 二、函数的性质 (一)、一次函数的性质 (二)、正比例函数的性质 三、函数的图像 (一)、一次函数和正比例函数图像在坐标上的位置 (二)、一次函数的图像 1、一次函数图像的形状 2、一次函数图像的画法 (三)、正比例函数的图像 1、正比例函数图像的形状 2、正比例函数图像的画法 3、举例说明正比例函数图像的画法 四、k、b两个字母对图像位置的影响 K、b两个字母的具体分工是: (一次项系数)k决定图象的倾斜度。 (常数项)b决定图象与y轴交点位置。 五、解析式的确定 (一)一个点坐标决定正比,两个点坐标决定一次 (二)用待定系数法确定解析式

六、两条函数直线的四种位置关系 两直线平行,k1= k2,b1≠b2 两直线重合,k1= k2,b1=b2 两直线相交,k1≠k2 两直线垂直,k1×k2=-1 (一)两条函数直线的平行 (二)两条函数直线的相交 (三)两条函数直线的垂直 一次函数、反比例函数中自变量x前面的字母k称为比例系数 这一节我们要学习正比例函数和一次函数。一次函数的解析式是y=kx+b,如果当这个式子中的b=0时,式子就变成了正比例函数y=kx。因此,正比例函数是一次函数当b=0时的特殊情况。正是因为正比例函数实际上就是一次函数,所以把正比例函数和一次函数结合在一起来学习。 在正比例函数y=kx和反比例函数y=k/x中,由于函数y与自变量x之间有比例关系,就要在自变量x前面用字母系数k表示它们之间的比例关系,因而字母k就取名为比例系数。确定了比例系数k就可以直接确定正比例函数或反比例函数的解析式。

正弦函数的图像和性质(一)

x y 等分圆 平移三角函数线作正弦函数的图像 三角函数线 圆 O O 正弦函数的图像和性质(一) 【使用说明】1.课前认真完成预习学案的问题导学及例题、深化提高; 2.认真限时完成,规范书写,课上小组合作探讨,答疑解惑。 【重点难点】重点:正弦函数的图像 难点:x y sin =图像的画法 一、学习目标 1.了解正弦曲线的画法,能用五点法画出正弦函数x y sin =的图像; 2.能通过函数图像对函数的性质做简单分析; 3.通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同 角度观察、研究问题的思维习惯。 二、问题导学 1、函数] 2,0[ sinπ ∈ =x x y,的图像的画法: 补全上述表格,并根据表格中数据在直角坐标系中画出] 2,0[ sinπ ∈ =x x y,的图像。 ②几何法阅读教材25—26页内容,试借助于单位圆,利用正弦函数的定义画出 ] 2,0[ sinπ ∈ =x x y,的图像。 ③五点法 观察] 2,0[ sinπ ∈ =x x y,的图像,发现有五个点起着关键的作用,它们是图像与x轴的 交点和图像的最高点及最低点:______,________,_________,________,__________. 因此,在精度要求不高的情况下,我们通常在直角坐标系中描出这起关键作用的五个点,然 后用光滑的曲线连接,做出图像的简图。 请同学们用五点法画出] 2,0[ sinπ ∈ =x x y,的图像。 2、因为正弦函数是以π2为周期的周期函数,所以函数x y sin =在区间 )0 ] )1 2, 2[≠ ∈ +k Z k k k且 ( (π π上的图像与在区间] 2,0[π上的图像形状完全一样,只是位置 不同,因此我们只需将函数] 2,0[ sinπ ∈ =x x y,的图像向左、向右平行移动(每次移动π2 个单位)就可以得到R sin∈ =x x y,的图像,正弦函数的图像叫做___________ 请同学们在几何法做出的图像的基础上,画出正弦曲线。 三、合作探究 例1、用五点法画出下列函数在区间] 2,0[π上的简图。 (1)x y sin 3 =(2)x y sin -1 =

正弦函数和余弦函数图像与性质

6、1正弦函数与余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T 、 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α= ===; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角与它的正弦值(或余弦值)之间就是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。 【方案2】——五点法 步骤1:列表——列出对图象形状起关键作用的五点坐标;

