高考数学专题知识突破:考点2 命题及其关系、充分条件与必要条件
理科数学学霸笔记02命题及其关系、充分条件与必要条件

考点02命题及其关系、充分条件与必要条件一、命题及其关系1.命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及其关系(1)四种命题原命题:若p,则q逆命题:若q,则p否命题:若非p则非q;逆否命题:若非q则非p(2)四种命题间的关系(3)常见的否定词语正面词语:=、>(<)、是、都是、任意(所有)的、任两个、至多有1(n)个、至少有1个否定词:≠、≤(≥)、不是、不都是、某个、某两个、至少有2(n+1)个、1个也没有3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.提醒:当一个命题有大前提而要写出其他三种命题时,必须保留大前提,也就是大前提不动.二、充分条件与必要条件1.充分条件与必要条件的概念(1)若p⇒q,则p是q的充分条件,q是p的必要条件;(2)若p⇒q且q/⇒p,则p是q的充分不必要条件;(3)若p/⇒q且q⇒p,则p是q的必要不充分条件;(4)若p⇔q,则p是q的充要条件;(5)若p/⇒q且q/⇒p,则p是q的既不充分也不必要条件.2.必记结论(1)等价转化法判断充分条件、必要条件①p是q的充分不必要条件⇔非q是非p的充分不必要条件;②p是q的必要不充分条件⇔非q是非p的必要不充分条件;③p是q的充要条件⇔非q是非p的充要条件;④p是q的既不充分也不必要条件⇔非q是非p的既不充分也不必要条件.例2:设a,b∈R,则“(a-b)a2<0”是“a<b”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件答案:A解析:由(a-b)a2<0可知a2≠0,则一定有a-b<0,即a<b;但a<b即a-b<0时,有可能a=0,所以(a-b)a2<0不一定成立,故“(a-b)a2<0”是“a<b”的充分不必要条件,故选 A.。
2021届高考数学总复习:命题及其关系、充分条件与必要条件

2021届高考数学总复习:命题及其关系、充分条件与必要条件一、知识点1.命题(1)命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
(2)四种命题及相互关系(3)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系。
2.充分条件、必要条件与充要条件的概念1.否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论。
2.区别A是B的充分不必要条件(A⇒B且B⇒/A),与A的充分不必要条件是B(B⇒A且A⇒/B)两者的不同。
3.A是B的充分不必要条件⇔非B是非A的充分不必要条件。
4.充要关系与集合的子集之间的关系,设A={x|p(x)},B ={x|q(x)},(1)若A⊆B,则p是q的充分条件,q是p的必要条件。
(2)若A B,则p是q的充分不必要条件,q是p的必要不充分条件。
(3)若A=B,则p是q的充要条件。
一、走进教材1.(选修2-1P8A组T2改编)命题“若x2>y2,则x>y”的逆否命题是()A.“若x<y,则x2<y2”B.“若x>y,则x2>y2”C.“若x≤y,则x2≤y2”D.“若x≥y,则x2≥y2”解析根据原命题和逆否命题的条件和结论的关系得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”。
故选C。
答案 C2.(选修2-1P 10练习T 3(2)改编)“(x -1)(x +2)=0”是“x =1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析 若x =1,则(x -1)(x +2)=0显然成立,但反之不成立,即若(x -1)(x +2)=0,则x 的值也可能为-2。
故选B 。
答案 B二、走近高考3.(2018·天津高考)设x ∈R ,则“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 解析由⎪⎪⎪⎪⎪⎪x -12<12,得0<x <1,所以0<x 3<1;由x 3<1,得x <1,不能推出0<x <1。
2023年高考分类题库考点2 命题及其关系、充分条件与必要条件

考点 2 命题及其关系、充分条件与必要条件
2.(2023·天津高考)“a2=b2”是“a2+b2=2ab”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【解析】选 B.a2=b2,即(a+b)(a-b)=0, 解得 a=-b 或 a=b; a2+b2=2ab,即(a-b)2=0,解得 a=b; 故“a2=b2”不能推出“a2+b2=2ab”,充分性不成立. “a2+b2=2ab”能推出“a2=b2”,必要性成立. 故“a2=b2”是“a2+b2=2ab”的必要不充分条件. Nhomakorabea() ()
2
即 sin2α+sin2β=1 推不出 sin α+cos β=0; 当 sin α+cos β=0 时, sin2α+sin2β=(-cos β)2+sin2β=1, 即 sin α+cos β=0 能推出 sin2α+sin2β=1. 综上可知,“sin2α+sin2β=1”是“sin α+cos β=0”的必要条件但不是充分条件.
考点02 命题及其关系、充分条件和必要条件(解析版)

考点02 命题及其关系、充分条件和必要条件【考纲要求】理解必要条件、充分条件与充要条件的意义. 【命题规律】考查充分条件与必要条件的题型一般以选择题或填空题的形式出现,以集合、函数、数列、三角函数、不等式及立体几何中的线面关系为载体,难度一般不大. 【典型高考试题变式】(一)充分条件与必要条件的判定例1.(2021全国甲卷理7)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则 ( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】B【分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【解析】由题,当数列为2,4,8,---时,满足0q >,但是{}n S 不是递增数列,∴甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,∴甲是乙的必要条件,故选B .【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.【变式1】【2018年北京卷文】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 【答案】B 【解析】 分析:证明“”“成等比数列”只需举出反例即可,论证“成等比数列”“”可利用等比数列的性质.【名师点睛】充分条件、必要条件的判断方法:①定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.②等价法:利用p ⇒q 与⌝q ⇒⌝p ,q ⇒p 与⌝p ⇒⌝q ,p ⇔q与⌝q ⇔⌝p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.③集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 【变式2】【变式1中的条件与结论换位】设a,b,c,d 是非零实数,则“a,b,c,d 成等比数列”是“ad=bc ”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 【答案】A【解析】由a,b,c,d 成等比数列可得ad=bc ,当时,a,b,c,d 不是等比数列,所以“a,b,c,d成等比数列”是“ad=bc ”的充分而不必要条件,故选A.例2.(2021年高考天津卷2)已知a ∈R ,则“6>a ”是“362>a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【分析】由充分条件、必要条件的定义判断即可得解.【解析】由题意,若6a >,则236a >,故充分性成立;若236a >,则6a >或6a <-,推不出6a >,必要性不成立;∴“6a >”是“236a >”的充分不必要条件,故选A . 