静电计的工作原理及使用

静电计的工作原理及使用
静电计的工作原理及使用

静电计的工作原理及使用

静电计又叫电势差计或指针验电器,它是中学静电实验中常用的半定量测量仪器。如图1所示,包括小球a、指针bc的中心杆A

用绝缘塞D固定在有前后玻璃窗的圆形金属外壳B上;B

的侧下方有一个接线柱;整个装置固定在一个绝缘支架

上。

当A带电时,电荷主要分布在a、b、c和d四个尖端部位,其中c和d 两部分所带电荷以斥力相作用,指针受到一个使它张开的电力矩L1的作用。由于指针的重心略在旋转轴O点之下,当L1使指针张开后,指针的重力便产生一个使指针复位的重力矩L2。随着指针的偏转,L1渐小(因为c与d的距离增加,库仑力变小,力臂也变小)而L2渐大(因为重力力臂增加)。当L1与L2相等时,指针停在某一位置(是稳定平衡),指针的张角为α°

当A所带电量q较大时,c和d所带电量也较大,L1就大,所以α也就大。由于q决定α,所以α的大小能表示q的大小。这就是静电计可以当作验电器使用的道理。

由于静电感应,当A带电后, B的内层一定带上与A异号的电荷。若B不接地,则B的外表面带上与A同号的电荷。若B接地,则B的外表面不带电。由于静电计结构的对称性,可以祖略地认为B上的电荷对

指针的作用力不产生使指针转动的力矩,指针的张角主要由c和d所带电量决定。

一、静电计的第一类用途:作验电器用。

由于B的屏蔽作用,使A的下部较少受外界电场的影响。而A的上端a露在B之外,所以,外电场能由A的上端施加感应。当带电体移近不带电的静电计时,由于静电感应,A的上部a处出现与带电体异号的电荷,而A的下端c和d处出现与a等量的、与带电体同号的电荷。于是指针就张开了。带电体所带电量越多、移得越近,则张角越大。当带电体移去时,指针又回到原位。我们可以用这种感应法检验物体是否带电、带电多少及演示静电感应现象。

某物体与不带电的静电计的a处接触后移去,若此时静电计指针张开,说明静电计因与该物体接触而带电,从而可以判定这个物体是带电体。若物体与不带电静电计的a处接触后移去,静电计指针仍闭合,则证明该物体与a接触的部位不带电。指针是否张开及张开角度大小

能用来判定物体与a接触部位是否带电及带电多少。这种接触

法不能对物体未接触部位的带电情况作出判断,更不能用来测

量整个物体所带的电量,有很大局限性。

为测量电量,应把静电计a处的小金属球换成一个法拉第圆筒(上端有开口的薄壁金属容器)。把欲测其带电量的物体放入法拉第圆筒(如图2)。设此物体带电量为q1。若该物体是导体,则它所带的电荷在与筒

接触时全部移到筒外,进而分布在整个A上。若该物体是绝缘体,它放入法拉第圆筒后,只有少数接触点处的电荷移至筒的外表面。但由于静电感应,圆筒的内壁带上与物体此时所带电荷等量的异种电荷,而筒的外表面增加了同样多的与带电体同号的电荷。总之,筒的外表面(实际上是整个A)所带电量等于物体原来所带的全部电量q1。这样,不论是导体还是绝缘体,只要把它放入法拉第圆筒,静电计的指针张角α就可以用来测量它所带的电量。

加装法拉第圆筒后,静电计就可以用来演示静电平衡时导体表面电荷分布的规律了。如图3所示,带绝缘柄的金属小球先后与带电尖形导体的3、2和1处接触后,与筒的内壁相碰,将与尖形导体接触时所带之电荷移至静电计A上。由静电计的不同张角可以判断出凹进的3处不带电、2处带少量电荷、而尖端1处带电最多。这表明静电平

衡时导体表面曲率大处电荷密集,尖端带电最多。

静电计还可以用来检验物体所带电荷的种类(正或

负)。正确的检验方法是“感应法”。具体办法是先使静电计中心杆A带上已知种类的电荷。例如用丝绸摩擦过的玻璃棒接触a球,使A带上正电荷,静电计指针张开一个中等角度。若带电体由远处向静电计移近的过程中,静电计指针张角越来越大,则此物体带的电荷与静电计原来所带的电荷同类(正电荷)。因为带正电荷的物体移近时,与a处的正电荷相斥,使A上的正电荷向下端c、d处集中,c和d间的斥力增加,a 随之增大。若物体所带正电荷较多或移得很近时,c和d处的正电荷可

能达到或超过原来A所带的全部正电荷,张角变得更大。这时a处不带电或带负电。总之,只要物体带正电荷,它移近带正电荷的静电计时,静电计指针张角将单调增大(如图4所示)。而带电体移去的过程中,

静电计指针的角单调减小。

反之,若带电体由远处移近带(正)电的静电计的过程

中,静电计指针张角越来越小或者先逐渐减小至闭合继

而张开,则此物体所带电荷与静电计原来所带电荷是异

种电荷(负电荷)。因为带负电荷的物体移近时,与正

电荷相吸引,使A上的正电荷由 c和d处向 a处转移。

c和d处的正电荷少了,静电计指针张角也就小了。若

物体所带负电荷较多或移得较近,则可能使全部正电荷

集中在a处,c和d处没有电荷,指针闭合。带电体再移近,则a处正电荷超过原来A上的全部正电荷,c和d处带负电,指针重新张开(如图5所示)。带电体移去的过程中,指针逐渐闭合继

而逐渐张开。若物体带负电荷较少或较远,则向带正

电的静电计移近时,指针张角单调减小。

当物体带电较多时,只要注意不过分接近静电计,避

免静电计与带电物体间放电,则用感应法检验电荷正

负,物体上的电荷没有损失,可以重复验证,得出准

确的结果。

有人用“接触法”检验物体带电的正和负。具体做法也是先使静电计中心杆A带上已知种类的电荷(如正电荷),静电计指针张开一个中等角度。将待检验的带电物体接触a,苦指针张角变大,就认为物体与静电计带同种电荷(正电荷);若指针张角变小或闭合,则认为物体与静电计带异种电荷(负电荷)。这种检验电荷正、负的方法是不可靠的。当物体与静电计带同种电荷或虽带异种电荷而电量较少时,用“接触法”得到的结论是对的;当物体带与静电计异种的电荷且电量较大时,“接触法”得出的结论是错误的。如前所述,带大量异种(负)电荷的物体移近带正电静电计的过程中,静电计指针张角先是变小至闭合,继而又张开,此时c和d处已带负电。物体与a接触时,a处的正电荷被中和,大量负电荷传至A,指针张角会进一步增大。如果不注意物体移近过程中静电计指针张角的变化,仅由接触时张角变大而认为物体带正电,就错了。而且,经“接触法”检验后,物体的带电情况已经因与a接触而变化,不能重复核对。所以建议舍弃“接触法”、采用“感应法”来检验物体所带电荷的种类。

静电计在上述各实验中作验电器使用时,外壳B接地与不接地都可以。

二、静电计的第二类用途:作电势差计用。

构成静电计的A和B,是两个互相接近又彼此绝缘的导体。A和B组成一个电容器,A和B各是电容器的一个极。用WQ—5 A型万用电桥测得一般静电计的电容C0为 9—11pF。 A所带电量 q和 A、 B间电势差U之间的关系是

q=C0U

U大则q大,静电计的指针张角α也就大。所以,α的大小反映出U的大小。这就是静电计用来测量电势差的道理。因为静电计常用来测量电势差,所以又叫电势差计。

为了找到静电计张角α与电势差U之间的实际对应关系,我们作如下实验:用自耦调压变压器做(输出电压为30KV的)“直流高压电源”,调节自耦调压变压器的输出电压,可以得到0至30KV的任意电压。用它给静电计加上不同的电压U,再用Q3—V型静电高压表配合DY—5 A 型电子管电压表,测量所加电压U的值。每加一个电压,都从正面给静电计拍照,在放大的照片上用量角器测量对应于U的指针张角α,得到若干组数据在表1中列出。实验中用的甲静电计是一个性能较好的静电计,乙静电计的性能则差一些。

