高考最新-2018---2018年广东省高考数学卷 精品
高三数学-2018广东广州质检 精品

高三数学训练题2018年2月12日15:00—17:00本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.共150分.考试时间120分钟.第 I 卷 (选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、考生号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人员将本试卷和答题卡一并收回. 参考公式:如果事件A 、B 互斥,那么球的表面积公式P (A +B )=P (A )+P (B ) S =4πR 2如果事件A 、B 相互独立,那么其中R 表示球的半径 P (A ·B )=P (A )·P (B )球的体积公式 如果事件A 在一次试验中发生的概率是P .334R V π=那么n 次独立重复试验中恰好发生k 次的概其中R 表示球的半径率k n kk n n P P C k P --=)1()(一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若U ={1,2,3,4,5},M ={1,2,4},N ={3,4,5},则U (M ∩N )=(A ){4} (B ){1,2,3} (C ){1,3,4} (D ){1,2,3,5}(2)2211lim 21x x x x →-=--(A )12 (B )23(C )0 (D )2(3)不等式 |x |≤|x +2| 的解集是 (A ){x |x ≥-1} (B ){x |x ≤-1} (C ){x |-1≤x <1} (D ){x |x ≥1} (4)直线y =m 与圆x 2+(y -2)2=1相切,则m 的值是(A )1 (B )3 (C )1或3 (D )2或4(5)在△ABC 中,“A =3π”是“sinA 2(A )充分而不必要条件 (B )充分且必要条件(C )必要而不充分条件 (D )既不充分也不必要条件(6)在等差数列{a n }中,a 1+a 2+a 3=3,a 28+a 29+a 30=165,则此数列前30项和等于(A )810 (B )840 (C )870 (D )900 (7)椭圆2291x y +=的两个焦点为F 1、F 2,过F 1作PF 1⊥x 轴,交椭圆于点P ,则|PF 2|=(A )173 (B )53 (C )13 (D )83(8)39(x-的展开式中常数项是(A )84 (B )-84 (C )36 (D )-36(9)已知球的表面积为4π,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则球心O 到平面ABC 的距离为 (A(B(C(D(10)函数22()sin 3cos f x x x =+的最小正周期是(A )4π (B )2π(C )π (D )2π (11)将4名医生分配到3间医院,每间医院至少1名医生,则不同的分配方案共有(A )48种 (B )12种 (C )24种 (D )36种(12)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在棱AB 上,且AM =13,点P 是平面ABCD 上的动点,且动点P 到直线A 1D 1的距离与点P 到点M 的距离的平方差为1,则动点P 的轨迹是 (A )圆 (B )抛物线 (C )双曲线 (D )直线_ B _1_ A _1_ D _1 _ C _1 _ C _ B_ A _ D_ P _ M高三数学训练题第 Ⅱ 卷 (非选择题 共90分)注意事项:⒈ 第Ⅱ卷共4页,用钢笔或圆珠笔直接答在试题卷中. ⒉ 答卷前将密封线内的项目填写清楚.二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)设复数12z =-+,则2z z += (14)某单位业务人员、管理人员、后勤服务人员人数之比依次为15∶3∶2.为了了解该单位职员的某种情况,采用分层抽样方法抽出一个容量为n 的样本,样本中业务人员人数为30,则此样本的容量n =:______ ___________班别:___________姓名:_______ _______学号:_________封 线 内 答 题(15)设x ,y 满足约束条件10x y y x y +≤⎧⎪≤⎨⎪≥⎩,则z =3x +y 的最大值是(16)已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是①两条平行直线 ②两条互相垂直的直线 ③同一条直线 ④一条直线及其外一点在上面结论中,正确结论的编号是 (写出所有正确结论的编号). 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17)(本题满分12分)如图,在一段线路中并联着3个自动控制的常开开关J A 、J B 、J C ,只要其中有1个开关能够闭合,线路就能正常工作.假定在某段时间内开关J A 、J B 、J C 能够闭合的概率分别是45、35、25,计算:(Ⅰ)在这段时间内恰好3个开关都闭合的概率;(Ⅱ)在这段时间内线路正常工作的概率.(18)(本题满分12分)已知向量(cos ,sin )a θθ=,向量(3,1)b =.(Ⅰ)当a b ⊥时,求tan 2θ; (Ⅱ)求|a b +|的最大值.(19)(本题满分12分)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =12AA 1,点G 为CC 1上的点, 且114CG CC . (Ⅰ)求证:C D 1⊥平面ADG ;(Ⅱ)求二面角C -AG -D 的大小(结果用反余弦表示):_________________班别:____________姓名:______________学号:______________ D(20)(本题满分12分)已知数列{a n }的前n 项和为S n ,3(1)2n n S a =-(n ∈N *)(Ⅰ)求数列{a n }的通项公式;(Ⅱ)求1lim n n n SS →∞+.(21)(本题满分12分)已知抛物线C 的顶点在原点,以双曲线22115y x -=的左准线为准线.(Ⅰ)求抛物线C 的方程;(Ⅱ)若直线:1(1)l y k x -=-(k ≠0)垂直平分抛物线C 的弦,求实数k 的取值范围._______班别:____________姓名:________ ______学号:_________不 要 在 密 封 线 内 答 题(22)(本题满分14分)f x a x(a∈R)设()ln(Ⅰ)求f(x)的单调区间;(Ⅱ)证明ln x<高三数学训练题参考答案一、DBACA BAADC DB 二、(13)-1 (14)40 (15)3 (16)①、②、④ 三、(17)解:(Ⅰ)记这段时间内开关J A 能够闭合为事件A ,开关J B 能够闭合为事件B ,开关J C 能够闭合为事件C ,则4()5P A =,3()5P B =,2()5P C = … … … … … 3分根据相互独立事件同时发生的概率公式,在这段时间内恰好3个开关都闭合的概率是43224()()()()555125P A B C P A P B P C ⋅⋅=⋅⋅=⨯⨯=… … … … … 5分 答:在这段时间内恰好3个开关都闭合的概率是24125… … … … 6分(Ⅱ)依题意在这段时间内线路正常工作,就是指3个开关中至少有1个能够闭合. 这段时间内3个开关都不能闭合的概率是1236()()()()[1()][1()][1()]555125P A B C P A P B P C P A P B P C ⋅⋅=⋅⋅=---=⨯⨯=… 9分 因此,这段时间内线路正常工作的概率是1191()125P A B C -⋅⋅= … … … …11分答:在这段时间内线路正常工作的概率是119125… … … … … 12分(18)解:(Ⅰ)3cos sin 0a b θθ⊥⇔+= … … … … … 2分tan 0tan θθ+=⇔= … … 4分∴22tan tan 21tan θθθ==- … … … … … 6分(Ⅱ)(cos ,sin ))(cos 1)a b θθθθ+=+=+ … … … … 7分 |a b +| … … 8分== … … … … … 9分2= … … 10分当0sin(60)1θ+=时,max ||53a b += … … 12分 (19)解法1(空间向量法)设AB =1,11,,2DA i DC j DD k ===,以i 、j 、k 为坐标向量建立空间直角坐标系D -xyz … … … … … 1分则D (0,0,0),A (1,0,0),C (0,1,0),D 1(0,0,2),B (1,1,0),G (0,1,12)…… 2分(Ⅰ)∵DA =(1,0,0),DG =(0,1,12), 1CD =(0,-1,2)∴DA ·1CD =0, 10DG CD ⋅= ∴1CD DA ⊥,1CD DG ⊥ … … … … 4分 由线面垂直判定定理知CD 1⊥平面ADG(Ⅱ)∵BD =(-1,-1,0),AG =(-1,1,12),CG =(0,0,12) ∴BD ·AG =0,BD ·CG =0 ∴BD ⊥AG ,BD ⊥CG∴BD ⊥平面CAG ,即BD 为平面CAG 的法向量… … … … 8分 又C D 1⊥平面ADG ,即1CD 为平面AGD 的法向量∴〈BD ,1CD 〉是二面角C -AG -D 的平面角 … … … … 9分 且cos 〈BD ,1CD〉11||||2BD CD BD CD ⋅===…… … 11分 故二面角C -AG -D 的大小为 … … … … 12分 解法2(综合推理法)(Ⅰ)在正方体ABCD -A 1B 1C 1D 1中AD ⊥平面CDD 1,D 1C ⊂平面CDD 1 ∴CD 1⊥AD … … … … 1分在Rt △CDD 1与Rt △GCD 中,1112CD AB DD AA ==,11142CC GC CD AB ==∴1CD GC DD CD= ∴Rt △CDD 1∽Rt △GCD … … … … 3分 ∴∠CD 1D =∠GDC ,∠CDG +∠DCD 1=900 ∴CD 1⊥DG … … … … 4分又AD ∩DG =D ,AD ⊂平面ADG ,DG ⊂平面ADG , ∴CD 1⊥平面ADG … … … … 6分(Ⅱ)记DG ∩CD 1=E ,在平面ACG 中,作CH ⊥AG ,交AG 于H ,连结HE . …7分 又CD ⊥平面ADG ,由三垂线定理的逆定理知,EH ⊥AG∴∠CHE 是二面角C -AG -D 的平面角 … … … 9分设CG =1,则CC 1=4CG =4,AB =AD =12AA 1=12CC 1=2在Rt △GCD 中,CD CG CE DG ⋅===在Rt △ACG 中,AC CG CH AG ⋅=在Rt △CEH 中,EH∴cosEH CHE CH ∠==CHE ∠=为所求 … … … 12分 (20)解(Ⅰ)方法1.由113(1)2S a =-,得113(1)2a a =-,∴13a = … … … 1分当n ≥2时,1133(1)(1)22n n n n n a S S a a --=-=---13n n a a -= … … … … … … 4分 ∴数列{a n }是首项为3,公比为3的等比数列 … … … … 6分 ∴a n =3n … … … … … … 8分方法2.由1113(1)2a S a ==-,得13a = … … … … … … 1分由21223(1)2S a a a =+=-,得29a = … … … … … … 2分猜想a n =3n(n ∈N *) … … … … … … 3分 用数学归纳法证明之(略) … … … … … … 8分(Ⅱ)∵a n =3n ,∴33(1)(31)22n n n S a =-=- … … … … … … 9分∴1111()311013lim lim lim1313313()3nnn n n n n nn S S +→∞→∞→∞+---====--- … … … … 12分 (21)解(Ⅰ)双曲线22115yx -=的左准线方程是14x =- … 2分故抛物线C 的方程为2y x = … 4分(Ⅱ)设抛物线C 被直线l 垂直平分的弦PQ 的方程为0x ky c ++= … 5分 2200y x y ky c x ky c ⎧=⇒++=⎨++=⎩ … … 6分 ∴△=240k c -> … … ① … … 7分 设1122(,),(,)P x y Q x y , 则2121212,()()2y y k x x ky c ky c k c +=-+=-+-+=-又PQ 中点G 22(,)22k c k--在直线1(1)y k x -=-上∴221(1)22k k c k ---=- 即 322k k c k -+=… … … … 9分 代入①得322(2)0k k k k-+-> … … … … 10分即 32240,(2)(22)0k k k k k k k-+<+-+<解之得 20k -<<. 故k 的取值范围是(-2,0). … … … … 12分(22) 解(Ⅰ)函数f (x )的定义域为(0,+∞) … … … … 1分()af x x' (x >0) … … … … 3分①若0a ≤,则()a f x x'=->0对一切x ∈(0,+∞)恒成立 … … 4分 ②若a >0,则当x >0时,()0af x x'>⇔> 2x ⇔>222440x a x a ⇔--> … … … … 5分∴ 222x a >+ … … … … 6分222()0440f x x a x a '<⇔--<∴ 2022x a <<+ … … … … 7分 综上所述,当0a ≤时,f (x )在(0,+∞)内单调递增;当a >0时,f (x )在(0,222a +)内单调递减,在(222a +,+∞)内单调递增. … … … 8分(Ⅱ)由(Ⅰ)知g (x )=ln x 在(0,2+)内单调递减,在(2+,+∞)内单调递增. … … … 9分min ()(2ln(2g x g =+=+1ln(2=+ … … … 10分∴ln 1ln(2x ≥+. … … … 11分又 2+5<2e ,∴ 21ln(21ln 10e +>=> … … … 13分∴ ln x > … … … 14分。
高三数学-2018年广东高考模拟数学试卷(一) 精品

2018年广东高考模拟数学试卷(一)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有 一项是符合题目要求的.1.不等式031>--x x的解集是( )A .}1|{<x xB .}13|{<>x x x 或C .}3|{>x xD .}31|{<<x x2.若指数函数y=f(x)的反函数的图象经过点(2,-1),则此指数函数是( )A .x y )21(= B .x y 2= C .x y 3= D .xy 10= 3.中心在原点,准线方程为4±=x ,离心率为21的椭圆方程为( )A .1422=+y xB .1422=+y xC .13422=+y xD .14322=+y x4.函数1sin 2cos sin 22+-=x x x y 的最小正周期为( ) A .4π B .2πC .πD .π25.如果x 、y 是实数,那么xy>0是|x+y|=|x|+|y|的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件 6.已知非负实数y x ,满足0832≤-+y x 且0723≤-+y x ,则y x +的最大值是( )A .37B .38C .3D .27.拟定从甲地到乙地通话m 分钟的话费由⎡⎤⎩⎨⎧>+≤<=)4(),15.0(06.1)40(,71.3)(m m m m f 给出,其中⎡⎤m 是大于或等于m 的最小正整数,如:⎡⎤33=,⎡⎤474.3=,从甲地到乙地通话 5.2分钟的话费是( )A .3.71B .4.24C .4.77D .7.958.已知数列1,1a ,2a ,4成等差数列,1,1b ,2b ,3b ,4成等比数列,则212b a a -的值为( )A .21B .21-C .21-或21 D .419.对一切实数x ,不等式0124≥++ax x 恒成立,则实数a 的取值范围是( ) A .)2,(--∞ B .),2[+∞- C .[0,2] D .),0[+∞10.已知函数f(x)及函数g(x)的图象分别如图1、图2所示,则函数y=f(x)·g(x)的图象大致是( )二、填空题(本大题共4小题,每小题5分,共20分)11. 某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为5:3:2,现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件。
2018年高考数学卷(全国卷3)答案

据函数的解析式通过图象变换直接作图,另一个角度就是从
研究函数的性质入手去判断,常从函数的定义域、值域、特殊
点、函数的单调性、奇偶性等角度去研究识别 .
