薄厚膜混合集成电路
厚膜电路和设计

厚膜电路讲解
五、散装电路二次集成的必要性(续)
内容提要 简介 电路特点 比较优势 必要性 集成优势 设计要点 版图设计 产品分类 注意事项
2. 有利于标准化批产 厚膜电路工艺通过全过程质量控制,专业标准设备加工,使
键合机
老练筛选
储能焊封装机
军工质量体系GJB9001
厚膜电路讲解
三、 厚膜混合集成电路的特点
内容提要 电路模块 电路特点 比较优势 必要性 集成优势 设计要点 版图设计 产品分类 注意事项
1、温度特性良好。陶瓷材料具有优良的高频、高Q特 性和高速传输特性;具有较小的热膨胀系数、较小的介电 常数温度系数,具备比普通PCB电路基板优良的热传导性 和热均匀性,电路内部无局部热点。
厚膜电路讲解
七、 厚膜电路设计要点(续)
内容提要 简介 电路特点 比较优势 必要性 集成优势 设计要点 版图设计 产品分类 注意事项
3、全程遵循设计程序
3.1、线路设计:方案论证、电路设计、热设计、可靠性设计、 电路设计的正确性验证、电路设计评审、出电原理图等。
3.2、封装结构设计 :按照环境、尺寸、重量、功耗、气密性 及引出端数目选择合适的封装形式和外壳结构。尽量选用 标准外壳。必须重新设计时选用的材料、镀层、引出端及 封装边缘距离必须满足附录规定。
直接使用管芯集成组装,有利于整机小型化。因此,厚 膜集成化是整机缩小体积、降低重量的有效途径。
厚膜电路讲解
六、散装电路二次集成后将形成的优势
内容提要 简介 电路特点 比较优势 必要性 集成优势 设计要点 版图设计 产品分类 注意事项
数字集成电路的分类

数字集成电路的分类数字集成电路有多种分类方法,以下是几种常用的分类方法。
1.按结构工艺分按结构工艺分类,数字集成电路可以分为厚膜集成电路、薄膜集成电路、混合集成电路、半导体集成电路四大类。
图如下所示。
世界上生产最多、使用最多的为半导体集成电路。
半导体数字集成电路(以下简称数字集成电路)主要分为TTL、CMOS、ECL三大类。
ECL、TTL为双极型集成电路,构成的基本元器件为双极型半导体器件,其主要特点是速度快、负载能力强,但功耗较大、集成度较低。
双极型集成电路主要有 TTL(Transistor-Transistor Logic)电路、ECL(Emitter Coupled Logic)电路和I2L(Integrated Injection Logic)电路等类型。
其中TTL电路的性能价格比最佳,故应用最广泛。
ECL,即发射极耦合逻辑电路,也称电流开关型逻辑电路。
它是利用运放原理通过晶体管射极耦合实现的门电路。
在所有数字电路中,它工作速度最高,其平均延迟时间tpd可小至1ns。
这种门电路输出阻抗低,负载能力强。
它的主要缺点是抗干扰能力差,电路功耗大。
MOS电路为单极型集成电路,又称为MOS集成电路,它采用金属-氧化物半导体场效应管(Metal Oxide Semi-conductor Field Effect Transistor,缩写为MOSFET)制造,其主要特点是结构简单、制造方便、集成度高、功耗低,但速度较慢。
MOS集成电路又分为PMOS(P-channel Metal Oxide Semiconductor,P沟道金属氧化物半导体)、NMOS(N-channel Metal Oxide Semiconductor,N沟道金属氧化物半导体)和CMOS(Complement Metal Oxide Semiconductor,复合互补金属氧化物半导体)等类型。
MOS电路中应用最广泛的为CMOS电路,CMOS数字电路中,应用最广泛的为4000、4500系列,它不但适用于通用逻辑电路的设计,而且综合性能也很好,它与TTL电路一起成为数字集成电路中两大主流产品。
基于厚膜混合集成电路的激光调阻工艺研究

