淄博一中2013--2024学年度第二学期期中考试试题

合集下载

淄博市2023—2024学年度第二学期高三化学一模参考答案

淄博市2023—2024学年度第二学期高三化学一模参考答案

2023—2024学年度第二学期高三一模检测化学试题答案及评分标准2024. 2说明:1.凡元素符号、化学式、化学术语等出现错误的,相关内容均不得分。

2.方程式中元素符号、化学式、化学计量数出现错误的,方程式均不得分,反应条件错误扣1分。

一、选择题:本题共10小题,每题2分,共20分,每小题只有1个选项符合题目要求。

二、选择题:本题共5小题,每小题4分,共20分。

每小题有一个或两个选项符合题意,全都选对得4分,选对但不全的得2分,有选错的得0分。

三、非选择题:本题共5小题,共60分。

16.(12分)(1)哑铃(1分)1s22s22p53s1(1分)(2)极性(1分)sp2(1分)<(1分)胍与H2O能形成分子间氢键,胍有氨基(或显碱性)能与CO2反应(2分)(3)(1分)(2分)(1分)12(1分)17.(12分)(1)Co2O3+4H++SO32-=2Co2++SO42-+2H2O(2分)(2)3.2 ~ 7.2(2分)(3)N(1分)少量多次萃取(1分)(4)[Co(NH3)6]2++2OH—=Co(OH)2↓+6NH3↑(1分)1×109.6(2分)“碱溶”形成的[Co(NH3)6]2+在加入NaOH“沉钴”时可缓释Co2+利于晶体形成,缓慢加NaOH溶液可以防止沉淀过快无法形成β-Co(OH)2(2分)温度高利于减少溶解氧,形成NH3气氛隔绝空气,防止产物被氧化(1分)18.(12分)(1)ef→bc(或cb)←d(1分)(NH4)2CO3+NO+NO2=2NH4NO2+CO2 (1分)(2)<(1分)c(SO42-)>c(NH4+)>c(NH3OH+)>c(H+)>c(OH-)(2分)(3)(NH4)2SO4(1分)减压(1分)(4)滴入最后半滴KMnO4标准溶液后,溶液变为粉红色,且半分钟内不变色(1分)2.05cV×100%(2分)AC(2分)19.(12分)(1)CH3CH2OH、浓硫酸,加热(2分)(1分)(2)保护酚羟基(1分)醚键、酯基(1分)(3)消去反应(1分)(1分)(4)(2分)(5)合成路线参考:(3分)20.(12分)(1)+41.2(2分)>(1分)(2)L1(1分)AC(2分)(3)①H2(1分)0.8(1分)0.056 (2分)②BC(2分)。