8.B 【解题思路】本题考查二项分布的概率、方差的计算 .由已
{ 知得
10p(1-p)=2.4 C410p4(1-p)6<C6 10p6(1-p)4
①,解 ②,
线的位置关系 .根据题意设直线 AB的方程为 y=k(x-1)
{ y=k(x-1),
(k≠0),联 立 抛 物 线 方 程 得 y2=4x, 消 元 并 整 理 得
( ) ( ) y2- 4ky-4=0,设 A y421,y1 ,B y422,y2 ,则 y1+y2=
( ) 4k,y1·y2 = -4 ①,由 于 →MA· M→B =
3.A 【解题思路】本题考查三视图 .由题知当咬合时,进入木构 件内部的部分看不见,需用虚线表示,且由直观图中凸出部分
的位置知 A是正确的,故选 A.
4.B 【解题思路】本题考查二倍角公式的应用 .因为 cos2α =1-
( ) 2sin2α=1-2×
1 3
2
=
7 9,故选
B.
5.C 【解题思路】本题考查二项展开式的通项公式的应用 .由于
12.B 【解题思路】本题考查对数的运算、不等式 .由于 a+b=
log0.20.3+log20.3=log0.130.2+log10.32=l lo og g00..330 0. .2 2+ ×l lo og g00..332 2=
log0.3lo0g.02.3×0.lo4g0.32,因为 log0.30.4>0,log0.30.2>0,log0.32<0,
①
得
(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上。
写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设1i2i 1iz -=++,则||z = A .0 B .12C .1D .2 2.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。
为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .12 5.设函数32()(1)f x x a x ax =+-+。
若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FNA .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。
高三数学-[原创]2018高考模拟题(广东卷) 精品
![高三数学-[原创]2018高考模拟题(广东卷) 精品](https://img.taocdn.com/s3/m/4fbf681e03d8ce2f00662357.png)
绝密★启用前 试卷类型:A2018年普通高等学校招生模拟考试(广东卷)数 学 命题:高贵彩 2018-5-28本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)题两部分,共4页。
满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号填写在答题卡上。
用2B 铅笔将答题卡试卷类型(A )填涂在答题卡上。
在答题卡右上角的“试室号”和“座位号”栏填写试室号、座位号,并用2B 铅笔将相应的试室号、座位号信息点涂黑。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,334R V π=那么n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(第一部分 选择题(共50分)一、选择题:本大题共10小题;每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知复数()z a i a R =+∈对应的点在第一象限,且2z 为纯虚数,则z 的值是(A)1 (B(2)已知(*)nn N ∈的展开式中含有常数项,则n 的最小值为 (A)3 (B)4 (C )5 (D)6 (3)已知等差数列{}n a 的前n 项和为n S ,若24a =-,58a =,则15S = (A)60 (B)120 (C)240 (D )300(4)已知集合{}2230M x x x =--=,{}24210N x x x =-->,则()U C M N =(A){}2230x x x --< (B){}2230x x x -->(C ){}24210x xx --> (D){}24210x xx --≤(5)已知m 、n 、l 是互不重合的直线,α、β、γ是互不重合的平面,下列命题:①若//m l ,//n l 则//m n ; ②若//l α,//l β,则//αβ;③若α、β、γ两两互相垂直,m 、n 、l 是它们的交线,则m 、n 、l 两两互相垂直; ④若m αβ=,n βγ=,l γα=,则////m n l ;其中正确的个数是(A)1 (B )2 (C)3 (D)4(6)若椭圆与抛物线24(0)y px p =>有相同的焦点F ,抛物线的准线l 关于F 的对称直线1l 恰好是椭圆的焦点F 对应的准线,则椭圆的离心率为 (A)12(C)13 (D(7)一排共有8个座位,甲、乙、丙三人按如下方式入坐:每人左、右两旁都有空座位,且甲必须在另两人之间,则不同的坐法共有(A )8种 (B)24种 (C)40种 (D)120种(8)已知由下列各组命题构成的复合命题中同时满足:p 或q 为真,p 且q 为假,非p 为真的是(A)p2与224x x --≥同解; q :2256045x x x x -+≤-+的解为23x ≤≤;(B)p :集合{}(,)|260x y x y +-<表示的是直线260x y +-=左下方的平面区域;q :不等式组5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩表示的平面区域是一个斜三角形;(C )p :函数()y f x =在定义域内单调是()y f x =有反函数的充要条件;q :若()y f x =是定义在R 上的奇函数,则(0)0f =;(D)p :导数为零的点一定是极值点, q :函数的极大值一定是最大值 (9)设函数()y f x =的定义域为R ,对于任意x 、y R ∈,都有()()()f x y f x f y +=+,当0x >时,()0f x <,则函数()y f x =为(A)奇函数,且在R 上为增函数; (B )奇函数,且在R 上为减函数; (C)偶函数,且在R 上为增函数; (D)偶函数,且在R 上为减函数;(10)已知G 为ABC ∆的重心,过G 的直线分别交AB 、AC 于M 、N ,AM xAB =,AN yAC =,则11x y+= (A)2 (B )3 (C)12(D)13第二部分 非选择题(共100分)二、填空题:本大题共4小题,每小题5分,共20分.答案填在题中横线上. (11)已知tan 2α=,则cos 2α=___________.(12)已知P 、A 、B 、C 是同一球面上的四个点,且PA 、PB 、PC 两两互相垂直,2PA PB PC ===,则三棱锥P ABC -的体积为______ ,所在球的表面积为_________.(13)已知254(1)()17(1)x x x f x x ax x ⎧+-<-⎪=+⎨⎪+≥-⎩在R 上连续,则(1)f =______________. (14)从原点出发的某质点,按向量(0,1)a =移动的概率为23,按向量(0,2)a =移动的概率为13,设质点到达点(0,)n 的概率为n p ,则2p =______ ,n p 、1n p +、2n p +满足的关系式是________. 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分12分)在四边形ABCD 中,对角线AC 恰好平分DAB ∠,060B ∠=,7AC =,6AD =,ADC S ∆=求AB 的长度. (16)(本小题满分14分)游客甲与射击馆教练乙进行娱乐性射击比赛,已知甲每次射击击中目标的概率是0.3, 乙每次射击击中目标的概率是0.7.(Ⅰ)比赛规定:若命中目标就停止射击,不中则继续射击,但每人最多射击3次.记甲射击的次数为1ξ,乙射击的次数为1η,写出1ξ与1η的分布列;(Ⅱ)比赛规定:乙先让甲4分,然后每人射击5次,甲每击中一次4分,乙每击中一次记3分;试比较甲的最后分数2ξ与乙的最后分数2η的期望值.(17)(本小题满分14分)若函数32()f x x ax bx c =+++在1x =-与1x =处均有极值,且该函数的极大值为2. (Ⅰ)求()f x 的解析式;(Ⅱ)设()y f x =的图象对应的曲线为M ,点111(,)P x y 在曲线M 上,过点1P 引曲线M 的切线,切于点222(,)P x y ,再过点2P 引曲线M 的切线,切于点333(,)P x y ,…,如此继续下去,依次得到点444(,)P x y …(,)n n n P x y …,任意*n N ∈均有1n n x x +≠, 若11x =,求123n x x x x +++++的值.CDB A(18)(本小题满分14分)如图所示,ABCD 是边长为2a 的正方形,PB ⊥面ABCD ,//MA PB ,2PB MA =,PM 与面ABCD 所成的角为1arctan2,E 是PD 的中点 (Ⅰ)求证://ME 面ABCD ;(Ⅱ)求点B 到平面PMD 的距离;(Ⅲ)求平面PMD 与面ABCD 所成的锐二面角的余弦值.(19)(本小题满分14分)如图,ABC ∆的周长为18,且2CA CB =,以A 、B 为焦点,32为离心率的双曲线M 恰好经过点C ,(Ⅰ)求双曲线M 的标准方程;(Ⅱ)设E 、F 是双曲线M 上的两点,点5(2,)2N 为线段EF 的中点,线段EF 的垂直平分线交双曲线M 于G 、H 两点,判断E 、F 、G 、H 四点是否共圆?若共圆,写出该圆的方程,若不共圆,说明理由.(20)(本小题满分12分) 设0t >,()f t =()g t =(Ⅰ)求()f t 的最小值及()g t 的最大值; (Ⅱ)设a =,b =,c x y =+,试讨论是否存在正数p ,对于任意的正数x和y ,以a 、b 、c 为三边长的三角形存在?若存在,求出p 的取值范围,若不存在,说明理由.参考答案及评分标准一、选择题:本大题考查基本知识和基本运算,每小题5分,满分50分.1.B2.C3.D4.C5.B6.D7.A8.C9.B 10.B 二、填空题:本大题考查基本知识和基本运算,每小题5分,满分20分. 第12与14小题的第一空均为2分,第二空均为3分,11. 35-; 12. 43, 12π; 13. 8 14. 79, 211233n n n p p p ++=+三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 15.本小题主要考查三角函数的基本公式、三角形的面积公式、正弦定理、余弦定理等基本知识,以及推理和运算能力.满分12分.[解]由题设知:176sin 22CAD =⨯⨯∠,得sin 14CAD ∠=……3分 ∵对角线AC 恰好平分DAB ∠∴sin 14CAB ∠=,………4分 法一:∴11cos 14CAB ∠=……………………5分 ∵060B ∠=∴111sin 1421427ACB ∠=+⨯=…………………9分 ∵sin sin AB ACACB B=∠ ∴8AB =………………12分法二:∵060B ∠=, sin sin BC ACCAB B=∠ ∴5BC =…………7分∴22249525cos60AC AB AB ==+-⨯ 即25240AB AB --=………10分 ∴8AB =………12分16.本小题主要考查概率、随机变量的基本知识,运用数学知识解决问题的能力,以及推理和运算能力.满分14分 [解](Ⅰ)由题设知:11ξ=、2、3; 则1(1)P ξ==0.3, 1(2)P ξ==0.7×0.3=0.21, 1(3)P ξ==0.72=0.49∴1ξ的分布列………………………………………3分1(1)P η==0.7,1(2)P η==0.3×11η=、2、3;0.7=0.21,1(3)P η==0.32=0.18CDBA∴1η的分布列………………………………………6分数为ξ, 乙击中的次数为η.则(Ⅱ)设甲击中的次~(5,0.3)B ξ,~(5,0.7)B η……………9分 ∴50.3 1.5E ξ=⨯=,50.7 3.5E η=⨯=………………11分 由题设知:244ξξ=+, 23ηη=∴24410E E ξξ=+=, 2310.5E E ηη==………………………13分 ∴22E E ξη<…………………………14分17.本小题主要考查导数的应用、数列及数列极限等知识,考查运用数学知识,分析问题和解决问题的能力.满分14分.[解](Ⅰ)由题设知:2'()32f x x ax b =++ 且 '(1)0'(1)0f f -=⎧⎨=⎩ 即2323a b a b -=⎧⎨+=-⎩…………2分 ∴03a b =⎧⎨=-⎩'()3(1)(1)f x x x =-+ 3()3f x x x c=-+……………4分 ∴当(,1)(1,)x ∈-∞-+∞时'()0f x >,当(1,1)x ∈-时'()0f x <∴(1)2f -= 即132c -++=……………………………………6分 ∴0c = 3()3f x x x =-……………………………………7分 (Ⅱ)由题设知:111'()n nn n ny y f x x x +++-=-………………………………9分由(Ⅰ)得222111333n n n n n x x x x x +++++-=- ∴11(2)()0n n n n x x x x +++-= 即112n n x x +=-………………………………11分 ∴由11x =知{}n x 是以1为首项,12-为公比的等比数列…………………………12分 ∴1231121()3n x x x x +++++==--…………………………14分18.本小题主要考查直线与平面位置及所成角、二面角及点到平面的距离、空间向量等基础知识,考查空间想象能力,逻辑思维能力与运算能力. 