高二数学选修导数种题型归纳中等难度

高二数学选修导数种题型归纳中等难度
高二数学选修导数种题型归纳中等难度

导数题型分类解析(中等难度)

一、变化率与导数 函数)(0x f y =在x

到x

+x ?之间的平均变化率,即

)('0x f =0

lim

→?x x

y

??=0lim →?x x x f x x f Δ)()Δ(00-+,表示函数)(0x f y =在x 0点的斜率。注意增量的意义。

例1:若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000

()()

lim

h f x h f x h h

→+-- 的

值为( )

A .'0()f x

B .'02()f x

C .'02()f x -

D .0 例2:若'0()3f x =-,则000

()(3)

lim

h f x h f x h h

→+--=( )

A.3- B .6- C .9- D .12-

例3:求0lim →h h

x f h x f )

()(020-+

二、“隐函数”的求值

将)('0x f 当作一个常数对)(0x f 进行求导,代入0x 进行求值。 例1:已知()()232f x x x f '+=,则()='2f

例2:已知函数()x x f x f sin cos 4+???

??'=π,则??

? ??4πf 的值为 .

例3:已知函数)(x f 在R 上满足88)2(2)(2-+--=x x x f x f ,则曲线)(x f y =在点

))1(,1(f 处的切线方程为( )

A. 12-=x y

B. x y =

C. 23-=x y

D. 32+-=x y

三、导数的物理应用

如果物体运动的规律是s=s (t ),那么该物体在时刻t 的瞬间速度v=s ′(t )。 如果物体运动的速度随时间的变化的规律是v=v (t ),则该物体在时刻t 的加速度a=v′(t )。

例1:一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,求物体在3秒末的瞬时速度。

例2:汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )

四、基本导数的求导公式

①0;C '=(C 为常数) ②()1;n n x nx -'= ③(sin )cos x x '=; ④

(cos )sin x x '=-;

⑤();x x e e '= ⑥()ln x x a a a '=; ⑦()1

ln x x

'=

; ⑧()1

l g log a a o x e x

'=

. 例1:下列求导运算正确的是 ( )

A .2111x x x +='

??? ?

?

+ B .()='x 2log =2ln 1x C .()e x x 3log 33='

D . ()x x x x sin 2cos 2-='

例2:若()()()()()()()N n x f x f x f x f x f x f x x f n n ∈'=??'='==+,,,,sin 112010,,则

()=x f 2005

五、导数的运算法则

常数乘积:.)(''Cu Cu = 和差:(.)'''v u v u ±=±

A .

B .

C .

D .

乘积:.)('

'

'

uv v u uv += 除法:='

??

?

??v u 2

''v uv v u - 例1:(1)函数32log y x x =+的导数是 (2)函数12+x n e x 的导数是

六、复合函数的求导

[()]()*()f x f x ?μ?'''=,从最外层的函数开始依次求导。

例1:(1)3(1cos 2)y x =+ (2)2

1sin y x

= 七、切线问题 (曲线上的点求斜率)

例1:曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为( ) A .30° B .45° C .60° D .120° (曲线外的点求斜率)

例1:已知曲线2y x =,则过点(1,3)P -,且与曲线相切的直线方程为 . 例2:求过点(-1,-2)且与曲线32y x x =-相切的直线方程. (切线与直线的位置关系)

例1:曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )

A .(1,0)

B .(2,8)

C .(1,0)和(1,4)--

D .(2,8)和(1,4)--

例2:若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++=

八、函数的单调性 (无参函数的单调性)

例1:证明:函数ln ()x

f x x

=在区间(0,2)上是单调递增函数. (带参函数的单调性)

例1:已知函数2()ln (2)f x x ax a x =-+-,讨论l ()x

f x x

=的单调性; 例2:已知函数),()(23R b a b ax x x f ∈++=,讨论)(x f 的单调性; 例3:已知()ax x x f -=ln ,讨论()x f y =的单调性.

九、结合函数单调性和极值求参数范围

例1:已知函数3

2

()321f x x x =+-在区间()0,m 上是减函数,则m 的取值范围是 .

