除磷脱氮技术的几种工艺介绍

合集下载

生物脱氮除磷工艺

生物脱氮除磷工艺

生物脱氮除磷工艺生物脱氮除磷工艺是一种通过微生物代谢作用来减少废水中氮和磷的浓度的工艺。

该工艺逐渐被广泛应用于城市污水处理、农业生产、工业废水处理等领域。

生物脱氮除磷工艺涉及多个过程,包括生物脱氮池、一/二级沉淀池、生物滤池、化学除磷装置等。

其中生物脱氮池和生物滤池是主要的过程单元。

生物脱氮池是一个特殊的好氧反应器,主要是使用异养菌为营养基础,利用硝化反应将氨氮和有机氮转化为硝态氮,然后通过反硝化反应将硝态氮还原为氮气排出。

为了使池内的好氧环境被保持,池内需要提供足够的氧气。

生物滤池是一个非常重要的污水处理单位,它是通过微生物群落代谢作用,利用吸附作用来吸附废水中的氮和磷元素。

微生物生长在滤料表面,铺设在水平或者竖直的格栅上,滤料可以是沙砾、玄武岩等物质。

滤料的特殊结构、表面特性和自备的微生物群落成为生物滤池内的去除污染物的主要手段。

废水在流经滤料层时,氮和磷元素在滤料表面被吸附,吸附到细胞表面的氮被异养菌氧化为氮气,磷元素则随着污泥浓度增加,在池内逐步沉积。

生物脱氮除磷工艺的优点在于原理简单,适用范围广泛,处理效率高,成本较低,不需要大量的化学物质,并且不会产生二次污染。

然而,这种工艺也存在一些缺陷。

例如,处理后的产物含有大量的氮和磷,商业利用它们困难,造成浪费;污水中如果有过多的脂肪和油脂,可能会对生物脱氮除磷工艺产生影响,导致工艺失效。

总之,生物脱氮除磷工艺是一种受到广泛关注的废水处理方案。

未来,随着社会对环境保护意识的不断提高,生物脱氮除磷工艺势必会在更多的领域得到应用,成为减少污染物排放的重要手段。

工艺方法——生物脱氮除磷技术

工艺方法——生物脱氮除磷技术

工艺方法——生物脱氮除磷技术工艺简介一、传统生物脱氮除磷技术1、传统生物脱氮原理污水经二级生化处理,在好氧条件下去除以BOD5为主的碳源污染物的同时,在氨化细菌的参与下完成脱氨基作用,并在硝化和亚硝化细菌的参与下完成硝化作用;在厌氧或缺氧条件下经反硝化细菌的参与完成反硝化作用。

2、传统生物除磷原理在厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量形成ADP;在好氧条件下,聚磷菌有氧呼吸,不断地放出能量,聚磷菌在透膜酶的催化作用下利用能量、通过主动运输从外部摄取H3PO4,其中一部分与ADP结合形成ATP,另一部分合成聚磷酸盐(PHB)储存在细胞内,实现过量吸磷。

通过排除剩余污泥或侧流富集厌氧上清液将磷从系统内排除,在生物除磷过程中,碳源微生物也得到分解。

3、常用工艺及升级改造具有代表性的常用工艺有A/O工艺、A2/O工艺、UCT工艺、SBR 工艺、Bardenpho工艺、生物转盘工艺等,这些工艺都是通过调节工况,利用各阶段的优势菌群,尽可能的消除各影响因素间的干扰,以达到适应各阶段菌群生长条件,实现水处理效果。

近年来随着研究的深入,对常用工艺有了一些改进,目前应用最广泛、水厂升级改造难度较低的是分段进水工艺。

与传统A/O工艺、A2/O工艺、UCT工艺等相比,分段进水工艺可以充分利用碳源并能较好的维持好氧、厌氧(或缺氧)环境,具有脱氮除磷效率高、无需内循环、污泥浓度高、污泥龄长等优点。