一次函数的图象与性质

一次函数的图象与性质(基础篇) 知识要点 1.一次函数的定义: ①已知y=(m+1)x2-|m|+n+4,当m= ,y是x的一次函数;当m= ,n= 时,y是x 的正比例函数. ②已知函数y=(k+2)x+k2-2,当k时,它为一次函数;当k= 时,它为正比例函数. 2.一次函数y=kx+b(k≠0)的图象特征: 一次函数的图象是一条直线,因为两点确定一条直线,所以画一次函数图象时,描点时常选图象与x轴的交点和y轴的交点. ①当k>0,b>0时,直线过第象限. ②当k>0,b<0时,直线过第象限. ③当k<0,b>0时,直线过第象限. ④当k<0,b<0时,直线过第象限. ⑤若正比例函数y=-(k+1)x+k2-4的图象只经过第一、三象限,则k = . ⑥一次函数y=-3x必过第象限. ⑦一次函数y=πx+3必过第象限. ⑧正比例函数y=(3k2+1)x必过第象限. 3.直线y=kx+b与y=kx(k≠0)的关系: 直线y=kx+b与y=kx(k≠0)的关系是平行关系. ①当b>0时,直线y= kx+b可以由直线y=kx向上平移个单位而得到. ②当b<0时,直线y= kx+b可以由直线y=kx向下平移个单位而得到. ③将直线y=3x沿y轴向平移个单位长度可得直线y=3x+6; ④将直线y=-5x+6沿y轴向平移个单位长度可得直线y=-x. 4.直线与坐标轴交点的求法: 求函数图象与x轴的交点坐标,令y=0,解方程kx+b=0得x的值,就是相应的横坐标x的值; 求函数图象与y轴的交点坐标,令x=0得y=b,就是相应的横坐标y的值; ①已知函数y=2x-6,与x轴的交点坐标为;与y轴的交点坐标为. ②函数y=2x+1的图象是不经过第象限的直线,它与x轴的交点坐标是,与y轴的交点坐标是. 5.一次函数y=kx+b(k≠0)的增减性: 当k>0时,y随x的增大而增大,函数图象从左到右呈上升趋势. 当k<0时,y随x的增大而减小,函数图象从左到右呈下降趋势. ①已知一次函数y=(1-2k)x+2k-1,当k时,y随x的增大而增大,此时图象经过第象限. ②已知一次函数y=(6+3m)x+(n-4). 当m时,y随x的增大而减小;当m,n时,函数图象与y轴的交点在x 轴下方;当m,n时,函数图象经过原点.

1.5正弦函数的图像与性质基础练习题

1.5正弦函数的图像与性质基础练习题 一、单选题 1.已知函数()sin 022f x x ππ??????=+<< ???????的图象过点0,2? ?? ,则()f x 图象的一个对称中心为( ) A .1,03?? ??? B .()1,0 C .4,03?? ??? D .()2,0 22sin 0x -≥成立的x 的取值集合是( ) A .()32244x k x k k Z ππππ?? +≤≤+∈???? B .()72244x k x k k Z ππππ?? +≤≤+∈???? C .()52244x k x k k Z π πππ?? -≤≤+∈???? D .()572244x k x k k Z π πππ?? +≤≤+∈???? 3.函数π ()sin(2)3f x x =+的最小正周期为( ) A .4π B .2π C .π D .π 2 4.函数sin 26y x π?? =+ ???的最小正周期是( ) A .2π B .π C .2π D .4π 5.函数1sin y x =-的最大值为( ) A .1 B .0 C .2 D .1- 6.已知函数()()sin 2f x x ?=+的图像关于直线3x π =对称,则?可能取值是( ). A .2π B .12π - C .6π D .6π- 7.函数sin 26y x π? ? =+ ???的一条对称轴是( ) A .6x π =- B .0x = C .6x π = D .3x π =

8.函数2sin y x =的最小值是( ) A .2- B .1- C .1 D .2 9.已知集合{}20M x x x =-≤, {}sin ,N y y x x R ==∈,则M N =( ) A .[]1,0- B .()0,1 C .[]0,1 D .? 10.已知函数()sin()()2f x x x R π =-∈,下面结论错误的是( ) A .函数()f x 的最小正周期为2π B .函数()f x 在区间0, 2π??????上是增函数 C .函数()f x 的图像关于直线0x =对称 D .函数()f x 是奇函数 11.函数()sin 4f x x π? ?=+ ??? 图象的一条对称轴方程为( ) A .4πx =- B .4x π = C .2x π = D .x π= 12.函数12sin()24y x π=+ 的周期,振幅,初相分别是( ) A .,2,44ππ B .4,2,4π π-- C .4,2,4π π D .2,2,4π π 二、填空题 13.函数sin 2y x =的最小正周期为_____________ 14.函数1sin 223y x π??=+ ?? ?的最小正周期是_______ 15.y =3sin 26x π??- ???在区间0,2π?? ????上的值域是________. 三、双空题 16.设函数()sin f x A B x =+,当0B <时,()f x 的最大值是 32,最小值是12-,则A =_____,B =_____. 17.函数sin 24y x π??=+ ???的对称轴为_________,对称中心为_____________. 四、解答题 18.已知函数2sin 23y x π? ?=+ ??? .