用表1的数据作的a—U图线如图6所示。又用同样方法测得静电计背面毛玻璃上原有刻度对应的电压值见表2。

大量观测表明,各静电计的指针偏转情况有明显差异,但存在如下共同规律:

1、每一静电计都有使它的指针发生偏转的最低电压值,叫做它的起动电压U0。电压低于U0时,指针不动;电压达到U0,它就一下子张开7°——9°的初始角α0(表中带*号)。不带电时指针与竖杆不接触的静电计U0较低(如甲的600V),不带电时指针与竖杆接触的静电计U0

较高(如乙的800V)。当电压由U0徐徐降低时,静电计可以有小于α0的张角。

2、对应于一个电压U,α可能有一些不同值,但相差不超过3°。对应于一个α值,如指针已静止在某一位置(除最低点外),欲使指针偏离这一位置常需改变电压100V、甚至200V。所以,对应于同一个α值,U可能有近400V的差异。这足见静电计是极不灵敏的。

3、电压超过4500V时,指针与壳之间的放电已很明显。电压5600V时,有清晰的间断的放电声,电压达到5800V时,有明显连续的放电声。一

般静电实验中电量很小,一有放电现象,电量就被严重消耗。所以,静电计实际上不能在4500V以上使用。

把静电计的A和B分别与平行板电容器的两个极板连接,则平行板电容器的电压U,也就是静电计中心杆A和外壳B的电势差可以由静电计指针的张角α测出。给电容器充电后断开电源则电容器与静电计所带的总电量不再变化。改变电容器两极间的距离d、相对面积S和在两极板间插入与拔出介质板,观察静电计指针张角的变化,就可知道U的变化,进而看出平行板电容器的电容值与d、S和ε的关系。

与A、B相连的是两个导体时,α表示这两个导体间的电势差。将B接地,A与某导体相连时,静电计指针张角指示出导体与地的电势差。取地的电势为零,则可直接测得该导体的电势(电位)。此时,静电计就是一个电位(势)计。如图8所示,将绝缘小球用导线与中心杆A的a 处连接。当绝缘小球在带电导体表面上移动时,静电计指针张角不变。这就演示了静电平衡时导体表面是等势面。

静电实验中带电导体的尺寸都不大,作为孤立导体的电容都很小。由公式C=4πε0R可以求出直径15cm的导体球的电容是8.3pF。使此导体带电,若用静电计测它的电势,将它与静电计中心杆A连接时,它上面的不少电量已转移至A,它的电势已大大改变。所以,静电计测得的已不是这个带电导体球原来的电势了。测电势差时也有类似情况。中学做演示实验常用的平行板电容器的直径是20cm,两板在空气中相距5cm时的电容是5.6pF(理论值)使平行板电容器带电,若用静电计测它的电势差,将它的两个极板与静电计的A和B连接时,平行板电容器上的相当一部分电量已转移到静电计,平行板电容器两板的电势差已大大改变。所以,静电计测得的已不是电容器原来的电势差了。

综上所述,静电计在检验物体带电、测量电量、电势和电势差方面有很多用处,是中学静电演示实验的重要仪器。但因为它不灵敏,在上述测量中它的电容又显得太大,所以它的测量误差很大,仅是一个半定量的测试仪器,有很大的局限性。

静电实验有电压高、电量小的突出特点。电压高则易漏电,电量小则经不起漏,所以对仪器的绝缘性能要求很高。当空气湿度大时,绝缘不好常导致实验失败。静电计的漏电部位有两个:一是绝缘塞D的漏电;二是中心杆A的b、c和d三个尖端与B间的漏电。一般静电计的绝缘塞D是用有机玻璃和硬塑料制成,绝缘性能本是极好的,但常因保管不善,表面有一层污物,在湿度大的时候吸附水分,漏电大增。为改善静电计的绝缘性能,建议采取两个措施。第一个措施是用脱脂棉沾酒精把

绝缘塞D的表面擦拭干净,晾干后用电烙铁烫化石蜡滴在D的表面成一较厚的石蜡层。石蜡不仅绝缘性能好而且不吸水,每次使用前用小刀把石蜡刮去一层,除去污物,露出新表面,则D处的漏电就大大减少了。第二个措施是松开静电计前面的玻璃挡圈,取下透明玻璃;在空气干燥或烘干的情况下,重新盖好玻璃,加上挡圈;两面玻璃与金属壳B相接处用电烙铁烫化石蜡封上,使静电计内部的空气是密封和干燥的。这样处理后,静电计的绝缘性能将大大改善。

静电计的原理

静电计 知识1: 静电计的构造 验电器的球形金属外壳与带有金属小球的金属杆是绝缘的,金属杆的下端有很薄的金属箔片. 静电计是在验电器的基础上改造而成的.静电计也是主要有相互绝缘的两部分构造而成.除金属外壳外,中间的金属杆下端有一个可转动的指针,指针转动的角度可由固定在外壳上的表盘读出.如图所示 知识点2:静电计的设计原理 静电计相当于一个电容很小的电容器,当将静电计的金属球,金属外壳分别与被测电容的两级相连时,静电计就从被测电容上获得电荷达到与被测电容的电压相同,因静电计的电容很小,此过程中引起被测电容上的电荷量的变化可忽略,被测电容两级间的变化也可忽略,即静电计上的电压总是等于被测电容上的电压.则静电计所带的电荷量q=cu正比于被测电压,被测电压越高,静电计所带电荷量越多,静电计指针与金属杆间的静电斥力就越大,指针偏角就越大。利用指针偏角与被测电压间的关系即可测静电电压。验电器与静电计的设计原理是相同的,即同种电荷相斥。 知识点3:注意事项 (1)使用验电器是判断物体是否带电,验电器在使用前不要带电。 (2)验电器与静电计的两金属杆与外壳一定要保持绝缘 (3)静电计所测的电压不是很准确,但能观察出电容器上电压的变化

静电计的使用: 让静电计与带电的电容器相连,如图,静电计的两部分与电容器的两极板分别等势,故电容器的两极板间的电压与静电计两部分间的电压相等,由静电计上的读数可知电容器两极板间的电压 例题.在如图所示的实验装置中,平行板电容器的极板B与一灵敏静电计相接,极板A 接地.下列操作中可以观察到静电计指针张角变大的是() A.极板A上移 B.极板A右移 C.极板A左移 D.极板间插入一云母片

静电计的工作原理

静电计的工作原理 教材上说得比较简单,学生在理解"根据指针所指刻度,可以电容器两极板间的电 势差"不易弄情,笔者试着分析如下: 将静电计的金属球和金属外壳分别与被测量的导体用导线连接,例如分别与平行板电容器的正负极板相连.当电荷停止移动后,静电计的金属杆与外壳之间的电势差,跟平行板电容器两极板间的电势差相等.由于静电计也是一个电容器,其指针所带电荷量跟指针和外壳间的电势差成正比,电势差越大,指针带电荷量越多,张开的角度也越大,所以根据指针所指刻度,可以定量地知道指针与外壳问的电势差,也就知道了平行板电容器两极板间的电势差.由于静电计的电容量很小,所获得的电荷量与平行板电容器原来所带电荷量相比较可以忽略不静 电计的工作原理 教材上说得比较简单,学生在理解"根据指针所指刻度,可以电容器两极板间的电势差"不易弄情,笔者试着分析如下: 将静电计的金属球和金属外壳分别与被测量的导体用导线连接,例如分别与平行板电容器的正负极板相连.当电荷停止移动后,静电计的金属杆与外壳之间的电势差,跟平行板电容器两极板间的电势差相等.由于静电计也是一个电容器,其指针所带电荷量跟指针和外壳间的电势差成正比,电势差越大,指针带电荷量越多,张开的角度也越大,所以根据指针所指刻度,可以定量地知道指针与外壳问的电势差,也就知道了平行板电容器两极板间的电势差.由于静电计的电容量很小,所获得的电荷量与平行板电容器原来所带电荷量相比较可以忽略不计,故可认为测量前后平行板电容器所带电荷量基本不变,两板电势差也基本不变.

