大学数学 工程数学 线性代数教材

大学数学 工程数学 线性代数教材
大学数学 工程数学 线性代数教材

第一章n阶行列式

在初等数学中讨论过二阶、三阶行列式,并且利用它们来解二元、三元线性方程组. 为了研究n元线性方程组,需要把行列式推广到n 阶,即讨论n阶行列式的问题. 为此,下面先介绍全排列等知识,然后引出n阶行列式的概念.

§1 全排列及其逆序数

先看一个例子.

引例用1、2、3三个数字,可以组成多少个没有重复数字的三位数?

解这个问题相当于说,把三个数字分别放在百位、十位与个位上,有几种不同的放法?

显然,百位上可以从1、2、3三个数字中任选一个,所以有3种放法;十位上只能从剩下的两个数字中选一个,所以有两种放法;个位上只能放最后剩下的一个数字,所以只有1种放法. 因此,共有?

?种放法.

3=

1

6

2

这六个不同的三位数是:

123,132,213,231,312,321.

在数学中,把考察的对象,如上例中的数字1、2、3叫做元素. 上述问题就是:把3个不同的元素排成一列,共有几种不同的排法?

对于n个不同的元素,也可以提出类似的问题:把n个不同的元素排成一列,共有几种不同的排法?

把n个不同的元素排成一列,叫做这n个元素的全排列,简称排列.

n个不同元素的所有排列的种数,通常用P n表示. 有引例的结果可知P3 = 3 . 2 . 1 = 6 .

1

2

为了得出计算P n 的公式,可以仿照引例进行讨论:

从n 个元素中任取一个放在第一个位置上,有n 种取法;又从剩下的n -1个元素中任取一个放在第二个位置上,有n -1种取法;

这样继续下去,直到最后只剩下一个元素放在第n 个位置上,只有1种取法. 于是

P n =n .(n -1). … . 3 . 2 . 1 = n ! .

对于n 个不同的元素,我们规定各元素之间有一个标准次序(例如n 个不同的自然数,可规定由小到大为标准次序),于是在这n 个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说有1个逆序. 一个排列中所有逆序的总数叫做这个排列的逆序数.

逆序数为奇数的排列叫做奇排列,逆序数为偶数的排列叫做偶排列.

下面我们来讨论计算排列的逆序数的方法.

不失一般性,不妨设n 个元素为1至n 这n 个自然数,并规定由小到大为标准次序. 设

n p p p 21

为这n 个自然数的一个排列,考虑元素 ),,2,1(n i p i =,如果比i p 大的且排在i p 前面的元素有i t 个,就说i p 这个元素的逆序数是i t . 全体元素的逆序数之总和

∑==+++=n

i i n t t t t t 1

21 ,

即是这个排列的逆序数.

例1 求排列32514的逆序数. 解 在排列32514中,

3

3排在首位逆序数为0;

2的前面比2大的数只有一个“3”,故逆序数为1; 5是最大数,逆序数为0;

1的前面比1大的数有三个“3、2、5”,故逆序数为3; 4的前面比4大的数只有一个“5”,故逆序数为1; 于是排列的逆序数为

513010=++++=t .

§2 n 阶行列式的定义

为了给出n 阶行列式的定义,我们先研究三阶行列式的结构. 三阶行列式定义为:

)

1(.

31221333211232231132211331231233221133

323123222113

1211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++=

容易看出:

①(1)式右边的每一项都恰是三个元素的乘积,这三个元素位于不同的行、不同的列. 因此,(1)式右端的任意项除正负号外可以写成321321p p p a a a . 这里第一下标(称行标)排成标准排列123,而第二个下标(称列标)排成321p p p ,它是1、2、3三个数的某个排列. 这样的排列共有6种,对应(1)式右端共含6项。

② 各项的正负号与列标的排列对照:

带正号的三项列标排列是:123,231,312; 带负号的三项列标排列是:132,213,321.

经计算可知前三个排列都是偶排列,而后三个排列都是奇排列.

4

因此各项所带的正负号可以表示为t )1(-,其中t 为列标排列的逆序数.

总之,三阶行列式可以写成

∑-=32132133

323123222113

1211)1(p p p t a a a a a a a a a a a a , 其中t 为排列321p p p 的逆序数,∑

表示对1、2、3三个数的所有

排列321p p p 取和.

仿此,我们可以把行列式推广到一般情形. 定义 设有2

n 个数,排成n 行n 列的表

,

212222111211nn n n n n a a a a a a a a a

作出表中位于不同行不同列的n 个数的乘积,并冠以符号t

)1(-;得到形如

)2()1(2121n

np p p t

a a a -

的项,其中n p p p 21为自然数n ,,2,1 的一个排列,t 为这个排列的逆序数. 由于这样的排列共有!n 个,因而形如(2)式的项共有!n 项.

5

所有这!n 项的代数和

∑-n np p p t

a a

a

2

121)1(

称为n 阶行列式,记作

nn

n n n n

a a a a a a a a a D 212222111211=

简记作)det(ij a . 数ij a 称为行列式的元素.

按此定义的二阶、三阶行列式,与对角线法则定义的二阶、三阶行列式,显然是一致的. 当1=n 时,a a =||,注意这里||a 不是a 的绝对值.