分段进水工艺适用于对A/O工艺、A2/O工艺、UCT工艺等的升级改造,通过将生化反应池分隔并使进水按一定比例分段进入各段反应池,以充分利用碳源,解决目前污水处理厂普遍存在的碳源不足和剩余污泥量过大的问题。

分段进水工艺虽然对提高出水水质有较好的效果,但该工艺并不能提高处理能力,当水厂处于超负荷运行时,分段进水改造也不能达到良好的处理效果。

二、新型生物脱氮除磷技术近年来,科学研究发现,生物脱氮除磷过程中出现了超出传统生物脱氮除磷理论的现象,据此提出了一些新的脱氮除磷工艺,如:短程硝化反硝化工艺、同步硝化反硝化工艺、厌氧氨氧化工艺、反硝化除磷工艺。

脱氮除磷工艺指南

脱氮除磷工艺指南

脱氮除磷工艺指南一、引言脱氮除磷是水处理工艺中非常重要的环节,它能有效地去除废水中的氮和磷,减少对环境的污染。

本文将介绍脱氮除磷的工艺原理、常用方法和设备以及操作注意事项,以帮助读者更好地了解和应用该工艺。

二、工艺原理脱氮除磷的原理是利用生物和化学方法将废水中的氮和磷转化为氮气和无机磷,从而实现去除的目的。

生物脱氮除磷是利用硝化细菌和反硝化细菌的作用,将废水中的氨氮和亚硝酸盐氮转化为氮气释放到大气中。

化学脱氮除磷是利用化学药剂与废水中的氮结合形成沉淀物,从而去除氮。

除磷主要是通过化学沉淀、吸附和生物吸附等方式将废水中的磷去除。

三、常用方法1. 生物脱氮除磷工艺生物脱氮除磷工艺主要包括A2O法、SBR法、AO法等。

其中,A2O法是指将好氧区、缺氧区和厌氧区结合在一起的工艺,通过不同区域中的细菌作用实现脱氮除磷。

SBR法是指在同一反应器中通过不同阶段的工作实现脱氮除磷。

AO法是指通过好氧区和厌氧区结合的方式,分别去除氮和磷。

2. 化学脱氮除磷工艺化学脱氮除磷工艺主要包括化学沉淀法和化学吸附法。

化学沉淀法是通过加入适量的化学药剂,使废水中的氮和磷形成沉淀,然后通过沉淀物的分离去除。

化学吸附法是利用一些特殊的吸附材料,如活性炭、氧化铁等,将废水中的氮和磷吸附在表面,从而实现去除。

四、常用设备1. 好氧池和厌氧池好氧池和厌氧池是生物脱氮除磷工艺中常用的设备。

好氧池提供氧气和充足的微生物,促进氮的氧化和磷的吸附,而厌氧池则提供缺氧条件,促进氮的还原和释放。

2. 沉淀池沉淀池是化学脱氮除磷工艺中常用的设备。

通过加入化学药剂,废水中的氮和磷形成沉淀物,在沉淀池中进行沉淀分离,然后排出清水。

3. 吸附装置吸附装置是化学吸附法中常用的设备。

利用特殊吸附材料,将废水中的氮和磷吸附在表面,然后进行分离和去除。

五、操作注意事项1. 控制好氧和厌氧条件,保证生物脱氮除磷工艺的正常运行。

2. 加入化学药剂时,要注意药剂的种类和用量,避免过量使用或不足。

污水生物脱氮除磷原理及工艺

污水生物脱氮除磷原理及工艺

一般用Al2(SO4)3,聚氯化铝(PAC)和铝酸钠(NaAlO2) 2)铁盐除磷:FePO4 、 Fe(OH)3
一般用FeCl2、FeSO4 或 FeCl3 、Fe2(SO4)3
3)石灰混凝除磷:
2 5Ca 2 4OH 3HPO4 Ca5 (OH )(PO4 ) 3 3H 2O
二、生物除磷过程的影响因素
①溶解氧: l厌氧池内:绝对的厌氧,即使是NO3-等也不允许存在; l好氧池内:充足的溶解氧。 ②污泥龄: l剩余污泥对脱磷效果有很大影响,泥龄短的系统产生的剩余