【名师点睛】充分条件与必要条件的两个特征:①对称性:若p 是q 的充分条件,则q 是p 的必要条件,即“p ⇒q ”⇔“q ⇐p ”.②传递性:若p 是q 的充分(必要)条件,q 是r 的充分(必要)条件,则p 是r 的充分(必要)条件,即“p ⇒q 且q ⇒r ”⇒“p ⇒r ”(“p ⇐q 且q ⇐r ”⇒“p ⇐r ”). 【变式1】【改变例题的条件】设,则“24x >”是“”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .即不充分也不必要条件 【答案】C【解析】由242x x >⇔>或2x <-,所以“24x >”是“||2x >”的充分必要条件,故选C. (二)充分条件与必要条件的运用例3.【2019·全国Ⅱ卷】设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件,故α∥β的充要条件是α内有两条相交直线与β平行,故选B .【变式1】【改变例题中的问法】设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】//m β不能推出//αβ,而//αβ,//m β⇒,∴“//m β”是“//αβ”的必要不充分条件,故选B . 例4.【2011全国卷】下面四个条件中,使a b >成立的充分而不必要的条件是( ) A .1a b >+ B .1a b >- C .22a b > D .33a b > 【答案】A【解析】由1a b >+,得a b >;反之不成立,故选A.【名师点津】命题p 是q 的必要不充分条件⇔p q ⇒且q p ⇒;命题p 的必要不充分条件是q ⇔q p ⇒且p q ⇒. 这两种说法有区别,不能混淆.【变式1】【改变例题中的问法】下面四个条件中,使a b >成立的必要而不充分的条件是( ) A .1a b >+ B .1a b >- C .22a b > D .33a b > 【答案】B【解析】由a b >,可得1a b >-;反之不成立,故选B.【变式2】【改变例题中的条件、问法】下面四个条件中,使33a b >成立的充要的条件是( ) A .1a b >+ B .a b <C .22a b >D .a b > 【答案】C【解析】由a b >,可得33a b >;反之也成立,故选C. (三)新定义问题例5.【2011湖北卷】若实数a ,b 满足0,0,0a b ab ≥≥=且,则称a 与b 互补,记()22,a b a b a b ϕ=+-,那么(),0a b ϕ=是a 与b 互补的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .即不充分也不必要条件 【答案】C【名师点津】紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.【变式1】【2010年普通高等学校招生全国统一考试湖北卷10】记实数1x ,2x ,……n x 中的最大数为max {}12,,......n x x x ,最小数为min {}12,,......n x x x 。
高考数学复习考点知识讲解课件02 命题及其关系、充分条件与必要条

(2)[2020·北京卷]已知α,β∈R,则“存在k∈Z使得α=kπ+(-1)kβ” 是“sin α=sin β”的( )
A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
答案:C
解析:若存在k∈Z使得α=kπ+(-1)kβ,则当k=2n(n∈Z),α=2nπ+β,有sin α =sin (2nπ+β)=sin β;当k=2n+1(n∈Z),α=(2n+1)π-β,有sin α=sin [(2n+ 1)π-β]=sin β.若sin α=sin β,则α=2kπ+β或α=2kπ+π-β(k∈Z),即α=kπ+(- 1)kβ(k∈Z).
由q是p的必要而不充分条件,知A B.
所以a≤12且a+1≥1,因此0≤a≤12.
微专题
等价转化思想就是对原问题换一个方式、换一个角度、换一个观点
___必_要____条件
q成立的对象的集合为B
p是q的__充_分__不__必_要__条件 p⇒q且q p
A是B的__真__子_集___
p是q的_必__要_不__充__分__条件 p q且q⇒p
B是A的__真__子__集__
p是q的___充__要_____条件 p 是 q 的 _既_不__充__分_也__不__必__要_ 条件
3 . [ 选 修 2 - 1·P10 练 习 T3 改 编 ]“(x - 1)(x + 2) = 0” 是 “x = 1” 的 ()
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
答案:B
解析:若x=1,则(x-1)(x+2)=0显然成立,但反之不成立,即若(x-1)(x+2) =0,则x的值也可能为-2.
反思感悟
判断命题真假的方法
《第2节 命题及其关系、充分条件与必要条件》高考考点汇总

《第2节命题及其关系、充分条件与必要条件》高考考点汇总一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.考点一 四种命题及其真假判断[典例] (2019·菏泽模拟)有以下命题: ①“若xy =1,则x ,y 互为倒数”的逆命题; ②“面积相等的两个三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题; ④“若A ∩B =B ,则A ⊆B ”的逆否命题. 其中真命题是( ) A .①② B .②③ C .④D .①②③[解析] ①原命题的逆命题为“若x ,y 互为倒数,则xy =1”,是真命题;②原命题的否命题为“面积不相等的两个三角形不全等”,是真命题;③若m ≤1,Δ=4-4m ≥0,所以原命题是真命题,故其逆否命题也是真命题;④由A ∩B =B ,得B ⊆A ,所以原命题是假命题,故其逆否命题也是假命题,故①②③正确.[答案] D [题组训练]1.(2019·长春质监)命题“若x 2<1,则-1<x <1”的逆否命题是( ) A .若x 2≥1,则x ≥1或x ≤-1 B .若-1<x <1,则x 2<1 C .若x >1或x <-1,则x 2>1 D .若x ≥1或x ≤-1,则x 2≥1解析:选D 命题的形式是“若p ,则q ”,由逆否命题的知识,可知其逆否命题是“若非q ,则非p ”的形式,所以“若x 2<1,则-1<x <1”的逆否命题是“若x ≥1或x ≤-1,则x 2≥1”.2.已知集合P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k +12,k ∈Z,Q =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k2,k ∈Z,记原命题:“x ∈P ,则x ∈Q ”,那么,在原命题及其逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .4解析:选C 因为P=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k +12,k ∈Z=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =2k +12,k ∈Z,Q =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k2,k ∈Z, 所以P Q ,所以原命题“x ∈P ,则x ∈Q ”为真命题,则原命题的逆否命题为真命题.原命题的逆命题“x ∈Q ,则x ∈P ”为假命题, 则原命题的否命题为假命题,所以真命题的个数为2.考点二 充分、必要条件的判断[典例] (1)(2019·湖北八校联考)若a ,b ,c ,d ∈R ,则“a +d =b +c ”是“a ,b ,c ,d 依次成等差数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·天津高考)设x ∈R ,则“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(3)已知p :x +y ≠-2,q :x ,y 不都是-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件[解析] (1)定义法当a =-1,b =0,c =3,d =4时,a +d =b +c ,但此时a ,b ,c ,d 不成等差数列;而当a ,b ,c ,d 依次成等差数列时,由等差数列的性质知a +d =b +c .