满分14分. [解法一](Ⅰ)证明:设AC BD O =,连OE∵ABCD 是边长为2a 的正方形,E 是PD 的中点∴//OE PB ,2PB OE = ∵//MA PB ,2PB MA =∴四边形MAOE 为平行四边形……………2分∴//ME OA∴//ME 面ABCD (4)分(Ⅱ)解:作BG PD ⊥于G ,取PB 的中点N ,连MN ,由(Ⅰ)知AC BD ⊥,//MN AB ,BD =∵PB ⊥面ABCD∴AC PB ⊥,AB 为PM 在面ABCD 内的射影. ∴AC ⊥面PBD ∴ME ⊥面PBD ∴ME BG ⊥∴BG ⊥面PMD ,即BG 点B 到平面PMD 的距离………………………7分 ∵PM 与面ABCD 所成的角为1arctan2∴22a AB MN PN PB ====……………………………9分∴BG =,即点B 到平面PMD …………………………11分 (Ⅲ)由题设及(Ⅱ)知:BG 与BP 所成的角与平面PMD 与面ABCD 所成的二面角相等或互补,……12分cos BG PBG PB ∠==∴平面PMD 与面ABCD 14分 [解法二]由题设知:以B 为原点, BC 、AB 、BP 所在直线分别为x 轴、轴y 、z 轴如图示建立空间直角坐标系. …………………1分取PB 的中点N ,连MN ,由PB ⊥面ABCD ,//MA PB 知AB 为PM 在面ABCD 内的射影∵PM 与面ABCD 所成的角为1arctan2,2PB MA =,E 是PD 的中点. ∴22a AB MN PN PB ====2PB MA =…………………3分∴(0,2,0)A a -,(0,0,0)B ,(2,0,0)C a ,(0,0,2)P a ,(0,2,)M a a -,(,,)E a a a -∴(,,0)ME a a =,(0,2,0)BA a =-,(2,0,0)BC a =,(0,2,)PM a a =--,(0,0,2)BP a =∴1()2ME BC BA =-…………………6分 ∴//ME 面ABCD …………………7分设点B 到平面PMD 的距离为d ,平面PMD 与面A B C D 所成的锐二面角为θ,(,,)n x y z =,且n ⊥面PMD∴002n ME ax ay n PM ay az⎧==+⎪⎨==--⎪⎩ 即2x y z y =-⎧⎨=-⎩ 取1y =-得(1,1,2)n =-……………10分∴6n BP dn===…………………12分cos θ=26n BP n BP==…………………14分 19.本小题主要考查直线、圆、双曲线的基本知识,平面解析几何的基本方法和综合解题能力.满分14分.[解](Ⅰ)设双曲线M 的标准方程为22221(0,0)x y a b a b-=>>,c =则2C A C Ba-=由题设知:4CA a =,2CB a =,6218a c +=,32c a =………………3分 ∴2a =,3c =,b =4分∴双曲线M 的标准方程为22145x y -=………………5分 (Ⅱ)法一:设11(,)E x y 、22(,)F x y ,33(,)G x y 、33(,)H x y , 线段GH 的中点为00(,)P x y ,则由题设知:124x x +=,125y y +=,由(Ⅰ)知:2222112214545x y x y -==- 得12121y y x x -=- ∴直线EF 的方程为2210x y -+=,直线GH 的方程为2290x y +-=………8分由224522101y x x y -+=⎧⎪⎨-=⎪⎩知24210x x --=有1221x x =-,得EF =9分由224522901y x x y +-=⎧⎪⎨-=⎪⎩知2361010x x +-=有3436x x +=-,34101x x =-,得10GH =∴018x =-,4502y =,PN =,PA PB ===11分∴E 、F 在以线段G H 为直径的圆上,即E 、F 、G 、H 四点共圆. ……………12分∴该圆的方程为2245(18)()850x y ++-=………………14分 法二:由题设知:直线EF 的斜率存在且不为零,设直线EF 的方程为52(2)y k x -=-, 11(,)E x y 、22(,)F x y ,33(,)G x y 、33(,)H x y ,线段GH 的中点为00(,)P x y ,由225245(2)1y x y k x -=-⎧⎪⎨-=⎪⎩知2225522(54)8(2)4(2)0k x k k x k -+---=有521228(2)454k k x x k -+==-, 得1k =,1221x x =-,EF =8分∴直线EF 的方程为2210x y -+=,直线GH 的方程为2290x y +-=………10分由224522901y x x y +-=⎧⎪⎨-=⎪⎩知2361010x x +-=有3436x x +=-,34101x x =-,得GH =∴018x =-,4502y =,PN =,PA PB ===11分∴E 、F 在以线段G H 为直径的圆上,即E 、F 、G 、H 四点共圆. ……………12分∴该圆的方程为22452(18)()850x y ++-=………………14分 20.本小题主要考查函数、不等式等基础知识,考查逻辑思维能力、运用知识分析问题和解决问题的能力.满分12分. [解](Ⅰ)法一:∵0t >,()f t =()g t =2≥,12t t +≥,且两者均在1t =时取等号;1()()g t f t =……………4分∴min [()](1)2f t f ==max [()](1)2g t g ==6分法二:设x =()()(y f t x F x x ===≥……2分∴'()10F x =>,即()y F x =在区间)+∞上单调递增∴min min [()][()]2f t F x F ===………………………………4分 ∵1()()g t f t =∴max [()](1)2g t g ==6分 (Ⅱ)由题设知:c a >,0x >,0y >∴当c a b a c -<<+时以a 、b 、c 为三边长的三角形存在……………9分∴x y x y ++(0)xp y<<>……………11分∴22p <12分。
2018年高考数学新课标1卷(理科试卷)-精美解析版(2021年整理精品文档)

(完整版)2018年高考数学新课标1卷(理科试卷)-精美解析版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2018年高考数学新课标1卷(理科试卷)-精美解析版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2018年高考数学新课标1卷(理科试卷)-精美解析版的全部内容。
2018年普通高等学校招生全国统一考试(新课标I 卷)理科数学本试卷4页,23小题,满分150分.考试用时120分钟.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设i 2i1i1++-=z ,则=z ( ) A .0 B .21 C .1 D .21.【解析】()()()i i 22i2i 2i 1i 1i 12=+-=+-+-=z ,则1=z,选C .2.已知集合}02|{2>--=x x x A ,则=A C R ( )A .}21|{<<-x xB .}21|{≤≤-x xC .}2|{}1|{>-<x x x xD .}2|{}1|{≥-≤x x x x 2.【解析】=≤--=}02|{2x x x A C R }21|{≤≤-x x ,故选B .3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面的结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半3.【解析】经过一年的新农村建设,农村的经济收入增加了一倍,所以建设前与建设后在比例6%4% 30%60%第三产业收入其他收入养殖收入种殖收入建设前经济收入构成比例28%5% 30%37%第三产业收入其他收入养殖收入种殖收入建设后经济收入构成比例相同的情况下,建设后的经济收入是原来的2倍,所以建设后种植收入为37%相当于建设前的74%,故选A .4.记n S 为等差数列{}n a 的前n 项和.若4233S S S +=,21=a ,则=5a ( )A .12-B .10-C .10D .124.【解析】令{}n a 的公差为d ,由4233S S S +=,21=a 得376)33(311-=⇒+=+d d a d a ,则10415-=+=d a a ,故选B .5.设函数ax x a x x f +-+=23)1()(.若)(x f 为奇函数,则曲线)(x f y =在点)0,0(处的切线方程为( )A .x y 2-=B .x y -=C .x y 2=D .x y =5.【解析】R x ∈,ax x a x ax x a x x f x f +-++--+-=+-2323)1()1()()(2)1(2x a -=0=,则1=a ,则x x x f +=3)(,13)(2+='x x f ,所以1)0(='f ,在点)0,0(处的切线方程为x y =,故选D . 6.在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=( )A .4143-B .4341-C .4143+D .4341+ 6.【解析】AB 4341)(4121)21(21)(21-=-+=+=+=, 则4143-=,故选A .7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面 上的点N 在左视图上的对应点为B ,则在此圆柱侧面上, 从M 到N 的路径中,最短路径的长度为( )A .172B .52C .3D .27.【解析】将三视图还原成直观图,并沿点A 所在的母线把圆柱侧面展开成如图所示的矩形,从点M 到点N 的运动轨迹在矩形中为直线段时路径最短,长度为52,故选B .8.设抛物线x y C 4:2=的焦点为F ,过点)0,2(-且斜率为32的直线与C 交于N M ,两点,则=⋅( )A .5B .6C .7D .8M (A A BDE8.【解析】由方程组⎪⎩⎪⎨⎧=+=xy x y 4)2(322,解得⎩⎨⎧==21y x 或⎩⎨⎧==44y x ,不妨记)4,4(),2,1(N M .又F 为)0,1(,所以8)4,3()2,0(=⋅=⋅FN FM ,故选D .9.已知函数⎩⎨⎧>≤=0,ln 0,)(x x x e x f x ,a x x f x g ++=)()(.若)(x g 存在2个零点,则a 的取值范围是( )A .[)0,1-B .[)+∞,0C .[)+∞-,1D .[)+∞,1 9.【解析】若)(x g 存在2个零点,即0)(=++a x x f 有2个不同的实数根,即)(x f y =与a x y --=的图像有两个交点,由图可知直线a x y --=不在直线1+-=x y 的上方即可,即1≤-a ,则1-≥a .故选C .10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AC AB ,.ABC ∆的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为321,,p p p ,则( )A .21p p =3p = D .321p p p += 10.【解析】令ABC Rt ∆Ⅱ,Ⅲ对应的面积分别为321,,s s s .则bc s 211=;8222123bc a s =-⎪⎭⎫ ⎝⎛=π;()8422122222322bc a c b s b s +-+=-⎪⎭⎫ ⎝⎛+⎪⎭ ⎝=πππ,因为222a c b =+,所以bc s 212=.所以2121p p s s =⇔=,故选A .11.已知双曲线13:22=-y x C ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为N M ,.若OMN ∆为直角三角形,=MN ( )xA .23 B .3 C .32 D .4 11.【解析】如图所示,不妨记 90=∠OMF ,F 为)0,2(,渐近线为x y 33±=,所以 30=∠=∠NOF MOF ,则3tan ,3cos =∠==∠=MON OM MN MOF OF OM ,故选B .12.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .433 B .332 C .423 D .2312.【解析】正方体中,连接顶点Q P N M ,,,,三棱锥MNP Q -为正三棱锥,侧棱与底面所成的角都相等,所以正方体的每条棱与平面MNP 所成的角均相等,不妨令平面//α平面MNP .易知,当平面α截得正方体的截面为如图所示的平行六边形ABCDEF 时截面的面积可以取到最大值.不妨取)10(<<=x x AM ,则x BC ED AF 2===,)1(2x CD EF AB -===,MN CF //且2==MN CF ,等腰梯形ABCF 、DEFC 的高分别为)1(26x -和x 26,所以 )122(23262)2)1(2()1(262)22(2++-=⎥⎦⎤⎢⎣⎡⋅+-+⎥⎦⎤⎢⎣⎡-⋅+=+=x x x x x x S S S DEFC ABCF ABCDEF . 当21=x 时,截面面积的最大值为4332323=⨯.故选A .二、填空题:本题共4小题,每小题5分,共20分.13.若y x ,满足约束条件⎪⎩⎪⎨⎧≤≥+-≤--001022y y x y x ,则y x z 23+=的最大值为 .13.【解析】可行域为ABC ∆及其内部,当直线223zx y +-=经过点)0,2(B 时,6max =z .M N PQABC D EFFAB)1(2x -x 2EDx 2x 2)1(2x - )1(2x -14.记n S 为数列{}n a 的前n 项和.若12+=n n a S ,则=6S .14.【解析】由12111+==a S a 得11-=a ,当2≥n 时,121211+-+=-=--n n n n n a a S S a ,即21=-n na a ,所以{}n a 是等比数列,()()()()()63321684216-=-+-+-+-+-+-=S .15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有 种.(用数字填写答案)15.【解析】恰有1位女生的选法有122412=C C 种,恰有2位女生的选法有41422=C C 种,所以不同的选法共有16种.16.