2023-2024学年山东省淄博市淄博中学高一(上)期中数学试卷【答案版】

2023-2024学年山东省淄博市淄博中学高一(上)期中数学试卷【答案版】

2023-2024学年山东省淄博市淄博中学高一(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集R ,集合M ={x |﹣1<x ≤3},则∁R M =( ) A .{x |﹣1<x <3} B .{x |x ≤﹣1或x >3}C .{x |x <﹣1或x >3}D .{x |x ≤﹣1或x ≥3}2.函数f (x )=√4−x 2x−1的定义域为( )A .[﹣2,2]B .(﹣2,3)C .[﹣2,1)∪(1,2]D .(﹣2,1)∪(1,2)3.已知函数f (x )={f(x −1),x >−2x 2+2x −3,x ≤−2,则f (f (1))=( )A .5B .0C .﹣3D .﹣44.不等式﹣3x 2+7x ﹣2<0的解集为( ) A .{x|13<x <2} B .{x|x <13或x >2} C .{x|−12<x <−13}D .{x |x >2}5.已知函数是f (x )定义在R 上的偶函数,则“f (x )是(﹣∞,0)上的减函数”是“f (﹣2)<f (4)”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.给出下列命题:①若a <b ,c <0,则c a≤cb;②若ac ﹣3>bc ﹣3,则a >b ;③若a >b 且k ∈N +,则a k >b k;④若c >a >b >0,则ac−a>b c−b.其中真命题的个数( )A .1B .2C .3D .47.已知函数f (x )为R 上的奇函数,当x ≥0时,f (x )=x 2﹣2x ,则当x <0时,f (x )的解析式为( ) A .﹣x 2﹣2x B .﹣x 2+2x C .x 2+2xD .以上都不对8.已知函数f(x)={ax 2−2x −a ,x ≥1(a +3)x −1,x <1,任意x 1,x 2∈R ,x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0,则实数a 的取值范围是( ) A .[﹣4,﹣3)B .(﹣∞,﹣3)C .[﹣4,0)D .(﹣4,0)二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分) 9.下列各组函数是同一函数的有( )A .f(x)=x 3x 与g (x )=x 2B .f (x )=|x |与g(x)=√x 2C .f (x )=x 0与g (x )=1D .f(x)=√1+x ×√1−x 与g(x)=√1−x 210.下列说法中正确的有( )A .命题p :∃x 0∈R ,x 02+2x 0+2<0,则命题p 的否定是∀x ∈R ,x 2+2x +2≥0B .“|x |>|y |”是“x >y ”的必要条件C .命题“∀x ∈Z ,x 2>0”的是真命题D .“m <0”是“关于x 的方程x 2﹣2x +m =0有一正一负根”的充要条件 11.下列选项中正确的是( ) A .若正实数x ,y 满足x +2y =1,则2x+1y≥8B .当x ≥2时,不等式x +4x+1的最小值为3C .不等式a +b ≥2√ab 恒成立D .存在实数a ,使得不等式a +1a≤2成立 12.已知函数f(x)=xx+1,则下列说法正确的是( ) A .f (x )的定义域为{x |x ≠﹣1} B .f (x )的值域为RC .f (x )在区间(﹣1,+∞)上单调递增D .f(1)+f(2)+f(3)+⋯+f(2023)+f(12)+f(13)+⋯+f(12023)的值为40452三、填空题:本大题共4个小题,每小题5分,共20分.13.已知集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <a },则 (∁R A )∩B = .若A ⊆C ,则a 的取值范围是 .14.若不等式2ax 2+ax ﹣2<0对一切实数x 都成立,则实数a 的取值范围是 .15.已知函数f (x )=﹣x 2﹣(m ﹣1)x ﹣2在(﹣∞,2]上单调递增,则m 的取值范围是 . 16.已知函数f (x )在R 上为奇函数,f (x )在(0,+∞)上单调递增,f (﹣3)=0,则不等式xf (x )>0的解集为 .四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A ={x |﹣2<x <5},B ={x |m +1≤x ≤2m ﹣1}.(1)当m =3时,求(∁R A )∪B ; (2)若A ∪B =A ,求实数m 的取值范围.18.(12分)请在①充分不必要条件,②必要不充分条件,③充要条件这三个条件中任选一个,补充在下面问题(2)中,若问题(2)中的实数m 存在,求出m 的取值范围;若不存在,说明理由.已知集合A ={x |x 2﹣4x ﹣12≤0},B ={x |x 2﹣2x +1﹣m 2≤0,m >0}. (1)求集合A ,B ;(2)若x ∈A 是x ∈B 成立的 ______条件,判断实数m 是否存在? 19.