2017数三高数考查重点和题型总结

合集下载

数三考试大纲2017

数三考试大纲2017

数三考试大纲2017数三考试,通常指的是中国高等教育自学考试中的高等数学(三),它是一门针对非数学专业学生的高等数学课程。

2017年的数三考试大纲主要涵盖了以下几个方面的内容:# 一、函数、极限与连续- 函数的概念、性质- 极限的概念、性质与运算- 无穷小与无穷大- 函数的连续性# 二、导数与微分- 导数的概念、几何意义- 基本导数公式- 高阶导数- 隐函数与参数方程的导数- 微分的概念与应用# 三、中值定理与导数的应用- 罗尔定理、拉格朗日中值定理、柯西中值定理- 洛必达法则- 导数在几何上的应用(切线、法线、极值问题)- 函数的单调性、凹凸性# 四、不定积分- 不定积分的概念与性质- 基本积分公式- 换元积分法- 分部积分法- 有理函数的积分# 五、定积分- 定积分的概念与性质- 微积分基本定理- 定积分的计算方法- 定积分在几何上的应用(面积、体积)# 六、多元函数微分学- 多元函数的概念- 偏导数与全微分- 多元函数的极值问题# 七、重积分- 二重积分的概念与计算方法- 三重积分- 重积分在几何上的应用# 八、无穷级数- 级数的概念与性质- 正项级数的收敛性判别- 幂级数与泰勒级数- 函数的级数展开# 九、常微分方程- 微分方程的基本概念- 一阶微分方程的解法- 高阶微分方程- 线性微分方程的解法# 十、线性代数基础- 矩阵的概念与运算- 行列式- 向量空间与线性变换- 特征值与特征向量- 二次型# 十一、概率论基础- 随机事件的概率- 条件概率与独立性- 随机变量及其分布- 数学期望与方差- 大数定律与中心极限定理# 十二、数理统计基础- 样本与总体- 抽样分布- 参数估计- 假设检验数三考试大纲2017年的版本强调了对基本概念的理解、基本运算的熟练掌握以及应用能力的培养。

考试内容涵盖了数学分析、线性代数、概率论与数理统计等多个领域,旨在培养学生的数学思维和解决实际问题的能力。

考生在复习时应注重对基础知识的掌握,同时通过大量的练习来提高解题技巧和速度。

2017高考常考数学题型归纳_小升初数学常考题型

2017高考常考数学题型归纳_小升初数学常考题型

2017高考常考数学题型归纳_小升初数学常考题型近年来,高考数学题型题材比较新颖,而且越来越注重对学生思维能力的考查,下面小编给大家带来高考常考数学题型,希望对你有帮助。

高考数学必考七个题型第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。

主要考察对定理的熟悉程度、运用程度。

第七,解析几何高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。

以不变应万变。

高考数学题型归纳题型1、集合的基本概念题型2、集合间的基本关系题型3、集合的运算题型4、四种命题及关系题型5、充分条件、必要条件、充要条件的判断与证明题型6、求解充分条件、必要条件、充要条件中的参数范围题型7、判断命题的真假题型8、含有一个量词的命题的否定题型9、结合命题真假求参数的范围题型10、映射与函数的概念题型11、同一函数的判断题型12、函数解析式的求法题型13、函数定义域的求解题型14、函数定义域的应用题型15、函数值域的求解题型16、函数的奇偶性题型17、函数的单调性(区间)题型18、函数的周期性题型19、函数性质的综合题型20、二次函数、一元二次方程、二次不等式的关系题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件题型22、二次函数”动轴定区间”、”定轴动区间”问题题型23、指数运算及指数方程、指数不等式题型24、指数函数的图像及性质题型25、指数函数中的恒成立的问题题型26、对数运算及对数方程、对数不等式题型27、对数函数的图像与性质题型28、对数函数中的恒成立问题题型29、幂函数的定义及基本性质题型30、幂函数性质的综合应用题型31、判断函数的图像题型32、函数图像的应用题型33、求函数的零点或零点所在区间题型34、利用函数的零点确定参数的取值范围题型35、方程根的个数与函数零点的存在性问题题型36、函数与数列的综合题型37、函数与不等式的综合题型38、函数中的创新题题型39、导数的定义题型40、求函数的导数题型41、导数的几何意义题型42、利用原函数与导函数的关系判断图像题型43、利用导数求函数的单调区间题型44、含参函数的单调性(区间)题型45、已知含参函数在区间上单调或不单调或存在单调区间,求参数范围题型46、函数的极值与最值的求解题型47、方程解(函数零点)的个数问题题型48、不等式恒成立与存在性问题题型49、利用导数证明不等式题型50、导数在实际问题中的应用题型51、终边相同的角的集合的表示与识别题型52、等分角的象限问题题型53、弧长与扇形面积公式的计算题型54、三角函数定义题题型55、三角函数线及其应用题型56、象限符号与坐标轴角的三角函数值题型57、同角求值---条件中出现的角和结论中出现的角是相同的题型58、诱导求值与变形题型59、已知解析式确定函数性质题型60、根据条件确定解析式题型61、三角函数图像变换题型62、两角和与差公式的证明题型63、化简求值题型64、正弦定理的应用题型65、余弦定理的应用题型66、判断三角形的形状题型67、正余弦定理与向量的综合题型68、解三角形的实际应用题型69、共线向量的基本概念题型70、共线向量基本定理及应用题型71、平面向量的线性表示题型72、平面向量基本定理及应用题型73、向量与三角形的四心题型74、利用向量法解平面几何题型75、向量的坐标运算题型76、向量平行(共线)、垂直充要条件的坐标表示题型77、平面向量的数量积题型78、平面向量的应用题型79、等差、等比数列的通项及基本量的求解题型80、等差、等比数列的求和题型81、等差、等比数列的性质应用题型82、判断和证明数列是等差、等比数列题型83、等差数列与等比数列的综合题型84、数列通项公式的求解题型85、数列的求和题型86、数列与不等式的综合题型87、不等式的性质题型88、比较数(式)的大小与比较法证明不等式题型89、求取值范围题型90、均值不等式及其应用题型91、利用均值不等式求函数最值题型92、利用均值不等式证明不等式高考数学复习方法(一)最后冲刺要靠做存题数学学科的最后冲刺无非解决两个问题:一个是扎实学科基础,另一个则是弥补学生自己的薄弱环节。