基于厚膜混合集成电路的激光调阻工艺研究王姜伙;王志勤【期刊名称】《电子与封装》【年(卷),期】2012(000)011【摘要】Laser trimming is a high precision and efficiency method of trimming the resistors, which has been used popular in the thick film hybrid integration circuit presently. In order to achieve the high precision resistors, the process of laser trimming method has been studied in this paper. The process of laser trimming includes soldering the probe card, compiling the program and studying the process experiments. Based on the several experiments study, the precision of L-cut type method is about ±0.5%.%激光调阻具有高精度、高效率等特点,是目前厚膜混合集成电路最为常用的电阻修调方法.为了实现厚膜混合集成电路中精度电阻的制作,文章对激光调阻工艺进行了系统研究,内容包括探针卡焊接组装、调阻程序编制以及工艺试验研究.通过进行试验验证,选用L型调阻路径,调阻精度已达到±0.5%,满足设计要求.【总页数】3页(P34-36)【作者】王姜伙;王志勤【作者单位】中国电子科技集团公司第38研究所,合肥230088;中国电子科技集团公司第38研究所,合肥230088【正文语种】中文【中图分类】TP216【相关文献】1.厚膜混合电路的激光调阻技术 [J], 李颖;林洪;陈琳;王雪冰;张娜;张治国2.厚膜混合电路的激光调阻技术 [J], 李颖;林洪;陈琳;王雪冰;张娜;张治国3.厚膜混合集成电路用的激光调阻系统 [J], 许永勤4.混合集成电路激光调阻技术 [J], 朱明锋;王洋5.RuO2基厚膜电阻电脉冲调阻工艺研究 [J], 王吉刚;董述恂因版权原因,仅展示原文概要,查看原文内容请购买。
混合集成电路研究报告

混合集成电路研究报告混合集成电路研究报告混合集成电路(Hybrid Integrated Circuit)是指将不同的电子元器件(如晶体管、二极管、电容等)通过微型化的封装技术,集成在同一块半导体芯片上,形成一个完整的电路系统。
混合集成电路具有高可靠性、高性能、高集成度等优点,广泛应用于通信、计算机、军事等领域。
混合集成电路的制造过程包括芯片制造、封装和测试三个步骤。
首先,通过光刻、蒸镀等工艺制造出芯片上的电子元器件。
然后,将芯片封装在陶瓷或塑料封装体中,并连接上引脚。
最后,进行电性能测试,确保电路系统的正常运行。
混合集成电路的应用范围非常广泛。
在通信领域,混合集成电路被广泛应用于无线电收发机、卫星通信、光纤通信等系统中。
在计算机领域,混合集成电路被用于高速运算、存储器、控制器等电路中。
在军事领域,混合集成电路被用于雷达、导弹、通信等系统中。
混合集成电路的发展趋势主要体现在以下几个方面。
首先,封装技术的不断创新,使得混合集成电路的封装体积不断缩小,性能不断提高。
其次,芯片制造技术的不断进步,使得混合集成电路的集成度不断提高,功耗不断降低。
再次,新型材料的应用,如氮化硅、碳化硅等,使得混合集成电路的工作温度范围更广,可靠性更高。
最后,混合集成电路与其他技术的结合,如MEMS技术、光电子技术等,将进一步拓展混合集成电路的应用领域。
总之,混合集成电路是一种高可靠性、高性能、高集成度的电路系统,广泛应用于通信、计算机、军事等领域。
随着封装技术、芯片制造技术、新型材料的不断进步,混合集成电路的应用前景将更加广阔。
数字集成电路的分类

数字集成电路的分类数字集成电路有多种分类方法,以下是几种常用的分类方法。
1.按结构工艺分按结构工艺分类,数字集成电路可以分为厚膜集成电路、薄膜集成电路、混合集成电路、半导体集成电路四大类。
