高二数学命题及关系知识点归纳

合集下载

高二数学知识点归纳总结

高二数学知识点归纳总结

高二数学知识点归纳总结高二数学知识点归纳总结1一、集合、简易逻辑(14课时,8个)1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。

二、函数(30课时,12个)1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。

12、函数的应用举例。

三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。

四、三角函数(46课时,17个)1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。

五、平面向量(12课时,8个)1、向量;2、向量的加法与减法;3、实数与向量的积;4、平面向量的坐标表示;5、线段的定比分点;6、平面向量的数量积;7、平面两点间的距离;8、平移。

六、不等式(22课时,5个)1、不等式;2、不等式的基本性质;3、不等式的证明;4、不等式的解法;5、含绝对值的不等式。

七、直线和圆的方程(22课时,12个)1、直线的倾斜角和斜率;2、直线方程的点斜式和两点式;3、直线方程的一般式;4、两条直线平行与垂直的条件;5、两条直线的交角;6、点到直线的距离;7、用二元一次不等式表示平面区域;8、简单线性规划问题;9、曲线与方程的概念;10、由已知条件列出曲线方程;11、圆的标准方程和一般方程;12、圆的参数方程。

高二数学命题及其关系试题答案及解析

高二数学命题及其关系试题答案及解析

高二数学命题及其关系试题答案及解析1.分别写出下列命题的逆命题、逆否命题,并判断它们的真假:(1)若q<1,则方程x2+2x+q=0有实根;(2)若x2+y2=0,则x,y全为零.【答案】(1)见解析(2)见解析)【解析】逆命题是交换原命题条件和结论,逆否命题是交换原命题条件和结论并否定. (Ⅰ)逆命题:若方程x2+2x+q=0有实根,则q<1。

为假命题.逆否命题:若方程x2+2x+q=0无实根,则q≥1,为真命题.(Ⅱ)逆命题:若x、y全为零,则x2+y2=0,为真命题.逆否命题:若x、y不全为零,则x2+y2≠0,为真命题.试题解析:(Ⅰ)逆命题:若方程x2+2x+q=0有实根,则q<1。

为假命题.逆否命题:若方程x2+2x+q=0无实根,则q≥1,为真命题.(Ⅱ)逆命题:若x、y全为零,则x2+y2=0,为真命题.逆否命题:若x、y不全为零,则x2+y2≠0,为真命题.【考点】四种命题之间的关系2.下列命题正确的个数是( )①命题“”的否定是“”;②函数的最小正周期为”是“”的必要不充分条件;③在上恒成立在上恒成立;④“平面向量与的夹角是钝角”的充分必要条件是“”.A.1B.2C.3D.4【答案】B【解析】(1)把存在量词改为全称量词,同时把结论否定,正确. (2)函数最小正周期为,则;当,函数的周期为,函数的最小正周期为”是“”的必要不充分条件,正确.(3)在上恒成立在上恒成立;(4)“平面向量与的夹角是钝角”的充分必要条件是,且,错误.【考点】命题的真假性.3.命题r:如果则且;若命题r的否命题为p,命题r的否定为q,则A.P真q假B. P假q真C. p,q都真D. p,q都假【答案】A【解析】由已知有命题r:如果则且,是真命题;由于命题r的否命题为p,则命题p为:如果则或,其逆否命题为:如果且则显然是真命题,故知命题P也是真命题;又因为命题r的否定为q,所以命题q是假命题;故选A.【考点】简易逻辑.4.已知命题函数在区间上是单调递增函数;命题不等式对任意实数恒成立.若是真命题,且为假命题,求实数的取值范围.【答案】或.【解析】首先分别求出命题和命题为真命题时实数的取值范围,然后由是真命题,且为假命题知,真假或假真.最后分别求出这两种情况下的实数的取值范围即可.试题解析:若命题为真,则,若命题为真,则或,即.∵是真命题,且为假命题∴真假或假真∴或,即或.【考点】复合命题的真假.5.下列说法中正确的是()A.命题“若,则”的否命题为假命题B.命题“使得”的否定为“,满足”C.设为实数,则“”是“”的充要条件D.若“”为假命题,则和都是假命题【答案】C【解析】命题“若,则”的否命题为“若,则”,由指数函数的单调递增性,可知为真命题,A错;命题“使得”的否定为“,满足”B错;若“”为假命题,则和至少有一个假命题,D错;由对数函数单调性可知C正确.【考点】否命题,特称命题的否定,充要条件,简单的复合命题.6.下列说法中正确的是()A.命题“若,则”的否命题为假命题B.命题“使得”的否定为“,满足”C.设为实数,则“”是“”的充要条件D.若“”为假命题,则和都是假命题【答案】C【解析】(1)原命题:“若,则”。