(12分)已知关于x 的不等式2ax 2+ax >2x +1(a ∈R ). (1)若不等式的解集为{x|−12<x <−13},求a 的值; (2)解关于x 的不等式.20.(12分)2023年,8月29日,华为Mate 60Pro 在华为商城正式上线,成为全球首款支持卫星通话的大众智能手机.其实在2019年5月19日,华为被美国列入实体名单,以所谓科技网络安全为借口,对华为施加多轮制裁.为了进一步增加市场竞争力,华为公司计划在2020年利用新技术生产某款新手机,通过市场分析,生产此款手机全年需投入固定成本300万,每生产x (千部)手机,需另投入成本R (x )万元,且R(x)={10x 2+100x ,0<x <50701x +10000x−9450,x ≥50由市场调研知此款手机售价0.7万元,且每年内生产的手机当年能全部销售完.(1)求出2020年的利润w (x )(万元)关于年产量x (千部)的表达式; (2)2020年年产量为多少(千部)时,企业所获利润最大?最大利润是多少? 21.(12分)已知幂函数f (x )=(m ﹣1)2•x 2m﹣1在(0,+∞)上单调递增.(1)求f (x )的值域; (2)若∀x >0,f(x)x 2≥2−a 2x,求a 的取值范围.22.(12分)已知函数f(x)=ax−b1+x 2是定义在[﹣1,1]上的奇函数,且f (1)=﹣1. (1)求函数f (x )的解析式;(2)判断f (x )在[﹣1,1]上的单调性,并用单调性定义证明; (3)解不等式f (t ﹣1)+f (t 2)>f (0).2023-2024学年山东省淄博市淄博中学高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集R,集合M={x|﹣1<x≤3},则∁R M=()A.{x|﹣1<x<3}B.{x|x≤﹣1或x>3}C.{x|x<﹣1或x>3}D.{x|x≤﹣1或x≥3}解:因为全集U=R,集合M={x|﹣1<x≤3},所以∁R M={x|x≤﹣1或x>3}.故选:B.2.函数f(x)=√4−x2x−1的定义域为()A.[﹣2,2]B.(﹣2,3)C.[﹣2,1)∪(1,2]D.(﹣2,1)∪(1,2)解:要使函数有意义,须满足{4−x 2≥0x−1≠0,解得﹣2≤x≤2,且x≠1,故函数f(x)的定义域为[﹣2,1)∪(1,2],故选:C.3.已知函数f(x)={f(x−1),x>−2x2+2x−3,x≤−2,则f(f(1))=()A.5B.0C.﹣3D.﹣4解:∵函数f(x)={f(x−1),x>−2 x2+2x−3,x≤−2,∴f(1)=f(0)=f(﹣1)=f(﹣2)=﹣3,∴f(f(1))=f(﹣3)=0.故选:B.4.不等式﹣3x2+7x﹣2<0的解集为()A.{x|13<x<2}B.{x|x<13或x>2}C.{x|−12<x<−13}D.{x|x>2}解:由﹣3x2+7x﹣2<0,得3x2﹣7x+2>0,即(3x﹣1)(x﹣2)>0,解得x<13或x>2,所以该不等式的解集为{x|x<13或x>2}.故选:B.5.已知函数是f (x )定义在R 上的偶函数,则“f (x )是(﹣∞,0)上的减函数”是“f (﹣2)<f (4)”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:因为f (x )是偶函数,所以f (﹣4)=f (4).由f (x )是(﹣∞,0)上的减函数,则f (﹣2)<f (﹣4),即f (﹣2)<f (4); 反之,对于函数f(x)={x ,x >21|x|,−2≤x ≤2,且x ≠0−x ,x <−2,显然,f (x )是偶函数,且f(−2)=12<f (4)=4,但是f (x )不是(﹣∞,0)上的减函数. 故“f (x )是(﹣∞,0)上的减函数”是“f (﹣2)<f (4)”的充分不必要条件. 故选:A .6.给出下列命题:①若a <b ,c <0,则c a ≤cb;②若ac ﹣3>bc ﹣3,则a >b ;③若a >b 且k ∈N +,则a k >b k ;④若c >a >b >0,则ac−a>b c−b.其中真命题的个数( )A .1B .2C .3D .4解:①中,因为a <b ,c <0,因为a ,b 的符号不定,所以1a,1b的大小关系不定, 所以ca,cb 的大小关系不定,所以①错;②中,ac ﹣3>bc ﹣3,若c <0,则a <b ,所以②错;③中,若a >b 且k ∈N +,例如:a =﹣2,b =﹣3,k =2,此时a k <b k ,所以③错; ④中,若c >a >b >0,则0<c ﹣a <c ﹣b ,1c−a>1c−b>0,又a >b >0,所以ac−a>b c−b,所以④正确.所以只有1个命题正确. 故选:A .7.已知函数f (x )为R 上的奇函数,当x ≥0时,f (x )=x 2﹣2x ,则当x <0时,f (x )的解析式为( ) A .﹣x 2﹣2x B .﹣x 2+2x C .x 2+2xD .