所以“a +d =b +c ”是“a ,b ,c ,d 依次成等差数列”的必要不充分条件,故选B.(2)集合法由⎪⎪⎪⎪⎪⎪x -12<12,得0<x <1,则0<x 3<1,即“⎪⎪⎪⎪⎪⎪x -12<12”⇒“x 3<1”; 由x 3<1,得x <1,当x ≤0时,⎪⎪⎪⎪⎪⎪x -12≥12,即“x 3<1”“⎪⎪⎪⎪⎪⎪x -12<12”. 所以“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件.(3)等价转化法因为p :x +y ≠-2,q :x ≠-1或y ≠-1, 所以非p :x +y =-2,非q :x =-1且y =-1,因为非q ⇒非p 但非p非q ,所以非q 是非p 的充分不必要条件,即p 是q 的充分不必要条件.[答案] (1)B (2)A (3)A[提醒] 判断条件之间的关系要注意条件之间关系的方向,要注意“A 是B 的充分不必要条件”与“A 的充分不必要条件是B ”的区别,要正确理解“p 的一个充分不必要条件是q ”的含义.[题组训练]1.[集合法]已知x ∈R ,则“x <1”是“x 2<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若x 2<1,则-1<x <1,∵(-∞,1)⊇(-1,1),∴“x <1”是“x 2<1”的必要不充分条件.2.[定义法](2018·南昌调研)已知m ,n 为两个非零向量,则“m ·n <0”是“m 与n 的夹角为钝角”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 设m ,n 的夹角为θ,若m ,n 的夹角为钝角,则π2<θ<π,则cos θ<0,则m ·n <0成立;当θ=π时,m ·n =-|m |·|n |<0成立,但m ,n 的夹角不为钝角.故“m ·n <0”是“m 与n 的夹角为钝角”的必要不充分条件.3.[等价转化法]“xy ≠1”是“x ≠1或y ≠1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 设p :xy ≠1,q :x ≠1或y ≠1, 则非p :xy =1,非q :x =1且y =1. 可知非q ⇒非p ,非p非q ,即非q 是非p 的充分不必要条件.故p 是q 的充分不必要条件,即“xy ≠1”是“x ≠1或y ≠1”的充分不必要条件.考点三 根据充分、必要条件求参数的范围[典例] 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,则m 的取值范围是________.[解析] 由x 2-8x -20≤0,得-2≤x ≤10,所以P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,所以0≤m ≤3.所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. [答案] [0,3][变透练清]1.[变结论]若本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解:若x ∈P 是x ∈S 的充要条件,则P =S , 所以{ 1-m =-2,1+m =10,解得{ m =3,m =9,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.2.(变条件)若本例将条件“若x ∈P 是x ∈S 的必要条件”变为“若非P 是非S 的必要不充分条件”,其他条件不变,求实数m 的取值范围.解:由例题知P ={x |-2≤x ≤10}, ∵非P 是非S 的必要不充分条件, ∴S 是P 的必要不充分条件,∴P ⇒S 且S P .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).[课时跟踪检测]1.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定解析:选B 命题p :“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.2.命题“若x 2+3x -4=0,则x =4”的逆否命题及其真假性为( ) A .“若x =4,则x 2+3x -4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:选C 根据逆否命题的定义可以排除A、D,因为x2+3x-4=0,所以x=-4或1,故原命题为假命题,即逆否命题为假命题.3.原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A.真,假,真B.假,假,真C.真,真,假 D.假,假,假解析:选B 当z1,z2互为共轭复数时,设z1=a+b i(a,b∈R),则z2=a-b i,则|z1|=|z2|=a2+b2,所以原命题为真,故其逆否命题为真.取z1=1,z2=i,满足|z1|=|z2|,但是z1,z2不互为共轭复数,所以其逆命题为假,故其否命题也为假.4.(2018·北京高考)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选B a,b,c,d是非零实数,若a<0,d<0,b>0,c>0,且ad=bc,则a,b,c,d不成等比数列(可以假设a=-2,d=-3,b=2,c=3).若a,b,c,d成等比数列,则由等比数列的性质可知ad=bc.所以“ad=bc”是“a,b,c,d成等比数列”的必要而不充分条件.5.已知命题α:如果x<3,那么x<5;命题β:如果x≥3,那么x≥5;命题γ:如果x≥5,那么x≥3.关于这三个命题之间的关系中,下列说法正确的是( )①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A.①③ B.②C.②③ D.①②③解析:选A 本题考查命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定然后互换所得,故①正确,②错误,③正确.6.(2018·北京高考)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选C 由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2,即a 2+9b 2-6a ·b =9a 2+b 2+6a ·b . 因为a ,b 均为单位向量,所以a 2=b 2=1, 所以a ·b =0,能推出a ⊥b .由a ⊥b 得|a -3b |=10,|3a +b |=10, 能推出|a -3b |=|3a +b |,所以“|a -3b |=|3a +b |”是“a ⊥b ”的充分必要条件. 7.如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 设集合A ={(x ,y )|x ≠y },B ={(x ,y )|cos x ≠cos y },则A 的补集C ={(x ,y )|x =y },B 的补集D ={(x ,y )|cos x =cos y },显然C D ,所以B A .于是“x≠y ”是“cos x ≠cos y ”的必要不充分条件.8.(2019·湘东五校联考)“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( )A .m >14B .0<m <1C .m >0D .m >1解析:选C 若不等式x 2-x +m >0在R 上恒成立,则Δ=(-1)2-4m <0,解得m >14,因此当不等式x 2-x +m >0在R 上恒成立时,必有m >0,但当m >0时,不一定推出不等式在R 上恒成立,故所求的必要不充分条件可以是m >0.9.在△ABC 中,“A =B ”是“tan A =tan B ”的________条件.解析:由A =B ,得tan A =tan B ,反之,若tan A =tan B ,则A =B +k π,k ∈Z.