2017高考数学题型归纳

2017高考数学题型归纳

2017高考数学题型归纳高考数学新题型包括很多种类,为了让同学们呢更好地进行复习。

下面是店铺为你整理的2017高考数学题型归纳,一起来看看吧。

2017高考数学题型归纳:立体几何篇1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2. 判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

2017高考数学题型归纳:排列组合篇1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5. 了解随机事件的发生存在着规律性和随机事件概率的意义。

6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8. 会计算事件在n次独立重复试验中恰好发生k次的概率. 2017高考数学题型归纳:导数应用篇1. 导数概念的理解。

2. 利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。

复合函数的求导法则是微积分中的重点与难点内容。

数三高数上学习重点及考查范围

数三高数上学习重点及考查范围

高数数三学员必做题学习章节学习知识点习题章节必做题目巩固习题(选做)备注第1章第1节映射与函数函数的概念函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数初等函数具体概念和形式,函数关系的建立习题1-14(3) (6) (8),5(3)★,9(2),15(4)★,17★4(4)(7),5(1),7(2),15(1)本节有两部分内容考研不要求,不必学习:1. “二、映射”;2. 本节最后——双曲函数和反双曲函数第1章第2节数列的极限数列极限的定义数列极限的性质(唯一性、有界性、保号性)习题1-21(2) (5) (8)★3(1)1. 大家要理解数列极限的定义中各个符号的含义与数列极限的几何意义;2. 对于用数列极限的定义证明,看懂即可。

第1章第3节函数的极限函数极限的概念函数的左极限、右极限与极限的存在性函数极限的基本性质(唯一性、局部有界性、局部保号性、不等式性质,函数极限与数列极限的关系等)习题1-32,4★3,1. 大家要理解函数极限的定义中各个符号的含义与函数极限的几何意义;2. 对于用函数极限的定义证明,看懂即可。

第1章第4节无穷小与无穷大无穷小与无穷大的定义无穷小与无穷大之间的关系习题1-44,6★1,5大家要搞清楚无穷大与无界的关系第1章第5节极限运算法则极限的运算法则(6个定理以及一些推论)习题1-51(5)★(11)(13)★,3,51(9)(10)(14),2(1),4有理分式函数当x 的极限要记住结论,以后直接使用。

学习章节学习知识点习题章节必做题目巩固习题(选做)备注1第1章第6节极限存在准则两个重要极限函数极限存在的两个准则(夹逼定理、单调有界数列必有极限)两个重要极限(注意极限成立的条件,熟悉等价表达式)利用函数极限求数列极限习题1-61(2)(6)★,2(1)(4)★,4(1)(3)★4(5)1. 利用单调有界原理推导第二个重要极限可以不用细看;2. “柯西极限存在准则”考研不要求.第1章第7节无穷小的比较无穷小阶的概念(同阶无穷小、等价无穷小、高阶无穷小、低阶无穷小、k阶无穷小)及其应用一些重要的等价无穷小以及它们的性质和确定方法习题1-71,2★,3(1),4(3) ★(4) ★3(2)例1和例2中出现的所有等价无穷小都要求熟记.第1章第8节函数的连续性与间断点函数的连续性,函数的间断点的定义与分类(第一类间断点与第二类间断点)判断函数的连续性和间断点的类型习题1-83(4),4★,5 1熟记:1. 连续性的定义;2. 间断的定义与间断点的分类第1章第9节连续函数的运算与初等函数的连续性连续函数的、和、差、积、商的连续性反函数与复合函数的连续性初等函数的连续性习题1-93(4)(6)(7)★,4(4)★(6)★,6★1,3(5),4(3),5 ——第1章第10节闭区间上连续函数的性质有界性与最大值最小值定理零点定理与介值定理(零点定理对于证明根的存在是非常重要的一种方法)习题1-101,3★ 5考研不要求的内容:1. “三、一致连续性”第1章总复习题总结归纳本章的基本概念、基本定理、基本公式、基本方法总复习题一3(2),9(2)(4)(6),10,13 1,2 ——学习章节学习知识点习题章节必做题目巩固习题(选做)备注2第2章第1节导数概念导数的定义、几何意义单侧与双侧可导的关系可导与连续之间的关系函数的可导性,导函数,奇偶函数与周期函数的导数的性质按照定义求导及其适用的情形,利用导数定义求极限会求平面曲线的切线方程和法线方程习题2-13,6,7,8,13★,16(2)★,179(2)(5),11,14 ——第2章第2节函数的求导法则导数的四则运算公式(和、差、积、商)反函数的求导公式复合函数的求导法则基本初等函数的导数公式分段函数的求导习题2-22(9)★,3(2), 7(8)★,8(5),11(6)(9) 2(6)(7),6(4)(8),7(4),9,10(2),11(4)考研不要求的内容:1. “例17 双曲函数与反双曲函数的导数”第2章第3节高阶导数高阶导数n阶导数的求法(归纳法,莱布尼兹公式)习题2-31(3), 3(2),4(1),8★,10(2)★,1(9)(10), 9,11(3)例3例4例5的结论要求记住,以后可直接利用。