污泥多,可以取得较好的除磷效果;
l 有报道称:污泥龄为 30d ,除磷率为 40%;污泥龄为 17d,
除磷率为50%;而污泥龄为5d时,除磷率高达87%。
一、巴颠甫(Bardenpho)同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要 功能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。 工艺复杂,反应器单元多,运行繁琐,成本高
二、A—A—O(A2/O)同步脱氮除磷工艺
工艺特点: l工艺流程比较简单;总的水力停留时间短 l厌氧、缺氧、好氧交替运行,不利于丝状菌生长,污泥膨胀 较少发生; l无需投药,两个A段只需轻缓搅拌, 只有O段供氧, 运行费用低。
3
2
2 反硝化反应的影响因素
• 碳源:
①废水中有机物,若BOD5/TKN>3~5时,即可; ②外加碳源,多为甲醇; ③内源呼吸碳源—细菌体内的原生物质及其贮存 的有机物。 • 适宜pH:6.5~7.5; • 溶解氧应控制在0.5mg/l以下;
• 适宜温度:20~40C
生物脱氮的基本原理
二、Phostrip除磷工艺——生物除磷和化学除磷相结合

多级多段ao脱氮除磷工艺

多级多段ao脱氮除磷工艺

多级多段ao脱氮除磷工艺
多级多段ao脱氮除磷工艺是目前常见的污水处理工艺之一。


采用AO工艺的基本原理,结合多级多段方式来实现污水脱氮除磷。


工艺的主要流程包括:
第一级:机械处理,利用格栅、除砂器等技术去除污水中的大颗
粒物和杂质。

第二级:生物处理,利用AO工艺实现脱氮除磷,主要包括好氧
池和厌氧池两个阶段。

在好氧池中,通过曝气和搅拌等手段,提高细
菌的代谢活性,促进污水中的有机物和氨氮转化为亚硝酸盐和硝酸盐。

在厌氧池中,通过无氧条件下的细菌代谢,将污水中的磷酸盐还原为
磷化合物,以便后续的沉淀处理。

第三级:沉淀处理,对经过生物处理后的污水进行沉淀,使污水
中的固体物质和部分磷化合物沉积到池底,以此达到除磷除氮的目的。

第四级:滤后处理,将经过沉淀处理的清水进行滤过,去除残余
的悬浮物和微生物。

之后再通过消毒、pH调节等处理措施,使处理后
的清水达到排放标准,以实现循环利用。

多级多段ao脱氮除磷工艺具有工艺流程简单、效率高、运行成
本低等优点,适用于各类污水处理场所。

污水处理脱氮除磷工艺介绍及对比分析

污水处理脱氮除磷工艺介绍及对比分析

污水处理脱氮除磷工艺介绍及对比分析2020年9月6日星期日目录一、生物脱氮 (3)1、硝化过程 (3)2、反硝化过程 (4)3、生物脱氮的基本条件 (5)4、废水生物脱氮处理方法 (6)二、化学脱氮 (7)1、吹脱法 (7)2、化学沉淀法(磷酸铵镁沉淀法) (8)3、低浓度氨氮工业废水处理技术 (9)4、不同浓度工业含氨氮废水的处理方法比较 (11)三、化学法除磷 (11)1、石灰除磷 (12)2、铝盐除磷 (12)3、铁盐除磷 (13)四、生物除磷 (13)1、生物除磷的原理 (13)2、生物除磷的影响因素: (14)3、废水生物除磷的方法有哪些 (15)4、除磷设施运行管理的注意事项 (15)一、生物脱氮脱氮技术包括化学法和生物法,由于化学法会产生二次污染,而且成本高,所以一般使用生物脱氮技术。