∵0<A <π,0<B <π,∴A =B ,故“A =B ”是“tan A =tan B ”的充要条件.答案:充要10.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:若m =2,n =3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m =-3,n =-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.答案:311.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.解析:因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3.又p (2)是真命题,所以4+4-m >0,解得m <8. 故实数m 的取值范围为[3,8). 答案:[3,8)12.(2019·齐鲁名校调研)给出下列说法:①“若x +y =π2,则sin x =cos y ”的逆命题是假命题;②“在△ABC 中,sin B >sin C 是B >C 的充要条件”是真命题;③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”. 以上说法正确的是________(填序号). 解析:对于①,“若x +y =π2,则sin x =cos y ”的逆命题是“若sin x =cos y ,则x +y =π2”,当x =0,y =3π2时,有sin x =cos y 成立,但x +y =3π2,故逆命题为假命题,①正确;对于②,在△ABC 中,由正弦定理得sin B >sin C ⇔b >c ⇔B >C ,②正确;对于③,“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③错误;对于④,根据否命题的定义知④正确.答案:①②④13.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.。
第二节 命题及其关系、充分条件与必要条件(有答案)

第二节 命题及其关系、充分条件与必要条件【考纲下载】1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的含义.1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件.(2)若p⇔q,则p与q互为充要条件.(3)若p⇒/ q,且q⇒/ p,则p是q的既不充分也不必要条件.1.一个命题的否命题与这个命题的否定是同一个命题吗?提示:不是,一个命题的否命题是既否定该命题的条件,又否定该命题的结论,而这个命题的否定仅是否定它的结论.2.“p是q的充分不必要条件”与“p的一个充分不必要条件是q”两者的说法相同吗?提示:两者说法不相同.“p的一个充分不必要条件是q”等价于“q是p的充分不必要条件”,显然这与“p是q的充分不必要条件”是截然不同的.1.(2013·福建高考)已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的( ) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A 当a=3时,A={1,3},A⊆B;反之,当A⊆B时,a=2或3,所以“a=3”是“A⊆B”的充分而不必要条件.2.命题“若x2>y2,则x>y”的逆否命题是( )A.“若x<y,则x2<y2”B.“若x>y,则x2>y2”C.“若x≤y,则x2≤y2”D.“若x≥y,则x2≥y2”解析:选C 根据原命题和逆否命题的条件和结论的关系得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.3.(教材习题改编)命题“如果b2-4ac>0,则方程ax2+bx+c=0(a≠0)有两个不相等的实根”的否命题、逆命题和逆否命题中,真命题的个数为( )A.0 B.1 C.2 D.3解析:选D 原命题为真,则它的逆否命题为真,逆命题为“若方程ax2+bx+c=0(a≠0)有两个不相等的实根,则b2-4ac>0”,为真命题,则它的否命题也为真.4.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是 ( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数解析:选B 原命题的否命题是既否定题设又否定结论,故“若f(x)是奇函数,则f(-x)是奇函数”的否命题是B选项.5.下面四个条件中,使a>b成立的充分而不必要的条件是 ( )A.a>b+1 B.a>b-1 C.a2>b2D.a3>b3解析:选A 由a>b+1,且b+1>b,得a>b;反之不成立.考点一四种命题的关系 [例1] (1)命题“若x>1,则x>0”的否命题是( )A.若x>1,则x≤0B.若x≤1,则x>0C.若x≤1,则x≤0D.若x<1,则x<0(2)命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是( )A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数[自主解答] (1)因为“x>1”的否定为“x≤1”,“x>0”的否定为“x≤0”,所以命题“若x>1,则x>0”的否命题为:“若x≤1,则x≤0”.(2)由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x与y不都是偶数”.[答案] (1)C (2)C【互动探究】试写出本例(2)中命题的逆命题和否命题,并判断其真假性.解:逆命题:若x+y是偶数,则x,y都是偶数.是假命题.否命题:若x,y不都是偶数,则x+y不是偶数.是假命题. 【方法规律】判断四种命题间关系的方法(1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.(2)原命题和逆否命题、逆命题和否命题有相同的真假性,解题时注意灵活应用.1.命题p:“若a≥b,则a+b>2 012且a>-b”的逆否命题是 ( )A.若a+b≤2 012且a≤-b,则a<bB.若a+b≤2 012且a≤-b,则a>bC.若a+b≤2 012或a≤-b,则a<bD.若a+b≤2 012或a≤-b,则a≤b解析:选C “且”的否定是“或”,根据逆否命题的定义知,逆否命题为“若a+b≤2 012或a≤-b,则a<b”.2.下列命题中为真命题的是( )A.命题“若x>y,则x>|y|”的逆命题B .命题“若x >1,则x 2>1”的否命题C .命题“若x =1,则x 2+x -2=0”的否命题D .命题“若x 2>0,则x >1”的逆否命题解析:选A A 中逆命题为“若x >|y |,则x >y ”是真命题;B 中否命题为“若x ≤1,则x 2≤1”是假命题;C 中否命题为“若x ≠1,则x 2+x -2≠0”是假命题;D 中原命题是假命题,从而其逆否命题也为假命题.考点二命题的真假判断 [例2] (1)下列命题是真命题的是( )A .若=,则x =y1x 1y B .若x 2=1,则x =1C .若x =y ,则=x yD .若x <y ,则x 2<y 2(2)(2014·济南模拟)在空间中,给出下列四个命题:①过一点有且只有一个平面与已知直线垂直;②若平面外两点到平面的距离相等,则过这两点的直线必平行于该平面;③两条相交直线在同一平面内的射影必为相交直线;④两个相互垂直的平面,一个平面内的任意一直线必垂直于另一平面内的无数条直线.其中正确的是( )A .①②B .②③C .③④D .①④[自主解答] (1)取x =-1排除B ;取x =y =-1排除C ;取x =-2,y =-1排除D ,故选A.(2)对于①,由线面垂直的判定可知①正确;对于②,若点在平面的两侧,则过这两点的直线可能与该平面相交,故②错误;对于③,两条相交直线在同一平面内的射影可以为一条直线,故③错误;对于④,两个相互垂直的平面,一个平面内的任意一条直线必垂直于另一个平面内的无数条与交线垂直的直线,故④正确.综上可知,选D.[答案] (1)A (2)D【方法规律】命题的真假判断方法(1)给出一个命题,要判断它是真命题,需经过严格的推理证明;而要说明它是假命题,只需举一反例即可.