例2:已知函数()()3

23

m f x x x x m R =

+-∈,

函数()f x 在区间()2,+∞内存在单调递增区间,则m 的取值范围 .

例3:已知函数()()321f x x ax x a R =+++∈,若函数()f x 在区间21,33

??

-- ??

?

内单调

递减,则a 的取值范围 .

例4:已知函数3211()(2)(1)(0).32

f x x a x a x a =+-+-≥若()f x 在[0,1]上单调递增,则a 的取值范围 .

例5:已知函数3()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 .

例6:已知函数()x a x x f ln 2+=,若()()x

x f x g 2+=在[)+∞,1上是单调函数,求实数

a 的取值范围

例7:如果函数()()()()21

281002

f x m x n x m n =-+-+≥≥,在区间122??????

单调递减,则mn 的最大值为( )

(A )16 (B )18 (C )25 (D )

812

十、函数的极值与最值

(无参函数的极值与最值)

例1:函数f(x)=x 3

+ax 2

+bx+c,曲线y=f(x )在点x=1处的切线为l:3x-y+1=0,若x=3

2时,y=f(x )有极值.

(1)求a,b,c 的值;(2)求y=f(x )在[-3,1]上的最大值和最小值.

(含参函数的极值与最值)

例1:已知函数f (x )=ax e x -2(a >0),求函数在[1,2]上的最大值. 例2:已知()ax x x f -=ln ,求函数在[1,2]上的最大值.

十一、函数图像

例1:f (x )的导函数 )(/

x f 的图象如右图所示,则f (x )的图象只可能是( )

(A ) (B ) (C ) (D ) 例2:函数143

1

3+-=x x y 的图像为( )

例3:函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在

),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有

极小值点 个数为 .

例4:已知函数)(x f x y '=的图象如图所示(其中 )(x f '是函数)(x f 的导函数),下面四个图象中)(x f y =的图象大致是 ( )

例5:已知函数y =f (x )的导函数y =f ′(x )的图象如右,则( )

A .函数f (x )有1个极大值点,1个极小值点

x y

o 4 - 2 4 -2 --

x y

o 4 - 2 4 -

2 --

x

y

y 4 - 2 4 -2 --

6 6 6 6 y

x

--o 4 2 2

4 x ?

a

b

x

y

)

(f y =O

B .函数f (x )有2个极大值点,2个极小值点

C .函数f (x )有3个极大值点,1个极小值点

D .函数f (x )有1个极大值点,3个极小值点

例6:函数f(x)的图象如图所示,下列数值排序正确的是 ( ) A.0<)2('f <)3('f <f(3)-f(2) B.0<)3('f <f(3)-f(2) <)2('f C.0<f(3)<)2('f <f(3)-f(2) D.0<f(3)-f(2)<)2('f <)

3('f

十二、积分 (代数形式)

例1:?-+22

)cos (sin π

πdx x x 的值为( ) A.0 B. 4

π C.2 D.4 例2:函数||)(x e x f =,则=?-4

2)(dx x f 例3:定积分?---1

02])1(1[dx x x 等于( ) A.

42-π B. 12-π C. 4

1-π D. 21

-π (面积形式)

例1:由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.

121 B.41 C. 31 D. 12

7 例2:求由抛物线342-+-=x x y 与它在点A (0,-3)和点B (3,0)的切线所围成的区域面积。

例3:如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( )

A.4

1 B.5

1 C. 6

1 D. 7

1

例4:如图,在一个长为π,宽为2的矩形OABC 内,曲线)0(sin πx x y ≤≤=与x

轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( ) A. π

1

B. π

2 C. 4

π D. π

3

练习题

1.(西安一中2015~2016高二下学期期中)若1Δ)

()Δ2(lim 000

Δ=-+→x

x f x x f x ,

则)('0x f 等于( )

A. 2

B. -2

C. 2

1

D. 2

1-

2.(西安一中2015~2016高二下学期期中)已知6)1('2)(2-+=xf x x f ,则)1('f 等于( )

A. 4

B. -2

C. 0

D. 2

3. ()()()()()()()().