17年数学高考知识点

17年数学高考知识点

17年数学高考知识点2017年的数学高考,是每个学生都备受期待和紧张的一场考试。

这次考试的数学试题涵盖了多个知识点和能力要求,考察了学生的逻辑思维能力和解题技巧。

在这篇文章中,我们将讨论一些17年数学高考的重点知识点,帮助学生准备和复习这些内容。

一、函数与方程函数与方程是数学高考中最基础、最重要的一部分。

在17年的数学高考试题中,函数与方程的知识点主要包括函数的定义、性质与图像、一次函数、二次函数、指数函数、对数函数、幂函数、反函数、特殊函数方程等。

学生需要掌握这些知识点的概念和性质,能够根据函数的图像、表达式等来求解相关的问题。

二、几何与图形几何与图形是另一个重要的知识点。

17年数学高考中,几何与图形的内容主要包括平面几何、立体几何和解析几何。

学生需要掌握平行线、垂直线、等腰三角形、相似三角形、勾股定理、解三角形等基本概念和定理,能够灵活运用这些知识解决实际问题。

三、概率与统计概率与统计是考查学生分析和解决实际问题能力的重要内容。

在17年数学高考中,概率与统计的知识点主要包括样本调查、事件与概率、统计图表的分析和应用、抽样调查与总体参数的估计等。

学生需要熟悉概率的概念、性质和计算方法,能够读懂和分析统计图表,灵活运用统计方法解决实际问题。

四、数列与数学归纳法数列与数学归纳法是数学高考中的常见考点。

17年数学高考中,数列与数学归纳法的知识点主要包括等差数列、等比数列、递推数列、通项公式、递归公式、数列的极限、数学归纳法等。

学生需要熟练掌握这些知识点的概念和性质,能够根据数列的特点找出其通项公式或递推公式,并能够应用数学归纳法解决一些证明问题。

五、微积分微积分是高考中比较复杂的知识点之一。

17年数学高考中,微积分的知识点主要包括导数、微分、极值、最值、不等式证明等。

学生需要掌握导函数的概念和性质,能够求解函数的导数、极值和最值,能够应用导数解决实际问题。

六、线性规划与向量线性规划与向量是数学高考中的综合应用题。

17年高考数学题型总结分享

17年高考数学题型总结分享

17年高考数学题型总结分享17年高考数学题型总结分享高考数学如何复习才能更有效的提分?每天刷题真的会有效吗?在高考数学复习中,你也有类似的疑问吗?不用着急,快来看看高考数学题型总结吧~17年高考数学题型总结分享:一、排列组合篇1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5. 了解随机事件的发生存在着规律性和随机事件概率的意义。

6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8. 会计算事件在n次独立重复试验中恰好发生k次的概率.本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.四、导数应用篇1. 导数概念的理解。