高二数学选修2-1基础及题型

高二数学选修2-1基础及题型

命题及其关系
p q ∧ p q ∨ p ⌝
1.命题“对任意的3210x x x ∈-+R ,≤”的否定是( )
A .不存在3210x R x x ∈-+,≤
B .存在3210x R x x ∈-+,≤
C .存在3210x R x x ∈-+>,
D .对任意的3210x R x x ∈-+>, 2、给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是 (A)3 (B)2 (C)1 (D)0
3. 已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
圆锥曲线方程
1.设O 是坐标原点,F 是抛物线2
2(0)y px p =>的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60
,则OA 为( )
A .
214p B .2 C .6p D .1336
p
2.与直线20x y +-=和曲线221212540x y x y +--+=都相切的半径最小的圆的标准方程是 .
3.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.
(1)求椭圆C 的标准方程;
(2)若直线:l y kx m =+与椭圆C 相交于A B ,两点(A B ,不是左右顶点),且以AB
为直径的图过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.。

高二数学知识点归纳

高二数学知识点归纳

高二数学知识点11.求导法则:(c)/=0这里c是常数。

即常数的导数值为0。

(xn)/=nxn-1特别地:(x)/=1(x-1)/=()/=-x-2(f(x)±g(x))/=f/(x)±g/(x)(k?f(x))/=k?f/(x)2.导数的几何物理意义:k=f/(x0)表示过曲线y=f(x)上的点P(x0,f(x0))的切线的斜率。

V=s/(t)表示即时速度。

a=v/(t)表示加速度。

3.导数的应用:①求切线的斜率。

②导数与函数的单调性的关系已知(1)分析的定义域;(2)求导数(3)解不等式,解集在定义域内的部分为增区间(4)解不等式,解集在定义域内的部分为减区间。

我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。

以下以增函数为例作简单的分析,前提条件都是函数在某个区间内可导。

③求极值、求最值。

注意:极值≠最值。

函数f(x)在区间[a,b]上的值为极大值和f(a)、f(b)中的一个。

最小值为极小值和f(a)、f(b)中最小的一个。

f/(x0)=0不能得到当x=x0时,函数有极值。

但是,当x=x0时,函数有极值f/(x0)=0判断极值,还需结合函数的单调性说明。

4.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

九、不等式一、不等式的基本性质:注意:(1)特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。

(2)注意课本上的几个性质,另外需要特别注意:①若ab>0,则。

(高二)高二数学知识点及公式总结5篇

(高二)高二数学知识点及公式总结5篇

高二数学知识点及公式总结5篇相信有很多同学到了高中会认为数学是理科,所以没必要死记硬背。

其实这是错误的想法,高中数学知识点众多,光靠一个脑袋是记不全的,好记性不如烂笔头,要想学好数学,同学们还是要多做知识点的总结。

以下是我精心收集整理的高二数学知识点及公式总结,下面我就和大家分享,来欣赏一下吧。

高二数学知识点及公式总结11、圆的定义平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程(x-a)^2+(y-b)^2=r^2(1)标准方程,圆心(a,b),半径为r;(2)求圆方程的方法:一般都采用待定系数法:先设后求。

确定一个圆需要三个独立条件,假设利用圆的标准方程,需求出a,b,r;假设利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,那么有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),那么过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2练习题:2.假设圆(x-a)2+(y-b)2=r2过原点,那么()A.a2-b2=0B.a2+b2=r2C.a2+b2+r2=0D.a=0,b=0【解析】选B.因为圆过原点,所以(0,0)满足方程,即(0-a)2+(0-b)2=r2,所以a2+b2=r2.高二数学知识点及公式总结2空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