例2 证明对角线行列式(其中对角线上的元素都是i λ,未写出的元素都是0)

n n

λλλλλλ

212

1

=;

n n n n

λλλλλλ

212

)1(2

1

)

1(--=.

6

证 第一式是显然的,下面证第二式. 若记

,1,+-=i n i i a λ则依行列式定义

,

)1()1(2111,211

1,212

1n t n n n t n n n

n

a a a a a a λλλλλλ

-=-==--

其中t 为排列 21)1( -n n 的逆序数,故 2

)

1()1(210-=

-++++=n n n t . 证毕 对角线以下(上)的元素都为0的行列式叫做上(下)三角行列式,它的值与对角行列式一样.

例3 证明下三角行列式

nn nn

n n a a a a a a a a a D 22112122

2111

==

.

证 由于当i j >时,0=ij a ,故D 中可能不为0的元素i ip a ,其下标应有i p i ≤,即.,,2,121n p p p n ≤≤≤

在所有排列n p p p 21中,能满足上述关系的排列只有一个自然

7

排列n 12,所以D 中可能不为0的项只有一项nn t a a a 2211)1(-,此项的符号1)1()1(0=-=-t ,所以

nn a a a D 2211=. 例4 设

nn

n nk n n k kk

k k b b c c b b c c a a a a D

1111111111110

=

kk k k

ij a a a a a D 11111)det(==

nn

n n

ij b b b b b D 11112)det(==

证明 21D D D =.

证 记 )d e t (ij d D =,其中

ij ij a d =,),,1;,,1(k j k i ==

8

ij j k i k b d =++,,),,1;,,1(n j n i ==. 考察D 的一般项

n r n k r k kr r t k k k d d d d ++++-,1,111)1( ,

由于当k j k i >≤,时,0=j i d ,因此k r r ,,1 只有在k ,,1 中选取时,该项才可能不为零. 而当k r r ,,1 在k ,,1 中选取时,

n k k r r ++,,1 只能在n k k ++,,1 中选取. 于是D 中可能不为零的

项可以记作

n k nq q kp p t b b a a 1111)1(-.

这里,k r q r p k i i i -==+1,,而l 为排列)()(11n k q k q k p p ++ 的逆序数. 以t 、s 分别表示排列k p p 1及n q q 1的逆序数,应有

s t l +=. 于是

??

????--=-=

∑∑∑∑+n n k k n

n

k k q q nq q s

p p kp p t

q q nq q kp p s

t p p b b a a b b a a D 111111111111)1()1()

1(

9

.

)1()1(21212

11111

D D D a a D a a

k k k

k p p kp p t

p p kp p t

=??????-=-=

∑∑

§3 对 换

为了研究n 阶行列式的性质,我们先来讨论对换以及它与排列的奇偶性的关系.

在排列中,将任意两个元素对调,其余的元素不动,这种作出新排列的手续叫做对换. 将相邻两个元素对换,叫做相邻对换.

定理1 一个排列中的任意两个元素对换,排列改变奇偶性. 证 先证相邻对换的情形.

设排列为m l b abb a a 11,对换a 与b ,变为m l b bab a a 11. 显然,l a a 1;m b b 1这些元素的逆序数经过对换并不改变,而a 、

b 两元素的逆序数改变为:当b a <时,经对换后a 的逆序数增加1而b 的逆序数不变;当b a >时,经对换后a 的逆序数不变而b 的逆

序数减少 1. 所以排列m l b abb a a 11与排列m l b bab a a 11的奇偶性不同.

再证一般对换的情形.

设排列为n m l c bc b ab a a 111,把它作m 次相邻对换,调成

n m l c c b abb a a 111,再作1+m 次相邻对换,调成

10

n m l c ac b bb a a 111. 总之,经过12+m 次相邻对换,排列n m l c bc b ab a a 111调成排列n m l c ac b bb a a 111,所以这两

个排列的奇偶性相反.

推论 奇排列调成标准排列的对换次数为奇数,偶排列调成标准排列的对换次数为偶数.

证 由定理1知对换的次数就是排列奇偶性变化的次数,而标准排列是偶排列(逆序数是0),因此得知推论成立. 证毕

利用定理1,我们来讨论行列式定义的另一种表示法. 对于行列式的任一项

n j i np jp ip p t a a a a 11)1(-,

其中n j i 1为自然排列,t 为排列n j i p p p p 1的逆序数,对换元素i ip a 与j jp a 成

n i j np ip jp p t a a a a 11)1(-,

这时,这一项的值不变,而行标排列与列标排列同时作了一次相应的对换. 设新的行标排列n i j 1的逆序数为1t ,则

t t )1()1(1--=-. 故1)1()1(t r t +-=-,于是

n i j n j i np ip jp p t r np jp ip p t a a a a a a a a 11111)1()1(+-=-.

这就表明,对换乘积中两元素的次序,从而行标排列与列标排列同时作出了相应的对换,则行标排列与列标排列的逆序数之和并不改变奇偶性. 经过一次对换如此,经过多次对换还是如此. 于是,经过

11

若干次对换,使:

列标排列n p p p 21(逆序数为t )变为自然排列(逆序数为0); 行标排列则相应地从自然排列变为某个新的排列,设此新排列为

n q q q 21,其逆序数为s ,则有

n q q q s np p p t n n a a a a a a 21212121)1()1(-=-.