________cos sin 201411211=∈'

='

=-=*++x f N n x f x f x f x f x f x f x x x f n n n n ,则,,,的导函数,即是,练:已知Λ

4. 若函数ax x x f -=ln )(在点P (1,b )处的切线与x+3y-2=0垂直,则2a+b=( )

A.2

B.0

C.-1

D. -2

5.设曲线P 为曲线C :y =x 2-2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为]4,0[π

,则点P 横坐标的取值范围为( )

A. ]21

,1[-- B. ]0,1[- C. ]1,0[

D. ]2

3,1[

6. 已知函数x x x x f ln 342

1

)(2-+-=在区间[t,t+1]上不单调,则t 的取值范围是

7. 函数ax x a ax x g 3)1(2)(23--+=在区间)3

,(a

-∞内单调递减,则a 的取值范围是

8. 若函数2)()(c x x x f -=在x =2处有极大值,则常数c 的值为

9. 已知1)6()(23++++=x a ax x x f 有极大值和极小值,则a 的取值范围为

10. 已知二次函数c bx ax x f ++=2)(的导数为)('x f ,0)0('>f ,对于任意实数x 都有0)(≥x f ,则

)

0(')

1(f f 的最小值为( ) A. 3 B. 2

5

C. 2

D. 2

3

北师版数学高二-3.4素材 导数的运算中的几种常见题型分析

导数的运算中的几种常见题型分析 一、根据斜率求对应曲线的切线方程 例1.求曲线122 -=x y 的斜率等于4的切线方程. 分析:导数反映了函数在某点处的变化率,它的几何意义就是相应曲线在该点处切线的斜率,由于切线的斜率已知,只要确定切点的坐标,先利用导数求出切点的横坐标,再根据切点在曲线上确定切点的纵坐标,从而可求出切线方程. 解:设切点为),(00y x P ,则 x x y 4)12(2='-=',∴40='=x x y ,即440=x ,∴10=x 当10=x 时,10=y ,故切点P 的坐标为(1,1). ∴所求切线方程为)1(41-=-x y 即.034=--y x 说明:数学问题的解决,要充分考虑题设条件,捕捉隐含的各种因素,确定条件与结论的相应关系,解答这类问题常见的错误是忽略切点既在曲线上也在切线上这一关键条件,或受思维定势的消极影响,先设出切线方程,再利用直线和抛物线相切的条件,使得解题的运算量变大. 二、化为幂函数的结构特征利用公式求函数的导数 例2.求下列函数的导数: 1.12x y =;2.41x y =;3.53x y =. 分析:根据所给问题的特征,恰当地选择求导公式,将题中函数的结构施行调整.函数41x y =和53x y =的形式,这样在形式上它们都满足幂函数的结构特征,可直接应用幂函数的导数公式求导. 解:1..1212)(1111212x x x y =='='- 2..44)4()(55144x x x x y -=-=-='='---- 3..535353)()(52521535353x x x x x y ==='='='-- 说明:对于简单函数的求导,关键是合理转化函数关系式为可以直接应用公式的基本函数的模式,以免求导过程中出现指数或系数的运算失误.运算的准确是数学能力高低的重要标志,要从思想上提高认识,养成思维严谨,步骤完整的解题习惯,要形成不仅会求,而且求对、求好的解题标准. 三、求常函数的导数 例3.设2 π=y ,则y '等于( )

2019-2020年高二数学导数与导函数的概念教案 苏教版

2019-2020年高二数学导数与导函数的概念教案 苏教版 教学目标: 1、知识与技能:理解导数的概念、掌握简单函数导数符号表示和求解方法; 理解导数的几何意义; 理解导函数的概念和意义; 2、过程与方法:先理解概念背景,培养解决问题的能力;再掌握定义和几何意义,培养转 化问题的能力;最后求切线方程,培养转化问题的能力 3、情感态度及价值观;让学生感受事物之间的联系,体会数学的美。 教学重点: 1、导数的求解方法和过程; 2、导数符号的灵活运用 教学难点: 1、导数概念的理解; 2、导函数的理解、认识和运用 教学过程: 一、情境引入 在前面我们解决的问题: 1、求函数在点(2,4)处的切线斜率。 x x x f x f x y ?+=?-?+=??4)()2(,故斜率为4 2、直线运动的汽车速度V 与时间t 的关系是,求时的瞬时速度。 t t t t v t t v t V o o o ?+=?-?+=??2)()(,故斜率为4 二、知识点讲解 上述两个函数和中,当()无限趋近于0时,()都无限趋近于一个常数。 归纳:一般的,定义在区间(,)上的函数,,当无限趋近于0时,x x f x x f x y o o ?-?+=??)()(无限趋近于一个固定的常数A ,则称在处可导,并称A 为在处的导数,记作或, 上述两个问题中:(1),(2) 三、几何意义:我们上述过程可以看出 在处的导数就是在处的切线斜率。 四、例题选讲 例1、求下列函数在相应位置的导数 (1), (2), (3), 例2、函数满足,则当x 无限趋近于0时, (1) (2)