2. 利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。

复合函数的求导法则是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

3. 要能正确求导,必须做到以下两点:(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

2017高考全国3数学试卷及解析

2017年普通高等学校招生全国统一考试(III)一.选择题(共12小题)1.已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3 B.2 C.1 D.02.设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.805.已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=16.设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A.5 B.4 C.3 D.28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB. C.D.9.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24 B.﹣3 C.3 D.810.已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.11.已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣ B.C.D.112.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2 C.D.2二.填空题(共4小题)13.若x,y满足约束条件,则z=3x﹣4y的最小值为.14.设等比数列{a n}满足a1+a2=﹣1,a1﹣a3=﹣3,则a4=.15.设函数f(x)=,则满足f(x)+f(x﹣)>1的x的取值范围是.16.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最小值为60°;其中正确的是.(填写所有正确结论的编号)三.解答题(共7小题)17.△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.(1)求c;(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.18.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?19.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.20.已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,﹣2),求直线l与圆M的方程.21.已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.22.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(c osθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.23.已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.2018年04月22日fago的高中数学组卷参考答案与试题解析一.选择题(共12小题)1.已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3 B.2 C.1 D.0【分析】解不等式组求出元素的个数即可.【解答】解:由,解得:或,∴A∩B的元素的个数是2个,故选:B.【点评】本题考查了集合的运算,是一道基础题.2.设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.2【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:∵(1+i)z=2i,∴(1﹣i)(1+i)z=2i(1﹣i),z=i+1.则|z|=.故选:C.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【分析】根据已知中2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,逐一分析给定四个结论的正误,可得答案.【解答】解:由已有中2014年1月至2016年12月期间月接待游客量(单位:万人)的数据可得:月接待游客量逐月有增有减,故A错误;年接待游客量逐年增加,故B正确;各年的月接待游客量高峰期大致在7,8月,故C正确;各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D正确;故选:A.【点评】本题考查的知识点是数据的分析,命题的真假判断与应用,难度不大,属于基础题.4.(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.80=(2x)5﹣r(﹣y)r=25﹣r(﹣1)【分析】(2x﹣y)5的展开式的通项公式:T r+1r x5﹣r y r.令5﹣r=2,r=3,解得r=3.令5﹣r=3,r=2,解得r=2.即可得出.【解答】解:(2x﹣y)5的展开式的通项公式:T r=(2x)5﹣r(﹣y)r=25﹣r(﹣+11)r x5﹣r y r.令5﹣r=2,r=3,解得r=3.令5﹣r=3,r=2,解得r=2.∴(x+y)(2x﹣y)5的展开式中的x3y3系数=22×(﹣1)3+23×=40.故选:C.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.5.已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【分析】求出椭圆的焦点坐标,得到双曲线的焦点坐标,利用双曲线的渐近线方程,求出双曲线实半轴与虚半轴的长,即可得到双曲线方程.【解答】解:椭圆+=1的焦点坐标(±3,0),则双曲线的焦点坐标为(±3,0),可得c=3,双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,可得,即,可得=,解得a=2,b=,所求的双曲线方程为:﹣=1.故选:B.【点评】本题考查椭圆与双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.6.设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减【分析】根据三角函数的图象和性质分别进行判断即可.【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=时,cos(x+)=cos(+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,C当x=时,f(+π)=cos(+π+)=cos=0,则f(x+π)的一个零点为x=,故C正确,D.当<x<π时,<x+<,此时函数f(x)不是单调函数,故D 错误,故选:D.