又,若j p i =,则i q j =(即j q j i ip j i a a a ==). 可见排列

n q q q 21由排列n p p p 21所唯一确定.

由此可得

定理2 n 阶行列式也可定义为 ∑-=

n p p p t

n a a

a

D 2

121)1(,

其中t 为行标排列n p p p 21的逆序数.

证 按行列式定义有 ∑-=

n np p p p t a a a

a

D 32

1321)1(,

记 n p p p p t

n a a

a a

D ∑-=

3

211321)1(.

按上面讨论知:对于D 中任一项n np p p p t

a a a a 321321)1(-,总有且仅有1D 中的某一项n q q q q s

n a a a a 321321)1(-与之对应并相等;反之,对于1D 中的任一项n p p p p t

n a a a a 321321)1(-,也总有且仅有D 中

12

的某一项n nq q q q s a a a a 321321)1(-与之对应并相等,于是D 与1D 中的项可以一一对应并相等,从而1D D =.

§4 行列式的性质

nn

n n n n

a a a a a a a a a D 212222111211=

,nn

n n n n a a a a a a a a a D 21222121

2111=

',

行列式D '称为行列式D 的转置行列式.

性质1 行列式与它的转置行列式相等.

证 记)det(ij a D =的转置行列式

nn

n n n n

b b b b b b b b b D 212222111211=

',

即),,2,1,(,n j i a b ji ij ==,按定义

∑∑-=-='n p p p t np p p t n n a a a b b b D 21212121)1()1(.

而由定理2,有

13

∑-=n p p p t n a a a D 2121)1(,

故 D D ='. 证毕 由此性质可知,行列式中的行与列具有同等的地位,行列式的性质凡是对行成立的对列也同样成立,反之亦然.

性质2 互换行列式的两行(列),行列式的值改变符号. 证 设行列式

nn

n n n n

b b b b b b b b b D 2122221112111=

是由行列式)det(ij a D =交换j i ,两行得到的,即当j i k ,≠时,

kp kp a b =;当j i k ,=时,jp ip a b =,ip jp a b =. 于是

,

)1()1()1(1111111∑∑∑-=-=-=n i j n j i n

j i np jp ip p t np ip jp p t np jp ip p t a a a a a a a a b b b b D 其中n j i 1为自然排列,t 为排列n j i p p p p 1的逆序数.设排列n i j p p p p 1的逆序数为1t ,则1)1()1(t

t

--=-,故

∑-=--=D a a a a D n i j np jp ip p t 1111)1(. 证毕

以i r 表示行列式的第i 行,以i c 表示行列式的第i 列. 交换j i ,两

14

行记作j i r r ?,交换j i ,两列记作j i c c ?.

推论 如果行列式有两行(列)完全相同,则此行列式为零. 证 把完全相同的两行(列)互换,有D D -=,故0=D . 性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.

第i 行(或列)乘以k ,记作k r i ?(或k c i ?).

性质 4 行列式中如果有两行(列)元素成比例,则此行列式的值等于零.

性质5 若行列式的某一列(行)的元素都是两数之和,例如

nn

ni ni n n n

i i n

i i a a a a a a a a a a a a a a a D

)()()('212'

2222211'111211+++=

则D 等于下列两个行列式之和:

nn

ni n n n

i n

i nn

ni n n n i n

i a a a a a a a a a a a a a a a a a a a a a a a a D

'212'

222211'1121121222221111211+

=

.

性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)上去,行列式的值不变. 例如以数k 乘第j 列加到第i 列上去(记作j i kc c +),有

15

).

(,)()()(122222111111112222111111j i a a ka a a a a ka a a a a ka a a a a a a a a a a a a a a nn

nj nj ni n n

j j i n j j i kc c nn

nj ni n n j i n j i j

i ≠++++

(以数k 乘第j 行加到第i 行上,记作j i kr r +)

性质3至性质6的证明,请读者自行完成. 这些性质可用于简化行列式的计算.

例5 计算

3

35111024

3152113------=D .

16

例6 计算

3

11113111131

1113

D . 解 这个行列式的特点是各列4个数之和都是6. 今把第2、3、4行同时加到第1行,提出公因子6,然后各行减去第1行:

17

例7 计算

d

c b a c b a b a a

d c b a c b a b a a d c b a c b a b a a d c b a D ++++++++++++++++++=3610363234232 解 从第4行开始,后行减前行:

§5 行列式按行(列)展开

一般说来,低价行列式的计算比高价行列式的计算要简便,于是,我们自然地考虑到用低价行列式来表示高价行列式的问题. 为此,先引进余子式和代数余子式的概念.

18

在n 阶行列式中,把元素j i a 所在的第i 行和第j 列划去后,留下来的1-n 阶行列式叫做元素j i a 的余子式,记作j i M ;记

ij j i j i M A +-=)1( ,

j i A 叫做元素j i a 的代数余子式.