图如下所示。
世界上生产最多、使用最多的为半导体集成电路。
半导体数字集成电路(以下简称数字集成电路)主要分为TTL、CMOS、ECL三大类。
ECL、TTL为双极型集成电路,构成的基本元器件为双极型半导体器件,其主要特点是速度快、负载能力强,但功耗较大、集成度较低。
双极型集成电路主要有TTL(Transistor-Transistor Logic)电路、ECL(Emitter Coupled Logic)电路和I2L(Integrated Injection Logic)电路等类型。
其中TTL电路的性能价格比最佳,故应用最广泛。
ECL,即发射极耦合逻辑电路,也称电流开关型逻辑电路。
它是利用运放原理通过晶体管射极耦合实现的门电路。
在所有数字电路中,它工作速度最高,其平均延迟时间tpd可小至1ns。
这种门电路输出阻抗低,负载能力强。
它的主要缺点是抗干扰能力差,电路功耗大。
MOS电路为单极型集成电路,又称为MOS集成电路,它采用金属-氧化物半导体场效应管(Metal Oxide Semi-conductor Field Effect Transistor,缩写为MOSFET)制造,其主要特点是结构简单、制造方便、集成度高、功耗低,但速度较慢。
MOS集成电路又分为PMOS(P-channel Metal Oxide Semiconductor,P沟道金属氧化物半导体)、NMOS(N-channel Metal Oxide Semiconductor,N沟道金属氧化物半导体)和CMOS(Complement Metal Oxide Semiconductor,复合互补金属氧化物半导体)等类型。
MOS电路中应用最广泛的为CMOS电路,CMOS数字电路中,应用最广泛的为4000、4500系列,它不但适用于通用逻辑电路的设计,而且综合性能也很好,它与TTL电路一起成为数字集成电路中两大主流产品。
第3章 厚薄膜电路

溅射蚀刻优点
(1)膜下的材料不存在任何钻蚀问题,气体离 子以基板的法线方向撞击基板。这就意味着没有 任何离子从切线方向撞击膜,因而侧面平直,与 其相反,化学蚀刻的速率在切线方向与法线方向 是相同的。因此,造成与薄膜厚度相等的钻蚀。
(2)由于不再需要用来蚀刻薄膜的烈性化学物 质,所以对人员的危害较小,而且没有污水处理 的问题。
电阻丝蒸发与电子束蒸发(2)
电子束蒸发法具有很多的优点。通过电场 加速的电子流在进入磁场后倾向与呈弧线运动, 利用这种现象,把高能电子流直接作用在蒸发 物质上。当它们轰击到蒸发剂时,电子的动能 转变成热。因为舟的电阻并不是一个影响因素, 而控制电子能量的参数是容易测量和控制的, 所以电子束蒸发是更容易控制的。此外,热将 更集中和强烈,使得在高于10-2torr温度下蒸发 成为可能,也减轻了蒸发剂与舟之间的反应。
图 电子束蒸发装置示意图
2、溅射法—可制备各类金属、合金、化合物薄 膜。
直流溅射—制备各类金属膜
磁控溅射–-是一种淀积速度高、工作气压低的溅射 技术,提高了淀积速度及膜质量,
反应溅射—采用纯金属作为靶材,在气体中混入适 量的活性气体,获得不同的化合物薄膜。
溅射淀积薄膜
如图所示,在一个大约10Pa压力的局部真空里形 成一个导电的等离子体,用于建立等离子体所用的气 体通常是与靶材不发生反应的某种惰性气体,例如氩 气。基板和靶材置于等离子体中,基板接地,而靶材 具有很高的AC或DC负电位,高电位把等离子体中的 气体离子吸引到靶材上,具有足够动能的这些离子与 靶材碰撞,撞击出具有足够残余动能的微粒,使其运 动到达基板并黏附其上。
第3章
厚/薄膜技术
概述
厚膜技术使用丝网印、干燥与烧结三种工艺方法。 薄膜技术是一种减法技术,使用镀膜、光刻与刻蚀方法。 均用于制作电阻、电容、基板上的布线导体等。
厚膜集成电路制备工艺-实验指导书

厚膜集成电路制备工艺一、实验目的1.了解厚膜集成电路的制备方法和流程。
2.掌握选择制备厚膜电路所需的仪器、基片、浆料、丝网等材料的思路和方法。