【点评】本题主要考查与三角函数有关的命题的真假判断,根据三角函数的图象和性质是解决本题的关键.7.执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A.5 B.4 C.3 D.2【分析】通过模拟程序,可得到S的取值情况,进而可得结论.【解答】解:由题可知初始值t=1,M=100,S=0,要使输出S的值小于91,应满足“t≤N”,则进入循环体,从而S=100,M=﹣10,t=2,要使输出S的值小于91,应接着满足“t≤N”,则进入循环体,从而S=90,M=1,t=3,要使输出S的值小于91,应不满足“t≤N”,跳出循环体,此时N的最小值为2,故选:D.【点评】本题考查程序框图,判断出什么时候跳出循环体是解决本题的关键,注意解题方法的积累,属于中档题.8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB. C.D.【分析】推导出该圆柱底面圆周半径r==,由此能求出该圆柱的体积.【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r==,∴该圆柱的体积:V=Sh==.故选:B.【点评】本题考查面圆柱的体积的求法,考查圆柱、球等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想,是中档题.9.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24 B.﹣3 C.3 D.8【分析】利用等差数列通项公式、等比数列性质列出方程,求出公差,由此能求出{a n}前6项的和.【解答】解:∵等差数列{a n}的首项为1,公差不为0.a2,a3,a6成等比数列,∴,∴(a1+2d)2=(a1+d)(a1+5d),且a1=1,d≠0,解得d=﹣2,∴{a n}前6项的和为==﹣24.故选:A.【点评】本题考查等差数列前6项和的求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.10.已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.【分析】以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,可得原点到直线的距离=a,化简即可得出.【解答】解:以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,∴原点到直线的距离=a,化为:a2=3b2.∴椭圆C的离心率e===.故选:A.【点评】本题考查了椭圆的标准方程及其性质、直线与圆相切的性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.11.已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣ B.C.D.1【分析】通过转化可知问题等价于函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+)的图象只有一个交点求a的值.分a=0、a<0、a>0三种情况,结合函数的单调性分析可得结论.【解答】解:因为f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)=﹣1+(x﹣1)2+a(e x﹣1+)=0,所以函数f(x)有唯一零点等价于方程1﹣(x﹣1)2=a(e x﹣1+)有唯一解,等价于函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+)的图象只有一个交点.①当a=0时,f(x)=x2﹣2x≥﹣1,此时有两个零点,矛盾;②当a<0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1+)在(﹣∞,1)上递增、在(1,+∞)上递减,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1+)的图象的最高点为B(1,2a),由于2a<0<1,此时函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+)的图象有两个交点,矛盾;③当a>0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1+)在(﹣∞,1)上递减、在(1,+∞)上递增,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1+)的图象的最低点为B(1,2a),由题可知点A与点B重合时满足条件,即2a=1,即a=,符合条件;综上所述,a=,故选:C.【点评】本题考查函数零点的判定定理,考查函数的单调性,考查运算求解能力,考查数形结合能力,考查转化与化归思想,考查分类讨论的思想,注意解题方法的积累,属于难题.12.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2 C.D.2【分析】如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,先求出圆的标准方程,再设点P的坐标为(cosθ+1,sinθ+2),根据=λ+μ,求出λ,μ,根据三角函数的性质即可求出最值.【解答】解:如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,则A(0,0),B(1,0),D(0,2),C(1,2),∵动点P在以点C为圆心且与BD相切的圆上,设圆的半径为r,∵BC=2,CD=1,∴BD==∴BC•CD=BD•r,∴r=,∴圆的方程为(x﹣1)2+(y﹣2)2=,设点P的坐标为(cosθ+1,sinθ+2),∵=λ+μ,∴(cosθ+1,sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ),∴cosθ+1=λ,sinθ+2=2μ,∴λ+μ=cosθ+sinθ+2=sin(θ+φ)+2,其中tanφ=2,∵﹣1≤sin(θ+φ)≤1,∴1≤λ+μ≤3,故λ+μ的最大值为3,故选:A.【点评】本题考查了向量的坐标运算以及圆的方程和三角函数的性质,关键是设点P的坐标,考查了学生的运算能力和转化能力,属于中档题.二.填空题(共4小题)13.若x,y满足约束条件,则z=3x﹣4y的最小值为﹣1.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=3x﹣4y的最小值.【解答】解:由z=3x﹣4y,得y=x﹣,作出不等式对应的可行域(阴影部分),平移直线y=x﹣,由平移可知当直线y=x﹣,经过点B(1,1)时,直线y=x﹣的截距最大,此时z取得最小值,将B的坐标代入z=3x﹣4y=3﹣4=﹣1,即目标函数z=3x﹣4y的最小值为﹣1.故答案为:﹣1.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.14.设等比数列{a n}满足a1+a2=﹣1,a1﹣a3=﹣3,则a4=﹣8.【分析】设等比数列{a n}的公比为q,由a1+a2=﹣1,a1﹣a3=﹣3,可得:a1(1+q)=﹣1,a1(1﹣q2)=﹣3,解出即可得出.【解答】解:设等比数列{a n}的公比为q,∵a1+a2=﹣1,a1﹣a3=﹣3,∴a1(1+q)=﹣1,a1(1﹣q2)=﹣3,解得a1=1,q=﹣2.