而静电计是用静电方法测量电势差的仪器。实验室常用的静电计是布劳恩静电计,如图1c所示。它的结构是在一绝缘底座上装一鼓形铁壳,铁壳的前面装有透明玻璃,后面装有标有刻度的毛玻璃,在金属壳中绝缘地安装一根金属杆,杆的上端为金属小球,金属杆下部的水平轴上装有金属指针,可绕水平轴灵活转动。圆筒的底部有接线柱,可用来接地或与其他导体相连。这样,静电计的金属外壳与内部的金属杆及金属指针构成了一个特殊的电容 器。 二、工作原理及用途上的差异 1.验电器原理及其用途 验电器的原理:当验电器指示系统带电后,由于同种电荷的排斥力使指示器发生偏转,它是从力的角度来反映导体带电的情况。当指示系统具有一定的偏转角时,其重力矩与静电力矩平衡。 验电器的主要用途:检验物体是否带电,比较带电的种类以及所带电荷量的多少等。 (2)静电计原理及其用途 静电计的原理是:从上面的构造分析,我们知道静电计本身其实就是一个电容器。金属球、金属杆、指针相当于电容器的一个电极,金属外壳也相

电磁阀原理及使用注意事项实用版

YF-ED-J1849 可按资料类型定义编号 电磁阀原理及使用注意事 项实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

电磁阀原理及使用注意事项实用 版 提示:该管理制度文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1.电磁阀从原理上分为三大类: 1)直动式电磁阀: 原理:通电时,电磁线圈产生电磁力把关 闭件从阀座上提起,阀门打开;断电时,电磁 力消失,弹簧把关闭件压在阀座上,阀门关 闭。 特点:在真空、负压、零压时能正常工 作,但通径一般不超过25mm。 2)分布直动式电磁阀: 原理:它是一种直动和先导式相结合的原

理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。 特点:在零压差或真空、高压时亦能可*动作,但功率较大,要求必须水平安装。 3)先导式电磁阀: 原理:通电时,电磁力把先导孔打开,上腔室压力迅速下降,在关闭件周围形成上低下高的压差,流体压力推动关闭件向上移动,阀门打开;断电时,弹簧力把先导孔关闭,入口压力通过旁通孔迅速腔室在关阀件周围形成下

验电器工作的原理是什么

验电器工作的原理是什么 什么是验电器? 验电器是一种科学的设备,用于检测人体上是否存在电荷。1600年,英国医生威廉·吉尔伯特(William Gilbert)发明了第一只带有枢转针的电镜versorium。 静电计根据库仑静电力检测电荷,该电荷会引起测试电荷的运动。验电器可以看作是粗略的电压表,因为物体的电荷等于其电容。用于定量测量电荷的仪器称为静电计。 验电器的工作 验电器的工作原理是基于元素的原子结构,电荷感应,金属元素的内部结构以及类似的电荷相互排斥而不同的电荷相互吸引的思想。 验电器由顶部的金属探测器旋钮组成,该旋钮与从连杆底部悬挂的一对金属叶片相连。当不存在电荷时,金属叶片向下松散地悬挂。但是,当带电物体靠近验电器时,会发生两种情况之一。 ?当电荷为正时,验电镜金属中的电子被电荷吸引,并向上移动离开叶片。这导致叶片具有暂时的正电荷,并且因为像电荷一样排斥,叶片分开。除去电荷后,电子返回其原始位置,叶子松弛。 ?当电荷为负时,验电镜金属中的电子会排斥并向底部的叶子移动。这导致叶片获得暂时的负电荷,并且因为像电荷排斥一样,叶片再次分离。然后,当电荷被去除时,电子返回其原始位置,叶子松弛。 验电器通过电子进入或离开叶片的运动来响应电荷的存在。在这两种情况下,叶子都是分开的。重要的是要注意,验电镜无法确定带电物体是正还是负-它仅是对电荷的存在做出响应。 验电器的类型 验电器有两种经典类型,分别为: ?髓球式验电器:髓球式验电器是约翰·坎顿于1754年发明的。它由一个或两个小的轻球组成,这是一种轻质的不导电物质,称为髓。为了找到物体是否带电,将其带到不带电的髓球附近。如果球被吸引到物体上,则表示物体已充电。

最新电磁阀的工作原理

电磁阀的工作原理 valve中文可翻译为“阀”、“阀门”,“valves”在气动系统中指各种类型的气动阀。 valve词汇举例: 5 port solenoid valves 5通电磁阀 3 port solenoid valves 3通电磁阀 air Operated v alves气控阀 mechanical valves机械阀 hand valves手动阀 “pneumatic”的中文翻译是“气动”,因此“气动”的英文翻译为“pneumatic”。 pneumatic词汇举例: pneumatic tools:气动工具 pneumatic equipment 气动设备 electro-pneumatic regulator 电气比例阀 pneumatic pressure switch 气压力开关 pneumatic 例句: The heart of any pneumatic system is the air compressor. 气动系统的动力源是空气压缩机。 Pneumatics is a section of technology that deals with the study and application of pressurized gas to produce mechanical motion. 气动是一门对压缩空气产生的机械运动进行研究和应用的科学技术。 What is Pneumatic? “气动”是什么意思?

Pneumatic simply means using pressurized gas to make a piece of machinery work. 简单的说,气动的意思就是使用压缩空气让一台机器工作。 利用电磁线圈通电时,静铁芯对动铁芯产生电磁吸力使阀切换以改变气流方向的阀,称为电磁控制方向阀,简称电磁阀。这种阀易于实现电、气联合控制,能实现远距离操作,故得到广泛应用。 一、电磁阀的分类 国内外电磁阀,到目前为止,从动作方式上可分为三大类即:直动式、反冲式、先导式。 1、直动式电磁阀: 原理:常闭型通电时,电磁线圈产生电磁力把关闭件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧把关闭件压在阀座上,阀门关闭。(常开型与此相反) 特点:在真空、负压、零压时能正常工作,但通径一般不超过25mm。 2、反冲型电磁阀 原理:它的原理是一种直动和先导相结合,通电时,电磁阀先将辅阀打开,主阀下腔压力大于上腔压力而利用压差及电磁阀的同时作用把阀门开启;断电时,辅阀利用弹簧力或介质压力推动关闭件,向下移动便阀门关闭。 特点:在零压差或高压时也能可靠工作。 3、先导式电磁阀: 原理:通电时,电磁力把先导孔打开,上腔室压力迅速下降,在关闭件周围形成上低下高的压差,流体压力推动关闭件向上移动,阀门打开;断电时,弹簧力把先导孔关闭,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动关闭件向下移动,关闭阀门。 特点:体积小,功率低,流体压力范围上限较高,可任意安装(需定制)但必须满足流体压差条件 一、电磁阀的工作原理 阀芯的工作位置有几个,该电磁阀就叫几位电磁阀:

2021年静电计的原理

静电计 欧阳光明(2021.03.07) 知识1: 静电计的构造 验电器的球形金属外壳与带有金属小球的金属杆是绝缘的,金属杆的下端有很薄的金属箔片. 静电计是在验电器的基础上改革而成的.静电计也是主要有相互绝缘的两部分构造而成.除金属外壳外,中间的金属杆下端有一个可转动的指针,指针转动的角度可由固定在外壳上的表盘读出. 如图所示 知识点2:静电计的设计原理 静电计相当于一个电容很小的电容器,当将静电计的金属球,金属外壳辨别与被测电容的两级相连时,静电计就从被测电容上获得电荷达到与被测电容的电压相同,因静电计的电容很小,此过程中引起被测电容上的电荷量的变更可忽略,被测电容两级间的变更也可忽略,即静电计上的电压总是即是被测电容上的电压.则静电计所带的电荷量q=cu正比于被测电压,被测电压越高,静电计所带电荷量越多,静电计指针与金属杆间的静电斥力就越年夜,指针偏角就越年夜。利用指针偏角与被测电压间的关系即可测静电电压。验电器与静电计的设计原理是相同的,即同种电荷相斥。 知识点3:注意事项 (1)使用验电器是判断物体是否带电,验电器在使用前不要带电。(2)验电器与静电计的两金属杆与外壳一定要坚持绝缘

(3)静电计所测的电压不是很准确,但能观察出电容器上电压的变更 静电计的使用: 让静电计与带电的电容器相连,如图,静电计的两部分与电容器的两极板辨别等势,故电容器的两极板间的电压与静电计两部分间的电压相等,由静电计上的读数可知电容器两极板间的电压 例题.在如图所示的实验装置中,平行板电容器的极板B与一灵 敏静电计相接,极板A接地.下列操纵中可以观察 到静电计指针张角变年夜的是() A.极板A上移 B.极板A右移 C.极板A左移 D.极板间拔出一云母片

验电器、静电计、电压表的区别

浅谈验电器、静电计和电压表 一、验电器 1、验电器的构造 验电器的球形金属外壳与带有金属小球的金属杆是绝缘的,金属杆的下端有很薄的金属箔片. 2、工作原理:同种电荷相互排斥 电荷量越大、排斥力越大、张角越大 3、验电器的主要用途:检验物体是否带电,比较带电的种类以及所带电荷量的多少等。 二、静电计 1、静电计的构造 静电计是测量电势差的仪器,是验电器的基础上改造而成的.静电计也是主要由相互绝缘的两部分构造而成.除金属外壳外,中间的金属杆下端有一个可转动的指针,指针转动的角度可由固定在外壳上的表盘读出.如图所示 2、工作原理 静电计的设计原理 静电计相当于一个电容很小的电容器, 金属球、金属杆、指针相当于电容器的一个电极,金属外壳相当于另一个电极,它们之间是绝缘的。其电容的大小由金属壳的几何尺寸的大小和金属杆及指针的长短、位置所决定. 工作原理分析如下:将一个已充电,电量为Q的平行板电容器与静电计相连,此时指针和金属杆带正电,外壳内表面将出现负的感应电荷,从而金属杆与外壳间形成电场,指针表面的电荷荷受到电场力的作用,或者说受到来自杆上的同种电荷排斥力及金属盒内的异种电荷的吸引力, C,由指针就要偏转,如果带电量越多,场强越强,则指针的偏角也越大。设静电计的电容为'

''' U Q C =可知:'' 'C Q U =,当'C 不变时,静电计两极间的电势差与其带电量成正比,即'Q 增大,静电计两极板间的电势差也增大,而平行板电容器两板间的电势差与静电计两板间的电势差相等,所以静电计指针偏角的大小就表示了平行板电容器两板间电势差的大小 验电器与静电计的设计原理是相同的,即同种电荷相斥,异种电荷相吸 3、应用:1、定性测量两导体的电势差(或者定性测量某导体的电势)2、可以测量直流电路中的电势差。 4、说明: A 静电计的特点 1、电容小—结构决定 2、电容器两板间电压与静电计两板间电压相等:因电容器的金属电极与静电计的电极之间 电势不相等就会有电势差,电荷就会移动,所以电容器两板间电压与静电计两板间电压相等 3、被测电容器电容可认为电量不变: 因静电计的电容很小, 转移到静电计上的电量很少,可忽略,所以被测电容器两极间的电量近似认为保持不变。 4、静电计的电容值不变:因为静电计指针的偏转角变化对静电计的影响很小,所以指针转动过程中可近似认为静电计的电容值不变 B 既然静电计本身也是一个电容器,那么把静电计并联在直流电路中电势差不为零的两点时,静电计就会被充电,其指针就应该偏转。但实际上在一般直流电路中,由于电压较小,使静电计所带电荷量很小,指针的偏转角度几乎觉察不出来。 静电计上的刻度一般是以静伏(静电系单位)为单位的,而1静伏=300V 。故一般的 直流电压不能使静电计指针有明显偏转。如果把静电计接在具有几百、几千甚至几万伏电压的直流电路中,静电计指针就会有明显偏转,也就可以用静电计来测量某两点间的电压。例如把静电计接在感应圈的副线圈上,指针偏转角度会忽大忽小,说明感应圈输出的是不稳定的脉动电压。 三、电压表 1、电压表的构造 电压表是测量电压的一种仪器,常用电压表—伏特表符号:V , 构造:一a 、铁芯、线圈和指针是一个整体;b 、蹄形磁铁内置软铁是为了(和铁芯一起)造就辐向磁场;c 、观察——铁芯转动时螺旋弹簧会形变。

电磁阀原理及选型

电磁阀 一、电磁阀定义 是用来控制流体的自动化基础元件,属于执行器,并不限于液 和其他的参数。电磁阀可以配合不同的电路来实现预期的控制,而控制的精度和灵活性都能够保证。电磁阀有很多种,不同的 电磁阀在控制系统的不同位置发挥作用,最常用的是单向阀、 安全阀、方向控制阀、速度调节阀等。 二、电磁阀工作原理 电磁阀里有密闭的腔,在不同位置开有通孔,每个孔连接不同 闭不同的排油孔,而进油孔是常开的,液压油就会进入不同的 就控制了机械运动。 三、电磁阀分类 1、电磁阀从原理上分为三大类: 1.1直动式电磁阀 工作原理:

开;断电时,电磁力消失,弹簧把关闭件压在阀座上,阀门关闭。 工作特点: 在真空、负压、零压时能正常工作,但通径一般不超过25mm。 1.2分布直动式电磁阀 工作原理: 它是一种直动和先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。 工作特点: 在零压差或真空、高压时亦能可*动作,但功率较大,要求必须水平安装。 1.3先导式电磁阀 工作原理: 通电时,电磁力把先导孔打开,上腔室压力迅速下降,在关闭件周围形成上低下高的压差,流体压力推动关闭件向上移动,阀门打开;断电时,弹簧力把先导孔关闭,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动关闭件向下移动,关闭阀门。

工作特点: 流体压力范围上限较高,可任意安装(需定制)但必须满足流体压差条件。 2、电磁阀从阀结构和材料上的不同与原理上的区别,分为六个分 支小类: 2.1直动膜片结构。 2.2分步直动膜片结构。 2.3先导膜片结构。 2.4直动活塞结构。 2.5分步直动活塞结构。 2.6先导活塞结构。 3、电磁阀按照功能分类: 水用电磁阀、蒸汽电磁阀、制冷电磁阀、低温电磁阀、燃气电磁阀、消防电磁阀、氨用电磁阀、气体电磁阀、液体电磁阀、微型电磁阀、脉冲电磁阀、液压电磁阀常开电磁阀、油用电磁阀、直流电磁阀、高压电磁阀、防爆电磁阀等。 四、电磁阀选型 电磁阀选型时首先依次遵循安全性,适用性,可靠性,经济性四大原则,其次根据六个方面的现场工况(即管道参数、流体参数、压力参数、电气参数、动作方式、特殊要求进行选择)。 4.1四大原则 安全性:

电流表的工作原理

第三节电流表的工作原理 ●教学目标 一、知识目标 1.知道电流表的构造. 2.知道电流表的内部磁场的分布特点. 3.能准确判定线圈各边所受磁场力的方向. 4.会推导线圈所受安培力的力矩,理解电流表的刻度为什么是均匀的. 二、能力目标 1.培养学生的阅读能力、概括能力. 2.培养学生的分析推理能力. 三、德育目标 培养学生形成积极思维,善于推理的思维品质. ●教学重点 1.电流表的构造及表内的磁场分布特点. 2.通电线圈所受安培力矩的计算. ●教学难点 1.表内的磁场分布特点. 2.电流表的刻度为什么是均匀的. ●教学方法 阅读法、讲授法、分析推理法 ●教学用具 演示电流表、投影仪、投影片、实物投影仪 ●课时安排 1课时 ●教学过程 用投影片出示本节课的学习目标: 1.知道电流表的构造. 2.知道电流表内部磁场的分布特点. 3.能用左手定则准确判定线圈各边所受磁场力的方向. 4.会推导线圈所受安培力的力矩,理解电流表的刻度为什么是均匀的. ●学习目标完成过程 一、复习提问,引入新课 [提问]什么是安培力? [学生答]磁场对电流的作用力叫安培力. [提问]安培力的大小如何计算? [学生答]在匀强磁场中,在通电直导线和磁场方向垂直的情况下,电流所受的安培力F等于磁场感应强度B,电流I和导线长度L三者的乘积,即F=BIL. [提问]安培力的方向如何判断? [学生答]通电直导线所受安培力的方向和磁场方向、电流方向之间的关系,可以用左手定则来判定:伸开右手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流的方向,那么大拇指所指的方向就是通电导线在磁场中所受安培力的方向. [教师讲述]在日常生产生活以及科学实验中,处处都用到一种测量电流强弱和方向的仪表——电流表.这节课我们就一起研究电流表的工作原理.

静电计的原理

静电计 令狐采学 知识1: 静电计的构造 验电器的球形金属外壳与带有金属小球的金属杆是绝缘的,金属杆的下端有很薄的金属箔片. 静电计是在验电器的基础上改革而成的.静电计也是主要有相互绝缘的两部分构造而成.除金属外壳外,中间的金属杆下端有一个可转动的指针,指针转动的角度可由固定在外壳上的表盘读出. 如图所示 知识点2:静电计的设计原理 静电计相当于一个电容很小的电容器,当将静电计的金属球,金属外壳辨别与被测电容的两级相连时,静电计就从被测电容上获得电荷达到与被测电容的电压相同,因静电计的电容很小,此过程中引起被测电容上的电荷量的变更可忽略,被测电容两级间的变更也可忽略,即静电计上的电压总是即是被测电容上的电压.则静电计所带的电荷量q=cu正比于被测电压,被测电压越高,静电计所带电荷量越多,静电计指针与金属杆间的静电斥力就越年夜,指针偏角就越年夜。利用指针偏角与被测电压间的关系即可测静电电压。验电器与静电计的设计原理是相同的,即同种电荷相斥。 知识点3:注意事项 (1)使用验电器是判断物体是否带电,验电器在使用前不要带电。(2)验电器与静电计的两金属杆与外壳一定要坚持绝缘

(3)静电计所测的电压不是很准确,但能观察出电容器上电压的变更 静电计的使用: 让静电计与带电的电容器相连,如图,静电计的两部分与电容器的两极板辨别等势,故电容器的两极板间的电压与静电计两部分间的电压相等,由静电计上的读数可知电容器两极板间的电压 例题.在如图所示的实验装置中,平行板电容器的极板B与一 灵敏静电计相接,极板A接地.下列操纵中可以观 察到静电计指针张角变年夜的是( ) A.极板A上移 B.极板A右移 C.极板A左移 D.极板间拔出一云母片

电磁阀工作原理(图文并茂)

电磁阀工作原理 纵观国外电磁阀,到目前为止,从动作方式上可分为三大类即:直动式、反冲式、先导式,而从阀瓣结构和材料上的不同以及原理上的区别反冲式又可分为:膜片式反冲电磁阀、活塞式反冲电磁阀;先导式又可分为:先导式膜片电磁阀、先导式活塞电磁阀;从阀座及密封材料上分又可分为:软密封电磁阀、钢性密封电磁阀、半钢性密封电磁阀。 一、直动式电磁阀 原理:常闭型直动式电磁阀通电时,电磁线圈产生电磁吸力把阀芯提起,使关闭件离远开阀座密封副打开;断电时,电磁力消失,靠弹簧力把关闭元件压在阀座上阀门关闭。(常开型与此相反) 特点:在真空、负压、零压差时能正常工作,DN50以下可任意安装,但电磁头体积较大。如我公司引进HERION公司技术生产的直动电磁阀可用于1.33×10-4 Mpa真空。 二、反冲型电磁阀 原理:它的原理是一种直动和先导相结合,通电时,电磁阀先将辅阀打开,主阀下腔压力大于上腔压力而利用压差及电磁阀的同时作用把阀门开启;断电时,辅阀利用弹簧力或介质压力推动关闭件,向下移动便阀门关闭。 特点:在零压差或高压时也能可靠工作,但功率及体积较大,要求竖直安装。三、先导式电磁阀 原理:通电时,电磁力驱动先导阀打开先导阀,主阀上腔压力迅速下降,在主阀上下腔形成压差,依靠介质压力推动主阀关闭件上移,阀门开启;断电时,弹簧力把先导阀关闭,入口介质压力通过先导孔迅速进入主阀上腔在上腔形成压差,从而使主阀关闭。 特点:体积小,功率低,但介质压差围受限,必须满足压差条件。 两位三通电磁阀通常与单作用气动执行机构配套使用,两位是两个位置可控:开-关,三通是有三个通道通气,一般情况下1个通道与气源连接,另外两个通道1个与执行机构的进气口连接,1个与执行机构排气口连接,具体的工作原理可以参照单作用气动执行机构的工作原理图。 两位五通电磁阀通常与双作用气动执行机构配套使用,两位是两个位置可控:开-关,五通是有五个通道通气,其中1个与气源连接,两个与双作用气缸的外部气室的进出气口连接,两个与部气室的进出气口接连,具体的工作原理可参照双作用气动执行机构工作原理 在气路(或液路)上来说,两位三通电磁阀具有1个进气孔(接进气气源)、1个出气孔(提供给目标设备气源)、1个排气孔(一般安装一个消声器,如果不怕噪音的话也可以不装_)。 两位五通电磁阀具有1个进气孔(接进气气源)、1个正动作出气孔和1个反动作