变式:设f(x)在x=x0处可导, 1.无限趋近于1,则=___________ (4)无限趋近于1,则=________________ (5)当△x无限趋近于0, x x x f x x f ? ?- - ? +) 2 ( ) 2 ( 0所对应的常数与的关系。 总结:导数等于纵坐标的增量与横坐标的增量之比的极限值。 例3、若,求和 注意分析两者之间的区别。 例4:已知函数,求在处的切线。 导函数的概念涉及:的对于区间(,)上任意点处都可导,则在各点的导数也随x的变化而变化,因而也是自变量x的函数,该函数被称为的导函数,记作。 五、小结与作业

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值范围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

高中数学导数及微积分练习题

1.求 导:(1)函数 y= 2cos x x 的导数为 -------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3 )---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A).5 4 (B).5 2 (C).5 1 (D). 5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点 )0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为 ( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,

底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值. 9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和 )1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线 )(x f y =的切线,求此切线方程.

高二数学导数知识要点总结

高二数学《导数》知识要点总结 导数:导数的意义-导数公式-导数应用 1、导数的定义:在点处的导数记作. 2.导数的几何物理意义:曲线在点处切线的斜率 ①k=f/表示过曲线y=f上P)切线斜率。V=s/表示即时速度。a=v/表示加速度。 3.常见函数的导数公式:①;②;③; ⑤;⑥;⑦;⑧。 4.导数的四则运算法则: 5.导数的应用: 利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数; 注意:如果已知为减函数求字母取值范围,那么不等式恒成立。 求极值的步骤: ①求导数;

②求方程的根; ③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值; 求可导函数最大值与最小值的步骤: ⅰ求的根;ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。 导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧! 导数是微积分中的重要基础概念。当函数y=f 的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'或df/dx。 导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线

斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。 对于可导的函数f,x↦f'也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。 设函数y=f在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,也在该邻域内时,相应地函数取得增量Δy=f-f;如果Δy与Δx之比当Δx →0时极限存在,则称函数y=f在点x0处可导,并称这个极限为函数y=f在点x0处的导数记为f',也记作y'│x=x0或dy/dx│x=x0

高二数学导数知识点归纳

高二数学导数知识点归纳 导数基础 导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a 即为在x0处的导数,记作f'(x0)或df/dx(x0)。 1.y=c(c为常数)y'=0 2.y=x^ny'=nx^(n-1) 3.y=a^xy'=a^xlna y=e^xy'=e^x 4.y=logaxy'=logae/x y=lnxy'=1/x 5.y=sinxy'=cosx 6.y=cosxy'=-sinx 7.y=tanxy'=1/cos^2x 8.y=cotxy'=-1/sin^2x 9.y=arcsinxy'=1/√1-x^2 10.y=arccosxy'=-1/√1-x^2 11.y=arctanxy'=1/1+x^2 12.y=arccotxy'=-1/1+x^2 在推导的过程中有这几个常见的公式需要用到:

1.y=f[g(x)],y'=f'[g(x)]?g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』 2.y=u/v,y'=u'v-uv'/v^2 3.y=f(x)的反函数是x=g(y),则有y'=1/x' 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的: y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。 2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到y=e^xy'=e^x和 y=lnxy'=1/x这两个结果后能用复合函数的求导给予证明。 3.y=a^x, ⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1) ⊿y/⊿x=a^x(a^⊿x-1)/⊿x 如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道: ⊿x=loga(1+β)。 所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β 显然,当⊿x→0时,β也是趋向于0的。而 limβ→0(1+β)^1/β=e,所以 limβ→01/loga(1+β)^1/β=1/logae=lna。 把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x- 1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。 可以知道,当a=e时有y=e^xy'=e^x。 4.y=logax ⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x ⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x

(完整版)高二数学导数大题练习详细答案

1.已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所 示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的图象有三个不同的交点,求m 的取值范围. 2.已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围. 3.已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.