污水生物处理脱氮主要是靠一些专性细菌实现氮形式的转化。

含氮有机化合物在微生物的作用下首先分解转化为氨态氮NH4+或NH3,这一过程称为“氨化反应”。

硝化菌把氨氮转化为硝酸盐,这一过程称为“硝化反应”;反硝化菌把硝酸盐转化为氮气,这一反应称为“反硝化反应”。

含氮有机化合物最终转化为氮气,从污水中去除。

1、硝化过程硝化菌把氨氮转化为硝酸盐的过程称为硝化过程,硝化是一个两步过程,分别利用了两类微生物——亚硝酸盐菌和硝酸盐菌。

这两类细菌统称为硝化菌,这些细菌所利用的碳源是CO32-、HCO3-和CO2等无机碳。

第一步由亚硝酸盐菌把氨氮转化为亚硝酸盐,第二步由硝酸盐菌把亚硝酸盐转化为硝酸盐。

这两个过程释放能量,硝化菌就是利用这些能量合成新细胞和维持正常的生命活动,氨氮转化为硝态氮并不是去除氮而是减少了它的需氧量。

氧化1g氨氮大约需要消耗4.3gO2和8.64gHCO3-(相当于7.14gCaCO3碱度)。

硝化过程的影响因素:1)温度:硝化反应最适宜的温度范围是30~35℃,温度不但影响硝化菌的比增长速率,而且会影响硝化菌的活性。

污水处理中的脱氮除磷工艺

污水处理中的脱氮除磷工艺
通常污水处理设备的外壳都是金属材质(碳钢、不锈钢)或者玻璃钢材质制作。

不同的污水处理设备对污染水的敏感度处理工艺和处理后的排放标准都不相同。

污水中95%以上的氨氮(HN3-N)以NH4的形式存在。

通过鼓风曝气,亚硝酸菌首先将氨氮转化为亚硝酸盐:
(亚硝酸菌)NH4+1.5O2NO2-+2H+H2O。

然后将亚硝酸盐转化为硝酸盐:硝酸菌No2总体反应为:NH4+2O2NO3+2H+H2O。

污水处理设备
以上反应在好氧部分进行。

在厌氧部分,硝酸盐和亚硝酸盐通过兼氧微生物或厌氧微生物(如碱生产菌、假单胞菌、无色杆菌等)进行反硝化和脱氮。

反消化菌利用NO3中的氧(又称化合态氧或硝化氧)继续分解代谢有机污染物,去除BOD5,同时将NO3中的氮转化为氮N2这个过程可以用以下方式表示:
反消化菌NO3-+有机物N2+N2O+OH。

除磷原理:
厌氧段优势的非丝状储磷菌分解储存的聚磷酸盐,提供能量,吸收水中大量的BOD5,释放正磷酸盐,降低厌氧段的BOD5,提高磷含量。

公厕污水进入好氧段后,好氧微生物利用氧化分解获得的能量,吸收原水中释放的大量正磷和磷,完成磷的过渡积累,达到去除BOD5和除磷的目的。

污水处理脱氮除磷工艺原理。

脱氮除磷工艺汇总

脱氮除磷工艺汇总MBR工艺脱氮除磷MBR是一种结合膜分离和微生物降解技术的高效污水处理工艺。

在反应器内,一方面,膜组件将泥水高效分离,促使出水水质改善;另一方面,污泥停留时间(SRT)与水力停留时(HRT)在反应器内相互独立,可提高污泥浓度;此外,反应器内较长的SRT可使增殖缓慢的某些特殊菌(如自养硝化菌等)在活性污泥中出现,而膜组件又能将这些菌持留,从而使MBR处理效果得以改善.MBR工艺具有一定局限性,对于生活污水,其仅依靠MBR本身其脱氮除磷能力只能达到40%至60%左右的去除率;对于工业废水,其对难降解有机物的去除率并没有得到太大改善.所以MBR工艺一般和SBR系列/AAO等工艺组合使用. 五种常见组合工艺:SBR—MBR工艺A2O—MBR工艺3A—MBR工艺A2O/A-MBR工艺A(2A)O—MBR工艺SBR—MBR工艺:将SBR与MBR相结合形成的SBR-MBR工艺,除了具有一般MBR的优点外,对于膜组件本身和SBR工艺两种程序运行都互有帮助。