“静电计”能够测量电势差的原理解释

“静电计”能够测量电势差的原理解释 物理教材中提到静电计是在验电器的基础上制成的,用来测量电势差。把它的金属球跟一个导体连接,把它的金属外壳跟另一个导体连接(或同时接地),从指针的偏转角度就可以测出两个导体间的电势差。对于其中的原理书中没有过多的解释,现结合验电器的原理作以下探讨。 验电器的是根据同种电荷相互排斥的原理制成的,让验电器的金属小球带上点,通过金属杆与金属小球相连的两个金属箔片也会带上同种电荷。同种电荷互相排斥,金属箔片就会张开一定的角度。带电小球带的电量越多,金属箔片带的电量也越多,排斥力就越大,张角也就越大。静电计根据验电器的原理,加以改造,可根据张角的大小来判断电压的大小。如右图所示,验电器与静电计在结构上基本相同,与验电器相比,静电计上的两个金属箔其中一个固定(如右图中粗线所示),另一个可以自由张开(作为测电压大小的指针),在加上刻度盘,就成了静电计。与验电器张角大小的原理一致,静电计张角的大小反映的是“金属箔”带电的多少,即张角的大小由“金属箔”带电的多少决定。但静电计又如何反映出电压的大小,可结合验电器从静电感应的角度作出解释: 验电器的金属箔带电,可能是验电器本身的金属小球带电,然后传给金属箔,使其有一定的张角。若验电器本身带的电越多,则张角越大。另外如发生静电感应,也可使金属箔张角发生变化。如右图,如让一带正电小球靠近验电器的金属小球,由于静电感应,验电器的金属小球就会带上负电荷,而金属箔带上正电荷,验电器也会张开一角度。若带电小球离验电器的金属小球越近,则静电感应越强,验电器的金属小球带的负电荷与金属箔带的正电荷都会增加,金属箔的张角也就越大。 电容器的两个极板也存在着静电感应,如果两极板的距离增大,两极板的静电感应势必减弱,这样电容器B板右侧所带的正电量+Q会减少+△Q,减少的部分电量+△Q传给大地,

静电原理

静电测量 静电测试的目的: ?为静电防护工程设计和改善产品自身抗静电性能设计提供数据和依据。 能设计提供数据和依据 ?在实际运行条件下,判断人体、设备、工装器具等是能成为静放危害 具等是否可能成为静电放电危害源。 ?检测静电防护器材(器具、工具、设备、材料)的性能和质量。 ?评价静电防护措施的效果。 当发静电放电危害后进行模拟测试分析事?当发生静电放电危害后进行模拟测试,分析事故原因,为采取有针对性的措施提供依据。 ?评价静电敏感电子产品的设计和制造质量。

静电测试的主要内容 ?静电基本参量测试技术 ?防静电系统静电性能测试技术?包装材料静电性能测试技术?人体静电参数测试技术

一、静电基本参量测试技术 静电电位测量 1、接触式测量 接触式测量 ?测试原理 利用等电位原理进行测试,把被测带电体用绝缘电 利用等电位原理进行测试把被测带电体用绝缘电缆直接连在输入阻抗为1012?以上静电电压表的测量电极上,由静电电压表头直接读出被测带电体的对地电压,也称为接触式测量。此测试方法仅适用于对静电导体带电电位的测试,测试误差相对比较小,测量准确度可以优于2%,但对于某类测试探头无法接触的场 %但对于某类测试探头无法接触的场合此类方法不便使用。 ?测试仪器 接触式静电电压表(或简称静电伏特计)是利用静电力矩来进行测试的。

C U U =00使C 《C 0,即尽可能地减小仪表的输入电容。例如,量程了减小由此造成的测量误差,应尽量提高仪表的输入电阻

2、非接触式测量 ?测试原理 运用静电感应或空气电离的原理。前者静电感应原理是将测试探头靠近带电体,利用探头与被测带电体之间产 生的畸变电场测试带电体的表面电位,实质上是对带电体 表面电场的测试后者是利用放射性同位素电离空气在表面电场的测试;后者是利用放射性同位素电离空气,在 带电体与测试仪表输入端、输入端与接地端之间分别产生 电阻分压,测试带电体的对地电位。由于这种测试不是直 接同带电体相接触,因此也称非接触式测量,所使用的测试仪表,又称非接触式测试仪表。 与接触式测量相比,非接触式测量结果受仪表输入电与接触式测量相比非接触式测量结果受仪表输入电容、输入电阻的影响较小,测量准确度可优于15%,但受测试距离、带电体几何尺寸的影响较大。 测试距离带电体几何尺寸的影响较大 ?测试仪器 根据工作原理的不同,该类仪表主要分为静电感应型和电离型两种。

静电计的工作原理及使用

静电计的工作原理及使用 静电计又叫电势差计或指针验电器,它是中学静电实验中常用的半定量测量仪器。如图1所示,包括小球a、指针be的中心杆A 用绝缘塞D固 定在有前后玻璃窗的圆形金属外壳B上;B 的侧下方有一个接线 柱;整个装置固定在一个绝缘支架 上。 亠: 当A带电时,电荷主要分布在a、b、e和d四个尖端部位,其中e和d 两部分所带电荷以斥力相作用,指针受到一个使它张开的电力矩L1的 作用。由于指针的重心略在旋转轴0点之下,当L i使指针张开后,指针的重力便产生一个使指针复位的重力矩L2。随着指针的偏转,L i渐小 (因为e与d的距离增加,库仑力变小,力臂也变小)而L2渐大(因为重力力臂增加)。当L i与L2相等时,指针停在某一位置(是稳定平衡),指针的张角为a°当A所带电量q较大时,e和d所带电量也较大,L i就大,所以a也就大。由于q 决定a,所以a的大小能表示q的大小。这就是静电计可以当作验电器使用的道理。 由于静电感应,当A带电后,B的内层一定带上与A异号的电荷。若 B不接地,则B的外表面带上与A同号的电荷。若B接地,则B的外表面不带电。由于静电计结构的对称性,可以祖略地认为B上的电荷对指针的作用力不产

生使指针转动的力矩,指针的张角主要由c和d所带电量决定。 一、静电计的第一类用途:作验电器用。 由于B的屏蔽作用,使A的下部较少受外界电场的影响。而A的上端a露在B之外,所以,外电场能由A的上端施加感应。当带电体移近不带电的静电计时,由于静电感应,A的上部a处出现与带电体异号的电荷,而A的下端c和d处出现与a等量的、与带电体同号的电荷。于是指针就张开了。带电体所带电量越多、移得越近,则张角越大。当带电体移去时,指针又回到原位。我们可以用这种感应法检验物体是否带电、带电多少及演示静电感应现象。 某物体与不带电的静电计的a处接触后移去,若此时静电计指针张开,说明静电计因与该物体接触而带电,从而可以判定这个物体是带电体。若物体与不带电静电计的a处接触后移去,静电计指针仍闭合,则证明该物体与a接触的部位不带电。指针是否张开及张开角度大小能用来判定物体与a接触部位是否带电及带电多少。这种接触丿玄法不能对物体未接触部位的带电情况作出判断,更不能用来测V丿 量整个物体所带的电量,有很大局限性。「二 为测量电量,应把静电计a处的小金属球换成一个法拉第圆筒(上端有开口的薄壁金属容器)。把欲测其带电量的物体放入法拉第圆筒(如图