以上都不对解:根据题意,设x <0,则﹣x >0,函数f (x )为R 上的奇函数,当x ≥0时,f (x )=x 2﹣2x ,则f (x )=﹣f (﹣x )=﹣[(﹣x )2﹣2(﹣x )]=﹣(x 2+2x )=﹣x 2﹣2x .8.已知函数f(x)={ax 2−2x −a ,x ≥1(a +3)x −1,x <1,任意x 1,x 2∈R ,x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0,则实数a 的取值范围是( ) A .[﹣4,﹣3)B .(﹣∞,﹣3)C .[﹣4,0)D .(﹣4,0)解:根据题意,任意x 1,x 2∈R ,x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0,则f (x )在R 上为减函数,又由函数f(x)={ax 2−2x −a ,x ≥1(a +3)x −1,x <1,则有{ a <01a ≤1a +3<0a −2−a ≤a +3−1,解可得﹣4≤a <﹣3,即a 的取值范围为[﹣4,﹣3). 故选:A .二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分) 9.下列各组函数是同一函数的有( ) A .f(x)=x 3x与g (x )=x 2 B .f (x )=|x |与g(x)=√x 2C .f (x )=x 0与g (x )=1D .f(x)=√1+x ×√1−x 与g(x)=√1−x 2解:对于A ,f(x)=x 3x的定义域为{x |x ≠0},g (x )=x 2的定义域为R ,故错误;对于B ,f (x )=|x |的定义域为R ,g(x)=√x 2=|x|的定义域为R ,故正确; 对于C ,f (x )=x 0的定义域为{x |x ≠0},g (x )=1的定义域为R ,故错误; 对于D ,f(x)=√1+x ×√1−x =√1−x 2定义域为[﹣1,1], g(x)=√1−x 2定义域为[﹣1,1],故正确. 故选:BD .10.下列说法中正确的有( )A .命题p :∃x 0∈R ,x 02+2x 0+2<0,则命题p 的否定是∀x ∈R ,x 2+2x +2≥0B .“|x |>|y |”是“x >y ”的必要条件C .命题“∀x ∈Z ,x 2>0”的是真命题D .“m <0”是“关于x 的方程x 2﹣2x +m =0有一正一负根”的充要条件 解:对于A ,命题p 的否定是∀x ∈R ,x 2+2x +2≥0,故A 正确;对于B ,|x |>|y |不能推出x >y ,例如|﹣2|>|1|,但﹣2<1;x >y 也不能推出|x |>|y |,例如2>﹣3,而|2|所以“|x |>|y |”是“x >y ”的既不充分也不必要条件,故B 错误; 对于C ,当x =0时,x 2=0,故C 错误;对于D ,关于x 的方程x 2﹣2x +m =0有一正一负根⇔{4−4m >0m <0⇔⇔m <0,所以“m <0”是“关于x 的方程x 2﹣2x +m =0有一正一负根”的充要条件,故D 正确. 故选:AD .11.下列选项中正确的是( ) A .若正实数x ,y 满足x +2y =1,则2x +1y≥8B .当x ≥2时,不等式x +4x+1的最小值为3C .不等式a +b ≥2√ab 恒成立D .存在实数a ,使得不等式a +1a≤2成立 解:对于A ,若正实数x ,y 满足x +2y =1,则2x+1y =(2x+1y)⋅(x +2y)=4+4y x+x y≥4+2√4y x⋅x y=8,当且仅当4y x=xy,即x =12,y =14时等号成立,故A 正确;对于B ,x ≥2时,x +1≥3,则有x +4x+1=x +1+4x+1−1≥2√(x +1)⋅4x+1−1=3, 当且仅当x +1=4x+1时,即x =1时等号成立,所以不等式x +4x+1的最小值不为3,故B 错误; 对于C ,不等式a +b ≥2√ab 恒成立的条件是a ≥0,b ≥0,比如取a =﹣1,b =﹣1时,不等式不成立,故C 错误;对于D ,取a =﹣1,不等式显然成立,故D 正确. 故选:AD .12.已知函数f(x)=xx+1,则下列说法正确的是( ) A .f (x )的定义域为{x |x ≠﹣1} B .f (x )的值域为RC .f (x )在区间(﹣1,+∞)上单调递增D .f(1)+f(2)+f(3)+⋯+f(2023)+f(12)+f(13)+⋯+f(12023)的值为40452解:对于A ,由x +1≠0,得函数f(x)=x 的定义域为{x |x ≠﹣1},A 正确;对于B ,由f(x)=x x+1=1−1x+1,得f (x )≠1,即f (x )的值域为(﹣∞,1)∪(1,+∞),B 错误; 对于C ,f (x )在区间(﹣1,+∞)上单调递增,C 正确;对于D ,f(x)+f(1x )=x x+1+1x 1x +1=x x+1+1x+1=1,又f(1)=12,则f(1)+f(2)+f(3)+⋯+f(2023)+f(12)+f(13)+⋯+f(12023)=40452,D 正确. 故选:ACD .