则a4=(﹣2)3=﹣8.故答案为:﹣8.【点评】本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题.15.设函数f(x)=,则满足f(x)+f(x﹣)>1的x的取值范围是(,+∞).【分析】根据分段函数的表达式,分别讨论x的取值范围,进行求解即可.【解答】解:若x≤0,则x﹣≤﹣,则f(x)+f(x﹣)>1等价为x+1+x﹣+1>1,即2x>﹣,则x>,此时<x≤0,当x>0时,f(x)=2x>1,x﹣>﹣,当x﹣>0即x>时,满足f(x)+f(x﹣)>1恒成立,当0≥x﹣>﹣,即≥x>0时,f(x﹣)=x﹣+1=x+,此时f(x)+f(x﹣)>1恒成立,综上x>,故答案为:(,+∞).【点评】本题主要考查不等式的求解,结合分段函数的不等式,利用分类讨论的数学思想进行求解是解决本题的关键.16.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最小值为60°;其中正确的是②③.(填写所有正确结论的编号)【分析】由题意知,a、b、AC三条直线两两相互垂直,构建如图所示的边长为1的正方体,|AC|=1,|AB|=,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,利用向量法能求出结果.【解答】解:由题意知,a、b、AC三条直线两两相互垂直,画出图形如图,不妨设图中所示正方体边长为1,故|AC|=1,|AB|=,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,则D(1,0,0),A(0,0,1),直线a的方向单位向量=(0,1,0),||=1,直线b的方向单位向量=(1,0,0),||=1,设B点在运动过程中的坐标中的坐标B′(cosθ,sinθ,0),其中θ为B′C与CD的夹角,θ∈[0,2π),∴AB′在运动过程中的向量,=(cosθ,sinθ,﹣1),||=,设与所成夹角为α∈[0,],则cosα==|sinθ|∈[0,],∴α∈[,],∴③正确,④错误.设与所成夹角为β∈[0,],cosβ===|cosθ|,当与夹角为60°时,即α=,|sinθ|===,∵cos2θ+sin2θ=1,∴cosβ=|cosθ|=,∵β∈[0,],∴β=,此时与的夹角为60°,∴②正确,①错误.故答案为:②③.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三.解答题(共7小题)17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinA +cosA=0,a=2,b=2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.【分析】(1)先根据同角的三角函数的关系求出A ,再根据余弦定理即可求出, (2)先根据夹角求出cosC ,求出CD 的长,得到S △ABD =S △ABC . 【解答】解:(1)∵sinA +cosA=0,∴tanA=,∵0<A <π, ∴A=,由余弦定理可得a 2=b 2+c 2﹣2bccosA , 即28=4+c 2﹣2×2c ×(﹣), 即c 2+2c ﹣24=0,解得c=﹣6(舍去)或c=4, 故c=4.(2)∵c 2=b 2+a 2﹣2abcosC , ∴16=28+4﹣2×2×2×cosC ,∴cosC=,∴CD===∴CD=BC∵S △ABC =AB•AC•sin ∠BAC=×4×2×=2,∴S △ABD =S △ABC =【点评】本题考查了余弦定理和三角形的面积公式,以及解三角形的问题,属于中档题18.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) 天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【分析】(1)由题意知X 的可能取值为200,300,500,分别求出相应的概率,由此能求出X 的分布列.(2)由题意知这种酸奶一天的需求量至多为500瓶,至少为200瓶,只需考虑200≤n ≤500,根据300≤n ≤500和200≤n ≤300分类讨论经,能得到当n=300时,EY 最大值为520元.【解答】解:(1)由题意知X的可能取值为200,300,500,P(X=200)==0.2,P(X=300)=,P(X=500)==0.4,∴X的分布列为:X200300500P0.20.40.4(2)由题意知这种酸奶一天的需求量至多为500瓶,至少为200瓶,∴只需考虑200≤n≤500,当300≤n≤500时,若最高气温不低于25,则Y=6n﹣4n=2n;若最高气温位于区间[20,25),则Y=6×300+2(n﹣300)﹣4n=1200﹣2n;若最高气温低于20,则Y=6×200+2(n﹣200)﹣4n=800﹣2n,∴EY=2n×0.4+(1200﹣2n)×0.4+(800﹣2n)×0.2=640﹣0.4n,当200≤n≤300时,若最高气温不低于20,则Y=6n﹣4n=2n,若最高气温低于20,则Y=6×200+2(n﹣200)﹣4n=800﹣2n,∴EY=2n×(0.4+0.4)+(800﹣2n)×0.2=160+1.2n.∴n=300时,Y的数学期望达到最大值,最大值为520元.【点评】本题考查离散型随机变量的分布列的求法,考查数学期望的最大值的求法,考查函数、离散型随机变量分布列、数学期望等基础知识,考查推理论证能力、运算求解能力,考查分类与整合思想、化归与转化思想,是中档题.19.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.【分析】(1)如图所示,取AC的中点O,连接BO,OD.△ABC是等边三角形,可得OB⊥AC.由已知可得:△ABD≌△CBD,AD=CD.△ACD是直角三角形,可得AC是斜边,∠ADC=90°.可得DO=AC.利用DO2+BO2=AB2=BD2.可得OB⊥OD.利用线面面面垂直的判定与性质定理即可证明.(2)设点D,B到平面ACE的距离分别为h D,h E.则=.根据平面AEC把四面体ABCD分成体积相等的两部分,可得===1,即点E是BD的中点.建立如图所示的空间直角坐标系.不妨取AB=2.利用法向量的夹角公式即可得出.【解答】(1)证明:如图所示,取AC的中点O,连接BO,OD.∵△ABC是等边三角形,∴OB⊥AC.△ABD与△CBD中,AB=BD=BC,∠ABD=∠CBD,∴△ABD≌△CBD,∴AD=CD.∵△ACD是直角三角形,∴AC是斜边,∴∠ADC=90°.∴DO=AC.∴DO2+BO2=AB2=BD2.∴∠BOD=90°.∴OB⊥OD.又DO∩AC=O,∴OB⊥平面ACD.又OB⊂平面ABC,∴平面ACD⊥平面ABC.(2)解:设点D,B到平面ACE的距离分别为h D,h E.则=.∵平面AEC把四面体ABCD分成体积相等的两部分,∴===1.∴点E是BD的中点.建立如图所示的空间直角坐标系.不妨取AB=2.则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,1),B(0,,0),E.=(﹣1,0,1),=,=(﹣2,0,0).设平面ADE的法向量为=(x,y,z),则,即,取=.同理可得:平面ACE的法向量为=(0,1,).∴cos===﹣.∴二面角D﹣AE﹣C的余弦值为.