已知函数x x x f 2sin sin 2)(+=,则)(x f 的最小值是 .16.【解析】因为)(x f 是奇函数,且)2()(π+=x f x f ,即周期为π2,所以只需要研究)(x f 在(]ππ,-上的图像.又)1)(cos 1cos 2(2)1cos cos 2(22cos 2cos 2)(2+-=-+=+='x x x x x x x f ,则)(x f 在(]ππ,-上的极值点为πππ,3,3-=x ,因为0)(,233)3()3(=-=-=-πππf f f ,所以=min )(x f 233-. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)在平面四边形ABCD 中, 90=∠ADC , 45=∠A ,2=AB ,5=BD . (1)求ADB ∠cos ; (2)若22=DC ,求BC .17.【解析】(1)如图所示,在ABD ∆中,由正弦定理ADBABA BD ∠=sin sin , 得52sin =∠ADB , 90=∠ADC ,ADB ∠∴为锐角,AB523sin 1cos 2=∠-=∠∴ADB ADB ; (2) 90=∠ADC ,52sin )90cos(cos =∠=∠-=∠∴ADB ADB CDB , 若22=DC ,则在BCD ∆中,由余弦定理CDB DC BD DC BD BC ∠⋅⋅-+=cos 2222, 得5522252825=⨯⨯⨯-+=BC .18.(12分)如图,四边形ABCD 为正方形,F E ,分别为BC AD ,的中点, 以DF 为折痕把DFC ∆折起,使点C 到达点P 的位置,且BF PF ⊥. (1)证明:平面⊥PEF 平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.18.【解析】(1)证明: 四边形ABCD 为正方形,F E ,分别为BC AD ,的中点,CD AB EF ////∴且EF BF ⊥,F PF EF BF PF =⊥ ,,⊥∴BF 平面PEF , ⊂BF 平面ABFD ,∴平面⊥PEF 平面ABFD .(2)方法1:由(1)知⊥BF 平面PEF ,⊥∴BF PE , AD BF //,AD PE ⊥∴.令正方形ABCD 的边长为2,1,2===ED DC PD ,322=-=∴DE PD PE .作EF PO ⊥交EF 于点O ,连接OD ,由(1)知平面⊥PEF 平面ABFD ,⊂PO 平面PEF ,平面 PEF 平面EF ABFD =,⊥∴PO 平面ABFD ,斜线DP 在平面ABFD 内的射影为OD , PDO ∠∴等于DP 与平面ABFD 所成的角.2,1===EF CF PF ,222EF PF PE =+∴,即PF PE ⊥且 60=∠PFE ,∴在POF Rt ∆中,2323==PF OP . ∴在POD Rt ∆中,43sin ==∠PD PO PDO ,即DP 与平面ABFD 所成角的正弦值为43. ABPCFEDABPCFE DO方法2:作EF PO ⊥交EF 于点O ,连接OD ,由(1)知平面⊥PEF 平面ABFD ,⊂PO 平面PEF ,平面 PEF 平面EF ABFD =,⊥∴PO 平面ABFD ,斜线DP 在平面ABFD 内的射影为OD , PDO ∠∴等于DP 与平面ABFD 所成的角,令正方形ABCD 的边长为2,)0(>=a a OF ,则a EO -=2,2221a OF PF PO -=-=,2223a PO PD DO +=-=, 由222EO ED DO +=得22)2(13a a -+=+,解得21=a . ∴23=PO ,2=PD ,则43sin ==∠PD PO PDO ,即DP 与平面ABFD 所成角的正弦值为43. 方法3:作EF PO ⊥交EF 于点O ,由(1)知平面⊥PEF 平面ABFD ,⊂PO 平面PEF ,平面 PEF 平面EF ABFD =,⊥∴PO 平面ABFD ,以E 为坐标原点,令正方形ABCD 的边长为2,)0(>=a a OF , 则)0,0,1(),1,2,0(),0,2,0(2---D a a P F90=∠DPF ,0=⋅∴,即0)1,2,1()1,,0(22=--⋅--a a a a , 即0)1()2(2=---a a a ,解得21=a . 所以)23,23,1(=DP ,易知平面ABFD 的一个法向量为)1,0,0(=n ,故432123,cos =⨯==><, 即DP 与平面ABFD 所成角的正弦值为43.19.(12分)设椭圆12:22=+y x C 的右焦点为F ,过F 的直线l 与C 交于B A ,两点,点M 的坐标为)0,2(.(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:OMB OMA ∠=∠.19.【解析】(1)右焦点为)0,1(F ,当l 与x 轴垂直时有1:=x l ,则A 为)22,1(或)22,1(-, 直线AM 的方程为:)2(22--=x y 或)2(22-=x y ;(2)方法1:令直线BM AM ,的斜率分别为21,k k ,①当l 与x 轴重合时有021==k k ,所以∠=∠OMA ②当l 与x 轴不重合时,令,1:-=x my l ,(),,(2211y x B y x A 由⎪⎩⎪⎨⎧=+-=12122y x x my 得012)2(22=-++my y m ,则21,22221221+-=+-=+m y y m m y y , 因为21k k +)1)(1()(2112221212122112211--+-=-+-=-+-=my my y y y my my y my y x y x y , 所以21k k +0)1)(1(22222122=--+--+-=m y m y m mm m ,即直线BM AM ,的倾斜角互补,得OMB OMA ∠=∠. 综合①②所述,得OMB OMA ∠=∠.方法2:令直线BM AM ,的斜率分别为21,k k ,①由(1)知,当l 与x 轴垂直时有21k k -=,即直线BM AM ,的倾斜角互补,得OMB OMA ∠=∠;②当l 不与x 轴垂直时,令),1(:-=x k y l ),(),,(2211y x B y x A ,由⎪⎩⎪⎨⎧=+-=12)1(22y x x k y 得0224)12(2222=-+-+k x k x k ,则1222,12422212221+-=+=+k k x x k k x x , 因为21k k +)2)(2(]4)(32[2)1(2)1(2221212122112211--++-=--+--=-+-=x x x x x x k x x k x x k x y x y , 所以=+21k k 0)2)(2(]4124312)22(2[212222=--++-+-x x k k k k k , 即直线BM AM ,的倾斜角互补,得OMB OMA ∠=∠. 综合①②所述,得OMB OMA ∠=∠.20.(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为)10(<<p p ,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p .(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(ⅰ)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?20.【解析】(1)由n 次独立重复事件的概率计算得182182220)1(190)1()(p p p p C p f -=-=,)101()1(380)1(18190)1(380)(1717218p p p p p p p p f --=-⨯--=' 且10<<p ,0)(='∴p f 时,得101=p . 又当)101,0(∈p 时,0)(>'p f ,)(p f 单调递增;当)1,101(∈p 时,0)(<'p f ,)(p f 单调递减, 所以101=p 是)(p f 在)1,0(上唯一的极大值点,也是最大值点,即1010=p . (2)(ⅰ)已检验的20件产品的检验费用为40220=⨯元. 该箱余下的产品的不合格品件数服从二项分布)101,180(B ,估计不合格品件数为18101180=⨯, 若不对该箱余下的产品作检验,余下的产品的赔偿费用估计为4502518=⨯元. 所以,若不对该箱余下的产品作检验,则49045040=+=EX .(ⅱ)若对该箱余下的产品都作检验,则只需支付检验费用,400218040=⨯+=EX . 因为400490>,所以应该对这箱余下的所有产品都作检验.21.(12分)已知函数x a x xx f ln 1)(+-=.(1)讨论)(x f 的单调性;(2)若)(x f 存在两个极值点21,x x ,证明:2)()(2121-<--a x x x f x f . 21.【解析】(1))0(111)(222>-+-=+--='x x ax x x a x x f 令1)(2-+-=ax x x g ,42-=∆a .①]2,2[-∈a 时,0≤∆,0)(≤'x f 恒成立,所以)(x f 在定义域),0(+∞上始终单调递减.②2-<a 或2>a 时,0>∆.由0)(=x g 即0)(='x f 解得24,242221-+=--=a a x a a x ,且1,2121==+x x a x x . 2-<a 时,0,021<<x x ,0)(<'x f 恒成立,所以)(x f 在定义域),0(+∞上始终单调递减. 2>a 时,012>>x x ,在),(),,0(21+∞x x 上0)(<'x f ,)(x f 单调递减;在),(21x x 上0)(>'x f ,)(x f 单调递增. 综上所述,2≤a 时,)(x f 在定义域),0(+∞上始终单调递减;2>a 时,)(x f 在),24(),24,0(22+∞-+--a a a a 上递减,在)24,24(22-+--a a a a 上递增.(2)证明:方法1:由(1)知2>a 时)(x f 存在两个极值点,且012>>x x . 欲证明2)()(2121-<--a x x x f x f 等价于证明))(2()()(2121x x a x f x f -->-. 即证明2211)2()()2()(x a x f x a x f -->--,其中21,x x 是方程012=-+-ax x 的两个根. 令t a t f t h )2()()(--=,则满足012=-+-at t ,即a tt =+1.)1(2)21(1)1(11)2(111)2()()(22t t t t t t t t a t a t a t f t h +-=-+-++--=--+--=--'=' 21>=+a t t ,0)1(2)(<+-='∴tt t h ,t a t f t h )2()()(--=在),0(+∞∈t 上为减函数. 因为012>>x x ,所以)()(21x h x h >,即2211)2()()2()(x a x f x a x f -->--,得证.方法2:由(1)知012>>x x ,221>=+a x x ,121=x x ,从而有0112>>>x x .212221112121ln 1ln 1)()(x x x a x x x a x x x x x f x f --+-+-=--212121122121ln )11)(()()(x x x x a x x x x x x x f x f -++-=--∴2121ln 2x x x x a -+-=, 要证明2)()(2121-<--a x x x f x f 等价于证明2ln 22121-<-+-a x x x x a ,即证明2121ln x x x x ->. 121=x x ,∴只需证明11211ln x x x ->,即证明01ln 2111>+-x x x 成立即可. 令)1,0(,1ln 2)(∈+-=t t t t t ϕ, 则0)1(12112)(22222<--=-+-=--='tt t t t t t t ϕ,)(t ϕ在)1,0(上为减函数. 所以0)1()(=>ϕϕt ,根据)1,0(1∈x ,证得01ln 2111>+-x x x 成立,得证. (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的方程为2||+=x k y .以坐标原点为极点,x 轴正半轴为机轴建立极坐标系,曲线2C 的极坐标方程为03cos 22=-+θρρ.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.22.【解析】(1)θρθρsin ,cos ==y x ,所以2C 的直角坐标方程为03222=-++x y x ;(2)曲线1C :⎩⎨⎧<+-≥+=0,20,2x kx x kx y ,其图像是关于y 轴对称且以)2,0(为端点的两条射线. 2C :4)1(22=++y x ,其图像是以)0,1(-为圆心,半径为2若1C 与2C 有且仅有三个公共点,则0<k 且)0(2≥+=x kx y 与2C 相切(如图).由2122=++-k k 且0<k ,解得34-=k ,则1C 的方程为:34-=y 23.[选修4—5:不等式选讲](10分)已知11)(--+=ax x x f .(1)当1=a 时,求不等式1)(>x f 的解集;(2)若)1,0(∈x 时不等式x x f >)(成立,求a 的取值范围.23.【解析】(1)当1=a 时,11)(--+=x x x f ,则1-≤x 时,2)(-=x f ,则1)(>x f 无解;11<<-x 时,x x f 2)(=,则1)(>x f 的解集为)1,21(; 1≥x 时,2)(=x f ,则1)(>x f 的解集为),1[+∞. 综上所述,所求解集为),21(+∞.(2))1,0(∈x 时不等式x x f >)(成立,即x ax x >--+11,则11<-ax 成立. 所以x a ax 20111<<⇒<-<-.因为10<<x 时,有),2(2+∞∈x ,所以20≤<a .。
2018年高考理科数学试题(含全国1卷、2卷、3卷)带参考答案
有
种. (用数字填写答案)
16. 已知函数 f( x) =2sinx+sin2x ,则 f(x)的最小值是
.