正弦函数的图像与性质教案

《正弦函数的图像与性质》(第一课时)(教案) 神木职教中心 数学组 刘伟 教学目标:1、理解正弦函数的周期性; 2、掌握用“五点法”作正弦函数的简图; 3、掌握利用正弦函数的图像观察其性质; 4、掌握求简单正弦函数的定义域、值域和单调区间; 5、初步理解“数形结合”的思想; 6、培养学生的观察能力、分析能力、归纳能力和表达能力等 教学重点:1、用“五点法”画正弦函数在一个周期上的图像; 2、利用函数图像观察正弦函数的性质; 3、给学生逐渐渗透“数形结合”的思想 教学难点:正弦函数性质的理解和应用 教学方法:多媒体辅助教学、讨论式教学、讲议结合教学、分层教学 教学过程: Ⅰ 知识回顾 终边相同角的诱导公式: )(sin )2sin(Z ∈=+k k απα 所以正弦函数是周期函数,即 ,6-,4-,2-,6,4,2ππππππ及都是它的周期,其中π2是它的最小正周期,也直接叫周期,故正弦函数的周期为π2 Ⅱ 新知识 1、用描点法作出正弦函数在最小正周期上的图象 x y sin =,[]π2,0∈x (1)、列表

(2)、描点 (3)、连线 因为终边相同的角的三角函数值相同,所以x y sin =的图像在…, [][][][]ππππππ4,2,2,0,0,2,2,4--- ,…与x y sin =,[]π2,0∈x 的图像相 同 2、正弦函数的奇偶性 由诱导公式x x sin )sin(-=-,R x ∈得: ①定义域关于原点对称 ②满足)()(x f x f -=- 所以,正弦函数为奇函数(观察上图,图像关于原点对称) 3、正弦函数单调性 、值域 由图像观察可得: 正弦函数在??????++- ππ ππ k k 22, 22 是增函数,在?? ? ???++ππππk k 223,22是减函数 得到最大值为1,最小值为-1,所以值域为[]1,1-

正弦函数和余弦函数图像与性质

6.1正弦函数和余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T . 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α====; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定 的角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法

一次函数图象和性质经典练习题

一次函数的定义 1、判断正误: (1)一次函数是正比例函数; ( ) (2)正比例函数是一次函数; ( ) (3)x +2y =5是一次函数; ( )(4)2y -x=0是正比例函数. ( ) 2、选择题 (1)下列说法不正确的是( ) A .一次函数不一定是正比例函数。 B .不是一次函数就不一定是正比例函数。 C .正比例函数是特殊的一次函数。 D .不是正比例函数就一定不是一次函数。 (2)下列函数中一次函数的个数为( ) ①y=2x ;②y=3+4x ;③y=21 ;④y=ax (a ≠0的常数);⑤xy=3;⑥2x+3y-1=0; A .3个 B 4个 C 5个 D 6个 3、填空题 (1)若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________。 (2)当m=__________时,函数y=3x2m+1 +3 是一次函数。 (3 )关于x 的一次函数y=x+5m-5,若使其成为正比例函数,则m 应取_________。 4、已知函数y= ()()112-++m x m 当m 取什么值时,y 是x 的一次函数?当m 取什么值是,y 是x 的正比例函数。 5、函数:①y=-2x+3;②x+y=1;③xy=1;④y=1+x ;⑤y=221x +1;⑥y=0.5x 中,属一次函数的有 ,属正比例函数的有 (只填序号) (2)当m= 时,y=()()m x m x m +-+-1122是一次函数。 (3)请写出一个正比例函数,且x =2时,y= -6 请写出一个一次函数,且x=-6时,y=2 (4) 我国是一个水资源缺乏的国家,大家要节约用水.据统计,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.李丽同学在洗手时,没有把水龙头拧紧,当李丽同学离开x 小时后水龙头滴了y 毫升水.则y 与x 之间的函数关系式是 (5)设圆的面积为s ,半径为R,那么下列说法正确的是( )