(2)由于原命题与其逆否命题为等价命题,有时可以利用这种等价性间接地证明命题的真假.给出下列命题:①函数y =sin(x +k π)(k ∈R )不可能是偶函数;②已知数列{a n }的前n 项和S n =a n -1(a ∈R ,a ≠0),则数列{a n }一定是等比数列;③若函数f (x )的定义域是R ,且满足f (x )+f (x +2)=3,则f (x )是以4为周期的周期函数;④过两条异面直线外一点能作且只能作出一条直线和这两条异面直线同时相交.其中所有正确的命题有________(填正确命题的序号).解析:①当k =时,y =sin(x +k π)就是偶函数,故①错;②当a =1时,S n =0,则a n 的12各项都为零,不是等比数列,故②错;③由f (x )+f (x +2)=3,则f (x +2)+f (x +4)=3,相减得f (x )-f (x +4)=0,即f (x )=f (x +4),所以f (x )是以4为周期的周期函数,③正确;④过两条异面直线外一点,有时没有一条直线能与两条异面直线都相交,故④错.综上所述,正确的命题只有③.答案:③高频考点考点三充 要 条 件 1.充分条件、必要条件是每年高考的必考内容,多以选择题的形式出现,难度不大,属于容易题.2.高考对充要条件的考查主要有以下三个命题角度:(1)判断指定条件与结论之间的关系;(2)探求某结论成立的充要条件、充分不必要条件或必要不充分条件;(3)与命题的真假性相交汇命题.[例3] (1)(2013·北京高考)“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(2)(2012·四川高考)设a 、b 都是非零向量,下列四个条件中,使=成立的充分条件a |a|b|b|是( )A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a|=|b|(3)给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件;④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =,则3“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.[自主解答] (1)当φ=π时,y =sin(2x +π)=-sin 2x ,则曲线y =-sin 2x 过坐标原点,所以“φ=π”⇒“曲线y =sin(2x +φ)过坐标原点”;当φ=2π时,y =sin(2x +2π)=sin 2x ,则曲线y =sin 2x 过坐标原点,所以“φ=π”⇐/“曲线y =sin(2x +φ)过坐标原点”,所以“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的充分而不必要条件.(2),分别是与a ,b 同方向的单位向量,由=,得a 与b 的方向相同.而a ∥b 时,a |a |b |b |a |a |b |b |a 与b 的方向还可能相反.故选C.(3)对于①,当数列{a n }为等比数列时,易知数列{a n a n +1}是等比数列,但当数列{a n a n +1}为等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确;对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确;对于③,当m =3时,相应的两条直线互相垂直,反之,这两条直线垂直时,不一定有m =3,也可能m =0.因此③不正确;对于④,由题意得=ba =,若B =60°,则sin A =,注意到b >a ,故A =30°,反之,当A =30°时,有sin B =sin Bsin A 312,由于b >a ,所以B =60°或B =120°,因此④正确.综上所述,真命题的序号是①④.32[答案] (1)A (2)C (3)①④充要条件问题的常见类型及解题策略(1)判断指定条件与结论之间的关系.解决此类问题应分三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.(2)探究某结论成立的充要、充分、必要条件.解答此类题目,可先从结论出发,求出使结论成立的必要条件,然后再验证得到的必要条件是否满足充分性.(3)充要条件与命题真假性的交汇问题.依据命题所述的充分必要性,判断是否成立即可.1.(2014·西安模拟)如果对于任意实数x ,[x ]表示不超过x 的最大整数,那么“[x ]=[y ]”是“|x -y |<1成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若[x ]=[y ],则|x -y |<1;反之,若|x -y |<1,如取x =1.1,y =0.9,则[x ]≠[y ],即“[x ]=[y ]”是“|x -y |<1成立”的充分不必要条件.2.已知p :<1,q :x 2+(a -1)x -a >0,若p 是q 的充分不必要条件,则实数a 的1x -1取值范围是( )A .(-2,-1]B .[-2,-1]C .[-3,1]D .[-2,+∞)解析:选A 不等式<1等价于-1<0,即>0,解得x >2或x <1,所以p 为1x -11x -1x -2x -1(-∞,1)∪(2,+∞).不等式x 2+(a -1)x -a >0可以化为(x -1)(x +a )>0,当-a ≤1时,解得x >1或x <-a ,即q 为(-∞,-a )∪(1,+∞),此时a =-1;当-a >1时,不等式(x -1)(x +a )>0的解集是(-∞,1)∪(-a ,+∞),此时-a <2,即-2<a <-1.综上可知a 的取值范围为(-2,-1].3.设n ∈N *,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________.解析:一元二次方程x 2-4x +n =0的根为x ==2±,因为x 是整数,4±16-4n24-n 即2±为整数,所以为整数,且n ≤4,又因为n ∈N *,取n =1,2,3,4,验证可知4-n 4-n n =3,4符合题意,所以n =3,4时可以推出一元二次方程x 2-4x +n =0有整数根.答案:3或4——————————[课堂归纳——通法领悟]——————————— 1个区别——“A 是B 的充分不必要条件”与“A 的充分不 必要条件是B ”的区别 “A 是B 的充分不必要条件”中,A 是条件,B 是结论;“A 的充分不必要条件是B ”中,B 是条件,A 是结论.在进行充分、必要条件的判断中,要注意这两种说法的区别. 2条规律——四种命题间关系的两条规律 (1)逆命题与否命题互为逆否命题;互为逆否命题的两个命题同真假.(2)当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.同时要关注“特例法”的应用. 3种方法——判断充分条件和必要条件的方法 (1)定义法;(2)集合法;(3)等价转化法.方法博览(一)三法破解充要条件问题1.定义法定义法就是将充要条件的判断转化为两个命题——“若p ,则q ”与“若q ,则p ”的判断,根据两个命题是否正确,来确定p 与q 之间的充要关系.[典例1] 设0<x <,则“x sin 2x <1”是“x sin x <1”的( )π2A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[解题指导] 由0<x <可知0<sin x <1,分别判断命题“若x sin 2x <1,则x sin x <1”π2与“若x sin x <1,则x sin 2x <1”的真假即可.[解析] 因为0<x <,所以0<sin x <1,不等式x sin x <1两边同乘sin x ,可得x sin 2x <sin x ,π2所以有x sin 2x <sin x <1.即x sin x <1⇒x sin 2x <1;不等式x sin 2x <1两边同除以sin x ,可得x sin x <,而由0<sin x <1,知>1,故x sin 1sin x 1sin x x <1不一定成立,即x sin 2x <1⇒/ x sin x <1.综上,可知“x sin 2x <1”是“x sin x <1”的必要不充分条件.