高二数学知识点总结选修2

高二数学知识点总结选修2

高二数学知识点总结选修2中学生数学学习的心理障碍是多方面的,其消极作用是显而易见的,产生的原因也是复杂的。

今天小编在这给大家整理了高二数学知识点总结,接下来随着小编一起来看看吧!高二数学知识点总结(一)选修2-1一、基础知识(1)常用逻辑用语:四种命题(原、逆、否、逆否)及其相互关系;充分条件与必要条件;简单的逻辑联结词(或、且、非);全称量词与存在性量词,全称命题与特称命题的否定.(2)圆锥曲线:曲线与方程;求轨迹的常用步骤;椭圆的定义及其标准方程、椭圆的简单几何性质(注意离心率与形状的关系);双曲线的定义及其标准方程、双曲线的简单几何性质(注意双曲线的渐近线)、等轴双曲线与共轭双曲线;抛物线的定义及其标准方程;抛物线的简单几何性质;直线与圆锥曲线的常用公式(弦长公式、两根差公式).圆锥曲线的几何性质的常用拓展还有:焦半径公式、椭圆与双曲线的焦准定义、椭圆与双曲线的“垂径定理”、焦点三角形面积公式、圆锥曲线的光学性质等等.(3)空间向量与立体几何:空间向量的概念、表示与运算(加法、减法、数乘、数量积);空间向量基本定理、空间向量运算的坐标表示;平面的法向量、用空间向量计算空间的角与距离的方法.二、重难点与易错点重难点与易错点部分配合必考题型使用,做完必考题型后会对重难点与易错部分部分有更深入的理解.(1)区分逆命题与命题的否定;(2)理解充分条件与必要条件;(3)椭圆、双曲线与抛物线的定义;(4)椭圆与双曲线的几何性质,特别是离心率问题;(5)直线与圆锥曲线的位置关系问题;(6)直线与圆锥曲线中的弦长与面积问题;(7)直线与圆锥曲线问题中的参数求解与性质证明;(8)轨迹与轨迹求法;(9)运用空间向量求空间中的角度与距离;(10)立体几何中的动态问题探究.高二数学知识点总结(二)选修2-1第一章常用逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“若,则”形式的命题中的称为命题的条件,称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若,则”,它的逆命题为“若,则”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若,则”,则它的否命题为“若,则”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.若原命题为“若,则”,则它的否命题为“若,则”.6、四种命题的真假性:原命题逆命题否命题逆否命题种命题的真假性之间的关系:两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若,则是的充分条件,是的必要条件.若,则是的充要条件(充分必要条件).8、用联结词“且”把命题和命题联结起来,得到一个新命题,记作 .当、都是真命题时,是真命题;当、两个命题中有一个命题是假命题时,是假命题.用联结词“或”把命题和命题联结起来,得到一个新命题,记作 .当、两个命题中有一个命题是真命题时,是真命题;当、两个命题都是假命题时,是假命题.对一个命题全盘否定,得到一个新命题,记作 .若是真命题,则必是假命题;若是假命题,则必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“ ”表示.含有全称量词的命题称为全称命题.全称命题“对中任意一个,有成立”,记作“ ,”.短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“ ”表示.含有存在量词的命题称为特称命题.特称命题“存在中的一个,使成立”,记作“ ,”.10、全称命题:,,它的否定:, .全称命题的否定是特称命题.高二数学知识点总结(三)第二章圆锥曲线与方程11、平面内与两个定点,的距离之和等于常数(大于 )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.12、椭圆的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围且且顶点轴长短轴的长长轴的长焦点焦距对称性关于轴、轴、原点对称离心率准线方程13、设是椭圆上任一点,点到对应准线的距离为,点到对应准线的距离为,则 .14、平面内与两个定点,的距离之差的绝对值等于常数(小于 )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.15、双曲线的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围或,或,顶点轴长虚轴的长实轴的长焦点焦距对称性关于轴、轴对称,关于原点中心对称离心率准线方程渐近线方程。

人教B版高中数学高二选修1-1课件 1.3.2 命题的四种形式


规律方法 要判断四种命题的真假:首先,要熟练四种命题的 相互关系,注意它们之间的相互性;其次,利用其他知识判断 真假时,一定要对有关知识熟练掌握.
跟踪演练2 有下列四个命题: ①“如果x+y=0,则x,y互为相反数”的否命题; ②“如果x≤-3,则x2-x-6>0”的否命题; ③“同位角相等”的逆命题. 其中真命题的个数是________.
②“相似三角形的周长相等”的否命题;
③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;
④“若A∪B=B,则A⊆B”的逆否命题.
A.①②
B.②③
C.①③
D.②④
1234
解析 ①逆命题为:“若x,y互为倒数,则xy=1”,真命题. ②否命题为:“不相似的三角形的周长不相等”,假命题. ③Δ=4b2-4(b2+b)=-4b≥4>0,∴原命题为真,故逆否命题 为真. ④命题“若A∪B=B,则A⊇B”为假命题,其逆否命题为假命题. 答案 C
1234
3.命题“如果平面向量a,b共线,则a,b方向相同”的逆否命题 是 _如__果__平__面__向__量__a_,__b_的__方__向__不__相__同__,__则__a_,__b_不__共__线___ , 它 是 __假______命题(填“真”或“假”).
1234
4.给出以下命题: ①“如果x2+y2≠0,则x、y不全为零”的否命题; ②“正多边形都相似”的逆命题; ③“如果m>0,则x2+x-m=0有实根”的逆否命题. 其中为真命题的是________.
(3)条件和结论“ 换质 ”(分别否定):
如果綈p,则綈q,这称为原命题的 否命题 ;
(4)条件和结论“ 换位 ”又“ 换质 ”:
如果綈q,则綈p,这称为原命题的 逆否命题 .