钳形电流表原理及使用

钳形电流表原理及使用 通常用普通电流表测量电流时,需要将电路切断停机后才能将电流表接入进行测量。此时,使用钳形电流表就显得方便多了。钳形电流表与普通电流表不同,它可在不断开电路的情况下测量负荷电流,这是它最大的优点。 一、构造与原理 1. 互感式钳形电流表的构造与原理 常见的钳型电流表多为互感式钳型电流表,由电流互感器和整流系电流表组成,原理图如下图所示: 图1.1 互感式钳形电流表是利用电磁感应原理来测量电流的。电流互感器的铁芯呈钳口形,当紧握钳形电流表的把手时,其铁芯张开,将被测电流的导线放入钳口中。松开把手后铁芯闭合,通有被测电流的导线就成为电流互感器的原边,于是在副边就会产生感生电流,并送入整流系电流表进行测量。电流表的标度是按原边电流刻度的,所以仪表的读书就是被测导线中的电流值。互感型钳形电流表只能测交流电流。 2. 电磁系钳形电流表的原理 电磁系钳形电流表主要由电磁系测量机构组成。处在铁芯钳口中的导线相当于电磁系测量机构中的线圈,当被测电流通过导线时,在铁芯中产生磁场,使可动铁片磁化,产生电磁推力,带动指针偏转,指示出被测电流的大小。由于电磁系仪表可动部分的偏转方向与电流极性无关,因此可以交直两用。由于这种钳形电流表属于电磁系仪表,指针转动力矩与被测电流的平方成正比,所以标度尺刻度是不均匀的,并且容易受到外磁场影响。 3. 采用霍尔电流传感器的钳形电流表 针对霍尔传感器的电路形式而言,人们最容易想到的是将霍尔元件的输出电压用运算放大器直接信号放大,得到所需要的信号电压,由此电压值来标定原边

被测电流大小,这种形式的霍尔传感器通常称为开环霍尔电流传感器。开环霍尔传感器的优点是电路形式简单、成本相对较低;其缺点是精度、线性度较差;响应时间较慢;温度漂移较大。为了克服开环传感器存在的不足,八十年代末期,国外出现了闭环霍尔电流传感器。 磁平衡式(闭环)电流传感器(CSM系列)的原理图如下图所示: 图2.1 磁平衡式电流传感器也称补偿式传感器,即原边电流Ip在聚磁环处所产生的磁场通过一个次级线圈电流所产生的磁场进行补偿,其补偿电流Is精确的反映原边电流Ip,从而使霍尔器件处于检测零磁通的工作状态。 具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip 与匝数相乘所产生的磁场相等时,Is不再增加,这时的霍尔器件起到指示零磁通的作用。当原副边补偿电流产生的磁场在磁芯中达到平衡时: N×Ip= n×Is 式中:N为原边线圈的匝数;Ip为原边电流;n为副边线圈的匝数;Is为副边补偿电流。由次看出,当已知传感器原边和副边线圈匝数时,通过在M点测量副边补偿电流Is的大小,即可推算出原边电流Ip的值,从而实现了原边电流的隔离测量。 当平衡受到破坏,即Ip变化时,霍尔器件有信号输出,即重复上述过程重新达到平衡。被测电流的任何变化都会破坏这一平衡。一旦磁场失去平衡,霍尔器件就有信号输出。经功率放大后,立即就有相应的电流流过次级绕组以对失衡的磁场进行补偿。从磁场失衡到再次平衡,所需的时间理论上不到1μs,这是一

验电器与静电器的区别

一、构造上的差异 最常用的金箔验电器,它是检验物体是否带电的最简单的仪器,在玻璃瓶口处有一橡胶塞,塞中插一根金属杆,杆的上端有一金属球,下端悬挂一对金箔(或铝箔)。当带电体与金属小球接触时,箔片因带同性电荷相排斥而张开。为了避免气流的影响,金属棒和箔片封闭在一个玻璃瓶中,棒与瓶间有绝缘材料相隔。 而静电计是用静电方法测量电势差的仪器。实验室常用的静电计是布劳恩静电计,它的结构是在一绝缘底座上装一鼓形铁壳,铁壳的前面装有透明玻璃,后面装有标有刻度的毛玻璃,在金属壳中绝缘地安装一根金属杆,杆的上端为金属小球,金属杆下部的水平轴上装有金属指针,可绕水平轴灵活转动。圆筒的底部有接线柱,可用来接地或与其他导体相连。这样,静电计的金属外壳与内部的金属杆及金属指针构成了一个特殊的电容器。 二、工作原理及用途上的差异 1.验电器原理及其用途 验电器的原理:当验电器指示系统带电后,由于同种电荷的排斥力使指示器发生偏转,它是从力的角度来反映导体带电的情况。当指示系统具有一定的偏转角时,其重力矩与静电力矩平衡。 验电器的主要用途:检验物体是否带电,比较带电的种类以及所带电荷量的多少等。 2.静电计原理及其用途 静电计的原理是:从上面的构造分析,我们知道静电计本身其实就是一个电容器。金属球、金属杆、指针相当于电容器的一个电极,金属外壳也相当于一个电极,它们之间是绝缘的。其电容的大小由金属壳的几何尺寸的大小和金属杆及指针的长短、位置所决定。因为指针的偏转角变化对静电计的电容的影响很小,故在指针转动过程中可近似认为静电计的电容值不变。 现将一个已充电电量为Q的平板电容器与静电计相连,此时指针和金属杆带正电,外壳的内表面将出现负的感应电荷,从而在金属杆与外壳间形成电场,指针表面的电荷受到电场力的作用,或者说受到来自杆上同种电荷的排斥力及金属盒内壁的异种电荷的吸引力,使得指针偏转,带电量越多,场强越强,则指针的偏角也越大。 根据,可知当静电计电容保持不变时,静电计两极间的电势差U与其带电量Q成正比,U越大,Q越大,指针所受电场力越大,指针张角因此就越大。由此可见,指针张角大小能定性地反映静电计两极间的电势差的大小。 由于静电计的特殊结构,使得它又具备验电器不能替代的某些作用。它不但可以定性测量两导体的电势差(这点上面已有,故不重述),还可以定性测量某导体的电势,甚至还可以测量直流电路中的电势差。既然静电计本身也是一个电容器,那么把静电计并联在直流电路中电势差不为零的两点时,静电计就会被充电,其指针就应该偏转。但实际上在一般直流电路中,由于电压较小,使静电计所带电荷量很小,指针的偏转角度几乎觉察不出来。静电计上的刻度一般是以静伏(静电系单位)为单位的,而1静伏=300V。故一般的直流电压不能使静电计指针有明显偏转。如果把静电计接在具有几百、几千甚至几万伏电压的直流电路中,静电计指针就会有明显偏转,也就可以用静电计来测量某两点间的电压。例如把静电计接在感应圈的副线圈上,指针偏转角度会忽大忽小,说明感应圈输出的是不稳定的脉动电压。 由上可知,验电器与静电计从原理和用途上看都不能说是一回事,它们只是在结构上相似而已。

电流传感器的工作原理

电流传感器工作原理 电流传感器是传感器的一种分类,其主要信号源是采集信号的电流大小!主要参数为其电流大小!检测方法一般是检测电流特性的器件,一般有电流表之类的!工作原理主要是霍尔效应原理. 一、以零磁通闭环产品原理为例: 1、当原边导线经过电流传感器时,原边电流IP会产生磁力线,原边磁力线集中在磁芯气隙周围,内置在磁芯气隙中的霍尔电片可产生和原边磁力线成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式: IS* NS= IP*NP 其中,IS—副边电流; IP—原边电流; NP—原边线圈匝数; NS—副边线圈匝数; NP/NS—匝数比,一般取NP=1。 电流传感器的输出信号是副边电流IS,它与输入信号(原边电流IP)成正比,IS一般很小,只有10~400mA。如果输出电流经过测量电阻RM,则可以得到一个与原边电流成正比的大小为几伏的电压输出信号。 2、传感器供电电压VA VA指电流传感器的供电电压,它必须在传感器所规定的范围内。超过此范围,传感器不能正常工作或可靠性降低,另外,传感器的供电电压VA又分为正极供电电压VA+和负极供电电压VA-。要注意单相供电的传感器,其供电电压VAmin 是双相供电电压VAmin的2倍,所以其测量范围要相供高于双电的传感器。 3、测量范围Ipmax 测量范围指电流传感器可测量的最大电流值,测量范围一般高于标准额定值IPN。 二、电流传感器主要特性参数 1、标准额定值IPN和额定输出电流ISN IPN指电流传感器所能测试的标准额定值,用有效值表示(),IPN的大小与传感器产品的型号有关。 ISN指电流传感器额定输出电流,一般为10~400mA,当然根据某些型号具体可能会有所不同。 2、偏移电流ISO 偏移电流也叫残余电流或剩余电流,它主要是由霍尔元件或电子电路中运算放大器工作状态不稳造成的。电流传感器在生产时,在25℃,IP=0时的情况下,偏移电流已调至最小,但传感器在离开生产线时,都会产生一定大小的偏移电流。产品技术文档中提到的精度已考虑了偏移电流增加的影响。 3、线性度 线性度决定了传感器输出信号(副边电流IS)与输入信号(原边电流IP)在测量范围内成正比的程度。 4、温度漂移 偏移电流ISO是在25℃时计算出来的,当霍尔电极周边环境温度变化时,ISO 会产生变化。因此,考虑偏移电流ISO的最大变化是很重要的,其中,IOT是指电流传感器性能表中的温度漂移值。 5、过载