例如四阶行列式

44

43

42

41

34333231242322

2114131211

a a a a a a a a a a a a a a a a D =

中元素32a 的余子式和代数余子式分别为

44

43

41

242321

141311

a a a a a a a a a M =, 32322332)1(M M A -=-=+.

引理 一个n 阶行列式,如果其中第i 行所有元素除j i a 外都为零,那么这个行列式等于j i a 与它的余子式的乘积,即

ij j i A a D =.

19

证 先证j i a 位于第1行第1列的情形,此时

nn

n n n a a a a a a a D 212222111

00=

.

这是例4中当1=k 时的特殊情形,按例4的结论,即有

1111M a D =.

又 11111

111)

1(M M A =-=+,

从而 1111A a D =.

再证一般情形,此时

nn

nj n ij n

j a a a a a a a D

1111100=.

为了利用前面的结果,把D 的行列作如下调换:把D 的第i 行依次与第1-i 行、第2-i 行、…、第1行对调,这样ij a 就调到原来

j a 1的位置上,调换的次数为1-i . 再把第j 列依次与第1-j 列、第

2-j 列、…、第1列对调,这样ij a 就调到左上角,调换的次数为1-j .

20

总之,经过2-+j i 次对调,把ij a 调到左上角,所得的行列式

D D D j i j i +-+-=-=)1()1(21,而元素ij a 在1D 中的余子式仍然是ij

a 在D 中的余子式ij M .

由于ij a 位于1D 的左上角,利用前面的结果,有

ij ij M a D =1,

于是 ij ij ij ij j i j i A a M a D D =-=-=++)1()1(1.

定理3 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即

),,2,1(2211n i A a A a A a D in

in i i i i =+++=,

或 ),,2,1(2211n j A a A a A a D nj nj j j j j =+++=.

nn

n n in

i i n

a a a a a a a a a D

2

1

21112

11

000

00

0++++++++=

高等数学教材(较完整)

目录 一、函数与极限 (2) 1、集合的概念 (2) 2、常量与变量 (3) 2、函数 (3) 3、函数的简单性态 (4) 4、反函数 (4) 5、复合函数 (4) 6、初等函数 (4) 7、双曲函数及反双曲函数 (5) 8、数列的极限 (6) 9、函数的极限 (6) 10、函数极限的运算规则 (7)

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a?A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A?B(或B?A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作?,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A?A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。 ②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集。简称为集合A的补集,记作C U A。 即C U A={x|x∈U,且x?A}。 集合中元素的个数 ⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。 ⑵、用card来表示有限集中元素的个数。例如A={a,b,c},则card(A)=3。 ⑶、一般地,对任意两个集合A、B,有 card(A)+card(B)=card(A∪B)+card(A∩B) 我的问题:

数一、数二、数三在高等数学、线性代数、概统的区别

数一、数二、数三在高等数学、线性代 数、概统的区别 首先,我们大家都知道在数一中,高等数学、线性代数、概率与数理统计的比例为56%、22%、22%;数二不考察概率与数理统计,高等数学和线性代数的比例是78%、22%;数三中三者的比例和数一的相同,也是56%、22%、22%。而对于数一、数二、数三而言,每一门学科的重点也是不同的。下面,我将具体来和大家分析一下这其中的不同点,并且告诉各位考生在复习过程中,应该侧重于什么。 我们先来看一下高等数学。高等数学对于数一、数二、数三而言,区别是非常大,可以说在三门学科中,区别是最大的。我们先来看一下数一,对于数一的考生而言,复习的重点是下册,也就是说考试的重点是多元函数微分学,多元函数积分学,微分方程、级数,可以很负责的告诉大家,多元函数微分学,多元函数积分学几乎每年都会各出一道大题。那么,我想问一下大家,大家觉得是下册难啊,还是上册难?我相信,这个时候几乎所有的考生都会说,下册难。但是,我想告诉大家的是,事实上,上册是比较难的。下册的知识点往往是起点高,落点低。虽然说,每一道题目考查的都比较复杂,但是解题的方法和思路都是比较固定的,而且也是比较好掌握的,只要我们掌握了其中的思想,要想拿到这部分的分数还是没有什么压力的。对于数二的同学而言,与数一恰恰是相反的,数二同学的考试重点是上册,换句说话,对于数二的同学而言,考试的重点是极限、一元函数微分学、二元函数积分学。并且,数二的题目往往具有很高的灵活性,考察的也比较细致。这是因为,数二在高等数学方面的比例达到78%,也就是117分,然而数二考察的知识点也比较少,所以这就注定了数二的题目具有很高的灵活性。另一方面,高等数学的上册的综合性还要远远的高于下册。对于数三的同学而言,这一点和数一的区别并不是很大。但是,数三的题目更加注重应用。这是因为,数三的考生大都是经济类和管理类的考生。所以说,数三比较注重应用,这一点需要引起数三同学的重视。 其次,我们来看一下线性代数。对于线性代数而言,数一、数二、数三的差别并不是很大,所以在这里,我也就不区分了。在线性代数中,线性方程组和矩阵的相似是考察的重点,并且大家还要注意线性方程组和向量之间的相结合,矩阵的相似和二次型的相结合。每年线性代数要考察两道大题,而往往这两道大题都是这两个知识点各考察一道。 最后,我们来看一下概率与数理统计。对于概率和数理统计而言,数一、数二、数三之间的区别也是几乎没有,所以在这里,我也就不区分了。同样,我也给大家点出,考试的重难点,希望可以帮助大家。多维随机变量的边缘分布和条件分布、随机变量函数、数字特征、参数估计这些都是考试的重点,其中的重点优先级单调递减。尤其是多维随机变量的边缘分布和条件分布、随机变量函数是非常重要的。对于数字特征,单独出大题的可能性比较低,但是往往会和其他的知识点结合在一起作为一道大题的第一问。最后我们来看一下参数估计,这个知识点,我希望数一的同学多注意一下,数一在这一板块考察大题的可能性还是比较高的。 以上就是数一、数二、数三在各学科之中的区别,希望可以帮到大家。最后,祝各