三、填空题:本大题共4个小题,每小题5分,共20分.13.已知集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <a },则 (∁R A )∩B = {2<x <3或7≤x <10} .若A ⊆C ,则a 的取值范围是 a ≥7 .解:∵A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <a }, ∴∁R A ={x |x <3或x ≥7},∴(∁R A )∩B ={2<x <3或7≤x <10}, ∵A ⊆C ,∴a 的范围是a ≥7,故答案为:{2<x <3或7≤x <10};a ≥714.若不等式2ax 2+ax ﹣2<0对一切实数x 都成立,则实数a 的取值范围是 (﹣16,0] . 解:不等式2ax 2+ax ﹣2<0对一切实数x 都成立, 当a =0时,﹣2<0恒成立;当a ≠0时,要使不等式2ax 2+ax ﹣2<0对一切实数x 都成立,则{2a <0Δ=a 2+16a <0,解得﹣16<a <0,综上所述,实数a 的取值范围是(﹣16,0]. 故答案为:(﹣16,0].15.已知函数f (x )=﹣x 2﹣(m ﹣1)x ﹣2在(﹣∞,2]上单调递增,则m 的取值范围是 (﹣∞,﹣3] .解:函数f (x )=﹣x 2﹣(m ﹣1)x ﹣2在(﹣∞,2]上单调递增, 则有−(m−1)2≥2,解得m ≤﹣3,则m 的取值范围是(﹣∞,﹣3]. 故答案为:(﹣∞,﹣3].16.已知函数f (x )在R 上为奇函数,f (x )在(0,+∞)上单调递增,f (﹣3)=0,则不等式xf (x )>0的解集为 (﹣∞,﹣3)∪(3,+∞) .解:因为函数f (x )是R 上的奇函数,所以f (3)=﹣f (﹣3)=0, 又因为f (x )在(0,+∞)上单调递增,所以当0<x <3时,f (x )<f (3)=0,当x >3时,f (x )>f (3)=0, 注意到函数f (x )是R 上的奇函数,所以当x <﹣3时,有﹣x >3,﹣f (x )=f (﹣x )>f (3)=0,此时f (x )<0, 当﹣3<x <0时,有0<﹣x <3,﹣f (x )=f (﹣x )<f (3)=0,此时f (x )>0, x ,f (x ),xf (x )的符号随x 的变化情况如下表所示:由上表可知不等式xf (x )>0的解集为(﹣∞,﹣3)∪(3,+∞). 故答案为:(﹣∞,﹣3)∪(3,+∞).四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A ={x |﹣2<x <5},B ={x |m +1≤x ≤2m ﹣1}. (1)当m =3时,求(∁R A )∪B ; (2)若A ∪B =A ,求实数m 的取值范围.解:(1)当m =3时,可得集合A ={x |﹣2<x <5},B ={x |4≤x ≤5}, ∴∁R A ={x |x ≤﹣2或x ≥5}, ∴(∁R A )∪B ={x |x ≤﹣2或x ≥4}; (2)由A ∪B =A ,可得B ⊆A ,①当B =∅时,可得m +1>2m ﹣1,解得m <2;②当B ≠∅时,则满足{m +1≤2m −1m +1>−22m −1<5,解得2≤m <3,综上实数m 的取值范围是(﹣∞,3).18.(12分)请在①充分不必要条件,②必要不充分条件,③充要条件这三个条件中任选一个,补充在下面问题(2)中,若问题(2)中的实数m 存在,求出m 的取值范围;若不存在,说明理由.已知集合A ={x |x 2﹣4x ﹣12≤0},B ={x |x 2﹣2x +1﹣m 2≤0,m >0}. (1)求集合A ,B ;(2)若x ∈A 是x ∈B 成立的 ______条件,判断实数m 是否存在?解:(1)由x 2﹣4x ﹣12≤0得﹣2≤x ≤6,故集合A ={x |﹣2≤x ≤6}, 由x 2﹣2x +1﹣m 2=0得x 1=1﹣m ,x 2=1+m , 因为m >0,故集合B ={x |1﹣m ≤x ≤1+m }; (2)若选择条件①,即x ∈A 是x ∈B 成立的充分不必要条件,集合A 是集合B 的真子集, 则有{1−m ≤−21+m ≥6,解得m ≥5,所以,实数m 的取值范围是[5,+∞).若选择条件②,即x ∈A 是x ∈B 成立的必要不充分条件,集合B 是集合A 的真子集, 则有{1−m ≥−21+m ≤6,解得0<m ≤3,所以,实数m 的取值范围是(0,3].若选择条件③,即x ∈A 是x ∈B 成立的充要条件,则集合A 等于集合B , 则有{1−m =−21+m =6,方程组无解,所以,不存在满足条件的实数m19.(12分)已知关于x 的不等式2ax 2+ax >2x +1(a ∈R ). (1)若不等式的解集为{x|−12<x <−13},求a 的值; (2)解关于x 的不等式.解:(1)不等式2ax 2+ax >2x +1可化为2ax 2+(a ﹣2)x ﹣1>0, 由题意知−12和−13是方程2ax 2+(a ﹣2)x ﹣1=0的两个根, 所以−12a=(−12)×(−13),解得a =﹣3.