三 . 解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题, 每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。 17. ( 12 分)
A、-12 B 、-10 C 、10 D 、12 5、设函数 f (x)=x3+(a-1 ) x2+ax . 若 f(x)为奇函数,则曲线 y= f(x)在点( 0,0)处的Biblioteka 切线方程为( )2
A.y= -2x
B.y= -x C.y=2x D.y=x
6、在 ? ABC中, AD为 BC边上的中线, E 为 AD的中点,则 =( )
5
如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取 20 件产品作检验,再根
据检验结果决定是否对余下的所有产品做检验,设每件产品为不合格品的概率都为
P
( 0<P<1),且各件产品是否为不合格品相互独立。
( 1)记 20 件产品中恰有 2 件不合格品的概率为 f(P),求 f(P)的最大值点
A.
-
B.
-
C.
+
D.
+
7、某圆柱的高为 2,底面周长为 16,其三视图如右图。圆柱表面上的点 M在正视图上的对应 点为 A,圆柱表面上的点 N 在左视图上的对应点为 B,则在此圆柱侧面上, 从 M到 N 的路径中, 最短路径的长度为( )
A. 2 B. 2 C. 3 D. 2 8. 设抛物线 C:y2=4x 的焦点为 F,过点( -2 ,0)且斜率为 的直线与 C 交于 M,N 两点,则 · =( ) A.5 B.6 C.7 D.8
广东省2018届高考模拟考试数学理科试题(二)-有答案
2018年普通高等学校招生全国统一考试广东省理科数学模拟试卷(二)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知,x y R ∈,集合{}32,log A x =,集合{},B x y =,若{}0A B =,则x y +=( )A .13B .0C .1D .3 2.若复数11z i =+,21z i =-,则下列结论错误的是( ) A .12z z ⋅是实数 B .12z z 是纯虚数 C .24122z z = D .22124z z i += 3.已知()1,3a =-,(),4b m m =-,()2,3c m =,若//a b ,则b c ⋅=( ) A .7- B .2- C .5 D .84.如图,AD 是以正方形的边AD 为直径的半圆,向正方形内随机投入一点,则该点落在阴影区域内的概率为( )A .16π B .316 C.4πD .14 5.已知等比数列{}n a 的首项为1,公比1q ≠-,且()54323a a a a +=+=( )A .9-B .9 C.81- D .816.已知双曲线()2222:10,0x y C a b a b-=>>的一个焦点坐标为()4,0,且双曲线的两条渐近线互相垂直,则该双曲线的方程为( )A .22188x y -=B .2211616x y -= C. 22188y x -= D .22188x y -=或22188y x -= 7.已知某几何体的三视图如图所示,则该几何体的表面积为( )A .86π+B .66π+ C.812π+ D .612π+ 8.设x ,y 满足约束条件0,2,xy x y ≥⎧⎪⎨+≤⎪⎩则2z x y =+的取值范围是( )A .[]2,2-B .[]4,4- C.[]0,4 D .[]0,29.在印度有一个古老的传说:舍罕王打算奖赏国际象棋的发明人——宰相西萨·班·达依尔.国王问他想要什么,他对国王说:“陛下,请您在这张棋盘的第1个小格里,赏给我1粒麦子,在第2个小格里给2粒,第3小格给4粒,以后每一小格都比前一小格加一倍.请您把这样摆满棋盘上所有的64格的麦粒,都赏给您的仆人吧!”国王觉得这要求太容易满足了,就命令给他这些麦粒.当人们把一袋一袋的麦子搬来开始计数时,国王才发现:就是把全印度甚至全世界的麦粒全拿来,也满足不了那位宰相的要求.那么,宰相要求得到的麦粒到底有多少粒?下面是四位同学为了计算上面这个问题而设计的程序框图,其中正确的是( )A .B . C. D .10.已知数列{}n a 的前n 项和为n S ,115a =,且满足()()21252341615n n n a n a n n +-=-+-+,已知*,n m N ∈,n m >,则n m S S -的最小值为( )A .494-B .498- C.14- D .28-11.已知菱形ABCD 的边长为60BAD ∠=,沿对角线BD 将菱形ABCD 折起,使得二面角A BD C --的余弦值为13-,则该四面体ABCD 外接球的体积为( )AB.D .36π 12.已知函数()()ln 3xf x e x =-+,则下面对函数()f x 的描述正确的是( ) A .()3,x ∀∈-+∞,()13f x ≥B .()3,x ∀∈-+∞,()12f x >- C. ()03,x ∃∈-+∞,()01f x =- D .()()min 0,1f x ∈第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.将函数()()()2sin 20f x x ϕϕ=+<的图象向左平移3π个单位长度,得到偶函数()g x 的图象,则ϕ的最大值是 .14.已知0a >,0b >,6b ax x ⎛⎫+ ⎪⎝⎭展开式的常数项为52,则2a b +的最小值为 .15.已知函数()()2log 41x f x mx =++,当0m >时,关于x 的不等式()3log 1f x <的解集为 . 16.设过抛物线()220y px p =>上任意一点P (异于原点O )的直线与抛物线()280y px p =>交于A ,B 两点,直线OP 与抛物线()280y px p =>的另一个交点为Q ,则ABQ ABOS S ∆∆= .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知60B =,8c =. (1)若点M ,N 是线段BC 的两个三等分点,13BM BC =,AN BM=,求AM 的值; (2)若12b =,求ABC ∆的面积.18. 如图:在五面体ABCDEF 中,四边形EDCF 是正方形,AD DE =,90ADE ∠=,120ADC DCB ∠=∠=.(1)证明:平面ABCD ⊥平面EDCF ; (2)求直线AF 与平面BDF 所成角的正弦值.19. 经销商第一年购买某工厂商品的单价为a (单位:元),在下一年购买时,购买单价与其上年度销售额(单位:万元)相联系,销售额越多,得到的优惠力度越大,具体情况如下表:.已知某经销商下一年购买该商品的单价为X (单位:元),且以经销商在各段销售额的频率作为概率. (1)求X 的平均估计值.(2)该工厂针对此次的调查制定了如下奖励方案:经销商购买单价不高于平均估计单价的获得两次抽奖活动,高于平均估计单价的获得一次抽奖活动.每次获奖的金额和对应的概率为Y 的分布及数学期望.20. 已知椭圆()2212:108x y C b b+=>的左、右焦点分别为1F ,2F ,点2F 也为抛物线21:8C y x =的焦点. (1)若M ,N 为椭圆1C 上两点,且线段MN 的中点为()1,1,求直线MN 的斜率;(2)若过椭圆1C 的右焦点2F 作两条互相垂直的直线分别交椭圆于A ,B 和C ,D ,设线段AB ,CD 的长分别为m ,n ,证明11m n+是定值. 21. 已知()'fx 为函数()f x 的导函数,()()()2'200x x f x e f e f x =+-.(1)求()f x 的单调区间;(2)当0x >时,()xaf x e x <-恒成立,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程为3,4x y a ⎧=+⎪⎨⎪=+⎩(t 为参数),圆C 的标准方程为()()22334x y -+-=.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求直线l 和圆C 的极坐标方程; (2)若射线()03πθρ=>与l 的交点为M ,与圆C 的交点为A ,B ,且点M 恰好为线段AB 的中点,求a 的值.23.选修4-5:不等式选讲 已知()32f x mx x n =+-+.(1)当2m =,1n =-时,求不等式()2f x <的解集;(2)当1m =,0n <时,()f x 的图象与x 轴围成的三角形面积大于24,求n 的取值范围.试卷答案一、选择题1-5: CDADB 6-10: ABBCC 11、12:BB 二、填空题 13.6π-14. 2 15. ()0,1 16.3 三、解答题17.解:(1)由题意得M ,N 是线段BC 的两个三等分点, 设BM x =,则2BN x =,AN =,又60B =,8AB =, 在ABN ∆中,由余弦定理得2212644282cos60x x x =+-⨯⨯, 解得2x =(负值舍去),则2BM =. 在ABN ∆中,AM ===(2)在ABC ∆中,由正弦定理sin sin b cB C=,得8sin 2sin 123c BC b===. 又b c >,所以B C >,则C 为锐角,所以6cos 3C =. 则()1sin sin sin cos cos sin 2A B C B C B C =+=+=+=, 所以ABC ∆的面积1sin 482S bc A ===18.(1)证明:因为AD DE ⊥,DC DE ⊥,AD ,CD ⊂平面ABCD ,且AD CD D ⊃=, 所以DE ⊥平面ABCD .又DE ⊂平面EDCF ,故平面ABCD ⊥平面EDCF . (2)解:由已知//DC EF ,所以//DC 平面ABFE . 又平面ABCD平面ABFE AB =,故//AB CD .所以四边形ABCD 为等腰梯形.又AD DE =,所以AD CD =,易得AD BD ⊥,令1AD =,如图,以D 为原点,以DA 的方向为x 轴正方向,建立空间直角坐标系D xyz -, 则()0,0,0D ,()1,0,0A,12F ⎛⎫- ⎪ ⎪⎝⎭,()B ,所以3,,122FA ⎛⎫=-- ⎪ ⎪⎝⎭,()DB =,1,22DF ⎛⎫=- ⎪ ⎪⎝⎭. 设平面BDF 的法向量为(),,n x y z =,由0,0,n DB n DF ⎧⋅=⎪⎨⋅=⎪⎩所以0,10,22x y z =⎨-++=⎪⎩取2x =,则0y =,1z =,得()2,0,1n =,cos ,2FA n FA n FA n⋅<>===. 设直线与平面BDF 所成的角为θ,则sinθ=. 所以直线AF 与平面BDF 所成角的正弦值为5.19.解:(1)由题可知:0.20.90.30.850.240.80.120.750.10.70.040.873a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯=.(2)购买单价不高于平均估计单价的概率为10.240.120.10.040.52+++==. Y 的取值为5000,10000,15000,20000. ()1335000248P Y ==⨯=,()1113313100002424432P Y ==⨯+⨯⨯=,()2111331500024416P Y C ==⨯⨯⨯=, ()11112000024432P Y ==⨯⨯=. 所以Y 的分布列为()1500010000150002000093758321632E Y =⨯+⨯+⨯+⨯=(元).20.解:因为抛物线22:8C y x =的焦点为()2,0,所以284b -=,故2b =.所以椭圆221:184x y C +=. (1)设()11,M x y ,()22,N x y ,则221122221,841,84x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减得()()()()12121212084x x x x y y y y +-+-+=,又MN 的中点为()1,1,所以122x x +=,122y y +=. 所以212112y y x x -=--.显然,点()1,1在椭圆内部,所以直线MN 的斜率为12-. (2)椭圆右焦点()22,0F .当直线AB 的斜率不存在或者为0时,11m n +==当直线AB 的斜率存在且不为0时,设直线AB 的方程为()2y k x =-, 设()11,A x y ,()22,B x y 联立方程得()222,28,y k x x y ⎧=-⎪⎨+=⎪⎩消去y 并化简得()2222128880k x k x k +-+-=, 因为()()()()222228412883210kk k k ∆=--+-=+>,所以2122812k x x k +=+,()21228112k x x k-=+. 所以)22112k m k+==+,同理可得)2212k n k +=+.所以222211122118k km n k k⎫+++=+=⎪++⎭为定值.21.解:(1)由()()0120f f=+,得()01f=-.因为()()'2'220x xf x e e f=--,所以()()''0220f f=--,解得()'00f=.