【点评】本题考查了空间位置关系、空间角、三棱锥的体积计算公式、向量夹角公式,考查了推理能力与计算能力,属于中档题.20.已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,﹣2),求直线l与圆M的方程.【分析】(1)方法一:分类讨论,当直线斜率不存在时,求得A和B的坐标,由•=0,则坐标原点O在圆M上;当直线l斜率存在,代入抛物线方程,利用韦达定理及向量数量积的可得•=0,则坐标原点O在圆M上;方法二:设直线l的方程x=my+2,代入抛物线方程,利用韦达定理及向量数量积的坐标运算,即可求得•=0,则坐标原点O在圆M上;(2)由题意可知:•=0,根据向量数量积的坐标运算,即可求得k的值,求得M点坐标,则半径r=丨MP丨,即可求得圆的方程.【解答】解:方法一:证明:(1)当直线l的斜率不存在时,则A(2,2),B(2,﹣2),则=(2,2),=(2,﹣2),则•=0,∴⊥,则坐标原点O在圆M上;当直线l的斜率存在,设直线l的方程y=k(x﹣2),A(x1,y1),B(x2,y2),,整理得:k2x2﹣(4k2+2)x+4k2=0,则x1x2=4,4x1x2=y12y22=(y1y2)2,由y1y2<0,则y1y2=﹣4,由•=x1x2+y1y2=0,则⊥,则坐标原点O在圆M上,综上可知:坐标原点O在圆M上;方法二:设直线l的方程x=my+2,,整理得:y2﹣2my﹣4=0,A(x1,y1),B(x2,y2),则y1y2=﹣4,则(y1y2)2=4x1x2,则x1x2=4,则•=x1x2+y1y2=0,则⊥,则坐标原点O在圆M上,∴坐标原点O在圆M上;(2)由(1)可知:x1x2=4,x1+x2=,y1+y2=,y1y2=﹣4,圆M过点P(4,﹣2),则=(4﹣x1,﹣2﹣y1),=(4﹣x2,﹣2﹣y2),由•=0,则(4﹣x1)(4﹣x2)+(﹣2﹣y1)(﹣2﹣y2)=0,整理得:k2+k﹣2=0,解得:k=﹣2,k=1,当k=﹣2时,直线l的方程为y=﹣2x+4,则x1+x2=,y1+y2=﹣1,则M(,﹣),半径为r=丨MP丨==,∴圆M的方程(x﹣)2+(y+)2=.当直线斜率k=1时,直线l的方程为y=x﹣2,同理求得M(3,1),则半径为r=丨MP丨=,∴圆M的方程为(x﹣3)2+(y﹣1)2=10,综上可知:直线l的方程为y=﹣2x+4,圆M的方程(x﹣)2+(y+)2=或直线l的方程为y=x﹣2,圆M的方程为(x﹣3)2+(y﹣1)2=10.【点评】本题考查直线与抛物线的位置关系,考查韦达定理,向量数量积的坐标运算,考查计算能力,属于中档题.21.已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.【分析】(1)通过对函数f(x)=x﹣1﹣alnx(x>0)求导,分a≤0、a>0两种情况考虑导函数f′(x)与0的大小关系可得结论;(2)通过(1)可知lnx≤x﹣1,进而取特殊值可知ln(1+)<,k∈N*.一方面利用等比数列的求和公式放缩可知(1+)(1+)…(1+)<e,另一方面可知(1+)(1+)…(1+)>2,从而当n≥3时,(1+)(1+)…(1+)∈(2,e),比较可得结论.【解答】解:(1)因为函数f(x)=x﹣1﹣alnx,x>0,所以f′(x)=1﹣=,且f(1)=0.所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,这与f(x)≥0矛盾;当a>0时令f′(x)=0,解得x=a,所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f (a),若a≠1,则f(a)<f(1)=0,从而与f(x)≥0矛盾;所以a=1;(2)由(1)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,所以ln(x+1)≤x当且仅当x=0时取等号,所以ln(1+)<,k∈N*.一方面,ln(1+)+ln(1+)+…+ln(1+)<++…+=1﹣<1,即(1+)(1+)…(1+)<e;另一方面,(1+)(1+)…(1+)>(1+)(1+)(1+)=>2;从而当n≥3时,(1+)(1+)…(1+)∈(2,e),因为m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m成立,所以m的最小值为3.【点评】本题是一道关于函数与不等式的综合题,考查分类讨论的思想,考查转化与化归思想,考查运算求解能力,考查等比数列的求和公式,考查放缩法,注意解题方法的积累,属于难题.22.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.【分析】解:(1)分别消掉参数t与m可得直线l1与直线l2的普通方程为y=k(x ﹣2)①与x=﹣2+ky②;联立①②,消去k可得C的普通方程为x2﹣y2=4;(2)将l3的极坐标方程为ρ(cosθ+sinθ)﹣=0化为普通方程:x+y﹣=0,再与曲线C的方程联立,可得,即可求得l3与C的交点M的极径为ρ=.【解答】解:(1)∵直线l1的参数方程为,(t为参数),∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;又直线l2的参数方程为,(m为参数),同理可得,直线l2的普通方程为:x=﹣2+ky②;联立①②,消去k得:x2﹣y2=4,即C的普通方程为x2﹣y2=4;(2)∵l3的极坐标方程为ρ(cosθ+sinθ)﹣=0,∴其普通方程为:x+y﹣=0,联立得:,∴ρ2=x2+y2=+=5.∴l3与C的交点M的极径为ρ=.【点评】本题考查参数方程与极坐标方程化普通方程,考查函数与方程思想与等价转化思想的运用,属于中档题.23.已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.【分析】(1)由于f(x)=|x+1|﹣|x﹣2|=,解不等式f(x)≥1可分﹣1≤x≤2与x>2两类讨论即可解得不等式f(x)≥1的解集;(2)依题意可得m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x,分x≤1、﹣1<x<2、x≥2三类讨论,可求得g(x)max=,从而可得m的取值范围.【解答】解:(1)∵f(x)=|x+1|﹣|x﹣2|=,f(x)≥1,∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2;当x>2时,3≥1恒成立,故x>2;综上,不等式f(x)≥1的解集为{x|x≥1}.(2)原式等价于存在x∈R使得f(x)﹣x2+x≥m成立,即m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x.由(1)知,g(x)=,当x≤﹣1时,g(x)=﹣x2+x﹣3,其开口向下,对称轴方程为x=>﹣1,∴g(x)≤g(﹣1)=﹣1﹣1﹣3=﹣5;当﹣1<x<2时,g(x)=﹣x2+3x﹣1,其开口向下,对称轴方程为x=∈(﹣1,2),∴g(x)≤g()=﹣+﹣1=;当x≥2时,g(x)=﹣x2+x+3,其开口向下,对称轴方程为x=<2,∴g(x)≤g(2)=﹣4+2+3=1;综上,g(x)max=,∴m的取值范围为(﹣∞,].【点评】本题考查绝对值不等式的解法,去掉绝对值符号是解决问题的关键,突出考查分类讨论思想与等价转化思想、函数与方程思想的综合运用,属于难题.。