正弦函数的图像和性质教学设计

正弦函数的图象和性质 教师行为 学生学习活动 设计意图 (一) 提出问题,引入新课 教师引导学生复习:1、三角函数的定义及实质;2、三角函数线的作法和作用。 提问:根据以往学习函数的经验,你准备采取什么方法作出正弦函数的图象? 在作图过程中有什么困难? 学生根据教师的提问,思考并回答问题。根据经验,画函数的图象,应该列表、描点。可是,感觉到困难。 把问题作为教学的出发点,引起学生的好奇,激发学生求知欲,为发现新知识创设一个最佳的心理和认识环境,关注学生动手能力培养。 (二) 初步探索,展示内涵 提出问题一:你是如何精确描出点 呢? 问题二:什么是正弦线?我们怎样找的正弦线? 学生讨论,问题一引导他们想到 的正弦值是 学生回答问题二:由单位圆的正弦线知识,只要已知角x 的大小,就可以由几何法作出相应的正弦值 来。 由浅入深、由易到难,帮助学生体会从三角函数线出发,“以已知探求未知”的数学思想方法,培养 学生的思维能力。 通过对正弦线的复习,来发现几何作图与描点作图之间的本质区别,以培养运用已有数学知识解决新问题的能力。 数形结合,扫清了学生的思维障 碍,更好地突破了教学的重难点。 (三) 合作交流,联想探究 1、 介绍正弦函数图象的几何作 图法 学生分组讨论研究,总结交流成果。一方面分组合作探究,展示动手结果,上台板演,同时回答同学们提出的问题。 使学生掌握探究问题的方法,发展他们分析问题和解决问题的能力,老师的点拨,学生探究实践,进一步加深学生对几何法作正弦函数图象的理解。

2、介绍“五点作图法” 让学生亲自动手实践,体会数与形的完美结合。 (四) 循序渐进,延伸探究 例1 画出函数 的 简图 思考:若从函数 的图像变换分析 的图象可由的图象怎 样得到? 大家是否能用同样方法来解决变式题呢? 变式:画出函数 的简 图 逐步掌握“五点法”作图。 学生思考、小结。 归纳得到,函数y=1+sinx 的图象可由y=sinx 的图象向上平移1个单位得到。 学生独立完成,上台板演,进一 步巩固“五点法”作图。 突出学生的主体性,通过协作讨论区,同学之间互相配合、互相帮助、各种观点互相补充,增强合作意识。 (五) 归纳总结,内化知识 1、正弦曲线 2、注意与三角函数线等知识的联系 3、思想方法:“以已知探求未知”、类比、从特殊到一般 学生讨论,相互补充后进行回答。 让学生自己小结,不仅仅总结知识更重要地是总结数学思想方法。这是一个重组知识的过程,是一个 多维整合的过程,是一个高层次的自我认识过程,这样可帮助学生自行构建知识体系,理清知识脉络, 养成良好的学习习惯

一元一次函数图象与性质

一次函数的图像与性质 完成下表: 二、基础训练: 1、下列函数是一次函数的有______ ()121+=x y ()x y 32-= ()x y 53= ()x y -=2 14 ()3452+=x y 2、若函数 123-=+m x y 是一次函数则m= ,此函数与x 轴交点 ,与y 轴的交点 3、若函数 ()13-+-=n x y 是正比例函数,则n= 4、有下列函数:①33 2+=x y ②33+-=x y ③x y 5.0= ④6-=x y ①函数y 随x 的增大而增大的是__________ ②其中过原点的直线是________ ③图象在第一、二、三象限的是________ ④函数y 随x 的增大而减小的是___________ 5、已知一次函数2 3)3(--=x m y ,当y 随x 的增大而增大时,m 的取值范围为: 6、若一次函数y=x+b 的图象过点A (1,-1),则b=__________ 7、一次函数33+-=x y 沿y 轴如何平移能够变成33--=x y 三、简单应用: 8、已知点(),1a -和( b ,21)都在直线33 2+=x y 上,试比较a 和b 的大小。 9、写出一个过点(1,2)且过一、二、四象限的一次函数。

