选择性非催化还原脱硝技术(SNCR).31页PPT
sncr脱硝原理反应公式

sncr脱硝原理反应公式
摘要:
1.引言
2.sncr 脱硝原理介绍
3.sncr 脱硝反应公式
4.总结
正文:
sncr 脱硝原理是利用氨或尿素等还原剂,在燃烧过程中选择性地将氮氧化物还原成氮气和水。
这种方法被称为选择性非催化还原法,它是一种有效、低成本的脱硝技术。
sncr 脱硝原理的反应公式如下:
NH3 + 3NOx → 3N2 + 3H2O
或
CO(NH2)2 + 4NOx → 4N2 + 6H2O + 2CO2
其中,NH3 表示氨,CO(NH2)2 表示尿素,NOx 表示氮氧化物,N2 表示氮气,H2O 表示水,CO2 表示二氧化碳。
通过这个反应公式,我们可以看到,sncr 脱硝原理是通过还原剂与氮氧化物反应,生成氮气和水,从而达到脱硝的目的。
这种方法不需要催化剂,因此成本较低,同时具有较高的脱硝效率。
总结起来,sncr 脱硝原理是一种有效的脱硝技术,其原理是通过氨或尿素等还原剂与氮氧化物反应,达到脱硝的目的。
选择性催化还原法脱硝技术介绍

scr反应器内部五scr的工艺流程液氨从液氨槽车由卸料压缩机送入液氨储槽再经过蒸发槽蒸发为氨气后通过氨缓冲槽和输送管道进入锅炉区通过与空气混合后由分布导阀进入scr反应器内部反应scr反应器设置于空预器前氨气在scr反应器的上方通过一种特殊的喷雾装置和烟气均匀分布混合混合后烟气通过反应器内催化剂层进行还原反应
1、氨储存罐可以容纳15天使用的无水氨,可充至 85%的储罐体积,装有液面仪和温度显示仪。
2、液氨汽化采用电加热方式。 3、在反应器前安装静态混合器,保证烟气与氨气在 烟道混合均匀,维持较低的NH3逃逸率。 4、SCR反应器采用固定床形式,催化剂为模块放置, 在反应器催化剂层间设置了吹灰装置,定时吹灰,吹扫 时间30~120分钟,每周1~2次,保证催化剂表面的洁 净。 5、反应器器下设有灰斗,与电厂排灰系统相连,定 时排灰。 6、SCR工艺的核心装置是催化剂反应器,有水平和 垂直气流两种布置方式,如图2所示。在燃煤锅炉中,烟 气中的含尘量很高,一般采用垂直气流方式。
位置。
三、SCR系统的主要设备
XX热电 2×300MW 机组脱硝系统是由哈锅引进 日本三菱重工技术制造安装,脱硝系统一般组成:
◆ 烟道系统(包括省煤器和 SCR旁路) ◆ 氨的储存及供应系统 ---卸料压缩机、液氨储罐、 氨气蒸发器、氨气缓冲器 ◆ 氨气与空气混合系统 ◆ 氨气喷入系统 ◆ SCR反应系统 ◆ 吹灰系统 ◆ 检测控制系统 ◆ 电气系统
SNCR脱硝技术方案

SNCR脱硝技术方案SNCR(Selective Non-Catalytic Reduction)是一种选择性非催化还原脱硝技术,用于降低燃烧过程中产生的氮氧化物(NOx)的排放。
它是一种相对经济和有效的脱硝方法,广泛应用于燃煤锅炉、电厂和工业烟气排放等领域。
SNCR脱硝技术的基本原理是在燃烧过程中,通过向燃烧室或烟气道喷射一种或多种适当的还原剂,如氨水、尿素溶液等,使其与燃烧产物中的NOx发生反应生成氮气和水。
SNCR脱硝技术的优点在于不需要使用昂贵的催化剂,操作简单、成本低,但其脱硝效率相对较低,通常在30%~70%之间。
1.确定最佳喷射位置:喷射位置的选择是关键的一步。
通常在燃烧室出口、过热器顶部和脱硝催化剂之前是合适的喷射位置。
通过调整喷射位置可以达到最佳脱硝效果。
2.确定还原剂投入量:还原剂的投入量也是决定脱硝效率的重要因素。