浅谈《高等数学》与《线性代数》课程的相通性

浅谈《高等数学》与《线性代数》课程的 相通性 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 《高等数学》和《线性代数》这两门课的内容差异大,但也有不少知识点具有相同性,很多方法和结论相互渗透,本文探讨了《高等数学》与《线性代数》课程内容的一些相通性。 随着科学技术的发展和计算机的广泛应用,《高等数学》和《线性代数》的作用越来越重要,它们是高等院校培养应用型人才重要的数学基础课。《高等数学》主要学习的是微积分方面的知识,《线性代数》主要学习的是几何方面的知识。由于课程内容的不同,部分高校在课程安排上往往一个教师要么只教《高等数学》,要么只教《线性代数》,从而在教学时往往忽略了引导学生去思考这两门课程中的一些相通性。实际上,看似两门完全不同的课程之间实有许多相通之处,而让学生了解和掌握这些相通性不但有利于更好地掌握这两门课程,而且还可以培养学生发现、思考和总结的能力,所学知识真正做到融会贯通。

几年来,笔者一直在教学一线,既承担《高等数学》的教学,也承担《线性代数》的教学。在教学实践中,笔者发现和总结了一些这两门课程的相通性,下面介绍几点。 一、《高等数学》和《线性代数》课程中部分定义和结论的相通性 4.方程解的结构。在《线性代数》中,当非齐次线性方程组Ax=b有无穷解时,其解可以表示为对应齐次方程组Ax=0的通解加上非齐次线性方程组Ax=b 的一个特解。在《高等数学》中,非齐次线性微分方程的通解也有类似的结构,即也可表示成对应齐次微分方程的通解加上非齐次微分方程的特解。线性方程组和线性微分方程除了解结构类似外,解的性质也完全一样。 二、《高等数学》和《线性代数》课程中部分量运算的相通性 在《线性代数》中有一个重要的量——矩阵,故对矩阵的运算作了大量的介绍,有矩阵的加法、矩阵

同济大学工程数学线性代数第六版答案(全)

第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3811411 02---; 解 3 811411 02--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2221 11c b a c b a ; 解 2 221 11c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).

(4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3 -(x +y )3 -x 3 =3xy (x +y )-y 3 -3x 2 y -x 3 -y 3 -x 3 =-2(x 3 +y 3 ). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2 ) 1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ? ? ? ? ? ?

高等数学、线性代数、概率论与数理统计

https://www.360docs.net/doc/ca5463837.html, - 考研大纲】 考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构 一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟. 二、答题方式 答题方式为闭卷、笔试. 三、试卷内容结构 高等教学 约56% 线性代数 约22% 概率论与数理统计 约22% 四、试卷题型结构 单选题 8小题,每小题4分,共32分 填空题 6小题,每小题4分,共24分 解答题(包括证明题) 9小题,共94分 高等数学 一、函数、极限、连续

考试内容 函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立 数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限: 函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.理解极限的概念,理解函数左极限与右极限的概念以 及函数极限存在与左极限、右极限之间的关系. 6.掌握极限的性质及四则运算法则. 7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容

大学高等数学教材23599

高等数学教材

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

工程数学线性代数(同济大学第六版)课后习题答案(全)

第一章行列式 1.利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4.

(2)b a c a c b c b a ; 解b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2y -x 3-y 3-x 3 =-2(x 3+y 3). 2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4;

解逆序数为0 (2)4 1 3 2; 解逆序数为4:41, 43, 42, 32. (3)3 4 2 1; 解逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ??? (2n-1) 2 4 ??? (2n); 解逆序数为 2)1 (- n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ?????? (2n-1)2, (2n-1)4, (2n-1)6,???, (2n-1)(2n-2)(n-1个) (6)1 3 ???(2n-1) (2n) (2n-2) ??? 2. 解逆序数为n(n-1) : 3 2(1个) 5 2, 5 4 (2个) ?????? (2n-1)2, (2n-1)4, (2n-1)6,???, (2n-1)(2n-2)(n-1个) 4 2(1个)

大学高等数学教材

大学高等数学教材 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a?A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A?B(或B?A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作?,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A?A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

高等数学(二)(线性代数)一 第二三章 习题集(部分)

设有矩阵,(m≠n),下列运算结果不是阶矩阵的是(). A、BA B、AB C、 D、 设矩阵A可以左乘矩阵B,则(). A、 B、 C、 D、 若|A|=0,则A=(). A、0矩阵 B、数字0 C、不一定是0矩阵 D、A中有零元素 两个n阶初等矩阵的乘积为(). A、初等矩阵 B、单位矩阵 C、可逆阵 D、不可逆阵 若m×n阶矩阵A中的n个列线性无关,则A的秩(). A、大于m B、大于n C、等于n D、等于n 矩阵A经有限次初等行变换后变成矩阵B,则().