[答案] C[点评] 判断p 、q 之间的关系,只需判断两个命题A :“若p ,则q ”和B :“若q ,则p ”的真假.(1)若p ⇒q ,则p 是q 的充分条件;(2)若q ⇒p ,则p 是q 的必要条件;(3)若p ⇒q 且q ⇒p ,则p 是q 的充要条件;(4)若p ⇒q 且q ⇒/ p ,则p 是q 的充分不必要条件;(5)若p ⇒/ q 且q ⇒p ,则p 是q 的必要不充分条件;(6)若p ⇒/ q 且q ⇒/ p ,则p 是q 的既不充分也不必要条件.2.集合法集合法就是利用满足两个条件的参数取值所构成的集合之间的关系来判断充要关系的方法.主要解决两个相似的条件难以进行区分或判断的问题.[典例2] 若A :log 2a <1,B :x 的二次方程x 2+(a +1)x +a -2=0的一个根大于零,另一根小于零,则A 是B 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[解题指导] 分别求出使A 、B 成立的参数a 的取值所构成的集合M 和N ,然后通过集合M 与N 之间的关系来判断.[解析] 由log 2a <1,解得0<a <2,所以满足条件A 的参数a 的取值集合为M ={a |0<a <2};而方程x 2+(a +1)x +a -2=0的一根大于零,另一根小于零的充要条件是f (0)<0,即a -2<0,解得a <2,即满足条件B 的参数a 的取值集合为N ={a |a <2},显然M N ,所以A 是B 的充分不必要条件.[答案] B[点评] 利用集合间的关系判断充要条件的方法记法条件p 、q 对应的集合分别为A 、B 关系A ⊆B B ⊆A A B⊂B A ⊂A =B A B 且⊄B A ⊄结论p 是q 的充分条件p 是q 的必要条件p 是q 的充分不必要条件p 是q 的必要不充分条件p 是q 的充要条件p 是q 的既不充分也不必要条件3.等价转化法等价转化法就是在判断含有逻辑联结词“否”的有关条件之间的充要关系时,根据原命题与其逆否命题的等价性转化为形式较为简单的两个条件之间的关系进行判断.[典例3] 已知条件p :≤-1,条件q :x 2-x <a 2-a ,且q 的一个充分不必要条4x -1⌝件是p ,则a 的取值范围是________.⌝[解题指导] “q 的一个充分不必要条件是p ”等价于“p 是q 的一个必要不充分⌝⌝条件”.[解析] 由≤-1,得-3≤x <1.由x 2-x <a 2-a ,得(x -a )[x +(a -1)]<0,4x -1当a >1-a ,即a >时,不等式的解为1-a <x <a ;当a =1-a ,即a =时,不等式的解为∅;1212当a <1-a ,即a <时,不等式的解为a <x <1-a .12由q 的一个充分不必要条件是p ,可知p 是q 的充分不必要条件,即p 为q 的一个⌝⌝⌝⌝必要不充分条件,即条件q 对应的x 取值集合是条件p 对应的x 取值集合的真子集.当a >时,由{x |1-a <x <a } {x |-3≤x <1},得Error!解得<a ≤1;1212当a =时,因为空集是任意一个非空集合的真子集,所以满足条件;12当a <时,由{x |a <x <1-a } {x |-3≤x <1},得Error!解得0≤a <.1212综上,a 的取值范围是[0,1].[答案] [0,1][点评] 条件和结论带有否定性词语的命题,常转化为其逆否命题来判断真假.p 、q 之间的关系和之间的关系p ⌝q ⌝p 是q 的充分不必要条件是的必要不充分条件p ⌝q ⌝p 是q 的必要不充分条件是的充分不必要条件p ⌝q ⌝p 是q 的充要条件是的充要条件p ⌝q ⌝p 是q 的既不充分也不必要条件是的既不充分也不必要条件p ⌝q ⌝[全盘巩固]1.“若b 2-4ac <0,则ax 2+bx +c =0没有实根”,其否命题是 ( )A .若b 2-4ac >0,则ax 2+bx +c =0没有实根B .若b 2-4ac >0,则ax 2+bx +c =0有实根C .若b 2-4ac ≥0,则ax 2+bx +c =0有实根D .若b 2-4ac ≥0,则ax 2+bx +c =0没有实根解析:选C 由原命题与否命题的关系可知,“若b 2-4ac <0,则ax 2+bx +c =0没有实根”的否命题是“若b 2-4ac ≥0,则ax 2+bx +c =0有实根”.2.f (x ),g (x )是定义在R 上的函数,h (x )=f (x )+g (x ),则“f (x ),g (x )均为偶函数”是“h (x )为偶函数”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选B 因为f (x ),g (x )均为偶函数,可推出h (x )为偶函数,反之,则不成立.3.(2014·黄冈模拟)与命题“若a ,b ,c 成等比数列,则b 2=ac ”等价的命题是( )A .若a ,b ,c 成等比数列,则b 2≠acB .若a ,b ,c 不成等比数列,则b 2≠acC .若b 2=ac ,则a ,b ,c 成等比数列D .若b 2≠ac ,则a ,b ,c 不成等比数列解析:选D 因为原命题与其逆否命题是等价的,所以与命题“若a ,b ,c 成等比数列,则b 2=ac ”等价的命题是“若b 2≠ac ,则a ,b ,c 不成等比数列”.4.设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A “函数f (x )=a x 在R 上是减函数”的充要条件是p :0<a <1.因为g ′(x )=3(2-a )x 2,而x 2≥0,所以“函数g (x )=(2-a )x 3在R 上是增函数”的充要条件是2-a >0,即a <2.又因为a >0且a ≠1,所以“函数g (x )=(2-a )x 3在R 上是增函数”的充要条件是q :0<a <2且a ≠1.显然p ⇒q ,但q ⇒/ p ,所以p 是q 的充分不必要条件,即“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件.5.(2014·南昌模拟)下列选项中正确的是( )A .若x >0且x ≠1,则ln x +≥21ln x B .在数列{a n }中,“|a n +1|>a n ”是“数列{a n }为递增数列”的必要不充分条件C .命题“所有素数都是奇数”的否定为“所有素数都是偶数”D .若命题p 为真命题,则其否命题为假命题解析:选B 当0<x <1时,ln x <0,此时ln x +≤-2,A 错;当|a n +1|>a n 时,{a n }不1ln x 一定是递增数列,但若{a n }是递增数列,则必有a n <a n +1≤|a n +1|,B 对;全称命题的否定为特称命题,C 错;若命题p 为真命题,其否命题可能为真命题,也可能为假命题,D 错.6.已知p :≤1,q :(x -a )(x -a -1)≤0.若p 是q 的充分不必要条件,则实数2x -1a 的取值范围是( )A. B. C .(-∞,0)∪ D .(-∞,0)∪[0,12](0,12)[12,+∞)(12,+∞)解析:选A 令A ={x |≤1},得A =Error!,令B ={x |(x -a )(x -a -1)≤0},得2x -1B ={x |a ≤x ≤a +1},若p 是q 的充分不必要条件,则A B ,需Error!⇒0≤a ≤.127.在命题p 的四种形式(原命题、逆命题、否命题、逆否命题)中,真命题的个数记为f (p ),已知命题p :“若两条直线l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0平行,则a 1b 2-a 2b 1=0”.那么f (p )=________.解析:原命题p 显然是真命题,故其逆否命题也是真命题,而其逆命题是:若a 1b 2-a 2b 1=0,则两条直线l 1:a 1x +b 1y +c 1=0与l 2:a 2x +b 2y +c 2=0平行,这是假命题,因为当a 1b 2-a 2b 1=0时,还有可能l 1与l 2重合,逆命题是假命题,从而否命题也为假命题,故f (p )=2.答案:28.下列四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题;②“若x 2+x -6≥0,则x >2”的否命题;③在△ABC 中,“A >30°”是“sin A >”的充分不必要条件;12④“函数f (x )=tan(x +φ)为奇函数”的充要条件是“φ=k π(k ∈Z )”.