适当的投入量可以使还原剂与NOx充分反应,但过量投入可能会产生副产品,如氨逃逸。
投入量可以通过实验室试验和现场测试得出。
3.确定喷射时间:喷射时间的控制也是关键的一步。
通常根据燃烧过程中的NOx生成特征,选择合适的喷射时间。
一般在燃烧室温度较高的区域喷射,确保还原剂与NOx充分接触并发生反应。
4.确定温度和浓度范围:最适宜的还原剂浓度和温度范围取决于燃料种类、燃烧设备类型等因素。
一般来说,在1400℃~1600℃的温度下,5%~12%的氨浓度是有效脱硝的范围。
5.监测和调整:在实际运行中,需要不断监测脱硝效果和排放水平,并根据监测结果进行调整。
可以通过在线氮氧化物分析仪监测排放浓度,并根据结果调整还原剂投入量等参数。
总之,SNCR脱硝技术是一种经济有效的脱硝方法,在工业排放和燃煤锅炉等领域得到广泛应用。
通过合理的喷射位置、还原剂投入量、喷射时间和温度浓度范围的选择,可以实现较低的NOx排放水平。
SNCR技术简介

烟气脱硝SNCR工艺选择性非催化还原SNCR1 、概念:SNCR(Selective NonCatalytic Reduction)——选择性非催化还原法脱硝技术。
这是一种向烟气中喷氨气或尿素等含用NH3基的还原剂在高温范围内,选择性地把烟气中的NO x还原为N2和H2O。
国外已经投入商业运行的比较成熟的烟气脱硝技术, 它建设周期短、投资少、脱硝效率中等, 比较适合于对中小型电厂锅炉的改造, 以降低其NO x排放量。
研究表明,在927~1093 ℃温度范围内,在无催化剂的作用下,氨或尿素等氨基还原剂可选择性地把烟气中的NO x还原为N2和H2O,基本上不与烟气中的氧气作用,据此发展了SNCR 法。
向烟气中喷氨或尿素等含有NH3基的还原剂,在高温(900~1100℃)和没有催化剂的情况下,通过烟道气流中产生的氨自由基与NO X反应,把NO X还原成N2和H2O。
2 、反应原理2.1 NH3作还原剂4NH3+6NO→5N2+6H2O950℃范围内4NH3+5O2→4NO+6H2O2.2 (NH4)2CO作还原剂(NH4)2CO→2NH2+2CONH2+NO→N2+H2OCO+NO→N2+CO23、工艺流程放空锅炉预热器反应器废热锅炉膨胀器4、影响SNCR脱硝因素4.1 还原剂喷入点的选择喷入点必须保证使还原剂进入炉膛内适宜反应的温度区间(900~1100℃)。
适宜的温度区间被称作温度窗口。
4.2 合适的停留时间任何反应都需要时间,所以还原剂必须和NOX在合适的温度区域内有足够的停留时间,这样才能保证烟气中的NOX的还原率。
4.3 适当的NH3/NOX摩尔比根据化学反应方程式NH3/NOX摩尔比应该为1,但实际上都要比1大才能达到较理想的NOX还原率,但摩尔比过大,氨逃逸量加大,同时会增加运行费用。
4.4 还原剂与烟气的充分混合还原剂和烟气的充分混合是保证充分反应的技术条件之一,类同于燃烧反应的湍流度。
(完整版)选择性催化还原法(SCR)烟气脱硝技术概述

选择性催化还原法(SCR)烟气脱硝技术概述王清栋(能源与动力工程1302班1306030217)摘要:对选择性催化还原脱硝技术进行概述,分析了其机理,并简要介绍催化剂的种类及钝化与中毒机理.最后,对SCR技术进行总结与展望.