八年级数学下册19一次函数192一次函数1922一次函数第1课时导学案新人教版
八年级数学下册19.2.2一次函数第1课时导学案新版新人教版2

19.2.2一次函数 (第一课时)学习目标:1、我会理解一次函数的概念。
2、我会搞清楚正比例函数与一次函数之间的关系。
学习重难点:一次函数函数的概念和解析式的特点以及与正比例函数之间的关系。
学习过程:一、创设问题情境:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.二、自主学习:1、自学课本89—90页,回答下列问题:(1)、一颗树现在高60 cm,每个月长高2 cm,x月之后这棵树的高度为h cm,则h关于x的函数解析式为 .(2)、有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(℃)有关,即C•的值约是t的7倍与35的差.(3)、某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.1分收取).(4)、把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化. 上面这些函数的形式都是自变量x的k(常数)倍与一个常数的和.如果我们用b来表示这个常数的话.•这些函数形式就可以写成:2、上面这些函数的形式都是常数K与自变量的积与常数b的和的形式。
这些函数的形式可以写成: .3.一次函数的概念一般地,形如的函数,•叫做一次函数.当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数.4、对一次函数概念内涵和外延的把握:(1)自变量系数(常数)k≠0;(2)自变量x的次数为1;(3)当b=0时,y=kx+b即y=kx.故正比例函数是一次函数.三、合作交流与展示:1、下列函数中,是一次函数的有,是正比例函数的有(1)x y 8-= (2)x y 8-= (3)652+=x y (4)15.0--=x y (5)x y = (6))3(2+=x y (7)x y 34-=2、下列说法不正确的是( )(A)一次函数不一定是正比例函数 (B)不是一次函数就一定不是正比例函数(C)正比例函数是特定的一次函数 (D)不是正比例函数就不是一次函数3、已知函数y=(2-m)x+2m-3.求当m 为何值时,(1)此函数为正比例函数? (2)此函数为一次函数?4、函数,b kx y +=当 1=x 时1-=y ,当4=x 时5=y ,求K 与b 的值。
八年级数学下册第十九章一次函数19.2一次函数19.2.2.1一次函数的概念导学案(无答案)新人教

八年级数学下册第十九章一次函数19.2 一次函数19.2.2.1 一次函数的概念导学案(无答案)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册第十九章一次函数19.2 一次函数19.2.2.1 一次函数的概念导学案(无答案)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册第十九章一次函数19.2 一次函数19.2.2.1 一次函数的概念导学案(无答案)(新版)新人教版的全部内容。
19.2。
2.1 一次函数的概念导学案学习目标能利用一次函数解决简单的实际问题。
重点:掌握一次函数的概念。
难点:能利用一次函数解决简单的实际问题.一、自学释疑一次函数与正比例函数之间是什么联系?二、合作探究探究点1:一次函数的概念问题1:一次函数的定义是什么?它与正比例函数又有何联系?典例精析例1 已知函数y=(m—1)x+1—m2(1)当m为何值时,这个函数是一次函数?(2)当m为何值时,这个函数是正比例函数?要点归纳:1.一次函数y=kx+b的特点如下:(1)解析式中自变量x的次数是次;(2)比例系数k ;(3)常数项:通常不为0,但也可以等于0。
2.(1)当b 时,y=kx+b 即y= (k≠0),此时该一次函数是正比例函数。
(2)正比例函数是一种特殊的一次函数。
例2 已知一次函数 y=kx+b,当 x=1时,y=5;当x=-1时,y=1.求 k 和b 的值.方法总结:将两组自变量及对应的函数值代入函数解析式中,得到关于k,b的方程组,解方程即可.针对训练1。
已知函数y=2x|m|+(m+1)。
八年级数学下册《19.2.2 一次函数 第1课时》导学案( 无答案)-精选文档

班级姓名第小组【学习目标】:19.2.2 一次函数第 1 课时【知识链接】大数学家欧拉莱昂哈德欧拉是瑞士数学家和物理学家,1、理解一次函数的概念,会求一次函数的值。
2、会根据数量关系,确定解析式中的 k、b,求一次函数的解析式。
3、能用一次函数知识解决简单的实际问题,体会数学来源于生活又服务生活。
学习重点:一次函数函数的概念和解析式。
确定自变量的取值范围学习难点:一次函数的实际应用。
一、【预习导学】问题:一次函数的概念阅读教材 P89“问题 2”至 P91“例 2”以上的内容,解决下列问题。
1、一颗树现在高60 cm,每个月长高2 cm,x 月之后这棵树的高度为h cm,则h关于x的函数解析式为.2、有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(℃)有关,即C的值约是t的7倍与35 的差.3、某城市的市内电话的月收费额y(元)包括:月租费22 元,拨打电话x分的计时费(按0.1分收取).4、把一个长10cm,宽5cm 的矩形的长减少x cm,宽不变,矩形面积y(cm2)随x的值而变化.上面这些函数的形式都是自变量x的k(常数)倍与一个常数的和.如果我们用b来表示这个常数的话.这些函数形式就可以写成:【归纳总结】一般地,形如的函数,叫做一次函数.当b=0 时,y=kx+b 即y=kx.所以说正比例函数是一种特殊的一次函数.理解一次函数的概念应把握:(1)自变量系数(常数)k≠0;(2)自变量 x 的次数为 1;【讨论】一次函数与正比例函数有什么区别?【预习自测】下列函数中,是一次函数的有,是正比例函数的有- 8 他和高斯被称为历史最伟大的两位数学家。
欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,他的全集共计75卷,“小行星欧拉2019 ”是为了纪念欧拉而命名的。
【学法指导】1、弄清正比例函数和一次函数之间的关系,关键是 b 为零和不为零的区别。
2、对一次函数的概念的学习,要结合一次函数的一般解析式展开,明确解析式中的自变量和函数。
八年级数学下册 19.2.2.1 一次函数导学案 新人教版(2021年整理)