3. 掌握厚膜电路制备过程中关键工艺的主要参数。
4. 了解厚膜集成电路的特点和应用。
二、实验器材RSK3007Z网带式烧结炉,HGL600红外干燥炉,精密丝网印刷机,丝网,浆料,基片,刮刀。
三、实验说明1.干燥炉设置网带速度为220mm/min,炉温150℃。
2.烧结炉网带速度为120mm/min。
进口气幕和出口气幕为25L/min,进气一为30L/min,进气二为40L/min,排气为15L/min。
各温区温度根据所选浆料的烧结曲线设置。
四、实验内容和步骤1.准备试验材料,包括基片、浆料、丝网等。
2.固定对准。
将制作好的丝网装入丝网印刷机,固定。
打开真空泵,将陶瓷基片用镊子放到丝网印刷机平台中央,使之于平台吸合。
放下丝网到水平位置,调节平台高度使基片与丝网刚好接触,调节平台水平位置使丝网图形与基片精确对准,用紧固螺钉固定平台。
3.丝网印刷。
取适量电阻浆料放在丝网一端,用刮板将浆料刮过丝网图形。
注意用力适当,速度均匀,保证印出的图形完整,厚度均匀。
将印好的基片取下,水平放置约5分钟,使图形流平。
4.干燥。
将印刷有浆料图形的基片放入干燥炉干燥。
注意调节干燥的温度为150℃,时间约10min。
5.烧结。
将干燥后冷却的基片放入烧结炉,烧结过程中需要设置烧结温度为800℃,带速设置为100mm/min。
五、实验报告要求1.小结实验心得体会。
2.回答思考题a)基片的功能是什么?有哪些基本要求?b)浆料的基本成分有哪些?c)厚膜电路相对PCB电路和半导体集成电路有哪些特点?列举典型应用。
d)根据实验步骤考虑多层厚膜电路的制造流程和方法。
e)和基本的厚膜工艺相比,共烧陶瓷工艺有什么特点,简述基本方法和流程。
厚膜发热电路 薄膜发热电路

厚膜发热电路薄膜发热电路
厚膜发热电路和薄膜发热电路都是常见的电路类型,它们在不同的应用中具有不同的特点和优势。
厚膜发热电路通常是指采用较厚的金属膜(通常为铜或银)作为导电层的电路。
这种电路的优点是可以承受较高的电流和功率,因此适用于需要高热量输出的应用,如加热器、电源等。
厚膜发热电路的制造工艺相对简单,可以通过丝网印刷、喷涂等方式制备。
薄膜发热电路则是指采用较薄的金属膜(通常为铝、铜或钛)作为导电层的电路。
这种电路的优点是具有较高的电阻率和较低的电阻温度系数,因此可以在较小的面积内实现较高的功率密度。
薄膜发热电路通常采用物理气相沉积(PVD)、化学气相沉积(CVD)等先进的制备工艺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混合集成电路中的新型封装工艺 摘要:文章介绍了几种新的封装工艺,如单芯片封装、多芯片封装
钎焊气密封接技术、激光熔焊封接技术、铜工艺等
引言:当将有源器件和无源元件组装到已完成膜层印烧/蒸发/溅射
的基片上以后,这个混合微电路就可以进行封装了。组装和封装作为产品开发中的关键技术在业界引起人们日益增多的关注。
正文 广义的封装是指将半导体和电子元器件所具有的电子的、物理的功能,转变为适用于设备或系统的形式,并使之为人类社会服务的科学技术。 狭义的封装(Packaging,PKG)是指裸芯片与布线板实现微互连后,将其密封在塑料、玻璃、金属或陶瓷外壳中,以确保半导体集成电路芯片在各种恶劣条件下正常工作。 无论是单芯片封装前的裸芯片,还是多个裸芯片装载在多层布线板上的多芯片组件(MCM),在不经封装的状态下,由于空气中湿气和氧的影响,半导体集成电路元件表面及多层布线板表面的导体图形及电极等,会随时受到氧化的腐蚀,使其性能退化。因此,无论是单芯片封装还是MCM制造,在整个工艺过程中,应避免在空气中放置,而应在氮气气箱等非活性气氛中加以保护。否则,会出现半导体元件的内侧引线凸点因氧化而难以键合,多层布线板的导体电极因氧化而不能钎焊等问题。 即使已完成了微互连,不经封装而在含有湿气的空气中工作加之迁移现象,半导体元件及多层布线板上的导体电路会发生突然短路。因此,多层布线板及半导体元件表面露出的导体图形必须与外界气氛隔绝。无论对于单个使用的裸芯片还是MCM,封装都是必不可少的。 封装除对混合电路起机械支撑、防水和防磁、隔绝空气等的作用外,还具有对芯片及电连接的物理保护、应力缓和、散热防潮、尺寸过渡、规格标准化等多种功能。