10、已知32+=x y (画出函数图象示意图进行分析) ①若将此函数图象平移,使它经过点(2,-1),求平移后的直线所对应的函数关系式。 一次函数作业 1.下列函数中,不是一次函数的是 ( ) 2.一次函数y=x+2的图像不经过第____象限 3、点P (a,b )点Q (c,d )是一次函数y=-4x+3图像上的两个点,且a0? ⑵当-1≤x≤2时,求y 的取值范围. 10 ..1..2(1) 6x A y B y x C y D y x x ==-==-

正弦函数的性质与图像

北师大版必修4§1.5《正弦函数的性质与图像》第一课时 设计者:江西省南康中学 邱小伟 一、教学目标 1.知识与技能 (1)理解正弦线的概念和函数sin ,[0,2]y x x p =?的性质。 (2)了解正弦函数图像的画法,掌握五点作图法,并会用此方法画出[0,2π]上的正弦曲线。 2.过程与方法 通过利用单位圆研究正弦函数性质的过程,增强学生自主分析问题、解决问题的能力。 3.情感态度价值观 通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同角度观察、研究问题的思维习惯。 二、教材分析 1.教材的地位与作用 《正弦函数的图像与性质》是高中《数学》必修4(北京师范大学版)第一章第五节的内容,过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学了锐角的正弦函数和任意角的正弦函数,在此基础上来学习正弦函数的图像,为今后余弦函数、正切函数的图像与性质、函数 的图像的研究打好基础,起到了承上启下的作用。因此,本节的学习有着极其重要的地位。 本节共分两个课时,本课为第一课时,主要是利用正弦线画出 sin ,[0,2]y x x p =?的图象,考察图象的特点,介绍“五点作图法”。 2.教学重、难点 重点:函数sin ,[0,2]y x x p =?的性质;正弦函数图像的五点作图法。 难点:正弦函数值的几何表示;正弦函数sin y x =图像的画法。 难点突破:在正弦函数定义的基础上,给出正弦函数值的几何表示(正弦线),再运用几何画板软件,带领学生一起直观形象地去探索正弦函数的图像,在清楚了正弦曲线的基本形状基础上,让学生通过练习动手实践掌握正弦曲线的五点作图法。 三、教法分析 根据上述学习目标分析和教材分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化课堂教学改革,确定本课主要的教法为: 1.计算机辅助教学 借助多媒体教学手段引导学生理解利用单位圆中的正弦线画出正弦函数的图象,使问题变得直观,易于突破难点;利用多媒体向学生展示优美的函数图象,给人以美的享受。 2.讨论式教学

最全三角函数的图像与性质知识点总结

三角函数的图像与性质 一、 正弦函数、余弦函数的图像与性质 二、正切函数的图象与性质 定义域 {|,}2 x x k k Z π π≠ +∈ 函数 y =sin x y =cos x 图 象 定义域 R R 值域 [-1,1] [-1,1] 单调性 递增区间:2,2() 2 2k k k Z ππππ??-+∈??? ? 递减区间:32,2()2 2k k k Z ππππ??++∈??? ? 递增区间:[2k π-π,2k π] (k ∈Z ) 递减区间:[2k π,2k π+π] (k ∈Z ) 最 值 x =2k π+π 2(k ∈Z )时,y max =1; x =2k π-π 2(k ∈Z )时,y min =-1 x =2k π(k ∈Z )时,y max =1; x =2k π+π(k ∈Z ) 时,y min =-1 奇偶性 奇函数 偶函数 对称性 对称中心:(k π,0)(k ∈Z )(含原点) 对称轴:x =k π+π 2,k ∈Z 对称中心:(k π+π 2,0)(k ∈Z ) 对称轴:x =k π,k ∈Z (含y 轴) 最小正周期 2π 2π

三、三角函数图像的平移变换和伸缩变换 1. 由x y sin =的图象得到)sin(?ω+=x A y (0,0A ω>>)的图象 注意:定要注意平移与伸缩的先后顺序,否则会出现错误。 2. )sin(?ω+=x A y (0,0A ω>>)的性质 (1)定义域、值域、单调性、最值、对称性: 将?ω+x 看作一个整体,与相应的简单三角函数比较得出; (2)奇偶性:只有当?取特殊值时,这些复合函数才具备奇偶性: )sin(?ω+=x A y ,当π?k =时为奇函数,当2 ππ?±=k 时为偶函数; (3)最小正周期:ω π2=T

相关文档
最新文档