5.已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 8.已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围; (II )若()f x '是()f x 的导函数,设2 2 ()()6g x f x x '=+- ,试证明:对任意两个不相 等正数12x x 、,不等式121238|()()|||27 g x g x x x ->-恒成立.

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

高二数学 几种常见函数的导数

高二数学 几种常见函数的导数 一、教学目标:熟记公式(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x , 2'11x x -=??? ??.x x 21 )'(= 二、教学重点:牢固、准确地记住五种常见函数的导数,为求导数打下坚实的基础. 教学难点:灵活运用五种常见函数的导数. 三、教学过程: (一)公式1:(C )'=0 (C 为常数). 证明:y =f (x )=C , Δy =f (x +Δx )-f (x )=C -C =0, ,0=??x y .0lim ')('0=??==∴→?x y C x f x 也就是说,常数函数的导数等于0. 公式2: 函数x x f y ==)(的导数 证明:(略) 公式3: 函数2)(x x f y ==的导数 公式4: 函数x x f y 1)(==的导数 公式5: 函数x x f y ==)(的导数 (二)举例分析 例1. 求下列函数的导数. ⑴3x ⑵21x ⑶x 解:⑴=')(3x 133-x 23x = ⑵='?? ? ??21x )(2'-x 32--=x 32x -= ⑶=')(x )(2 1'x 12121-=x 2121-=x .21x = 练习

求下列函数的导数: ⑴ y =x 5; ⑵ y =x 6; (3);13x y = (4).3x y = (5)x x y 2= 例2.求曲线x y 1=和2x y =在它们交点处的两条切线与x 轴所围成的三角形的面积。 例3.已知曲线2x y =上有两点A (1,1),B (2,2)。 求:(1)割线AB 的斜率; (2)在[1,1+△x ]内的平均变化率; (3)点A 处的切线的斜率; (4)点A 处的切线方程 例4.求抛物线y =x 2上的点到直线x -y -2=0 的最短距离. (三)课堂小结 几种常见函数的导数公式 (C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x , 2'11x x -=?? ? ??.x x 21)'(= (四)课后作业 《习案》作业四

高中数学导数的概念综合测试题(含答案)-学习文档

高中数学导数的概念综合测试题(含答案) 选修2-2 1.1 第2课时导数的概念 一、选择题 1.函数在某一点的导数是() A.在该点的函数值的增量与自变量的增量的比 B.一个函数 C.一个常数,不是变数 D.函数在这一点到它附近一点之间的平均变化率 [答案] C [解析] 由定义,f(x0)是当x无限趋近于0时,yx无限趋近的常数,故应选C. 2.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为() A.6 B.18 C.54 D.81 [答案] B [解析] ∵s(t)=3t2,t0=3, s=s(t0+t)-s(t0)=3(3+t)2-332 =18t+3(t)2st=18+3t. 当t0时,st18,故应选B. 3.y=x2在x=1处的导数为() A.2x B.2

C.2+x D.1 [答案] B [解析] ∵f(x)=x2,x=1, y=f(1+x)2-f(1)=(1+x)2-1=2x+(x)2 yx=2+x 当x0时,yx2 f(1)=2,故应选B. 4.一质点做直线运动,若它所经过的路程与时间的关系为s(t)=4t2-3(s(t)的单位:m,t的单位:s),则t=5时的瞬时速度为() A.37 B.38 C.39 D.40 [答案] D [解析] ∵st=4(5+t)2-3-452+3t=40+4t, s(5)=limt0 st=limt0 (40+4t)=40.故应选D. 5.已知函数y=f(x),那么下列说法错误的是() A.y=f(x0+x)-f(x0)叫做函数值的增量 B.yx=f(x0+x)-f(x0)x叫做函数在x0到x0+x之间的平均变化率 C.f(x)在x0处的导数记为y D.f(x)在x0处的导数记为f(x0) [答案] C