关键词:选择性催化还原;烟气脱硝;氮氧化物Overview of Selective catalytic reduction (SCR) flue gas denitrationWang Qingdong(Power and Energy Engineering, class 1302 1306030217) Abstract: selective catalyst reduction flue gas denitration is reviewed. Its mechanism is analysed and catalyst is given a brief introduction. Catalyst passivation and poisoning mechanism is analysed. Finally, the summary and prospect of the technology are given.Keywords: SCR; NO x; flue gas denitration.1.前言氮氧化物是造成酸雨的主要酸性物质之一,是形成区域微细颗粒物污染和灰霾的主要原因,也是形成光化学烟雾的主要污染物,会引起多种呼吸道疾病,是“十二五”期间重点控制的空气污染物之一.2011年初通过的“十二五”规划纲要,要求NO x减少10%,从而使NO x成为我国下一阶段污染减排的重点.烟气脱硝技术与NO的氧化、还原及吸附特性有关.根据反应介质状态的不同,分为干法脱硝和湿法脱硝.目前,已经在火力发电厂采用的烟气脱氮技术主要是选择性催化还原(SCR)和选择性非催化还原(SNCR),其中采用最多的主流工艺是选择性催化还原法.2.SCR反应原理选择性催化还原脱氮是在一定温度和有催化剂存在的情况下,利用还原剂把烟气中的NO x还原为无毒无污染的N2和H2O.这一原理与1957年在美国发现,该工艺最早却在20世纪70年代的日本发展起来的.SCR原理图如图一所示氨气被稀释到空气或者蒸汽中,然后注入到烟气中脱硝,在催化剂表面,氨与NO x 生成氨气和水.SCR过程中的主要反应如下:4NO+4NH3+O24N2+6H2O基于V2O5的催化剂在有氧的条件下还对NO2的减少有催化作用,其反应式为2NO2+4NH3+O23N2+6H2O在缺氧的条件下,NO 的反应式变成6NO+4NH 35N 2+6H2O 在缺氧的条件下,NO2的反应式变成6NO 2+8NH 37N 2+12H 2O在没有催化剂的情况下,上述化学反应只能在很窄的温度范围内(850~1000)进行,℃通过选择合适的催化剂,可以使反应降低,并且使反应温度范围扩大(250~420),便于℃在锅炉尾部烟道的适当位置布置催化反应装置.当反应条件改变时,还可能发生副反应 4NH 3+O 22N 2+6H 2O 2 NH N 2+3H 2 4NH 3+4O 24NO+6H 2O 发生NH 3分解的反应和NH 3氧化为NO 的反应都在350以上才能进行,450反应速℃℃度明显加快.温度在300时仅有NH 3转化为N 2的副反应可能发生.℃实际使用中,催化剂通常制成板状、蜂窝状的催化原件,再将催化原件制成催化剂组件,组件排列在催化剂反应器的框架内构成催化剂层.烟气中的NO X 、NH 3和O 2在流过催化剂层时,经历以下几个过程:① NO X 、NH 3和O 2扩散到催化剂外表面并进一步相催化剂的微孔表面扩散;② NO X 和O 2与吸附在催化剂表面活性位的NH 3反应生成N 2和H 2O ;③N 2和H 2O 从催化剂表面脱附到微孔中;④微孔中的N 2和H 2O 扩散到催化剂外表面,并继续扩散到主流烟气中被带出催化层.其中,过程①-③为控制步骤,因此脱氮装置的性能不但受到化学反应速度的制约,还在很大程度上受反应物扩散速度的影响.3.SCR 催化剂简介3.1 贵金属催化剂贵金属催化剂低温催化活性优良,对NOx 还原及对NH3、CO 氧化均具有很高的催化活性,因此在SCR 过程中会导致还原剂大量消耗而增加系统运行成本。