其中真命题的序号是________(把真命题的序号都填上).解析:①原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”,①是真命题;“若x 2+x -6≥0,则x >2”的否命题是“若x 2+x -6<0,则x ≤2”,②也是真命题;在△ABC 中,“A >30°”是“sin A >”的必要不充分条件,③是假命题;“函数f (x )=tan(x +φ)为奇函数”12的充要条件是“φ=(k ∈Z )”,④是假命题.k π2答案:①②9.已知α:x ≥a ,β:|x -1|<1.若α是β的必要不充分条件,则实数a 的取值范围为________.解析:α:x ≥a ,可看作集合A ={x |x ≥a },由|x -1|<1,得0<x <2,∴β可看作集合B ={x |0<x <2}.又∵α是β的必要不充分条件,∴B A ,∴a ≤0.答案:(-∞,0]10.已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,对命题“若a +b ≥0,则f (a )+f (b )≥f (-a )+f (-b )”.(1)写出否命题,判断其真假,并证明你的结论;(2)写出逆否命题,判断其真假,并证明你的结论.解:(1)否命题:已知函数f (x )在(-∞,+∞)上是增函数,a ,b ∈R ,若a +b <0,则f (a )+f (b )<f (-a )+f (-b ).该命题是真命题,证明如下:∵a +b <0,∴a <-b ,b <-a .又∵f (x )在(-∞,+∞)上是增函数.∴f (a )<f (-b ),f (b )<f (-a ),∴f (a )+f (b )<f (-a )+f (-b ),∴否命题为真命题.(2)逆否命题:已知函数f (x )在(-∞,+∞)上是增函数,a ,b ∈R ,若f (a )+f (b )<f (-a )+f (-b ),则a +b <0.真命题,可证明原命题为真来证明它.∵a +b ≥0,∴a ≥-b ,b ≥-a ,∵f (x )在(-∞,+∞)上是增函数,∴f (a )≥f (-b ),f (b )≥f (-a ),∴f (a )+f (b )≥f (-a )+f (-b ),故原命题为真命题,所以逆否命题为真命题.11.已知集合A =Error!,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-x +1=2+,∵x ∈,∴≤y ≤2,∴A =Error!.32(x -34)716[34,2]716由x +m 2≥1,得x ≥1-m 2,∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件,∴A ⊆B ,∴1-m 2≤,解得m ≥或m ≤-,7163434故实数m 的取值范围是∪.(-∞,-34][34,+∞)12.已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,求两方程的根都是整数的充要条件.解:∵mx 2-4x +4=0是一元二次方程,∴m ≠0.又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都要有实根,∴Error!解得m ∈.[-54,1]∵两方程的根都是整数,故其根的和与积也为整数,∴Error!∴m 为4的约数.又∵m ∈,∴m =-1或1.[-54,1]当m =-1时,第一个方程x 2+4x -4=0的根为非整数;而当m =1时,两方程的根均为整数,∴两方程的根均为整数的充要条件是m =1.[冲击名校]1.对于函数y =f (x ),x ∈R ,“y =|f (x )|的图象关于y 轴对称”是“y =f (x )是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B y =|f (x )|的图象关于y 轴对称,但是y =f (x )不一定为奇函数,如取函数f (x )=x 2,则函数y =|x 2|的图象关于y 轴对称,但函数f (x )=x 2是偶函数不是奇函数,即“y =|f (x )|的图象关于y 轴对称”⇒/ “y =f (x )是奇函数”;若y =f (x )是奇函数,图象关于原点对称,所以y =|f (x )|的图象关于y 轴对称,即“y =f (x )是奇函数”⇒“y =|f (x )|的图象关于y 轴对称”,故应选B.2.已知下列各组命题,其中p 是q 的充分必要条件的是( )A .p :m ≤-2或m ≥6;q :y =x 2+mx +m +3有两个不同的零点B .p :=1;q :y =f (x )是偶函数f (-x )f (x )C .p :cos α=cos β;q :tan α=tan βD .p :A ∩B =A ;q :A ⊆U ,B ⊆U ,∁U B ⊆∁U A解析:选D 对于A ,由y =x 2+mx +m +3有两个不同的零点,可得Δ=m 2-4(m +3)>0,从而可得m <-2或m >6.所以p 是q 的必要不充分条件;对于B ,由=1⇒f (-x )=f (x )⇒y =f (x )是偶函数,但由y =f (x )是偶函数不能推出f (-x )f (x )=1,例如函数f (x )=0,所以p 是q 的充分不必要条件;f (-x )f (x )对于C ,当cos α=cos β=0时,不存在tan α=tan β,反之也不成立,所以p 是q 的既不充分也不必要条件;对于D ,由A ∩B =A ,知A ⊆B ,所以∁U B ⊆∁U A ;反之,由∁U B ⊆∁U A ,知A ⊆B ,即A ∩B =A .所以p ⇔q .综上所述,p 是q 的充分必要条件的是D.[高频滚动]1.已知全集U =R ,集合A ={x |x 2-3x -4>0},B ={x |2x >8},那么集合(∁U A )∩B =( )A .{x |3<x <4}B .{x |x >4}C .{x |3<x ≤4}D .{x |3≤x ≤4}解析:选C A ={x |x 2-3x -4>0}={x |x <-1或x >4},所以∁U A ={x |-1≤x ≤4},又B ={x |2x >8}={x |x >3},所以(∁U A )∩B ={x |3<x ≤4}.2.对于任意的两个正数m ,n ,定义运算⊙:当m ,n 都为偶数或都为奇数时,m ⊙n =;当m ,n 为一奇一偶时,m ⊙n =.设集合A ={(a ,b )|a ⊙b =6,a ,b ∈N *},m +n2mn 则集合A 中的元素个数为________.解析:(1)当a ,b 都为偶数或都为奇数时,=6⇒a +b =12,即a +b22+10=4+8=6+6=1+11=3+9=5+7=12,故符合题意的点(a,b)有2×5+1=11个.ab(2)当a,b为一奇一偶时,=6⇒ab=36,即1×36=3×12=4×9=36,故符合题意的点(a,b)有2×3=6个.综上可知,集合A中的元素共有17个.答案:17。
考点02 命题及其关系、充分条件和必要条件典型高考数学试题解读与变式(详解版)

②等价法:利用 p⇒q 与 q⇒ p,q⇒p 与 p⇒ q,p⇔q 与 q⇔ p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法. ③集合法:若 A⊆B,则 A 是 B 的充分条件或 B 是 A 的必要条件;若 A=B,则 A 是 B 的充要条件.
【变式 1】【改变例题中的条件】设 x R ,则“| x −1| 1”是“ 2 − x 0 ”的( )
maxx1, x2,......xn,最小数为 minx1, x2,......xn 。已知 ABC 的三边长位 a,b,c( a b c ),定义它的倾
斜度为
l
=
max
a b
,
b c
,
c a
.min
a b
,
b c
,
c a
,
则“ l =1”是“ ABC 为等边三角形”的(
)
A.充分不必要条件 C.充分必要条件 【答案】 A
A.充分而不必要条件 C.充要条件 【答案】A
B.必要而不充分条件 D.既不充分也不必要条件
【解析】由| x −1| 1得 0 x 2 ,由 2 − x 0 得 x 2 ,所以“| x −1| 1”是“ 2 − x 0 ”的充分而不必
要条件,故选 A.