2017数学三考试大纲

2017数学三考试大纲2017年的数学三考试大纲是针对中国高等教育自学考试(简称自考)的数学科目之一,它主要面向非数学专业学生,旨在测试学生对数学基础概念、原理和计算能力的掌握程度。

以下是2017年数学三考试大纲的主要内容概述。

一、函数、极限与连续性1. 函数的概念:定义域、值域、表示方法、函数的单调性、有界性、奇偶性。

2. 极限:数列极限、函数极限、无穷小量和无穷大量的概念,极限的运算法则。

3. 连续性:连续函数的定义、性质、间断点的类型。

二、一元函数微分学1. 导数:导数的定义、几何意义、基本导数公式、高阶导数。

2. 微分:微分的概念、基本微分公式、微分中值定理。

3. 导数的应用:单调性、极值、曲线的凹凸性、拐点、函数图形的绘制。

三、一元函数积分学1. 不定积分:不定积分的概念、基本积分公式、换元积分法、分部积分法。

2. 定积分:定积分的概念、几何意义、定积分的性质、定积分的计算。

3. 定积分的应用:几何问题(面积、体积)、物理问题(变力做功)。

四、多元函数微分学1. 偏导数:偏导数的定义、几何意义、高阶偏导数。

2. 全微分:全微分的概念、条件。

3. 多元函数的极值:极值的定义、存在条件、求解方法。

五、多元函数积分学1. 二重积分:二重积分的概念、计算方法(直角坐标系、极坐标系)。

2. 三重积分:三重积分的概念、计算方法。

六、无穷级数1. 数项级数:级数的概念、收敛性、级数的和。

2. 幂级数:幂级数的概念、收敛半径、泰勒级数、麦克劳林级数。

七、常微分方程1. 一阶微分方程:可分离变量的微分方程、齐次微分方程、伯努利方程。

2. 高阶微分方程:线性微分方程、常系数线性微分方程的解法。

八、解析几何1. 向量代数:向量的概念、向量的运算、向量的数量积和向量积。

2. 平面解析几何:直线、圆、椭圆、双曲线、抛物线的标准方程和性质。

3. 空间解析几何:空间直线、平面、旋转曲面、二次曲面。

九、概率论与数理统计1. 随机事件:事件的概率、概率的加法公式、乘法公式。

考研高等数学重点解读-

2017考研高等数学重点解读下面查字典考研老师为大家分享一下整理好的2017高等数学重点知识,以供大家学习。

1、函数、极限与连续:主要考查分段函数极限或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

2、一元函数微分学:主要考查导数与微分的求解;隐函数求导;分段函数和绝对值函数可导性;洛比达法则求不定式极限;函数极值;方程的根;证明函数不等式;罗尔定理、拉格朗日中值定理、柯西中值定理以及辅助函数的构造;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形,求曲线渐近线。

3、一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明题;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

4、多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数、方向导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。

5、多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序;三重积分,曲线、曲面积分是数一的考试重点,主要涉及到如何计算。

6、微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。

差分方程的基本概念与一介常系数线形方程求解方法跨章节、跨科目的综合考查题,近几年出现的有:微积分与微分方程的综合题;求极限的综合题等。

7、无穷级数:主要包括数项级数敛散性的判别;幂级数求收敛半径、收敛区间和收敛域;幂级数求和函数;将函数展开成幂级数;傅立叶级数的收敛的狄利克雷收敛定理,将函数展开成正弦、余弦级数。

注意:首先看定义域然后判断函数的单调区间求极值和最值,利用公式判断在指定区间内的凹凸性或者用函数的二阶导数判断(注意二阶导数的符号)以上就是查字典考研老师为大家整理的2017考研高等数学重点知识点,关于考研高等数学的相关文章,我们还会经常为大家更新,希望大家随时关注。

2017年考研数学:数一、数二及数三复习重点

考研数学⼀、数学⼆、数学三考察不同,复习侧重也有差别,针对不同专业类别的考⽣,⼤家要有针对性的复习。

下⾯解读数⼀、数⼆及数三科⽬分值差异,并讲解复习的侧重,2017考⽣要注意。

数学1、2、3之间在科⽬和分值上的区表
卷种考试内容数学(⼀)数学(⼆)数学(三)⾼等数学(微积分)8211682
线性代数343434概率论与数理统计34——34
总计(分数)150150150
从以往的真题来看,数学⼀、⼆、三之间的区别在于知识⾯的要求上:数学⼀最⼴,数学三其次,数学⼆最低。

事实上,对于不同的专业,对数学的要求不⼀样。

▶考研数学⼀
⾼数,线性代数,概率论与数理统计,考察内容⼗分的⼴泛,学⽣较为容易遗忘,需要不断的复习巩固。

属于理⼯类的。

▶考研数学⼆
⾼数和线性代数,不考概率与数理统计,对于⾼数的部分内容如不定积分要求较⾼。

属于理⼯类的。

▶考研数学三
微积分,线性代数,概率论与数理统计,数三是经济类的,所以对于概率与数理统计的要求较⾼。

属于经济类的,⾼等数学中的曲线积分,曲⾯积分在数学三中不作要求。

新东⽅校推荐:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017考研数学三高等数学考察重点及题型总结
章节 知识点 题型
重要度等

第一章 函
数、极限、
连续

等价无穷小代换、洛必达法则、
泰勒展开式
求函数的极限 ★★★★★

函数连续的概念、函数间断点的
类型
判断函数连续性与间断点的类型 ★★★

第二章 一
元函数微
分学

导数的定义、可导与连续之间的关系 按定义求一点处的导数,可导与连
续的关系
★★★★

函数的单调性、函数的极值 讨论函数的单调性、极值 ★★★★
闭区间上连续函数的性质、罗尔
定理、拉格朗日中值定理、柯西中值定理和泰勒定理 微分中值定理及其应用 ★★★★★

第三章 一元函数积分学 积分上限的函数及其导数 变限积分求导问题 ★★★★★
定积分的应用 用定积分计算几何量 ★★★★

第四章 多
元函数微
积分学

隐函数、偏导数、全微分的存在性以及它们之间的因果关系 函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在
性与偏导数的连续性的讨论与它
们之间的因果关系

★★★

二重积分的概念、性质及计算 二重积分的计算及应用 ★★★★★
第五章 无穷级数 级数的基本性质及收敛的必要条件,正项级数的比较判别法、
比值判别法和根式判别法,交错
级数的莱布尼茨判别法

数项级数敛散性的判别 ★★★★★

第六章 常微分方程 一阶线性微分方程、齐次方程,
微分方程的简单应用
用微分方程解决一些应用问题 ★★★★

相关文档
最新文档