SNCR-SCR组合脱硝技术工艺说明

SNCR-SCR组合脱硝技术工艺说明SNCR-SCR联合工艺,综合了SNCR与SCR的技术优势,扬长避短,在SNCR的基础上,与SCR相结合,可达到80%以上的脱硝效率,并降低运行费用,节省投资。
SNCR脱硝优点及原理SNCR(选择性非催化还原)烟气脱硝技术主要使用含氮的还原剂在850~1150℃温度范围喷入含NO的燃烧产物中,发生还原反应,脱除NO,生产氮气和水。
该技术以炉膛为反应器,目前使用的还原剂主要是尿素和氨水。
■ SNCR脱硝性能保证脱硝效率:40%~70%NH3逃逸率:<10ppm装置可用率:>97%■ SNCR脱硝技术原理(尿素为还原剂)4NO+2CO(NH2)2+O2=4N2+2CO2+4H2O■ SNCR脱硝系统组成SNCR脱硝系统主要包括尿素存储系统、尿素溶液配制系统、尿素溶液储存系统、溶液喷射系统和自动控制系统等。
SCR脱硝优点及原理SCR(选择性催化还原)脱硝技术是指在催化剂和氧气的存在下,在320℃~427℃温度范围下,还原剂(无水氨、氨水或尿素)有选择性地与烟气中的NOx反应生成无害的氮和水,从而去除烟气中的NOx,选择性是指还原剂NH3和烟气中的NOx发生还原反应,而不与烟气中的氧气发生反应。
■ SCR脱硝性能保证烟气阻力增加值:600~1000paNH2/NO2摩尔比:<1催化剂使用寿命:24000h脱硝效率:80%~90%NH3逃逸率:SO2→SO3转换率:<1%■ SCR脱硝技术原理4NO+4NH3+O2=4H2+6H2O4NH2+2NO2+O2=3N2+6H2O■ SCR脱硝系统组成SCR脱硝系统主要包括SCR反应器及辅助系统、还原剂储存及处理系统、氨注入系统、电控系统等。
SNCR-SCR组合脱硝优点及原理■ SNCR-SCR脱硝性能保证脱硝效率:≥80%NH3逃逸率:<3ppm烟气阻力增加值:≈220pa■ SNCR-SCR脱硝技术原理CO(NH2)2+2NO=2N2+CO2+2H2OCO(NH2)2+H2O=2NH2+CO2NO+NO2+2NH3=2N2+3H2O4NO+4NH3+O2=4H2+6H2O2NO2+4NH3+O2=3H2+6H2O■ SNCR-SCR脱硝系统组成SNCR-SCR脱硝系统主要包括还原剂存储与处理系统,SCR反应器及辅助系统、氨注入系统、电控系统等。
SNCR技术介绍
SNCR技术介绍SNCR(Selective Non-Catalytic Reduction)是一种选择性非催化还原技术,用于降低燃烧过程中生成的氮氧化物(NOx)排放。
该技术通过在燃烧过程中引入还原剂,在高温下与NOx反应生成氮气和水,从而减少NOx排放。
SNCR主要由还原剂注入系统、反应区和混合系统三部分组成。
还原剂通常是尿素或氨水,在燃烧过程中以雾状喷射到反应区域中,与高温氮氧化物发生化学反应。
为了保证反应效果,SNCR系统通常安装在锅炉或工业炉等高温燃烧设备的尾部。
SNCR技术在降低NOx排放方面具有许多优势。
首先,它是一种成本较低的技术,部署和维护成本相对较低。
其次,SNCR技术可以适用于多种燃料类型和燃烧设备,包括煤炭、石油和天然气等。
这使得SNCR成为一种灵活性较高的选择,适用于不同行业和工艺。
此外,SNCR技术在操作上相对简单,不需要添加催化剂,也不会严重影响燃烧设备的性能。