(2)不等式2ax 2+(a ﹣2)x ﹣1>0可化为(2x +1)(ax ﹣1)>0. ①当a =0时,原不等式可化为2x +1<0,解得x <−12.②当a >0时,原不等式可化为(2x +1)(x −1a)>0,解得x >1a或x <−12. ③当a <0时,原不等式化为(2x +1)(x −1a )<0. 若1a <−12,则﹣2<a <0,解得1a<x <−12,当1a =−12,即﹣2=a ,解得无解,当1a>−12,即a <﹣2,解得−12<x <1a ,综上,a =0时,不等式的解集为{x|x <−12};a >0时,不等式的解集为{x|x >1a 或x <−12};﹣2<a <0时,不等式的解集为{x|1a <x <−12};a =﹣2时,不等式的解集为∅;a <﹣2时,不等式的解集为{x|−12<x <1a }.20.(12分)2023年,8月29日,华为Mate 60Pro 在华为商城正式上线,成为全球首款支持卫星通话的大众智能手机.其实在2019年5月19日,华为被美国列入实体名单,以所谓科技网络安全为借口,对华为施加多轮制裁.为了进一步增加市场竞争力,华为公司计划在2020年利用新技术生产某款新手机,通过市场分析,生产此款手机全年需投入固定成本300万,每生产x (千部)手机,需另投入成本R (x )万元,且R(x)={10x 2+100x ,0<x <50701x +10000x −9450,x ≥50由市场调研知此款手机售价0.7万元,且每年内生产的手机当年能全部销售完.(1)求出2020年的利润w (x )(万元)关于年产量x (千部)的表达式;(2)2020年年产量为多少(千部)时,企业所获利润最大?最大利润是多少?解:(1)当0<x <50时,w (x )=700x ﹣(10x 2+100x )﹣300=﹣10x 2+600x ﹣300,当x ≥50时,w(x)=700x −(701x +10000x −9450)−300=−(x +10000x)+9150, ∴w(x)={−10x 2+600x −300,0<x <50−(x +10000x )+9150,x ≥50; (2)若0<x <50,w (x )=﹣10(x ﹣30)2+8700,当x =30时,w (x )max =8700万元,若x ≥50,w(x)=−(x +10000x )+9150≤9150−2√x ⋅10000x =8950, 当且仅当x =10000x时,即x =100时,w (x )max =8950万元, 因为8950>8700,∴2020年年产量为100(千部)时,企业所获利润最大,最大利润是8950万元.21.(12分)已知幂函数f (x )=(m ﹣1)2•x 2m﹣1在(0,+∞)上单调递增. (1)求f (x )的值域;(2)若∀x >0,f(x)x 2≥2−a 2x ,求a 的取值范围.解:(1)因为f (x )=(m ﹣1)2•x 2m ﹣1为幂函数,所以(m ﹣1)2=1,即m =0或m =2,当m =0时,f (x )=x ﹣1在(0,+∞)上单调递减,不符合题意,当m =2时,f (x )=x 3在(0,+∞)上单调递增,符合题意,故函数的值域为R ;(2)若∀x >0,f(x)x 2≥2−a 2x ,则x ≥2−a 2x , 即a ≥4x ﹣2x 2在x >0时恒成立,故a ≥(4x ﹣2x 2)max ,根据二次函数的性质可知,当x =1时,4x ﹣2x 2取得最大值2,故a ≥2,所以a 的取值范围为{a |a ≥2}.22.(12分)已知函数f(x)=ax−b 1+x 2是定义在[﹣1,1]上的奇函数,且f (1)=﹣1. (1)求函数f (x )的解析式;(2)判断f (x )在[﹣1,1]上的单调性,并用单调性定义证明;(3)解不等式f (t ﹣1)+f (t 2)>f (0).解:(1)函数f(x)=ax−b 1+x 2是定义在[﹣1,1]上的奇函数, f (﹣x )=﹣f (x );−ax−b 1+x 2=−ax−b 1+x 2,解得b =0, ∴f(x)=ax 1+x 2,而f (1)=﹣1,解得a =﹣2, ∴f(x)=−2x 1+x 2,x ∈[﹣1,1]. (2)函数f(x)=−2x 1+x 2在[﹣1,1]上为减函数; 证明如下:任意x 1,x 2∈[﹣1,1]且x 1<x 2,则f(x 1)−f(x 2)=−2x 11+x 12−−2x 21+x 22=−2(x 1−x 2)(1−x 1x 2)(1+x 12)(1+x 22) 因为x 1<x 2,所以x 1﹣x 2<0,又因为x 1,x 2∈[﹣1,1],所以1﹣x 1x 2>0,所以f (x 1)﹣f (x 2)>0,即f (x 1)>f (x 2),所以函数f (x 1)>f (x 2)在[﹣1,1]上为减函数.(3)由题意,f (t ﹣1)+f (t 2)>f (0),又f (0)=0,所以f (t ﹣1)+f (t 2)>0, 即解不等式f (t 2)>﹣f (t ﹣1),所以f (t 2)>f (1﹣t ),所以{−1≤t 2≤1−1≤t −1≤1t 2<1−t,解得0≤t <√5−12,所以该不等式的解集为[0,√5−12).。