下面介绍几种混合集成电路中的新型封装工艺 一、非气密性树脂封装技术 1、单芯片封装 单芯片封装分气密性封装型和非气密性封装型两大类:前者包括金属外壳封接型、玻璃封接型(陶瓷盖板或金属盖板)、钎焊(Au/Sn共晶焊料)封接型;后者包括传递模注塑封型、液态树脂封装型、树脂块封装型等。其中传递模注塑封法价格便宜,便于大批量生产,目前采用最为普遍。 传递模注塑封技术 a.模注树脂成分及特性 树脂通常是指受热后有软化或熔融范围,软化时在外力作用下有流动倾向,常温下是固态、半固态,有时也可以是液态的有机聚合物。广义地讲,可以作为塑料制品加工原料的任何聚合物都称为树脂。 树脂有天然树脂和合成树脂之分。天然树脂是指由自然界中动植物分泌物所得的有机物质,如松香、琥珀、虫胶等。合成树脂是指由简单有机物经化学合成或某些天然产物经化学反应而得到的树脂产物。 按树脂分子主链组成分类 : 按此方法可将树脂分为碳链聚合物、杂链聚合物和元素有机聚合物。 碳链聚合物是指主链全由碳原子构成的聚合物,如聚乙烯、聚苯乙烯等。 杂链聚合物是指主链由碳和氧、氮、硫等两种以上元素的原子所构成的聚合物,如聚甲醛、聚酰胺、聚醚等。 元素有机聚合物是指主链上不一定含有碳原子,主要由硅、氧、铝、钛、硼、硫、磷等元素的原子构成,如有机硅。 b.传递模注工艺过程 先将模具预热,将经过微互连的芯片框架插入上下模具中,上模具下降,将芯片框架固定。 注塑压头按设定程序下降,树脂料饼经预加热器加热,粘度下降,在注塑压头压力作用下,由料筒经流道,通过浇口分配器进入浇口,最后注入到型腔中。 注入中不加压力,待封装树脂基本上填满每个型腔之后再加压力。在加压状态下保持数分钟,树脂聚合而硬化。 上模具提升,取出模注好的封装体。切除流道、浇口等不必要的树脂部分。 此时树脂聚合仍不充分,特性也不稳定,需要在160~180摄氏度经数小时的高温加热,使聚合反应完结。 由于模注时树脂可能从模具的微细间隙流出,故最后还要利用高压水及介质(玻璃粉等)的冲击力,使残留在外引脚表面的树脂溢料(又称毛边、飞边等)剥离。 外引脚经过电镀焊料或电镀Sn等处理,以改善引脚的耐蚀性及微互连时焊料与它的浸润性。至此,传递模注封装全部完成。 c.模注树脂流速及粘度对Au丝偏移(冲丝)的影响 封装树脂在型腔内流动会造成微互连Au丝的偏移(冲丝)。 为了减小Au丝偏移,应降低封装树脂的粘度,并控制封装树脂尽量缓慢的在型腔内流动。 2、多芯片封装 MCM封装也可按其气密性等级,分为气密封装和非气密封装两大类。非气密封装的代表是树脂封装法,依树脂的加入方式不同,进一步还可分为注型(casting)法、浸渍(dipping)法、滴灌(potting)法及流动浸渍法(粉体涂装法)等;气密性封装包括低熔点玻璃封接法、钎焊封接法、缝焊封接法及激光熔焊法等。 封装可靠性与其价格具有明显的关系,可靠性越高则封装价格越贵。 树脂封装价格低,但从可靠性角度,特别是耐湿性存在问题,对于可靠性要求高的大型电子计算机等领域,必须采用气密性封装。 采用钎焊密封法,可以做到完全的气密性封接,金属性腔体内还可封入氦气、氮气等非活性气体。但这种方法存在焊料与多层布线板上导体层之间的扩散问题,若在高温环境下使用,则耐热性及长期使用的可靠性都不能保证。 对可靠性有更高要求的应用,需采用熔焊法。其中之一是缝焊封接(seamweld),但现有缝焊焊机的功率有限,只能焊比较薄(厚度约0.15mm)的金属盖板,不能用于大型MCM。为了能对大型MCM中采用比较厚(0.25~0.5mm)的金属盖板进行熔焊封接,需要采用激光熔焊法。 采用缝焊封接时,先用环氧树脂及焊料等粘结剂,将陶瓷布线板支持固定在金属外壳中,而粘结剂在散热性及耐机械冲击性等方面都存在问题。