由于膜组件的截留过滤作用,反应中的微生物能最大限度地增长,利于世代时间较长的硝化及亚硝化细菌的生长繁殖,因此,污泥的生物活性高,吸附和降解有机物的能力较强,同时也具有较好的硝化能力.此外,SBR式的工作方式为除磷菌的生长创造了条件,同时也满足了脱氮的需要,使得单一反应器内实现同时高效去除氮磷及有机物成为可能。

与传统SBR系统相比,SBR-MBR在反应阶段利用膜分离排水,可以减少传统SBR的循环时间;同时,序批式的运行方式可以延缓膜污染。

A2O-MBR工艺:由A2O工艺与MBR膜分离技术结合而成的具有同步脱氮除磷功能的A2O—MBR工艺,可进一步拓展MBR的应用范畴。

在该工艺中设置有两段回流,一段是膜池的混合液回流至缺氧池实现反硝化脱氮,另一段是缺氧池的混合液回流至厌氧池,实现厌氧释磷。

A2O—MBR工艺中高浓度的MLSS、独立控制的水力停留时间和污泥停留时间、回流比及污泥负荷率等都会产生与传统A2O工艺不同的影响,具有较好的脱氮除磷效率。

生物脱氮除磷工艺简述

生物脱氮除磷工艺简述摘要:本文对生物脱氮除磷工艺的原理进行了介绍,并对目前常用的脱氮除磷处理工艺进行了简要阐述。

关键词:生物脱氮除磷,氧化沟A/A/O生物处理工艺,SBR法Abstract: in this paper, the biological denitrification and the principle of dephosphorization technology are introduced, and the common denitrification and phosphorus processing technology are briefly described.Keywords: biological denitrification and phosphorus, the oxidation ditch A/A/O biological treatment technology, SBR method生物脱氮除磷工艺是目前常见的污水处理工艺,其处理机理及形式如下:1.生物脱氮除磷原理1.1生物脱氮生物脱氮是通过硝化和反硝化两个生化过程来完成的。

污水中含氮化合物经异养性氨化细菌作用分解为NH3-N,然后在好氧条件下,通过亚硝酸菌和硝酸菌的作用,将氨氮氧化成亚硝酸氮(NO2—-N)和硝酸氮(NO3—-N)的过程称为硝化过程。

在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,在氢供给体充分的条件下,将亚硝酸氮(NO2—-N)和硝酸氮(NO3—-N)还原成N2排入空气中,同时有机物分解的过程称为反硝化过程。