A、A与B相似 B、A与B不等价 C、A与B相等 D、r(A)=r(B) 设m×n阶矩阵A,B的秩分别为,则分块矩阵(A,B)的秩r适合关系式(). A、 B、 C、 D、 矩阵A经过初等变换后(). A、不改变它的秩 B、改变它的秩 C、改变它的行秩 D、改变它的列秩 设A为三阶方阵,且|A|=-2,则矩阵|A|A行列式||A|A|=(). A、16 B、-16 C、8 D、-8 两矩阵A与B既可相加又可相乘的充要条件是(). A、A、B是同阶方阵 B、A的行数=B的行数 C、A的列数=B的列数 D、A的行数、列数分别等于B的行数、列数 初等矩阵(). A、相乘仍为初等阵 B、相加仍为初等阵 C、都可逆

D、以上都不对 线性方程组有解的充分必要条件是a=(). A、 B、-1 C、 D、1 存在有限个初等矩阵,使是A为可逆矩阵的(). A、必要条件 B、充分条件 C、充要条件 D、无关条件 矩阵A经过有限次初等行变换后变成矩阵B,则(). A、r(A)≠r(B) B、A与B相等 C、A的行向量组与B的行向量组等价 D、A与B不等价 设,,,,则向量组共有()个不同的极 大无关组. A、1 B、2 C、3 D、4

高等数学、线性代数

[考试科目] 高等数学、线性代数 高等数学 一、函数、极限、连续 考试内容 函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数简单应用问题的函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小和无穷大的概念及其关系无穷小的性质及无穷小的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限 : 函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4. 掌握基本初等函数的性质及其图形,了解初等函数的基本概念。 5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系. 6.掌握极限的性质及四则运算法则 7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容。 导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线基本初等函数的导数导数和微分的四则运算复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数的极值函数单调性的判别函数图形的凹凸性、拐点及渐近线函数图形的描绘函数最大值和最小值 考试要求 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系. 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的n阶导数. 4. 会求分段函数的一阶、二阶导数. 5.会求隐函数和由参数方程所确定的函数以及反函数的导数. 6.理解并会用罗尔定理、拉格朗日中值定理. 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用. 8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直渐近线,会描绘函数的图形. 9.掌握用洛必达法则求未定式极限的方法.

工程数学-线性代数第五版答案02教学教材

工程数学-线性代数第五版答案02

仅供学习与交流,如有侵权请联系网站删除 谢谢2 第二章 矩阵及其运算 1. 已知线性变换: ?????++=++=++=3 213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知: ???? ?????? ? ?=???? ??221321323513122y y y x x x , 故 ???? ?????? ? ?=???? ??-3211221323513122x x x y y y ???? ?????? ??----=321423736947y y y , ?????-+=-+=+--=3 21332123211423736947x x x y x x x y x x x y . 2. 已知两个线性变换 ?????++=++-=+=3 2133212311542322y y y x y y y x y y x , ?????+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知 ???? ?????? ? ?-=???? ??221321514232102y y y x x x ??? ? ?????? ??--???? ??-=321310102013514232102z z z

仅供学习与交流,如有侵权请联系网站删除 谢谢3 ??? ? ?????? ??----=321161109412316z z z , 所以有?????+--=+-=++-=3 213321232111610941236z z z x z z z x z z z x . 3. 设???? ??--=111111111A , ??? ? ??--=150421321B , 求3AB -2A 及A T B . 解 ??? ? ??---???? ??--???? ??--=-1111111112150421321111111111323A AB ??? ? ??----=???? ??---???? ??-=2294201722213211111111120926508503, ???? ??-=???? ??--???? ??--=092650850150421321111111111B A T . 4. 计算下列乘积: (1)??? ? ?????? ??-127075321134; 解 ???? ?????? ??-127075321134???? ???+?+??+?-+??+?+?=102775132)2(71112374??? ? ??=49635. (2)??? ? ??123)321(;