SMC电磁阀工作原理

S MC MC电磁阀 工作原理 电磁阀工作原理 电磁阀 SMC电磁阀是用来控制流体的自动化基础元件,属于执行器;并不限于液压,气动.电磁阀用于控制液压流动方向,工厂的机械装置一般都由液压钢控制,所以就会用到电磁阀.电磁阀是用电磁控制的工业设备,用在工业控制系统中调整介质的方向,流量,速度和其他的参数.电磁阀有很多种,不同的电磁阀在控制系统的不同位置发挥作用,最常用的是单向阀,安全阀,方向控制阀,速度调节阀等.电磁阀是用电磁的效应进行控制,主要的控制方式由继电器控制.这样,电磁阀可以配合不同的电路来实现预期的控制,而控制的精度和灵活性都能够保证.图中杆状的物体就是通过电控制的阀杆,利用电磁力可以将阀杆打开或者关闭.下面以气动系统为例子说明电磁阀在工业控制中的应用.所谓气动系统,就是以气体为介质的控制系统.气动系统中,这种能源的介质通常就是空气.在真正使用的时候,通常把大气中的空气的体积加以压缩,从而提高它的压力.压缩空气主要通过作用于活塞或叶片来作功.气动系统中,电磁阀的作用就是在控制系统中按照控制的要求来调整压缩空气的各种状态,气动系统还需要其他元件的配合,其中包括动力元件,执行元件,开关,显示设备及其它辅助设备.动力元件包括各种压缩机,执行元件包括各种气缸.这些都是气动系统中不可缺少的部分.而阀体是控制算法得以实现的重要设备.比如单向阀让压缩空气从压缩机进入气罐,当压缩机关闭时,阻止压缩空气反方向流动;安全阀当储气罐内的压力超过允许限度,可将压缩空气排出;方向控制阀通过对气缸两个接口交替地加压和排气,来控制运动的方向;速度调节阀能简便实现执行元件的无级调速.气路系统:油路系统:冷冻系统:A进气过滤器J油箱PB冷冻压缩机空气进气阀K恒温旁通阀Q冷凝器C压缩机主机L油冷却器R热交换器D单向阀M油过滤器S旁通系统EF空气/油分离器N回油阀T 空气出口过滤器最小压力阀O断油阀G后冷却器H带自动疏水器的水分离器气动系统的示意图电磁阀不但能够应用在气动系统中,在油压的系统,水压的系统中也能够得到相同或者类似的应用,比如低功率不供油小型电磁换向阀,密封件不需供油,排出的气体不会污染环境,可用于食品,医药,电子等行业.电磁换向阀现在,电磁阀技术与控制技术,计算机技术,电子技术相结合,已经能够进行多种复杂的控制.比如可以把电磁阀应用在智能控制领域,应用在无线控制技术等方面.电磁阀正是因为能够用电磁进行控制,所以它能与现在的各种电子系统很好地接口,这也是它得到广泛应用的一个主要原因.电磁阀已经广泛地应用在生产的各个领域中,随着电磁控制技术和制造工艺的提高,电磁阀能够实现更加精巧的控制,为实现不同的气动系统,液压系统发挥它的作用.电磁阀的工作原理:电磁阀的工作原理:电磁阀里有密闭的腔,在的不同位置开有通孔,每个孔都通向不同的油管,腔中间是阀,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来档住或漏出不同的排油的孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油刚的活塞,活塞又带动活塞杆,活塞竿带动机械装置动.这样通过控制电磁铁的电流就控制了机械运动. 电磁阀的结构原理: 一:直动式电磁阀有常闭型和常开型二种.常闭型断电时呈关闭状态,当线圈通电时产生电磁力,使动铁芯克服弹簧力同静铁芯吸合直接开启阀,介质呈通路;当线圈断电时电磁力消失,动铁芯在弹簧力的作用下复位,直接关闭SMC电磁阀有什么作用之处,阀口,介质不通.结构简单,动作可靠,在零压差和微真空下正常工作.常开型正好相反.如小于φ6流量通径的电磁阀. 二,分步直动式电磁阀该阀采用一次开阀和二次开阀连在一体,主阀和导阀分步使电磁力和压差直接开启主阀口.当线圈通电时,产生电磁力使动铁芯和静铁芯吸合,导阀口开启而导阀口设在主阀口上,且动铁芯与主阀芯连在一起,此时主阀上腔的压力通过导阀口卸荷,在压力差和电磁力的同时作用下使主阀芯向上运动,开启主阀介质流通.当线圈断电时电磁力消失,此时动铁芯在自重和弹簧力的作用下关闭导阀孔,此时介质在平衡孔中进入主阀芯上腔,使上腔压力升高,此时在弹簧复位和压力的作用下关闭主阀,介质断流.结构合理,动作可靠,在零压差时工作也可靠.如:ZQDF,ZS,2W等。 三,间接先导式电磁阀该系列电磁阀由先导阀和主阀芯联系着形成通道组合而成;常闭型在未通电时,呈关闭状态.当线圈通电时,产生的磁力使动铁芯和静铁芯吸合,导阀口打开,介质流向出口,此时主阀芯上腔压力减少,低于进口侧的压力,形成压差克服弹簧阻力而随之向上运动,达到开启主阀口的目的,介质流通.当线圈断电时,磁力消失,动铁芯在弹簧力作用下复位关闭先导口,此时介质从平衡孔流入,主阀芯上腔压力增大,并在弹簧力的作用下向下运动,关闭主阀口.常开式原理正好相反.如:SLA,DF(φ15以上口径),ZCZ等。 电磁阀的选型: 一:适用性管路中的流体必须和选用的电磁阀系列型号中标定的介质一致.流体的温度必须小于选用电磁阀的标定温度.电磁阀允许液体粘度一般在20CST以下,大于20CST应注明.工作压差,管路最高压差在小于0.04MPa时应选用如ZS,2W,ZQDF,ZCM系列等直动式和分步直动式;最低工作压差大于0.04MPa时可选用先导式(压差式)电磁阀;最高工作压差应小于电磁阀的最大标定压力;一般电磁阀都是单向工作,因此要注意是否有反压差,如有安装止回阀.流体清洁度不高时应在电磁阀前安装过滤器,一般电磁阀对介质要求清洁度要好.注意流量孔径和接管口径;电磁阀一般只有开关两位控制;条件允许请安装旁路管,便于维修;有水锤现象时要定制电磁阀的开闭时间调节.注意环境温度对电磁阀的影响电源电流和消耗功率应根据输出容量选取,电源电压一般允许±10%左右,必

相关文档
最新文档