它可以与大型锅炉、加热器和工业炉等设备集成。
此外,SNCR技术的实施周期相对较短,可以在短时间内进行安装和调试。
SNCR技术的局限性主要包括两个方面。
首先,SNCR技术对反应温度和NOx浓度有一定的要求。
反应温度需要在高温区域范围内,才能保证还原剂与氮氧化物的充分反应。
NOx浓度也需要在可控范围内,过高或过低的浓度都会影响还原效果。
其次,SNCR技术对安装位置的要求较高。
由于还原剂的喷射需要在高温区域进行,因此SNCR系统的位置选择应避免在过冷的区域,以防止还原剂在喷射中过早和过度分解。
此外,SNCR系统的设计也需要考虑烟气流动和混合的影响,以确保还原剂与氮氧化物的充分混合。
总的来说,SNCR技术是一种有效降低燃烧过程中NOx排放的技术。
它具有成本低、适用性广、操作简单等优点,但也要注意反应温度和NOx浓度的要求,以及安装位置和混合效果的影响。
随着环保法规的不断加强,SNCR技术将在降低工业排放中发挥重要作用。
SNCR脱硝原理
SNCR脱硝原理SNCR是Selective Non-Catalytic Reduction的缩写,意为选择性非催化还原。
它是一种常用的脱硝技术,主要用于降低燃烧过程中产生的氮氧化物(NOx)排放。
SNCR脱硝的原理是通过向燃烧系统中喷射适量的还原剂,如氨水(NH3)或尿素溶液(CO(NH2)2)来减少NOx的生成量。
这些还原剂在高温下与NOx发生反应,生成氮气(N2)和水蒸气(H2O)。
该反应的化学方程式如下所示:4NO+4NH3+O2→4N2+6H2O脱硝反应主要发生在燃烧区域的高温区域。
在SNCR中,关键是通过优化还原剂的投入位置、投入量和投入时间来实现脱硝效果的最大化和浓度峰值的最小化。
此外,还有其他因素如燃烧条件、燃料成分和各种污染物的共存也会对脱硝效果产生影响。
SNCR脱硝技术的优点之一是操作简单,所需设备配置较少。
它不需要催化剂,因此不存在催化剂堵塞、腐蚀和磨损的问题,降低了维护成本。
此外,SNCR脱硝可以适应多种不同类型的燃烧设备,包括燃煤锅炉、工业炉和发电机组等。
然而,SNCR脱硝也存在一些局限性。
首先,它对烟气温度和氧气浓度非常敏感。
烟气温度过低会降低脱硝效果,而温度过高会导致产生更多的氮氧化物。
此外,SNCR脱硝只能对NOx进行一次性减排,无法再进一步降低排放浓度。
最后,还原剂的投入量和投入位置需要精确控制,否则可能导致氨气(NH3)或尿素溶液(CO(NH2)2)的过量喷射,造成氨(NH3)滞留和氨的二次氧化,产生亚硝酸盐(NO2-)的高浓度。
为了克服SNCR脱硝的这些不足,还可以与其他脱硝技术结合使用,例如增加选择性催化还原(SCR)催化剂的安装装置,以进一步降低NOx 排放。
SNCR和SCR的结合使用能够提高脱硝效率和稳定性,同时降低氨气和氨的二次氧化物的排放。
总而言之,SNCR脱硝是一种有效的降低燃烧过程中产生的氮氧化物排放的技术。
通过调整还原剂的投入量、投入位置和时间以及优化其他相关因素,可以最大程度地减少NOx的生成量,并减少对环境的负面影响。
脱硝技术方案
脱硝技术方案一、引言脱硝技术是用于降低燃煤电厂和工业排放的氮氧化物(NOx)水平的关键环境保护技术之一。
本文将就脱硝技术的原理、分类以及相关方案进行讨论。
二、脱硝技术原理1.选择性催化还原(Selective Catalytic Reduction, SCR)SCR技术是一种有效的脱硝方法,通过在催化剂(通常是氨基钛酸盐)的催化下,将废气中的氮氧化物与尿素(NH3)或氨水(NH4OH)进行催化反应,生成氮气(N2)和水蒸气(H2O)。