高二数学重要知识点归纳

高二数学重要知识点归纳高二数学重要知识点归纳一、直线与圆:1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的.直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。

当直线与轴重合或平行时,规定倾斜角为0;2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.过两点(_1,y1),(_2,y2)的直线的斜率k=(y2-y1)/(_2-_1),另外切线的斜率用求导的方法。

3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,⑵斜截式:直线在轴上的截距为和斜率,则直线方程为4、直线与直线的位置关系:(1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=05、点到直线的距离公式;两条平行线与的距离是6、圆的标准方程:.⑵圆的一般方程:注意能将标准方程化为一般方程7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长二、圆锥曲线方程:1、椭圆:①方程(a>b>0)注意还有一个;②定义:|PF1|+|PF2|=2a>2c;③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;2、双曲线:①方程(a,b>0)注意还有一个;②定义:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b23、抛物线:①方程y2=2p_注意还有三个,能区别开口方向;②定义:|PF|=d焦点F(,0),准线_=-;③焦半径;焦点弦=_1+_2+p;4、直线被圆锥曲线截得的弦长公式:三、直线、平面、简单几何体:1、学会三视图的分析:2、斜二测画法应注意的地方:(1)在已知图形中取互相垂直的轴O_、Oy。

高中数学选修2-1知识点总结

高中数学选修2-1知识点总结高二数学选修2-1知识点命题是指用语言、符号或式子表达的可以判断真假的陈述句。

其中真命题是判断为真的语句,而假命题则是判断为假的语句。

若p,则q”形式的命题中,p称为命题的条件,而q则称为命题的结论。

对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题就称为互逆命题。

其中一个命题称为原命题,另一个则称为原命题的逆命题。

例如,若原命题为“若p,则q”,那么它的逆命题为“若q,则p”。

对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么这两个命题就称为互否命题。

其中一个命题称为原命题,另一个则称为原命题的否命题。

例如,若原命题为“若p,则q”,那么它的否命题为“若p,则q”。

对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么这两个命题就称为互为逆否命题。

其中一个命题称为原命题,另一个则称为原命题的逆否命题。

例如,若原命题为“若p,则q”,那么它的逆否命题为“若q,则p”。

四种命题的真假性如下:原命题逆命题否命题逆否命题真真真真真假假真假真真真假假假假两个命题互为逆否命题时,它们有相同的真假性。

而两个命题为互逆命题或互否命题时,它们的真假性没有关系。

若p q,则p是q的充分条件,而q是p的必要条件。

若p q,则p是q的充要条件(充分必要条件)。

用联结词“且”把命题p和命题q联结起来,得到一个新命题,记作p q。

当p、q都是真命题时,p q是真命题;当p、q两个命题中有一个命题是假命题时,p q是假命题。

用联结词“或”把命题p和命题q联结起来,得到一个新命题,记作p q。

当p、q两个命题中有一个命题是真命题时,p q是真命题;当p、q两个命题都是假命题时,p q是假命题。

对一个命题p全盘否定,得到一个新命题,记作p。

若p是真命题,则p必是假命题;若p是假命题,则p必是真命题。

在逻辑中,短语“对所有的”、“对任意一个”通常称为全称量词,用“”表示。

北京高二数学知识点归纳总结

北京高二数学知识点归纳总结高二阶段是学生数学学习的重要时期,掌握好这一阶段的数学知识点对于后续的学习和考试备考都有着至关重要的作用。

本文将对北京高二数学的知识点进行归纳总结,帮助同学们更好地掌握和理解这些知识点。

一、函数及其应用1. 函数的定义和性质- 函数的定义:函数是一种特殊的关系,具有唯一的自变量和因变量之间的对应关系。

- 函数的性质:奇偶性、周期性和单调性等。

2. 常用函数- 一次函数、二次函数、指数函数、对数函数以及三角函数等的定义、性质和图像特点。

3. 函数的应用- 函数作为数学模型在实际问题中的应用,如优化问题、解析几何问题等。

二、数列与数学归纳法1. 数列的定义和性质- 等差数列和等比数列的定义、通项公式、求和公式以及性质。