(word完整版)高二数学导数单元测试题(有答案)

高二数学导数单元测试题(有答案) (一).选择题 (1)曲线32 31y x x =-+在点(1,-1)处的切线方程为( ) A .34y x =- B 。32y x =-+ C 。43y x =-+ D 。45y x =- a (2) 函数y =a x 2 +1的图象与直线y =x 相切,则a = ( ) A . 18 B .41 C .2 1 D .1 (3) 函数13)(2 3 +-=x x x f 是减函数的区间为 ( ) A .),2(+∞ B .)2,(-∞ C .)0,(-∞ D .(0,2) (4) 函数,93)(2 3 -++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( ) A .2 B .3 C .4 D .5 (5) 在函数x x y 83 -=的图象上,其切线的倾斜角小于 4 π 的点中,坐标为整数的点的个数是 ( ) A .3 B .2 C .1 D .0 (6)函数3 ()1f x ax x =++有极值的充要条件是 ( ) A .0a > B .0a ≥ C .0a < D .0a ≤ (7)函数3 ()34f x x x =- ([]0,1x ∈的最大值是( ) A . 1 2 B . -1 C .0 D .1 (8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( ) A 、0 B 、1002 C 、200 D 、100! (9)曲线313y x x = +在点413?? ???,处的切线与坐标轴围成的三角形面积为( ) A.19 B.29 C.13 D.23 (二).填空题 (1).垂直于直线2x+6y +1=0且与曲线y = x 3 +3x -5相切的直线方程是 。 (2).设 f ( x ) = x 3 - 2 1x 2 -2x +5,当]2,1[-∈x 时,f ( x ) < m 恒成立,则实数m 的取值范围为 . (3).函数y = f ( x ) = x 3+ax 2+bx +a 2 ,在x = 1时,有极值10,则a = ,b = 。 (4).已知函数32 ()45f x x bx ax =+++在3 ,12x x ==-处有极值,那么a = ;b = (5).已知函数3 ()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 (6).已知函数32 ()33(2)1f x x ax a x =++++ 既有极大值又有极小值,则实数a 的取值

高二数学导数测试题(经典版)

1 / 4 一、选择题(每小题5分,共70分.每小题只有一项是符合要求的) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A .'(1)f B .3'(1)f C .1 '(1)3 f D .以上都不对 2.已知物体的运动方程是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0的时刻是( ). A .0秒、2秒或4秒 B .0秒、2秒或16秒 C .2秒、8秒或16秒 D .0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处的切线互相垂直,则0x 等于( ). A B . C .23 D .23 或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是( ). A .[0,]π B .2[0,)[,)23 ππ π C .2[,)3ππ D .2[0,)(,)223 πππ 5.设'()f x 是函数()f x 的导数,'()y f x =的图像如图 所示,则()y f x =的图像最有可能的是( 3 x ). C .(3,)-+∞ D .(,3)-∞- 7.已知函数32 ()f x x px qx =--的图像与x 轴切于点(1,0),则()f x 的极大值、极小 值分别为( ). A .427 ,0 B .0,427 C .427- ,0 D .0,4 27 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形的面积是( ). A. 415 B.417 C.2ln 21 D.2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ).

高中数学导数题型分析及解题方法

导数题型分析及解题方法 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 32 ()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2 =-==x c x x x f y 在处有极大值,则常数c = 6 ; 3.函数3 31x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线3 4y x x =-在点 ()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4 )(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0) 3.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --= 4.求下列直线的方程: (1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2 x y =过点P(3,5)的切线; 解:(1) 123|y k 23 1)1,1(1x /2/2 3===∴+=∴++=-=-上,在曲线点-x x y x x y P 所以切线方程为02 11=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为) ,(00y x A ,则 2 00x y =①又函数的导数为x y 2/ =, 所以过 ) ,(00y x A 点的切线的斜率为 /2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有 3 5 2000--= x y x ②,由①②联立方程组得,??????====25 5 110 000y x y x 或,即切点为(1,1)时,切线斜率为 ; 2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分 别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即, 或 题型三:利用导数研究函数的单调性,极值、最值 1.已知函数 ))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值;