【变式 2】【改变例题中的条件】设 x R ,则“ m2 − 4 − x 0 (m R) ”是“| x −1| 1”的必要而不充分
【答案】B
【解析】由等比数列的定义数列,若乙:{an} 是等比数列,公比为 q ,即
an+1 an
=q
a2 n+1
a2 n+1
=
q2
则甲命
a2 n+1
题成立;反之,若甲:数列
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点二命题及其关系、充分条件与必要条件知识梳理1.命题的概念可以判断真假、用文字或符号表述的语句,叫作命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系(1) 四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若非p,则非q逆否命题若非q,则非p(2) 四种命题间的逆否关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.(3) 如果p q,q p,那么称p是q的充分不必要条件.(4) 如果q p,p q,那么称p是q的必要不充分条件.(5) 如果p q,且q p,那么称p是q的既不充分也不必要条件.典例剖析题型一四种命题及其相互关系例1命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”答案 B解析将原命题的条件与结论互换即得逆命题,故原命题的逆命题为“若一个数的平方是正数,则它是负数”.变式训练命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数答案 C解析由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x +y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.解题要点 1.写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.2.一些常见词语的否定例2有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案②③解析①原命题的否命题为“若a≤b,则a2≤b2”,错误.②原命题的逆命题为:“若x,y互为相反数,则x+y=0”,正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.变式训练下列有关命题的说法正确的是________.(填序号)①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②若一个命题是真命题,则其逆命题也是真命题;③命题“存在x∈R,使得x2+x+1<0”的否定是“对任意x∈R,均有x2+x+1<0”;④命题“若x=y,则sin x=sin y”的逆否命题为真命题.答案 ④解析 命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,所以①不正确;原命题与逆命题不等价,所以②不正确;命题“存在x ∈R ,使得x 2+x +1<0”的否定是“对任意x ∈R ,均有x 2+x +1≥0”,所以③不正确;命题“若x =y ,则sin x =sin y ”是真命题,所以逆否命题为真命题,④正确.解题要点 1.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.2.根据“原命题与逆否命题是等价的,逆命题与否命题也是等价的”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.题型二 充分条件与必要条件例3 已知p :“a ,b ,c 成等比数列”,q :“b =ac ”,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 若a ,b ,c 成等比数列,则有b 2=ac ,所以b =±ac ,所以充分性不成立.当a =b =c =0时,b =ac 成立,但此时a ,b ,c 不成等比数列,所以必要性不成立,所以p 是q 的既不充分也不必要条件.变式训练 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件答案 A解析 由正弦定理,知a ≤b ⇔2R sin A ≤2R sin B (R 为△ABC 外接圆的半径)⇔sin A ≤sinB . 例4 设函数f (x )=log 2x ,则“a >b ”是“f (a )>f (b )”的________(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)条件.答案 必要不充分解析 因为f (x )=log 2x 在区间(0,+∞)上是增函数,所以当a >b >0时,f (a )>f (b );反之,当f (a )>f (b )时,a >b .故“a >b ”是“f (a )>f (b )”的必要不充分条件.变式训练 设x ∈R ,则“x >1”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 A解析 由不等式220x x +->得(2)(1)0x x +->,即2x <-或1x >,所以由1x >可以得到不等式220x x +->成立,故充分性成立;但由220x x +->不一定得到1x >,所以必要性不成立,即“x >1”是“220x x +->”的充分而不必要条件.解题要点 1.充要条件问题应首先弄清问题中条件是什么,结论是什么,再进一步判断条件与结论的关系,解题过程分为三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.2.充要条件的三种判断方法(1) 定义法:根据p q ,q p 进行判断; (2) 集合法:根据p 、q 成立的对象的集合之间的包含关系进行判断;(3) 等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.当堂练习1. 设p :1<x <2,q :2x >1,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.设,a b ∈R , 则 “2()0a b a -<”是“a b <”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面4.已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的 条件.5.U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅” 条件.课后作业一、 选择题1.下列语句中命题的个数是( )①2<1;②x <1;③若x <2,则x <1;④函数f (x )=x 2是R 上的偶函数.A.0B.1C.2D.32.“x =1”是“x 2-2x +1=0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件3.“1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.设p :x <3,q :-1<x <3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”6.若m ∈R, 命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( )A .若方程x 2+x -m =0有实根,则m >0B .若方程x 2+x -m =0有实根,则m ≤0C .若方程x 2+x -m =0没有实根,则m >0D .若方程x 2+x -m =0没有实根,则m ≤07.已知命题p :若x =-1,则向量a =(1,x )与b =(x +2,x )共线,则在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .2C .3D .48.设α,β是两个不同的平面,m 是直线且m ⊂α.“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题9.x ≠3或y ≠5是x +y ≠8的____________条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)10.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.11.(1)“x >y >0”是“1x <1y”的________条件. (2) 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的________条件.12.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题,其中是假命题的是________.13.“m <14”是“一元二次方程x 2+x +m =0有实数解”的____________条件.当堂练习答案1. 答案 A解析 当1<x <2时,2<2x <4,∴p ⇒q ;但由2x >1,得x >0,∴q p ,故选A.2答案 A解析 由(a -b )a 2<0⇒a ≠0且a <b ,∴充分性成立;由a <b ⇒a -b <0,当0=a <b 时 (a -b )·a 2<0,必要性不成立;故选A.3.答案 D解析 对于A ,α,β垂直于同一平面,α,β关系不确定,A 错;对于B ,m ,n 平行于同一平面,m ,n 关系不确定,可平行、相交、异面,故B 错;对于C ,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D ,若假设m ,n 垂直于同一平面,则m ∥n ,其逆否命题即为D 选项,故D 正确.4.答案 充分不必要条件解析 当a =b =1时,(a +b i)2=(1+i)2=2i ;当(a +b i)2=2i 时,得⎩⎪⎨⎪⎧a 2-b 2=0,ab =1, 解得a =b =1或a =b =-1,所以“a =b =1”是“(a +b i)2=2i ”的充分不必要条件.5.答案 充要条件解析 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.课后作业答案二、 选择题1.答案 D2.答案 A解析 解x 2-2x +1=0得x =1,所以“x =1”是“x 2-2x +1=0”的充要条件.3.答案 A4.答案 C解析 ∵x <3-1<x <3,但-1<x <3⇒x <3,∴p 是q 的必要不充分条件,故选C.5.答案 C解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C. 6.答案 D解析 原命题为“若p ,则q ”,则其逆否命题为“若q ,则p ”.∴所求命题为“若方程x 2+x -m =0没有实根,则m ≤0”.7.答案 B解析 向量a ,b 共线⇔x -x (x +2)=0⇔x =0或x =-1,∴命题p 为真,其逆命题为假,故在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为2.8.答案 B解析 m ⊂α,m ∥βα∥β,但m ⊂α,α∥β⇒m ∥β,∴m ∥β是α∥β的必要而不充分条件. 二、填空题9.答案 必要不充分解析 设p :x =3且y =5,q :x +y =8,显然p 是q 的充分不必要条件,∴p 是q 的必要不充分条件,即x ≠3或y ≠5是x +y ≠8的必要不充分条件.10.答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.11.答案 (1)充分不必要 (2)充要解析 (1)1x <1y⇒xy ·(y -x )<0, 即x >y >0或y <x <0或x <0<y .所以x >y >0 ⇒1x <1y ,但反过来1x <1y, 所以是充分不必要条件.(2) 构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |. 所以是充要条件.12.答案 ①②解析 对于①其否命题为“若k ≤0,则方程x 2+2x +k =0无实根”,为假命题;②的逆命题为“若a <b ,则1a >1b”,为假命题;③中原命题为真命题,故其逆否命题也为真命题. 13.答案 充分不必要解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14,因为m <14⇒m ≤14,反之不成立. 故“m <14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.。