- 递推数列和导数数列的定义和性质。

2. 数列的应用- 等差数列和等比数列在实际问题中的应用,如等差数列求和、等比数列模型等。

3. 数学归纳法- 数学归纳法的基本原理和推理步骤,以及在证明数学命题中的应用。

三、三角函数1. 三角函数的定义和性质- sin、cos、tan等三角函数的定义、性质和图像特点。

- 三角函数的基本关系式、诱导公式和同角三角函数值的关系。

2. 三角函数的应用- 三角函数在解决实际问题中的应用,如角度测量、图形变换等。

- 三角函数在力学、光学等学科中的应用。

四、平面向量1. 平面向量的定义和性质- 平面向量的定义和基本运算规则。

- 平面向量的数量积和向量积的定义、性质和应用。

2. 平面向量的应用- 平面向量在几何证明和物理力学中的应用,如向量共线、平行四边形法则等。

五、立体几何1. 空间几何基本概念- 点、线、面、多面体等基本概念的定义和性质。

2. 空间几何的性质- 空间平面与直线的位置关系、多面体的性质等。

3. 空间向量与立体几何- 空间向量在立体几何中的应用,如向量共面、向量垂直等。

六、概率统计1. 随机事件与概率- 随机事件、样本空间和概率的基本概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学命题及关系知识点归纳
高二数学命题及关系知识点归纳
无论掌握哪一种知识,对智力都是有用的,它会把无用的东西抛开而把好的东西保留住。

下面是小编为大家整理的高二数学命题及关系知识点归纳,欢迎参考~
一、知识梳理知识点一命题及四种命题
1、命题的概念
在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.
注意:
命题必须是陈述句,疑问句、祈使句、感叹句
都不是命题。

2.四种命题及其关系
(1)四种命题间的相互关系.
(2)四种命题的真假关系
①两个命题互为逆否命题,它们有相同的真假性;
②两个命题为互逆命题或互否命题,它们的真假性无关.
注意:(补充)
1、一个命题不可能同时既是真命题又是假命题
知识点二充分条件与必要条件
1、充分条件与必要条件的概念
(1)充分条件:
pq 则p是q的充分条件
即只要有条件p就能充分地保证结论q的`成立,
p成立就足够了,即有它即可。

亦即要使q成立,有
(2)必要条件:
pq 则q是p的必要条件
pqqp
即没有q则没有p,亦即q是p成立的必须要有的条件,即无它
不可。

(补充)(3)充要条件
pq且qp即pq

“p、q互为充要条件(既是充分又是必要条件)
p”等 p是q的充要条件”也说成“p等价于q”、“q当且仅当(补充)2、充要关系的类型
(1)充分但不必要条件
定义:若pq,但qp,
p是q的充分但不必要条件; 则
(2)必要但不充分条件
定义:若 q
则p,但pq, p是q的必要但不充分条件
(3)充要条件定义:若 pq,且qp,即pq,
p、q互为充要条件; 则
(4)既不充分也不必要条件
定义:若pp, q,且q
p、q互为既不充分也不必要条件. 则
3、判断充要条件的方法:
①定义法;②集合法;③逆否法(等价转换法). 逆否法----利用互为逆否的两个命题的等价性
集合法----利用集合的观点概括充分必要条件若条件p以集合A 的形式出现,结论q以集合B的形式出现,则借助集合知识,有助于充要条件的理解和判断.
(1)若AB,则p是q的充分但不必要条件
(2)若BA,则p是q的必要但不充分条件
B,则p是q的充要条件
(4)若AB, B,且A
则p是q的既不必要也不充分条件 (3)若A(补充)简记作----若A、B具有包含关系,则
(1)小范围是大范围的充分但不必要条件 (2)大范围是小范围的必要但不充分条件
二、例题分析
(一)四种命题及其相互关系
例1.(1) 命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是( )
A.若x+y是偶数,则x与y不都是偶数
B.若x+y是偶数,则x与y都不是偶数
C.若x+y不是偶数,则x与y不都是偶数
D.若x+y不是偶数,则x与y都不是偶数
例1.(2)下列命题中正确的是( )
①“若a≠0,则ab≠0”的否命题;
②“正多边形都相似”的逆命题;
③“若m>0,则x2+x-m=0有实根”的逆否命题; ④“若x-3是有理数,则x是无理数”的逆否命题.
A.①②③④
B.①③④
C.②③④
D.①④
例1.(3)
(2014·陕西卷)原命题为“若z1,z2互为共轭复数,
则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )
A.真,假,真
B.假,假,真
C.真,真,假
D.假,假,假
问题2
四种命题间关系的两条规律
(1)逆命题与否命题互为逆否命题;
互为逆否命题的两个命题同真假.
(2)当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.
同时要关注“特例法”的应用.。

相关文档
最新文档