所以()22x xf x e e=-,()()'22221x x x xf x e e e e=-=-,当(),0x∈-∞时,()'0f x<,则函数()f x在(),0-∞上单调递减;当()0,x∈+∞时,()'0f x>,则函数()f x在()0,+∞上单调递增.(2)令()()()221x x xg x af x e x ae a e x=-+=-++,根据题意,当()0,x∈+∞时,()0g x<恒成立. ()()()()'222211211x x x xg x ae a e ae e=-++=--.①当12a<<,()ln2,x a∈-+∞时,()'0g x>恒成立,所以()g x在()ln2,a-+∞上是增函数,且()()()ln2,g x g a∈-+∞,所以不符合题意;②当12a≥,()0,x∈+∞时,()'0g x>恒成立,所以()g x在()0,+∞上是增函数,且()()()0,g x g∈+∞,所以不符合题意;③当0a≤时,因为()0,x∈+∞,所有恒有()'0g x<,故()g x在()0,+∞上是减函数,于是“()0g x<对任意()0,x∈+∞都成立”的充要条件是()00g≤,即()210a a-+≤,解得1a≥-,故10a-≤≤.综上,a的取值范围是[]1,0-.22.解:(1)在直线l的参数方程中消去t可得,34x y a--+=,将cosxρθ=,sinyρθ=代入以上方程中,所以,直线l的极坐标方程为3cos sin04aρθρθ--+=.同理,圆C的极坐标方程为26cos6sin140ρρθρθ--+=.(2)在极坐标系中,由已知可设1,3Mπρ⎛⎫⎪⎝⎭,2,3Aπρ⎛⎫⎪⎝⎭,3,3Bπρ⎛⎫⎪⎝⎭.联立2,36cos6sin140,πθρρθρθ⎧=⎪⎨⎪--+=⎩可得(23140ρρ-++=,所以233ρρ+=+因为点M 恰好为AB的中点,所以132ρ+=,即3,23M π⎛⎫+ ⎪ ⎪⎝⎭.把3M π⎫⎪⎪⎝⎭代入3cos sin 04a ρθρθ--+=,得(31130224a +⨯-+=,所以94a =. 23.解:(1)当2m =,1n =-时,()2321f x x x =+--.不等式()2f x <等价于()()3,223212,x x x ⎧<-⎪⎨⎪-++-<⎩ 或()()31,2223212,x x x ⎧-≤≤⎪⎨⎪++-<⎩ 或()()1,223212,x x x ⎧>⎪⎨⎪+--<⎩解得32x <-或302x -≤<,即0x <. 所以不等式()2f x <的解集是(),0-∞.(2)由题设可得,()3,3,3233,3,23,,2x n x n f x x x n x n x n x n x ⎧⎪+-<-⎪⎪=+-+=++-≤≤-⎨⎪⎪-+->-⎪⎩所以函数()f x 的图象与x 轴围成的三角形的三个顶点分别为3,03n A +⎛⎫-⎪⎝⎭,()3,0B n -,,322nn C ⎛⎫-- ⎪⎝⎭. 所以三角形ABC 的面积为()2613332326n n n n -+⎛⎫⎛⎫-+-=⎪⎪⎝⎭⎝⎭. 由题设知,()26246n ->,解得6n <-.。
推荐下载2018届广东省湛江市高三普通高考测试数学(文)试题(一)最新
X和 Y
P( K2>k) 0.50 0.40 0.25 0.18 0.18 0.18 0.185 0.188 0.188 0.018
k
0.455 0.718 1.323 2.182 2.718 3.84 5.184 6.635 7.879 18.83
A. 5%
B. 75 %
7.过坐标原点且与圆 x2 4 x
4.考试结束后,将试卷和答题卡一并交回。来源
:学考频道
参考公式:
棱锥的体积公式: V 1 S h ,其中 S 是底面面积, 3
球的体积公式: V
4 R3 ,其中 R 是球的半径 3
h 是高
一、选择题:本大题共 18 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有 一项是符合题目要求的.
1.已知向量 AB = ( 2, 4 ), AC = ( a , 3 ),若 AB AC ,则 a 的值为来自:中国 +学 +考 ++
频 +++道 (w.ww.x..k1.0..0.)#X#X#K]
A. 6
B. 6
3
C.
2
2.命题 x R, x2 x ≥ 0 的否定是
A. x R, x2 x ≥ 0
18. (本小题满分 18 分)
已知函数 f (x) (sin x cos x) 2 2cos2 x . (1)求函数 f (x) 的最小正周期;
(2)试比较 f (
) 与 f ( ) 的大小. .xk.18.0.
中国学考频道
12
6
18. (本小题满分 18 分)
假设某人定了鲜奶,送奶工可能在早上 6:30~ 7: 30 之间把鲜奶送到他家,他离开
(完整)【省级联考】2018年广东省高考数学一模试卷(理科)
2018年广东省高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣1<1﹣x<1},B={x|x2<1},则A∩B=()A.{x|﹣1<x<1}B.{x|0<x<1}C.{x|x<1}D.{x|0<x<2}2.设复数z=a+4i(a∈R),且(2﹣i)z为纯虚数,则a=()A.﹣1 B.1 C.2 D.﹣23.如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()A.B. C.D.4.已知函数f(x)满足,则函数f(x)的图象在x=1处的切线斜率为()A.0 B.9 C.18 D.275.已知F是双曲线C:﹣=1(a>0,b>0)的一个焦点,点F到C的一条渐近线的距离为2a,则双曲线C的离心率为()A.2 B.C.D.26.的展开式中,x3的系数为()A.120 B.160 C.100 D.807.如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.48+8πB.96+8πC.96+16πD.48+16π8.已知曲线,则下列结论正确的是()A.把C向左平移个单位长度,得到的曲线关于原点对称B.把C向右平移个单位长度,得到的曲线关于y轴对称C.把C向左平移个单位长度,得到的曲线关于原点对称D.把C向右平移个单位长度,得到的曲线关于y轴对称9.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入()A.n是偶数,n≥100 B.n是奇数,n≥100C.n是偶数,n>100 D.n是奇数,n>10010.在△ABC中,角A,B,C所对的边分别为a,b,c,若A=,且2bsinB+2csinC=bc+a.则△ABC的面积的最大值为()A.B.C.D.11.已知抛物线C:y2=x,M为x轴负半轴上的动点,MA,MB为抛物线的切线,A,B分别为切点,则的最小值为()A.B.C.D.12.设函数,若互不相等的实数a,b,c,d满足f(a)=f(b)=f(c)=f(d),则2a+2b+2c+2d的取值范围是()A. B.(98,146)C. D.(98,266)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知单位向量,的夹角为30°,则|﹣|=.14.设x,y 满足约束条件,则z=x+y的最大值为.15.已知sin10°+mcos10°=2cos140°,则m=.16.如图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD的中心为O,E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH分别是以AB,BC,CD,DA为底边的等腰三角形.沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12.00分)已知公差不为零的等差数列{a n}满足a1=5,且a3,a6,a11成等比数列.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和S n.18.(12.00分)“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:步数/步0~30003001~60006001~80008001~1000010000以上男生人数/127155人03791女性人数/人规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)以这50人这一天行走的步数的频率代替1人一天行走的步数发生的概率,记X表示随机抽取3人中被系统评为“积极性”的人数,求P(X≤2)和X的数学期望.(2)为调查评定系统的合理性,拟从这50人中先抽取10人(男性6人,女性4人).其中男性中被系统评定为“积极性”的有4人,“懈怠性”的有2人,从中任意选取3人,记选到“积极性”的人数为x;其中女性中被系统评定为“积极性”和“懈怠性”的各有2人,从中任意选取2人,记选到“积极性”的人数为y;求x>y的概率.19.(12.00分)如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,且BC=2AD=4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,得到如下的立体图形.(1)证明:平面AEFD⊥平面EBCF;(2)若BD⊥EC,求二面角F﹣BD﹣C的余弦值.20.(12.00分)已知椭圆的离心率为,且C 过点.(1)求椭圆C的方程;(2)若直线l与椭圆C交于P,Q两点(点P,Q均在第一象限),l与x轴,y 轴分别交于M,N 两点,且满足(其中O为坐标原点).证明:直线l的斜率为定值.21.(12.00分)已知函数f(x)=(x﹣2)e x+a(lnx﹣x+1).(1)讨论f(x)的导函数f'(x)零点的个数;(2)若函数f(x)的最小值为﹣e,求a的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10.00分)在直角坐标系xOy中,圆C1:(x﹣2)2+(y﹣4)2=20,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,C2:θ=.(1)求C1的极坐标方程和C2的平面直角坐标系方程;(2)若直线C3的极坐标方程为θ=,设C2与C1的交点为O、M,C3与C1的交点为O、N,求△OMN的面积.[选修4-5:不等式选讲]23.已知函数f(x)=3|x﹣a|+|3x+1|,g(x)=|4x﹣1|﹣|x+2|.(1)求不等式g(x)<6的解集;(2)若存在x1,x2∈R,使得f(x1)和g(x2)互为相反数,求a的取值范围.2018年广东省高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣1<1﹣x<1},B={x|x2<1},则A∩B=()A.{x|﹣1<x<1}B.{x|0<x<1}C.{x|x<1}D.{x|0<x<2}【分析】解不等式得出集合A、B,根据交集的定义写出A∩B.【解答】解:集合A={x|﹣1<1﹣x<1}={x|0<x<2},B={x|x2<1}={x|﹣1<x<1},则A∩B={x|0<x<1}.故选:B.【点评】本题考查了解不等式与交集的运算问题,是基础题.2.设复数z=a+4i(a∈R),且(2﹣i)z为纯虚数,则a=()A.﹣1 B.1 C.2 D.﹣2【分析】把z=a+4i(a∈R)代入(2﹣i)z,利用复数代数形式的乘法运算化简,由实部为0且虚部不为0求得a值.【解答】解:∵z=a+4i(a∈R),且(2﹣i)z=(2﹣i)(a+4i)=(2a+4)+(8﹣a)i为纯虚数,∴,解得a=﹣2.故选:D.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()A.B. C.D.【分析】根据几何概型的定义分别求出满足条件的面积,作商即可.【解答】解:由题意此点取自黑色部分的概率是:P==,故选:A.【点评】本题主要考查几何概型的概率计算,求出黑色阴影部分的面积是解决本题的关键.4.已知函数f(x)满足,则函数f(x)的图象在x=1处的切线斜率为()A.0 B.9 C.18 D.27【分析】根据题意,分析可得函数的解析式,求出其导数f′(x)=24x2﹣6,计算可得f′(1)的值,结合导数的几何意义分析可得答案.【解答】解:根据题意,函数f(x)满足,则f(x)=8x3﹣6x,其导数f′(x)=24x2﹣6,则有f′(1)=24﹣6=18,即函数f(x)的图象在x=1处的切线斜率为18;故选:C.【点评】本题考查利用导数求函数切线的方程,注意先求出函数的解析式.5.已知F是双曲线C:﹣=1(a>0,b>0)的一个焦点,点F到C的一条渐近线的距离为2a,则双曲线C的离心率为()A.2 B.C.D.2【分析】根据题意,由双曲线的几何性质,分析可得b=2a,进而可得c==a,由双曲线的离心率公式计算可得答案.【解答】解:根据题意,F是双曲线C:﹣=1(a>0,b>0)的一个焦点,若点F到C的一条渐近线的距离为2a,则b=2a,则c==a,则双曲线C的离心率e==,故选:C.