1.2生物除磷生物除磷是利用活性污泥中的聚磷菌在厌氧条件下释磷,在好氧条件下过量吸磷的原理来进行的。

1.3同时生物脱氮除磷系统的设计要素从生物脱氮除磷原理看出,两者要求的有些方面是相互制约的。

要正常发挥脱氮除磷系统效率,详细分析进水水质是十分必要的:进水BOD5浓度:不宜低于150mg/L。

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺生物脱氮的原理主要是利用微生物中的硝化和反硝化过程。

首先,硝化细菌通过氧化氨将氨氮转化为亚硝酸盐,然后亚硝酸盐进一步被亚硝酸盐脱氢酶转化为硝酸盐。

这个过程被称为硝化作用。

反硝化过程是指在缺氧或低氧条件下,反硝化细菌通过还原硝酸盐来释放出氮气。

生物脱磷的原理主要是利用微生物中的磷酸盐积累和释放过程。

一些细菌和藻类能够以有机物的形式从水中吸收和积累磷酸盐,并在一定条件下释放出来。

这个过程被称为磷酸盐吸收和释放作用。

通过调节水体中的氧气、有机负荷和pH值等条件,可以促进微生物的磷酸盐吸收和释放过程,从而实现生物脱磷。

非曝气法主要是在低氧或缺氧条件下进行处理。

这种方法的优点是能够节省能源和减少氧气需求,适用于中小型处理单位。

常见的非曝气法包括:厌氧氨氧化-硝化还原法(Anammox-Detritus-Anoxia法)、系统内侧流间歇式处理法(SCT法)和单球状厌氧硝化反硝化法等。

曝气法主要是通过加氧来提供充足的氧气供给,促进硝化和反硝化过程。

这种方法的优点是处理效果稳定可靠,适用于大型处理装置。

常见的曝气法包括:AO法(活性污泥法)、A2/O法(改良后的活性污泥法)和SBR法(顺序批处理法)等。

在实际的生物脱氮除磷工程中,通常会采用多级处理工艺。

例如,可以将生物脱氮和生物除磷结合起来,构建生物反硝化除磷工艺(SND)。

这种工艺可以同时去除水体中的氮和磷,效果较好。

总的来说,生物脱氮除磷通过利用微生物的生长和代谢活动,可以有效地降低水体中的氮和磷浓度,改善水质,保护生态系统。

不同的工艺可以根据具体情况选择和组合,以达到最佳的去除效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

除磷脱氮技术的几种工艺介绍
所属行业: 水处理关键词:除磷脱氮污水处理城市污水氮、磷等污染物的大量排放,进一步加剧了水资源短缺的矛盾,为此,对污水排放情况的控制很重要。

磷、氮废水的大量排放,造成水体的富营养化,最终会导致生态平衡,影响人类健康与发展等危害。

下面主要介绍城市污水处理的除磷脱氮技术:
处理城市污水中的氮磷多采用A/O、A2/O工艺、序批式工艺、氧化沟系列工艺等。

以下是城市污水除磷脱氮几种工艺的介绍。

01.A2/O法:
传统A2/O法
传统A2/O法是目前普遍采用的同时脱氮除磷的工艺,它是在传统活性污泥法的基础上增加一个缺氧段和一个厌氧段。

倒置A2/O工艺
倒置A2/O是对传统A2/O工艺的改进,其脱氮除磷效果更好,其原因在于:
缺氧区位于厌氧区之前,有利于微生物形成更强的吸磷动力,微生物厌氧释磷后直接进入好氧环境充分吸磷;所有参与回流的污泥都
经历了完整的释磷、吸磷过程;缺氧池位于厌氧池前,允许反硝化菌
优先获得碳源,因而加强了系统的脱氮能力。

02序批式工艺
传统的SBR法
传统SBR是间歇性活性污泥法,它由一个或多个曝气反应池组成,污水分批进入池中,经活性污泥净化后,上清夜排出池外即完成一个运行周期。

SBR工艺处理简单,处理构筑物少,曝气反应池集曝气沉淀污泥回流于一体,且污泥量少,容易脱水,但存在自动控制和连续在线分析仪器仪表要求高的特点。

CASS工艺
CASS是一种连续进水式SBR曝气系统,不仅具有SBR工艺简单可靠、运行方式灵活、自动化程度高的特点,而且脱氮除磷效果明显。

这一功能主要实现于CASS池通过隔墙将反应池分为功能不同的区域,在各分隔中溶解氧、污泥浓度和有机负荷不同,各池中的生物也不同,同时在传统的SBR池前或池中设置了选择器及厌氧区,提高了脱氮除磷效果。

03氧化沟工艺
氧化沟工艺是一种延时曝气的活性污泥法,由于负荷很低,耐冲击负荷强,出水水质较好,污泥产量少且稳定,构筑物少,氧化沟可以按脱氮设计,也可以略加改进实现脱氮除磷。

氧化沟工艺是一种工艺流程简单、管理方便、投资省、运行费用低、工艺稳定性高的污水处理技术。

以上的除磷脱氮技术,可以很好地解决磷、氮超标问题,不过有时因为一些因素的干扰,造成出水的磷、氮的浓度不达标,为此,可以在处理工艺末端投加除磷剂或氨。

相关文档
最新文档