工程数学线性代数课后答案

习题解答 1. 利用对角线法则计算下列三阶行列式: 解(1)原式= 2x( - 4) X3 + OX (-1)x(-1)+ 1X1X8 -1x(-4)x(-1)-2X (-1)X8-OX1X3 = -4; (2) 原式=acb 十 bac + cba - c‘ - a 3 - b' =3abc — a 3 — — c 3 ; (3) 原式=1?&?c 2 + l*c*a 2 + l'a*62-l*6*a 2-l*c ,62-l*a*c 2 =be 2 + ca 2 十 ab 2 — ba' — cb 2 ~ ac 2 = c 2(6-a) + aZ>(6-a)-c(A 2-a 2) = (a-6)(Z )-c)(c-a); (4) 原式=x(x + y)y + yx(x + y) + (?r + y)yx - (x + yV - d - =-2(x 3+y ). 2. 按自然数从小到大为标准次序,求下列各排列的逆序数: (1) 1 2 3 4; (2) 4 1 3 2; ⑶3 4 2 1; (4) 2 4 1 3; ⑸1 3 …(2n - -1) 2 4 …(: 加) ; (6) 1 3 …(2n - ?1) (In) (2n - 2) … 2. 解(1)此排列为自然排列,其逆序数为0; (2) 此排列的首位元素的逆序数为0;第2位元素1的逆序数为1;第3位元 素3的逆序数为1;末位元素2的逆序数为2,故它的逆序数为0+ 1 + 1 + 2 = 4; (3) 此排列的前两位元素的逆序数均为0;第3位元素2的逆序数为2;末 位元素1的逆序数为3,故它的逆序数为0 + 0 + 2 + 3 = 5; (4) 类似于上面,此排列的从首位元素到末位元素的逆序数依次为0,0,2, 1,故它的逆序数为0 + 0 + 2+1 = 3; (5) 注意到这2刃个数的排列中,前n 位元素之间没有逆序对.第n + 1位 元素2与它前面的n - 1个数构成逆序对,故它的逆序数为“?1;同理,第” +2 倍元素4的逆序数为” -2;…;末位元素2n 的逆序数为0.故此排列的逆序数 2 0 1 仃) 1 -4 -1 -1 8 3 1 1 1 ⑶ a b c a 2 b 2 c 2 ? t

工程数学线性代数同济大学第六版课后习题答案

第一章 行列式 1、 利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解 3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4、

(2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3、 (3)2 22111c b a c b a ; 解 2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a )、 (4)y x y x x y x y y x y x +++、 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3)、 2、 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4;

解逆序数为0 (2)4 1 3 2; 解逆序数为4:41, 43, 42, 32、(3)3 4 2 1; 解逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1、(4)2 4 1 3; 解逆序数为3: 2 1, 4 1, 4 3、 (5)1 3 ??? (2n-1) 2 4 ??? (2n); 解逆序数为 2)1 (- n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ?????? (2n-1)2, (2n-1)4, (2n-1)6,???, (2n-1)(2n-2) (n-1个) (6)1 3 ???(2n-1) (2n) (2n-2) ??? 2、 解逆序数为n(n-1) : 3 2(1个) 5 2, 5 4 (2个) ?????? (2n-1)2, (2n-1)4, (2n-1)6,???, (2n-1)(2n-2) (n-1个) 4 2(1个) 6 2, 6 4(2个)

高等数学教材资料完整-参考模板

高等数学教材完整 一、函数与极限 (2) 1、集合的概念 (2) 2、常量与变量 (3) 2、函数 (4) 3、函数的简单性态 (4) 4、反函数一 (5) 5、复合函数 (6) 6、初等函数 (6) 7、双曲函数及反双曲函数 (7) 8、数列的极限 (9) 9、函数的极限 (10) 10、函数极限的运算规则 (12)

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

工程数学线性代数课后习题答案

第一章 行列式 1 利用对角线法则计算下列三阶行列式 (1)3811 411 02--- 解 3 811411 02--- 2(4)30(1)(1)118 0 132(1)8 1( 4) (1) 248164 4 (2)b a c a c b c b a 解 b a c a c b c b a acb bac cba bbb aaa ccc 3abc a 3b 3c 3 (3)2221 11c b a c b a 解 2 221 11c b a c b a bc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a )

(4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (x y )y yx (x y )(x y )yx y 3(x y )3x 3 3xy (x y )y 33x 2 y x 3y 3x 3 2(x 3 y 3) 2 按自然数从小到大为标准次序 求下列各排列的逆 序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1 解 逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解 逆序数为3 2 1 4 1 4 3 (5)1 3 (2n 1) 2 4 (2n ) 解 逆序数为 2 ) 1(-n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个)

(2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) 4 2(1个) 6 2 6 4(2个) (2n)2 (2n)4 (2n)6 (2n)(2n2) (n1个) 3写出四阶行列式中含有因子a11a23的项 解含因子a11a23的项的一般形式为 (1)t a11a23a3r a4s 其中rs是2和4构成的排列这种排列共有两个即24和42 所以含因子a11a23的项分别是 (1)t a11a23a32a44(1)1a11a23a32a44a11a23a32a44 (1)t a11a23a34a42(1)2a11a23a34a42a11a23a34a42 4计算下列各行列式