山东省淄博市第一中学高一下学期期中考试语文试卷.pdf

山东省淄博市第一中学高一下学期期中考试语文试卷.pdf

淄博一中高2014级高一学年第二学期期中模块考试 语文试题 命题人:薛庆波 本试卷分为第I卷和第II卷两部分,共8页。

满分150分,考试时间150分钟。

答题前务必先将自己的姓名、座号、考生号、班级等信息填涂在答题卡和答题纸规定的位置。

第I卷(选择题 共36分) 注意事项: 1.第I卷共12个小题。

2.每小题选出答案后,用2B铅笔把答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,不涂在答题卡上,只答在试卷上不得分。

一、(15分,每小题3分) 1.下列各组词语中,加点字的读音全都正确的一项是( ) A.押解(jiè) 熨(yùn)帖 撒(sā)手锏 怀瑾握瑜(yù) B.枯槁(gāo) 虔(qián)诚 闷(mēn)葫芦 孤注一掷(zhì) C.监(jiàn)生 滂(pāng)沱 煞(shā)风景 博闻强识(zhì) D.坍圮(qǐ) 濡(rú)养 打擂(léi)台 衮衮(gǔn)诸公 2.下列词语中,没有错别字的一项是( ) A.浸渍 徇道 通情达礼 事无巨细 B.膜拜 尘芥 沸反盈天 日薄西山 C.废弛 葱茏 平心而论 委屈求全 D.脉博 喋血 皓首穷经 殒身不恤 3.依次填入下列横线处的词语,最恰当的一项是( ) ① 经过协商联系,我校“益衷公益社”在橱窗里张贴出了周六去敬老院服务的 。

② 去冬今春,我们这里雨雪稀少,旱情严重,于是就有很多迷信的人不是想办法如何抗旱保苗,而是去向龙王庇佑。

③ 眉山苏氏一门才俊当然不错,而“苏小妹三难新郎”纯属虚构,然而这个故事却 至今,经久不衰。

A.启示 祈求 流传 B.启事 企求 留传 C.启示 企求 留传 D.启事 祈求 流传 4.下列各句中,加点的成语使用不恰当的一项是( ) A.柳妈对祥林嫂的再嫁不以为意,认为祥林嫂“索性撞一个死,就好了”。

2024年山东淄博中考数学试卷

2024年山东淄博中考数学试卷

选择题在直角坐标系中,点A(3, -2)关于x轴对称的点的坐标是:A. (-3, 2)B. (3, 2)(正确答案)C. (-3, -2)D. (2, -3)已知等腰三角形的两边长分别为3和5,则它的周长为:A. 8B. 10C. 11D. 11或13(正确答案)函数y = 2x - 1与y = -x + 4的交点坐标是:A. (1,3)B. (3,1)C. (-1,3)(正确答案)D. (3,-1)下列计算正确的是:A. 3a + 2b = 5abB. a2 · a3 = a6C. (a2)3 = a6(正确答案)D. a6 ÷ a3 = a18若关于x的一元二次方程x2 - 2x + m = 0有两个相等的实数根,则m的值为:A. -1B. 0C. 1(正确答案)D. 2下列图形中,是轴对称图形但不是中心对称图形的是:A. 等边三角形(正确答案)B. 平行四边形C. 圆D. 正方形已知|x| = 5,y = 3,则x - y = :A. -8 或-2B. 2 或-8(正确答案)C. -2 或8D. 8 或-2下列不等式组中,解集为x > 2 的是:A. { x > 1, x > 2 }(正确答案)B. { x > 1, x < 2 }C. { x < 1, x > 2 }D. { x ≤ 1, x > 2 }在平行四边形ABCD中,AB = 4,BC = 5,则对角线AC的长度范围是:A. 1 < AC < 9B. 2 < AC < 10C. 3 < AC < 9(正确答案)D. 4 < AC < 10。