高一数学导数的概念

导数的概念 人教社·普通高级中学教科书(选修Ⅱ) 第三章第一节《导数的概念》(第三课时) 导数是近代数学中微积分的核心概念之一,是一种思想方法,这种思想方法是人类智慧的骄傲.《导数的概念》这一节内容,大致分成四个课时,我主要针对第三课时的教学,谈谈我的理解与设计,敬请各位专家斧正. 一、教材分析 1.1编者意图《导数的概念》分成四个部分展开,即:“曲线的切线”,“瞬时速度”,“导数的概念”,“导数的几何意义”,编者意图在哪里呢?用前两部分作为背景,是为了引出导数的概念;介绍导数的几何意义,是为了加深对导数的理解.从而充分借助直观来引出导数的概念;用极限思想抽象出导数;用函数思想拓展、完善导数以及在应用中巩固、反思导数,教材的显著特点是从具体经验出发,向抽象和普遍发展,使探究知识的过程简单、经济、有效. 1.2导数概念在教材的地位和作用“导数的概念”是全章核心.不仅在于它自身具有非常严谨的结构,更重要的是,导数运算是一种高明的数学思维,用导数的运算去处理函数的性质更具一般性,获得更为理想的结果;把运算对象作用于导数上,可使我们扩展知识面,感悟变量,极限等思想,运用更高的观点和更为一般的方法解决或简化中学数学中的不少问题;导数的方法是今后全面研究微积分的重要方法和基本工具,在在其它学科中同样具有十分重要的作用;在物理学,经济学等其它学科和生产、生活的各个领域都有广泛的应用.导数的出现推动了人类事业向前发展. 1.3 教材的内容剖析知识主体结构的比较和知识的迁移类比如下表:

通过比较发现:求切线的斜率和物体的瞬时速度,这两个具体问题的解决都依赖于求函数的极限,一个是“微小直角三角形中两直角边之比”的极限,一个是“位置改变量与时间改变量之比”的极限,如果舍去问题的具体含义,都可以归结为一种相同形式的极限,即“平均变化率”的极限.因此以两个背景作为新知的生长点,不仅使新知引入变得自然,而且为新知建构提供了有效的类比方法. 1.4 重、难点剖析 重点:导数的概念的形成过程. 难点:对导数概念的理解. 为什么这样确定呢?导数概念的形成分为三个的层次:f (x )在点x 0可导→f (x )在开区间(a ,b )内可导→f (x )在开区间(a ,b )内的导函数→导数,这三个层次是一个递进的过程,而不是专指哪一个层次,也不是几个层次的简单相加,因此导数概念的形成过程是重点;教材中出现了两个“导数”,“两个可导”,初学者往往会有这样的困惑,“导数到底是个什么东西?一个函数是不是有两种导数呢?”,“导函数与导数是怎么统一的?”.事实上:(1)f (x )在点x 0处的导数是这一点x 0 到x 0+△x 的变化率 x y ??的极限,是一个常数,区别于导函数. (2)f (x )的导数是对开区间内任意点x 而言,是x 到x +△x 的变化率x y ??的极 限,是f (x )在任意点的变化率,其中渗透了函数思想. (3)导函数就是导数!是特殊的函数:先定义f (x )在x 0处可导、再定义f (x )在开区间(a ,b )内可导、最后定义f (x )在开区间的导函数. (4)y = f (x )在x 0处的导数就是导函数)(x f '在x =x 0处的函数值,表示为0|x x y ='这也是求f ′(x 0)的一种方法.初学者最难理解导数的概念,是因为初学者最容易忽视或混淆概念形成过程中几个关键词.....的区别和联系,会出现较大的分歧和差别,要突破难点,关键是找到“f (x )在点x 0可导”、“f (x )在

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

高二数学导数知识点总结

高二数学《导数》知识点总结 一、早期导数概念----特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f-f,发现的因子E就是我们所说的导数f'。 二、17世纪----广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。 三、19世纪导数----逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim。1823年