为解决这些问题,可以在陶瓷布线板上,通过银浆料,粘结固定与布线板热膨胀系数基本相等的可伐或Fe/Ni42合金等密封环,并作为激光熔焊时的金属基体。 二、气密性封装技术 a.钎焊气密封接技术 钎焊气密封接是通过钎焊将金属外壳固定在多层布线板上,将IC芯片与外气绝缘。为了利用钎焊实现气密封接的目的,要求焊料与被钎焊材料之间具有良好的浸润性。通常采用Sn63/Pb37焊料。 为了钎焊金属封装外壳,需要在多层布线板表面的四周,形成与外壳相匹配、用于钎焊连接的导体图形。该导体图形与焊料间应有良好的浸润性,且与焊料的互扩散尽量小。一般是通过厚膜法,采用Cu浆料印刷。对于氧化铝陶瓷多层共烧基板来说,一般在W导体层上电镀Ni/Au层,以达到良好的浸润性。 金属外壳与多层布线板的热膨胀系数一般是不同的,因此对氧化铝布线板来说,最好选用可伐合金外壳。但可伐合金与焊料间的浸润性不好,通常金属外壳也需要电镀Ni/Au或Sn,以改善其浸润性。 钎焊封接时,将金属外壳扣在预钎焊的封接图形上,在大约240摄氏度下进行回流焊,此时外壳内的空气会膨胀,因此需要在金属外壳上制作空气向外逃逸用的小孔,而后,在氦气或氮气等非活性气氛中,用共晶焊料对小孔进行封接。 钎焊封接的金属外壳封装便于分解、重装,一般可保证在10次以上。因此,这种封接可用做通常气密性封装后半导体元件的初期不良品筛选。 钎焊封接中采用助焊剂,焊接过程中产生残渣,清洗助焊剂的三氯乙烷等有机清洗剂破坏臭氧层,不利于环保。 b.激光熔焊封接技术 激光熔焊适用于大型MCM及外形复杂的MCM,并能保证高可靠性。 其工艺过程如下:先在多层布线板的设定位置上,由Ag焊料固定作为熔焊金属基体的焊接环,将金属外壳扣在焊接环上,使两者处于紧密接触状态,用激光束照射密接部位,焊接环及与其密接部位的外壳金属同时熔化,经冷却完成气密封接。由于相同金属间便于熔焊,一般情况下焊接环与外壳都采用可伐合金。 激光熔焊封接法仅使焊接环与金属外壳间需要密封连接的部位瞬时达到高温再冷却。不像焊料封接那样,需要使多层布线板达到高温,因此,不必考虑金属外壳内部空气的膨胀问题,不需要在金属外壳上设置气孔。激光熔焊法可以在非活性气氛封接箱内完成气密性封接。 对熔焊封接外壳进行拆卸、重装是比较困难的,一般采取的是拆卸、重装焊接环的方式。因此,焊接环的高度一般保持在0.75mm以上,在每一次拆卸、重装过程中,焊接环需要研磨掉约100~200的高度,总共可进行2~3次返修、重装操作。 与钎焊封接法相比,激光熔焊法允许的拆卸、返修次数少,故在正式封装前,需要对半导体元件进行老化筛选,以去除初期不良的器件。 将无Pb的激光熔焊封接技术和无铅的芯片微互连技术相结合,就可以在完全不必采用Sn-Pb系焊料,实现封装的真正无无铅化。 随着集成电路工艺进入深亚微米时代,以金属代替金属铝作为晶圆上互连材料的迫切性越来越大。目前,在0.18微米工艺中,已有一些制造商采用了铜布线,而在0.13微米工艺中,以铜替代铝已是不争的事实。由于封装工艺的金属互连直接与晶圆上的金属互连相接触,并通过它们形成了器件与系统的点通路,因此,晶圆布线材料的变化,将对封装工艺产生深刻的影响。同时,由于芯片的特征尺寸越来越小,对引线键和工艺造成的压力也越来越大,因为要在如此细微的间距中进行引线键和,对于金属引信的尺寸要求和键和方法都是一种考验。因此,采用新的互连方法是唯一的选择。倒装(flip chip)焊或倒扣技术就是一个十分吸引人的选择。所谓的倒扣芯片封装技术,就是讲集成电路芯片的有源区面向基板的互联形式。所以,无论是引线键和还是凸缘键和,只要其芯片有源区面向基板,都称为倒扣芯片技术。从目前国际上对于倒扣芯片封装工艺的研究和应用情况来看,高互联密度、高性能器件的倒扣芯片封装技术,普遍采用以IBM C4技术为基本工艺,并加以一定的改进。这种技术的特点是可以达到相当高的互联密度,若同时采用陶瓷封装工艺的话,其器件的可靠性也很高,但它的价格亦十分昂贵,所以,它主要应用于航天航空工业及军事方面,以及一些对可靠性有特殊要求的场合。另一方面,在一些可靠性要求并不那么高,,芯片的输入/输出端