山东省淄博第一中学2023-2024学年高一上学期期中教学质量检测数学试题

山东省淄博第一中学2023-2024学年高一上学期期中教学质量检测数学试题

山东省淄博第一中学2023-2024学年高一上学期期中教学质量检测数学试题学校:___________姓名:___________班级:___________考号:___________3x>9(3)解不等式()f lnx >0.21.已知函数()()()2log 424,x x f x b g x x =+×+=.(1)当=5b -时,求()f x 的定义域;(2)若()()f x g x >恒成立,求实数b 的取值范围.22.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ³时,()21,0122,1xx x f x x ì-+£<=í-³î.(1)求当0x <时,()f x 的解析式;(2)若对任意的[]1,x m m Î-,不等式()()2f x f x m -£+恒成立,求实数m 的取值范围.()()()()12120f x f x f x f x +-=->,即()()12f x f x >,故函数()f x 为R 上的减函数,()f x \在[],m n 上的最大值为()f m ,选项B ,C 错误;()10f x ->等价于()()10f x f ->,又()f x 为R 上的减函数,故10x -<,解得1x <,选项D 正确.故选:AD.【点睛】关键点点睛:本题考查抽象函数的奇偶性与单调性,解题方法是赋值法.赋值时注意函数性质的定义,如奇偶性中需要出现()f x -()f x 的关系,因此有令y x =-这个操作.13.(1,2)【详解】当1x =时,()()13222a f log +==-.所以函数()()322(01)a f x log x a a +>¹=-,恒过定点(1,2).14.1-或16【分析】分0,0a a >£两种情况分别求出()f a 的表达式,得到关于a 的方程,解方程即可.【详解】当0a >时,由题意知,()2log 4f a a ==,解得16a =符合题意;当0a £时,由题意知,()234f a a a =-=,解得4a =(舍),1a =-符合题意;综上可知,实数a 的值为16或1-.故答案为: 16或1-.。

山东省淄博一中2011-2012学年高一下学期期中模块考试生物试题

山东省淄博一中2011-2012学年高一下学期期中模块考试生物试题

淄博一中2011—2012学年度第二学期期中模块考试高一生物试题2012.4第Ⅰ卷(选择题共60分)1.体液是动物及人体内含有的液体,它包括()①细胞内液②血浆③淋巴④组织液⑤消化液A.①③⑤ B.①②③ C.②③④ D.①②③④2. 血细胞、肌细胞和淋巴细胞所处的内环境分别是()A.血浆、体液、体液 B.血液、体液、淋巴C.血浆、组织液、淋巴 D.血液、细胞外液、体液3.右图是人体内环境示意图。

若某人长期营养不良,血浆蛋白质降低,会引起图中哪一部分的液体增多?()A.① B.② C.③D.④4.人体内环境必须保持相对稳定状态,才能保证组织细胞正常的生命活动。

下列各项生理活动中,与内环境的相对稳定无直接关系的是()A.尿液和汗液的排出 B.血液中二氧化碳浓度升高使呼吸加快C.血液运输养料和废物 D.食物残渣形成粪便排出体外5. 下面的叙述,不属于种群的是( )A.一个池塘中所有的鲤鱼B.一片树林中所有的鸟C.一个蜂群中的工蜂、雄蜂和蜂王D.一棵棉花上所有的棉蚜6.下列对生命活动调节的叙述,正确的是( )A.激素调节与神经调节无联系B.激素调节控制神经调节C.激素调节为主,神经调节为辅D.神经调节为主,同时也受激素调节7.人体血浆中葡萄糖的含量仅能维持正常生理活动几分钟的需要。

那么,在一定时间内,能使血糖基本维持在O.8g/L左右的器官是( )A.大肠 B. 胃 C.肝脏 D.骨骼肌8.肌肉注射时,药液进人人体后经过的一般途径是 ( )A.血浆→组织液→淋巴→血浆→靶细胞 B.淋巴→血浆→组织液→血浆→靶细胞血浆→组织液→靶细胞C.组织液淋巴 D.组织液→血浆→组织液→靶细胞9.下列各组化合物中,全是内环境成分的一组是()A、Na+、O2、葡萄糖、血浆蛋白B、呼吸氧化酶、抗体、激素、H2OC、CO2、血红蛋白、H+、尿素D、Ca2+、载体、氨基酸10. 下列关于内环境稳态调节的描述正确的是()A.所有稳态调节都有反射弧的参与 B.所有的稳态都是相对的C.所有稳态的形成都有内分泌腺参与D.所有稳态的调节中枢都在大脑11.毛细淋巴管壁细胞的内环境组成是()A.淋巴 B.淋巴和组织液 C.血浆和组织液 D.血浆和淋巴12.某科技小组在调查一块方圆为2hm2的草场中灰苍鼠的数量时,放置了100个捕鼠笼,一夜间捕获了50只,将捕获的灰苍鼠做好标记后在原地放生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档