【点评】本题考查双曲线的几何性质,注意双曲线的焦点到渐近线的距离为b.6.的展开式中,x3的系数为()A.120 B.160 C.100 D.80【分析】利用多项式乘以多项式展开,然后分别求出两项中含有x3的项得答案.【解答】解:=,∵x(1+2x)5的展开式中含x3的项为,的展开式中含x3的项为.∴的展开式中,x3的系数为40+80=120.故选:A.【点评】本题考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题.7.如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.48+8πB.96+8πC.96+16πD.48+16π【分析】由三视图可得,该几何体是长方体截去两个半圆柱,即可求解表面积.【解答】解:由题意,该几何体是长方体截去两个半圆柱,∴表面积为:4×6×2+2(4×6﹣4π)+2×2π×4=96+8π,故选:B.【点评】本题考查了圆柱和长方体的三视图,结构特征,面积计算,属于基础题.8.已知曲线,则下列结论正确的是()A.把C向左平移个单位长度,得到的曲线关于原点对称B.把C向右平移个单位长度,得到的曲线关于y轴对称C.把C向左平移个单位长度,得到的曲线关于原点对称D.把C向右平移个单位长度,得到的曲线关于y轴对称【分析】直接利用三角函数的图象平移逐一核对四个选项得答案.【解答】解:把C向左平移个单位长度,可得函数解析式为y=sin[2(x+)﹣]=sin(2x+)=cos2x,得到的曲线关于y轴对称,故A错误;把C向右平移个单位长度,可得函数解析式为y=sin[2(x﹣)﹣]=sin(2x﹣)=﹣cos2x,得到的曲线关于y轴对称,故B正确;把C向左平移个单位长度,可得函数解析式为y=sin[2(x+)﹣]=sin(2x+),取x=0,得y=,得到的曲线既不关于原点对称也不关于y轴对称,故C错误;把C向右平移个单位长度,可得函数解析式为y=sin[2(x﹣)﹣]=sin (2x﹣),取x=0,得y=﹣,得到的曲线既不关于原点对称也不关于y轴对称,故D错误.∴正确的结论是B.故选:B.【点评】本题考查y=Asin(ωx+φ)型函数的图象变换,考查y=Asin(ωx+φ)的图象和性质,是基础题.9.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入()A.n是偶数,n≥100 B.n是奇数,n≥100C.n是偶数,n>100 D.n是奇数,n>100【分析】模拟程序的运行过程,结合退出循环的条件,判断即可.【解答】解:n=1,s=0,n=2,s=2,n=3,s=4,…,n=99,s=,n=100,s=,n=101>100,结束循环,故选:D.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.10.在△ABC中,角A,B,C所对的边分别为a,b,c,若A=,且2bsinB+2csinC=bc+a.则△ABC的面积的最大值为()A.B.C.D.【分析】由正弦定理和余弦定理即可求出a=,再由余弦定理可得:b2+c2=3+bc,利用基本不等式可求bc≤3,根据三角形面积公式即可得解.【解答】解:根据正弦定理可得===,∴sinB=,sinC=,∵2bsinB+2csinC=bc+a,∴+=bc+a,∴b2+c2=abc+a2,∴b2+c2﹣a2=abc,∴==cosA=∴a=,∴3=b2+c2﹣bc,可得:b2+c2=3+bc,∵b2+c2≥2bc(当且仅当b=c时,等号成立),∴2bc≤3+bc,解得bc≤3,∴S=bcsinA=bc≤△ABC故选:C.【点评】本题主要考查了余弦定理,基本不等式,三角形面积公式在解三角形中的综合应用,考查了转化思想和计算能力,属于中档题.11.已知抛物线C:y2=x,M为x轴负半轴上的动点,MA,MB为抛物线的切线,A,B分别为切点,则的最小值为()A.B.C.D.【分析】设切线MA的方程为x=ty+m,代入抛物线方程得y2﹣ty﹣m=0,由直线与抛物线相切可得△=t2+4m=0,分别求出A,B,M的坐标,根据向量的数量积和二次函数的性质即可求出【解答】解:设切线MA的方程为x=ty+m,代入抛物线方程得y2﹣ty﹣m=0,由直线与抛物线相切可得△=t2+4m=0,则A(,),B(,﹣),将点A的坐标代入x=ty+m,得m=﹣,∴M(﹣,0),∴=(,)•(,﹣)=﹣=(t2﹣)2﹣,则当t2=,即t=±时,的最小值为﹣故选:C.【点评】本题考查了直线和抛物线的位置关系,以及向量的数量积和二次函数的性质,属于中档题12.设函数,若互不相等的实数a,b,c,d满足f(a)=f(b)=f(c)=f(d),则2a+2b+2c+2d的取值范围是()A. B.(98,146)C. D.(98,266)【分析】不妨设a<b<c<d,利用f(a)=f(b)=f(c)=f(d),结合图象可得c的范围,且2a+2b=2,c+d=11,将所求式子转化为c的函数,运用对勾函数的单调性,即可得到所求范围.【解答】解:画出函数f(x)的图象,由x≤2时,f(x)=|2x+1﹣2|,可得2﹣2a+1=2b+1﹣2,可化为2a+2b=2,当x>2时,f(x)=x2﹣11x+30,可得c+d=11,令x2﹣11x+30=2,解得x=4或7,由图象可得存在a,b,c,d使得f(a)=f(b)=f(c)=f(d),可得4<c<5,即有16<2c<32,则2a+2b+2c+2d=2+2c+2d=2+2c+,设t=2c,则t+在(16,32)递减,可得g(t)=t+∈(96,144),则2+2c+的范围是(98,146).故选:B.【点评】本题考查代数式取值范围的求法,考查函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知单位向量,的夹角为30°,则|﹣|=1.【分析】根据单位向量的夹角为30°即可求出的值,从而可求出的值,进而得出的值.【解答】解:单位向量的夹角为30°;∴,;∴=;∴.故答案为:1.【点评】考查向量数量积的运算,以及单位向量的概念.14.设x,y满足约束条件,则z=x+y的最大值为2.【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最大值即可.【解答】解:x,y满足约束条件的可行域如图,则z=x+y经过可行域的A时,目标函数取得最大值,由解得A(4,﹣2),所以z=x+y 的最大值为:2.故答案为:2.【点评】本题考查线性规划的简单应用,考查约束条件的可行域,判断目标函数的最优解是解题的关键.15.已知sin10°+mcos10°=2cos140°,则m=﹣.【分析】由题意可得m=,再利用三角恒等变换求得它的值.【解答】解:由题意可得m=====﹣,故答案为:﹣.【点评】本题主要考查三角恒等变换,属于中档题.16.如图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD的中心为O,E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH分别是以AB,BC,CD,DA为底边的等腰三角形.沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为.【分析】根据题意,设正方形ABCD的边长为x,E,F,G,H重合,得到一个正四棱锥,四棱锥的侧面积是底面积的2倍时,即可求解x,从而求解四棱锥的外接球的体积.【解答】解:连接OE交AB与I,E,F,G,H重合为P,得到一个正四棱锥,设正方形ABCD的边长为x.则OI=,IE=6﹣.由四棱锥的侧面积是底面积的2倍,可得,解得:x=4.设外接球的球心为Q,半径为R,可得OC=,OP=,.∴.该四棱锥的外接球的体积V=.故答案为:.【点评】本题考查的知识点是球的体积,其中根据已知求出半径是解答的关键.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12.00分)已知公差不为零的等差数列{a n}满足a1=5,且a3,a6,a11成等比数列.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和S n.【分析】(1)公差d不为零的等差数列{a n}满足a1=5,且a3,a6,a11成等比数列.可得=a3•a11,即(5+5d)2=(5+2d)(5+10d),解得:d.(2)=(2n+3)•3n﹣1.利用错位相减法即可得出.【解答】解:(1)公差d不为零的等差数列{a n}满足a1=5,且a3,a6,a11成等比数列.∴=a3•a11,即(5+5d)2=(5+2d)(5+10d),化为:d2﹣2d=0,解得:d=2.∴a n=5+2(n﹣1)=2n+3.(2)=(2n+3)•3n﹣1.∴数列{b n}的前n项和S n=5+7×3+9×32+……+(2n+3)•3n﹣1.∴3S n=5×3+7×32+……+(2n+1)×3n﹣1+(2n+3)×3n,∴﹣2S n=5+2(3+32+……+3n﹣1)﹣(2n+3)×3n=5+2×﹣(2n+3)×3n,解得S n=(n+1)3n﹣1.【点评】本题考查了等差数列与等比数列的通项公式求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.18.(12.00分)“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:10000以上步数/步0~30003001~60006001~80008001~10000127155男生人数/人03791女性人数/人规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)以这50人这一天行走的步数的频率代替1人一天行走的步数发生的概率,记X表示随机抽取3人中被系统评为“积极性”的人数,求P(X≤2)和X的数学期望.(2)为调查评定系统的合理性,拟从这50人中先抽取10人(男性6人,女性4人).其中男性中被系统评定为“积极性”的有4人,“懈怠性”的有2人,从中任意选取3人,记选到“积极性”的人数为x;其中女性中被系统评定为“积极性”和“懈怠性”的各有2人,从中任意选取2人,记选到“积极性”的人数为y;求x>y的概率.【分析】(1)由题意得被系统评为“积极性”的概率为=,X~B(3,),由此能求出P(X≤2)和X的数学期望.(2)“x>y“包含“x=3,y=2“,“x=3,y=1“,“x=3,y=0“,“x=2,y=1“,“x=2,y=0“,“x=1,y=0“,分别求出相应的概率,由此能求出P(x>y).【解答】解:(1)由题意得被系统评为“积极性”的概率为=,X~B(3,),∴P(X≤2)=1﹣()3=,X的数学期望E(X)=3×=.(2)“x>y“包含“x=3,y=2“,“x=3,y=1“,“x=3,y=0“,“x=2,y=1“,“x=2,y=0“,“x=1,y=0“,P(x=3,y=2)==,P(x=3,y=1)==,P(x=3,y=0)=×=,P(x=2,y=1)=×=,P(x=2,y=0)=×=,P(x=1,y=0)=×=,∴P(x>y)=.【点评】本题考查概率的求法,考查离散型随时机变量的数学期望的求法,考查二项分布、互斥事件概率加法公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19.(12.00分)如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,且BC=2AD=4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,得到如下的立体图形.(1)证明:平面AEFD⊥平面EBCF;(2)若BD⊥EC,求二面角F﹣BD﹣C的余弦值.【分析】(1)根据AE⊥EF,AE⊥CF可得AE⊥平面BCFE,故而平面AEFD⊥平面EBCF;(2)建立空间坐标系,根据BD⊥EC求出AE,求出平面BDF和平面BCD的法向量即可得出二面角的余弦值.【解答】(1)证明:∵在直角梯形ABCD中,AD∥BC,AB⊥BC,E,F分别为线段AB,DC的中点,∴EF∥AD,∴AE⊥EF,又AE⊥CF,且EF∩CF=F,∴AE⊥平面EBCF,∵AE⊂平面AEFD,∴平面AEFD⊥平面EBCF.(2)解:由(1)可得EA,EB,EF两两垂直,故以E为原点建立空间直角坐标系,(如图)设AE=m,则E(0,0,0),A(0,0,m),B(m,0,0),F(0,3,0),C(m,4,0),D(0,2,m),∴=(﹣m,2,m),,∵DB⊥EC,∴﹣m2+8=0,∴m=2.∴=(﹣2,2,2),,,设面DBF的法向量为,则,即,令y=4可得:=(3,4,),同理可得平面CDB的法向量为,∴cos<>===.由图形可知二面角F﹣BD﹣C为锐角,∴二面角F﹣BD﹣C的余弦值为.【点评】本题考查了面面垂直的判定,二面角的计算与空间向量的应用,属于中档题.20.(12.00分)已知椭圆的离心率为,且C过点.(1)求椭圆C的方程;(2)若直线l与椭圆C交于P,Q两点(点P,Q均在第一象限),l与x轴,y 轴分别交于M,N两点,且满足(其中O为坐标原点).证明:直线l的斜率为定值.