柯西在他的《无穷小分析概论》中定义导数如果函数y=f在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。19世纪60年代以后魏尔斯特拉斯创造了ε-δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。 四、实无限将异军突起微积分第二轮初等化或成为可能微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论都不是最好的手段。 一、早期导数概念----特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f-f,发现

2021-2022年高二数学导数的概念的说课稿

2021-2022年高二数学导数的概念的说课稿 一、教材分析 导数的概念是高中新教材人教A版选修2-2第一章1.1.2的内容, 是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础。 新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的“逼近”方法定义导数。 问题1 气球平均膨胀率--→瞬时膨胀率 问题2 高台跳水的平均速度--→瞬时速度 根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点 二、教学目标 1、知识与技能: 通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数。 2、过程与方法: ①通过动手计算培养学生观察、分析、比较和归纳能力 ②通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法 3、情感、态度与价值观: 通过运动的观点体会导数的内涵,使学生掌握导数的概念不再困难,从而激发学生学习数学的兴趣. 三、重点、难点

?重点:导数概念的形成,导数内涵的理解 ?难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵通过逼近的方法,引导学生观察来突破难点 四、教学设想(具体如下表)

五、学法与教法 ?学法与教学用具 学法: (1)合作学习:引导学生分组讨论,合作交流,共同探讨问题。(如问题2的处理) (2)自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动。(如问题3的处理) (3)探究学习:引导学生发挥主观能动性,主动探索新知。(如例题的处理) 教学用具:电脑、多媒体、计算器 ?教法:整堂课围绕“一切为了学生发展”的教学原则,突出①动——师生互动、共同探索。②导——教师指导、循序渐进 (1)新课引入——提出问题, 激发学生的求知欲 (2)理解导数的内涵——数形结合,动手计算,组织学生自主探索,获得导数的定义 (3)例题处理——始终从问题出发,层层设疑,让他们在探索中自得知识

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项是符合要求的) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A .'(1)f B .3'(1)f C .1 '(1)3 f D .以上都不对 2.已知物体的运动方程是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0的时刻是( ). A .0秒、2秒或4秒 B .0秒、2秒或16秒 C .2秒、8秒或16秒 D .0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处的切线互相垂直,则0x 等于( ). A B . C .23 D .23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是( ). A .[0,]π B .2[0,)[,)23 ππ π C .2[,)3ππ D .2[0,)(,)223πππ 5.设'()f x 是函数()f x 的导数,'()y f x =的图像如图 所示,则()y f x =的图像最有可能的是( ). 6.函数3 ( )2f x x ax =+-在区间[1,) +∞内是增函数,则实数a 的取值范围是( ). A .[3,)+∞ B .[3,)-+∞ C .(3,)-+∞ D .(,3)-∞- 7.已知函数3 2 ()f x x px qx =--的图像与x 轴切于点(1,0),则()f x 的极大值、极小值分别为( ). '()f x

A . 427 ,0 B .0,427 C .427- ,0 D .0,4 27 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形的面积是( ). A. 415 B. 4 17 C. 2ln 21 D. 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A .01b << B .1b < C .0b > D .12 b < 10.21y ax =+的图像与直线y x =相切,则a 的值为( ). A .18 B .14 C .1 2 D .1 11. 已知函数()x x x f cos sin +=,则=)4 ('π f ( ) A. 2 B.0 C. 22 D. 2- 12.函数3 ()128f x x x =-+在区间[3,3]-上的最大值是( ) A. 32 B. 16 C. 24 D. 17 13.已知 (m 为常数)在 上有最大值3,那么此函数在 上的最小值为 ( ) A . B . C . D . 14.dx e e x x ? -+1 0)(= ( ) A .e e 1 + B .2e C . e 2 D .e e 1- 二、填空题(每小题5分,共30分) 15.由定积分的几何意义可知? --2 22 4x =_________. 16.函数 )0(ln )(>=x x x x f 的单调递增区间是 . 17.已知函数()ln f x ax x =-,若()1f x >在区间(1,)+∞内恒成立,则实数a 的范围为______________. 18.设 是偶函数,若曲线 在点 处的切线的斜率为1,则该曲线在 处的切线的斜率为_________.

相关文档
最新文档