(完整版)大学数学工程数学线性代数教材

第一章n阶行列式 在初等数学中讨论过二阶、三阶行列式,并且利用它们来解二元、三元线性方程组. 为了研究n元线性方程组,需要把行列式推广到n 阶,即讨论n阶行列式的问题. 为此,下面先介绍全排列等知识,然后引出n阶行列式的概念. §1 全排列及其逆序数 先看一个例子. 引例用1、2、3三个数字,可以组成多少个没有重复数字的三位数? 解这个问题相当于说,把三个数字分别放在百位、十位与个位上,有几种不同的放法? 显然,百位上可以从1、2、3三个数字中任选一个,所以有3种放法;十位上只能从剩下的两个数字中选一个,所以有两种放法;个位上只能放最后剩下的一个数字,所以只有1种放法. 因此,共有? ?种放法. 3= 1 6 2 这六个不同的三位数是: 123,132,213,231,312,321. 在数学中,把考察的对象,如上例中的数字1、2、3叫做元素. 上述问题就是:把3个不同的元素排成一列,共有几种不同的排法? 对于n个不同的元素,也可以提出类似的问题:把n个不同的元素排成一列,共有几种不同的排法? 把n个不同的元素排成一列,叫做这n个元素的全排列,简称排列. n个不同元素的所有排列的种数,通常用P n表示. 有引例的结果可知P3 = 3 . 2 . 1 = 6 . 1

2 为了得出计算P n 的公式,可以仿照引例进行讨论: 从n 个元素中任取一个放在第一个位置上,有n 种取法;又从剩下的n -1个元素中任取一个放在第二个位置上,有n -1种取法; 这样继续下去,直到最后只剩下一个元素放在第n 个位置上,只有1种取法. 于是 P n =n .(n -1). … . 3 . 2 . 1 = n ! . 对于n 个不同的元素,我们规定各元素之间有一个标准次序(例如n 个不同的自然数,可规定由小到大为标准次序),于是在这n 个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说有1个逆序. 一个排列中所有逆序的总数叫做这个排列的逆序数. 逆序数为奇数的排列叫做奇排列,逆序数为偶数的排列叫做偶排列. 下面我们来讨论计算排列的逆序数的方法. 不失一般性,不妨设n 个元素为1至n 这n 个自然数,并规定由小到大为标准次序. 设 n p p p Λ21 为这n 个自然数的一个排列,考虑元素 ),,2,1(n i p i Λ=,如果比i p 大的且排在i p 前面的元素有i t 个,就说i p 这个元素的逆序数是i t . 全体元素的逆序数之总和 ∑==+++=n i i n t t t t t 1 21Λ, 即是这个排列的逆序数. 例1 求排列32514的逆序数. 解 在排列32514中,

同济大学工程数学线性代数第六版答案全

第一章行列式 1?利用对角线法则计算下列三阶行列式? (1)381141102---? 解3 81141102--- ?2?(?4)?3?0?(?1)?(?1)?1?1?8 ?0?1?3?2?(?1)?8?1?(?4)?(?1) ??24?8?16?4??4? (2)b a c a c b c b a ? 解b a c a c b c b a ?acb ?bac ?cba ?bbb ?aaa ?ccc ?3abc ?a 3?b 3?c 3? (3)222111c b a c b a ? 解2 22111c b a c b a ?bc 2?ca 2?ab 2?ac 2?ba 2?cb 2 ?(a ?b )(b ?c )(c ?a )?

(4)y x y x x y x y y x y x +++? 解y x y x x y x y y x y x +++ ?x (x ?y )y ?yx (x ?y )?(x ?y )yx ?y 3?(x ?y )3?x 3 ?3xy (x ?y )?y 3?3x 2y ?x 3?y 3?x 3 ??2(x 3?y 3)? 2?按自然数从小到大为标准次序?求下列各排列的逆序数? (1)1234? 解逆序数为0 (2)4132? 解逆序数为4?41?43?42?32? (3)3421? 解逆序数为5?32?31?42?41,21? (4)2413? 解逆序数为3?21?41?43? (5)13???(2n ?1)24???(2n )? 解逆序数为2 ) 1(-n n ? 32(1个) 52?54(2个) 72?74?76(3个) ?????? (2n ?1)2?(2n ?1)4?(2n ?1)6?????(2n ?1)(2n ?2)(n ?1个) (6)13???(2n ?1)(2n )(2n ?2)???2? 解逆序数为n (n ?1)? 32(1个) 52?54(2个) ?????? (2n ?1)2?(2n ?1)4?(2n ?1)6?????(2n ?1)(2n ?2)(n ?1个) 42(1个) 62?64(2个) ??????

高等数学线性代数习题答案第四章

习题 4-1 1.验证函数f (x )=lnsin x 在[ π5π ,66 ]上满足罗尔定理的条件,并求出相应的ξ,使f ′(ξ)=0. 解: 显然()lnsin f x x =在5π,66x ?????? 上连续,在π5π,66?? ???内可导,且π5π ()()ln 266 f f ==-,满足罗尓定理的条件. 令cos ()cot 0sin x f x x x '===,则π 2x = 即存在ππ5π (,)66 ξα=∈,使()0f ξ'=成立. 2. 下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ ? [][][] 2 (1)()1,;(2)(),;1,10,21sin ,0π (3)()0,π1, 0e x f x f x x x x f x x =-=--<≤?=?=? 解: (1) 2 ()1e x f x =-在[]1,1-上连续,在()1,1-内可导,且(1)1,(1)1,e e f f -=-=- 即 (1)(1)f f -= () f x ∴在[]1,1-上满足罗尓定理的三个条件. 令 2 ()20e x f x x '==得 0x =, 即存在0(1,1)ξ=∈-,使()0f ξ'=. (2) 101 ()1112 x x f x x x x -≤

相关文档
最新文档