【分析】(1)由椭圆的离心率公式和点满足椭圆方程、a,b,c的关系,解方程可得a,b,即可得到所求椭圆方程;(2)由题意可设直线l的方程为y=kx+m,(m≠0),P,Q的坐标为(x1,y1),(x2,y2),联立椭圆方程,消去y,可得x的方程,运用判别式大于0和韦达定理,以及三角形的面积公式,化简整理,解方程可得直线的斜率,即可得证.【解答】解:(1)由题意可得=,+=1,a2﹣b2=c2,解得a=2,b=1,c=,故椭圆C的方程为+y2=1;(2)证明:由题意可得直线l的斜率存在且不为0,设直线l的方程为y=kx+m,(m≠0),P,Q的坐标为(x1,y1),(x2,y2),令x=0,可得y=m,即|MO|=|m|,令y=0,可得x=﹣,即|NO|=||,则S=|MO|•|y1|,S△QMO=|MO|•|y2|,△PMOS△PNO=|MO|•|x1|,S△QNO=|NO|•|x2|,由,可得=,即有﹣2=﹣2,可得=,即=()2=k2,由y=kx+m代入椭圆+y2=1,可得(1+4k2)x2+8kmx+4(m2﹣1)=0,则△=64k2m2﹣16(1+4k2)(m2﹣1)>0,即为1+4k2﹣m2>0,x1+x2=﹣,x1x2=,y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=k2•+km(﹣)+m2=,可得=k2•,即有4k2=1(m≠0),可得k=﹣(舍去),则直线l的斜率为定值.【点评】本题考查椭圆方程和性质,主要是离心率和基本量的关系,考查直线方程和椭圆方程联立,运用判别式和韦达定理,同时考查三角形的面积的求法,以及化简整理的运算能力,属于中档题.21.(12.00分)已知函数f(x)=(x﹣2)e x+a(lnx﹣x+1).(1)讨论f(x)的导函数f'(x)零点的个数;(2)若函数f(x)的最小值为﹣e,求a的取值范围.【分析】(1)令f′(x)=0可得x=1或xe x﹣a=0,讨论a的范围得出方程xe x﹣a=0的根的情况,从而得出结论;(2)讨论a的范围,分别得出f(x)的最小值,从而得出结论.【解答】解:(1)f′(x)=(x﹣1)e x+a(﹣1)=(x>0),令g(x)=xe x﹣a(x>0),g′(x)=(x+1)e x>0,∴g(x)在(0,+∞)上单调递增,∴g(x)>g(0)=﹣a.∴当a≤0或a=e时,f′(x)=0只有1个零点,当0<a<e或a>e时,f″(x)有两个零点.(2)当a≤0时,xe x﹣a>0,则f(x)在x=1处取得最小值f(1)=﹣e,当a>0时,y=xe x﹣a在(0,+∞)上单调递增,则必存在正数x0,使得x0e﹣a=0,若a>e,则x0>1,故函数f(x)在(0,1)和(x0,+∞)上单调递增,在(1,x0)上单调递减,又f(1)=﹣e,不符合题意;若0<a<e时,则0<x0<1,设正数b=e∈(0,1),则f(b)=(b﹣2)e b+a(lnb﹣b+1)<aln(e﹣b+1)=a(﹣)=﹣e ﹣ab<﹣e,不符合题意.综上,a的取值范围是(﹣∞,0].【点评】本题考查了函数单调性判断与最值计算,考查函数零点个数与单调性的关系,属于中档题.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10.00分)在直角坐标系xOy中,圆C1:(x﹣2)2+(y﹣4)2=20,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,C2:θ=.(1)求C1的极坐标方程和C2的平面直角坐标系方程;(2)若直线C3的极坐标方程为θ=,设C2与C1的交点为O、M,C3与C1的交点为O、N,求△OMN的面积.【分析】(1)根据x=ρcosθ,y=ρsinθ,整理即可;(2)别将θ=,θ=代入ρ=4cosθ+8sinθ,求出得ρ1,ρ2的值,从而求出三角形的面积.【解答】解:(1)∵圆C1的普通方程为x2+y2﹣4x﹣8y=0,把x=ρcosθ,y=ρsinθ代入方程得ρ2﹣4ρcosθ﹣8ρsinθ=0,故C1的极坐标方程是ρ=4cosθ+8sinθ,C2的平面直角坐标系方程是y=x;(2)分别将θ=,θ=代入ρ=4cosθ+8sinθ,得ρ1=2+4,ρ2=4+2,则△OMN的面积为×(2+4)×(4+2)×sin(﹣)=8+5.【点评】本题考查了极坐标和直角坐标的转化,考查代入求值问题,是一道中档题.[选修4-5:不等式选讲]23.已知函数f(x)=3|x﹣a|+|3x+1|,g(x)=|4x﹣1|﹣|x+2|.(1)求不等式g(x)<6的解集;(2)若存在x1,x2∈R,使得f(x1)和g(x2)互为相反数,求a的取值范围.【分析】(1)通过讨论x的范围,求出不等式的解集即可;(2)问题转化为{y|y=f(x),x∈R}∩{y|y=﹣g(x),x∈R}≠∅,求出f(x)的最小值和g(x)的最小值,得到关于a的不等式,解出即可.【解答】解:(1)g(x)=|4x﹣1|﹣|x+2|.g(x)=,不等式g(x)<6,x≤﹣2时,4x﹣1﹣x﹣2<6,解得:x>﹣1,不等式无解;﹣2<x<时,1﹣4x﹣x﹣2<6,解得:﹣<x<,x≥时,4x﹣1﹣x﹣2<6,解得:3>x,综上,不等式的解集是(﹣,3);(2)因为存在x1∈R,存在x2∈R,使得f(x1)=﹣g(x2)成立,所以{y|y=f(x),x∈R}∩{y|y=﹣g(x),x∈R}≠∅,又f(x)=3|x﹣a|+|3x+1|≥|(3x﹣3a)﹣(3x+1)|=|3a+1|,故g(x)的最小值是﹣,可知﹣g(x)max=,所以|3a+1|≤,解得﹣≤a≤,所以实数a的取值范围为[﹣,].【点评】本题考查函数与方程的综合应用,绝对值不等式的解法问题,考查分类讨论思想,转化思想,是一道中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年高考数学试题(广东卷) 时间:120分钟 满分:150分 一、选择题:共12小题,每小题5分。 (1) 已知平面向量(3,1),(,3)abx,且ab,则x (A)3 (B)1 (C)1 (D)3 (2) 已知2|21|3,60AxxBxxx,则AB
(A)[3,2)(1,2] (B)(3,2](1,) (C)(3,2][1,2) (D)(,3](1,2]
(3) 设函数2322,2()42,2xxfxxxxa在2x处连续,则a (A)12 (B)14 (C)14 (D)13 (4) 12321211111limnnnnnnnn的值为 (A)1 (B)0 (C)12 (D)1 (5) 函数22()sin()sin()44fxxx是 (A)周期为的偶函数 (B)周期为的奇函数 (C)周期为2的偶函数 (D)周期为2的奇函数 (6) 一台X型号的自动机床在一小时内不需要工人照看的概率为0.8000,有四台这种型号的自动机床各自独立工作,则一小时内至多有2台机床需要工人照看的概率是 (A)0.1536 (B)0.1818 (C)0.5632 (D)0.9728 (7) 在棱长为1的正方体上,分别过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是
(A)23 (B)67 (C)45 (D)56
(8) 若双曲线222(0)xykk的焦点到它相应的准线的距离是2,则k (A)6 (B)8 (C)1 (D)4
(9) 当04x时,函数22cos()cossinsinxfxxxx的最小值是 (A)4 (B)12 (C)2 (D)14 (10) 变量,xy满足下列条件: 212293623240,0xyxyxyxy
则使得32zxy的值最小的(,)xy是
(A)(4.5,3) (B)(3,6) (C)(9,2) (D)(6,4) (11) 若()tan()4fxx,则 (A)(1)(0)(1)fff (B)(0)(1)(1)fff (C)(1)(0)(1)fff (D)(0)(1)(1)fff (12) 如右下图,定圆半径为a,圆心为(,)bc,则直线0axbyc与直线10xy的交点在
(A)第四象限 (B)第三象限 (C)第二象限 (D)第一象限 二、填空题:共4小题,每题4分 (13) 某班委由4名男生和3名女生组成,现从中选出2人担任正副班长。其中至少有一名女生当选的概率是 。(用分数作答)
(14) 已知复数z与2(2)8zi均是纯虚数,则z 。
(15) 由图(1)有关系''''PABPABSPAPBSPAPB,则由图(2)有关系'''PABCPABCVV 。
P A
B
A' B'
P A B C A'
C' B'
(1) (2) (16) 函数()ln(11),(0)fxxx的反函数1()fx 。 三、解答题:共6小题,74分 (17) 本小题12分
已知角,,成公比为2的等比数列( [0,2]),sin,sin,sin也成等比数列,
求,,的值。
(18) 本小题12分 如右下图,在长方体1111ABCDABCD中,已知14,3,2ABADAA,,EF分别是线
段,ABBC上的点,且1EBFB (I)求二面角1CEDC的正切值 (II)求直线1EC与1FD所成角的余弦值
ABDA1CB1
D1C
1
EF (19) 本小题12分 设函数1()1,0fxxx
(I)证明:当0ab且()()fafb时,1ab (II)点00(,)Pxy(0向所围成的三角形面积的表达式。(用0x表示) (20) 本小题12分 某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比其他两个观测点晚4s,已知各观测点到中心的距离都是1020m,试确定该巨响的位置。(假定当时声音传播的速度为340/ms,各相关点均在同一平面上)
(21) 本小题12分 设函数()ln()fxxxm,其中常数m为整数
(I)当m为何值时,()0fx (II)定理:若函数()gx在[,]ab上连续,且()ga与()gb异号,则至少存在一点0(,)xab,使得0()0gx 试用上述定理证明:当整数1m时,方程()0fx在2,mmemem内有两个实根
(22) 本小题14分 设直线l与椭圆2212516xy相交于,AB两点,l又与双曲线221xy相交于C、D两点,,CD三等分线段AB,求直线l的方程。 2018年普通高等学校招生全国统一考试 广东数学标准答案 一、 选择题: 题号 1 2 3 4 5 6 7 8 9 10 11 12
A卷 B C B A A D B C D B A C
B卷 C A C A B D D A A B D B
二、 填空题: (13)75 (14)-2i (15)PCPBPAPCPBPA''' (16))(22Rxeexx 三、 解答题 17.解:∵α,β,γ成公比为2的等比数列,∴β=2α,γ=4α ∵sinα,sinβ,sinγ成等比数列
21cos,1cos01coscos21cos2cos2sin4sinsin2sinsinsinsinsin22或解得
即
当cosα=1时,sinα=0,与等比数列的首项不为零,故cosα=1应舍去,
316,38,3438,34,32,3432,]2,0[,21cos或所以或时当
18.解:(I)以A为原点,1,,AAADAB分别为x轴,y轴,z轴的正向建立空间直角坐标系,则有 D(0,3,0)、D1(0,3,2)、E(3,0,0)、F(4,1,0)、C1(4,3,2) 于是,)2,2,4(),2,3,1(),0,3,3(11FDECDE 设向量),,(zyxn与平面C1DE垂直,则有
22tan36400411220101||||cos,)2,0,0(,),2,1,1(0),2,1,1(2),2,2(21023033101011011001
AAnAAnCDECAAnCDEAADECnnzzzzznzyxzyxyxECnDEn的平面角为二面角所成的角与垂直与平面向量垂直的向量是一个与平面则取其中
(II)设EC1与FD1所成角为β,则 142122)4(2312223)4(1||||cos2222221111
FDEC
FDEC
19.证明:(I)
),1(,11]1,0(,11|11|)(xx
xx
xxf
故f(x)在(0,1]上是减函数,而在(1,+∞)上是增函数,由0且f(a)=f(b)得0故1,1abab即 (II)0
曲线y=f(x)在点P(x0,y0)处的切线方程为: 00200200
2),(1xxxyxxyyxx即
∴切线与x轴、y轴正向的交点为)2(1,0()0),2((0000xxxx和 故所求三角形面积听表达式为: 2000000)2(21)2(1)2(21)(xxxxxxA
20.解:如图, y
xoAB
CP
以接报中心为原点O,正东、正北方向为x轴、y轴正向,建立直角坐标系.设A、B、C分别是西、东、北观测点,则A(-1180,0),B(1180,0),C(0,1180) 设P(x,y)为巨响为生点,由A、C同时听到巨响声,得|PA|=|PB|,故P在AC的垂直平分线PO上,PO的方程为y=-x,因B点比A点晚4s听到爆炸声,故|PB|- |PA|=340×4=1360
由双曲线定义知P点在以A、B为焦点的双曲线12222byax上, 依题意得a=680, c=1180,
13405680340568010202222222222yxacb故双曲线方程为 用y=-x代入上式,得5680x,∵|PB|>|PA|,