2.非选择性催化还原(Non-Selective Catalytic Reduction, SNCR)SNCR技术是另一种常用的脱硝方法,通过在高温下向废气喷射氨水或尿素溶液,使氨水或尿素在高温下分解产生氨基自由基,进而与氮氧化物发生反应,生成氮气和水。
三、脱硝技术方案在不同的应用场景下,有多种脱硝技术方案可供选择。
下面将介绍几种常见的脱硝技术方案。
1. SCR技术方案SCR技术方案需要安装催化剂反应器,将NH3或NH4OH溶液喷入废气管道,并通过反应器内的催化剂使废气中的NOx转化为无害物质。
这种技术方案具有高效、稳定的特点,适用于大型电厂等高排放点。
2. SNCR技术方案SNCR技术方案相对于SCR技术方案来说,成本较低,实施相对简单。
通过向燃烧系统中喷射氨水或尿素溶液,实现氨水与NOx的反应,将NOx转化为氮气和水。
然而,SNCR技术对温度、氨水与NOx的比例等因素较为敏感,需要仔细控制以达到最佳效果。
3. 吸收塔脱硝技术方案吸收塔脱硝技术方案是另一种常用的脱硝方式。
该方案通过将氨水/尿素溶液喷淋于吸收塔,废气通过塔体时,氮氧化物与溶液中的氨水/尿素发生反应,最终达到脱硝的目的。
吸收塔脱硝技术方案具有较高的脱硝效率,适用于较小规模的燃煤电厂。
4. 生物脱硝技术方案生物脱硝技术方案是利用硝化细菌和反硝化细菌的作用,通过生物反应器将废气中的氮氧化物转化为氮气。
这种技术方案适用于低浓度的烟气脱硝,但对于高浓度烟气脱硝效果较差。
sncr方案
SNCR方案1. 简介SNCR(Selective Non-Catalytic Reduction)是一种选择性非催化还原技术,用于减少NOx(氮氧化物)的排放。
该技术通过注入还原剂在高温下与NOx反应,将其转化为无害的氮气和水。
本文将介绍SNCR方案的原理、应用场景、优点和缺点,并提供一些实施SNCR方案的经验和建议。
2. 原理SNCR方案的核心原理是在燃烧过程中注入适量的还原剂,通常是氨水(NH3)或尿素(NH2CONH2),与燃烧产生的NOx发生反应,生成氮气和水蒸气。
反应的化学方程式如下:2NO + 2NH3 + 1/2O2 -> 2N2 + 3H2O通过合理控制还原剂的注入量、注入位置和温度,可以实现有效的NOx还原效果。
3. 应用场景SNCR方案主要应用于高温烟气净化系统,例如:•燃煤发电厂•工业炉窑•气体或石油炼制装置由于SNCR方案在降低NOx排放方面具有一定的局限性,通常需要与其他净化技术(如SCR)结合使用,以实现更高的排放标准要求。
4. 优点SNCR方案相比其他烟气净化技术具有以下优点:•技术成熟:SNCR技术已经经过多年应用和改进,具备较高的可行性和稳定性。
•成本较低:相比SCR技术,SNCR方案的投资和运营成本更低,适用于一些经济条件较为有限的项目。
•管理和维护简单:SNCR系统相对简单,操作和维护成本较低。
5. 缺点然而,SNCR方案也存在一些缺点:•NOx还原效率有限:相比SCR技术,SNCR方案的NOx还原效率较低。
•温度敏感性较大:SNCR反应对温度的依赖性较大,需要合理控制燃烧过程的温度。
•还原剂副产物:SNCR过程中,还原剂可能产生额外的氨(NH3)或尿素分解产物,影响环境。
6. 实施经验和建议实施SNCR方案时,可以参考以下经验和建议:•选择合适的还原剂:根据具体燃烧过程和NOx排放水平,选择适合的还原剂(氨水或尿素)。
•优化注入位置和温度:合理确定还原剂的注入位置和温度,以提高SNCR方案的效果。