八年级数学下册19.2.2.1 一次函数导学案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册19.2.2.1 一次函数导学案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册19.2.2.1 一次函数导学案(新版)新人教版的全部内容。
19.2。
2.1 一次函数预习案一、学习目标1、结合具体情境理解一次函数的意义,能结合实际问题中的数量关系写出一次函数的解析式。
2、能根据一次函数的图象和表达式y =kx+b(k≠0)理解k>0和k<0时,图象的变化情况. 从而理解一次函数的增减性.二、预习内容预习课本十九章第二节P89-93内容。
1、一般地,形如 (k、b是常数,k≠0)的函数,叫做一次函数.2、当b=0时,y=kx+b为,正比例函数是。
3、函数y=kx+b图象可以看作由直线平移个单位长度而得到。
4、k>0时,直线,y 随x 的增大而;k<0时,直线,y 随x 的增大而。
三、预习检测1、、下列函数①y=2x—1,②y=πx,③y= ,④y=x2中,一次函数的个数是()A.1 B.2 C.3 D.42、一次函数y=—2x+2的图象大致是()A. B. C.D.3、一次函数y=5x—3不经过第()象限A.一 B.二C.三D.四4、一次函数y=—5x+3的图象经过的象限是( )A.一,二,三B.二,三,四C.一,二,四D.一,三,四探究案一、合作探究(15min)探究一:1、某登山队大本营所在地的气温为5ºC,海拔每升高1km气温下降6ºC,登山队员由大本营向上登高xkm时,他们所在的位置的气温是yºC,试用解析式表示y与x的关系.。
八年级数学下册 19.2.2 一次函数(第1课时)教案 新人教版(2021学年)

八年级数学下册19.2.2一次函数(第1课时)教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册19.2.2 一次函数(第1课时)教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册19.2.2 一次函数(第1课时)教案(新版)新人教版的全部内容。
19。
2。
2 一次函数(第1课时)【教材分析】【教学流程】(2)求第2.5秒时小球的速度.m=13。
(1)v=2t,它是一次函数.(2)当t=2.5时,v=2×2.5=5所以第2.5秒时小球速度为5米/秒.成果展示欣赏自我:本节课你学会了什么?完善自我:对本课的内容,你还有哪些疑惑?教师引导学生归纳总结、反思、梳理知识,帮助学生形成知识体系.补偿提高4.学校组织学生到距离学校6km的神舟科技馆去参观,学生李伟因事耽误没能乘上学校的专车,于是准备在学校门口改乘出租车去神舟科技馆,出租车的收费标准如下:(1)写出出租车行驶的里程数x(x≥3km)与费用y(元)之间的函数关系式;(2)李伟同学身上仅有14元钱,乘出租车到科技馆的车费够不够?请说教师出示问题,学生先自主,再合作,交流展示,师生共同评价4。
解:(1)y=8+1。
8(x—3)即:y=1.8x+2.6(x≥3km)(2)当x=6时:y=1.8×6+2。
6=13。
4<14所以李伟身上的14元乘出租车够用。
以上就是本文的全部内容,可以编辑修改。
高尔基说过:“书是人类进步的阶梯。
”我希望各位朋友能借助这个阶梯不断进步。
物质生活极大丰富,科学技术飞速发展,这一切逐渐改变了人们的学习和休闲的方式。
人教版数学八年级下第19章《一次函数》导学案

人教版数学八年级下第19章《一次函数》导学案共28页19.1变量与函数学习目标、重点、难点【学习目标】1、常量、变量的概念;2、函数的概念和其3种表示方法(列表法、图象法、解析法),自变量的取值范围;3、图象的定义;4、描点法画函数图象的一般步骤;【重点难点】1、函数的概念和其3种表示方法(列表法、图象法、解析法),自变量的取值范围;2、描点法画函数图象的一般步骤;新课导引有资料显示,影响气温有三个方面的因素,即纬度位置、海陆位置和地形.其中,地形对气温的影响是巨大的,地理学家经过多年探测和研究发现,海拔每升高100米,气温下降0.6℃.【问题探究】 如果山脚的气温是24℃,那么相对山脚高度为2000米的山顶的气温又如何呢?相对山脚高度为x 米处的气温又如何表达呢?【解析】 山脚的气温为24℃,相对山脚高度为2000米的山顶的气温应比24℃低,降低的温度为0.6×1002000=0.6×20=12(℃),故可知相对山脚高度为2000米的山顶气温为24-12=12(℃).同理,相对山脚高度为x m 处的气温可表示为(24-0.6×100x )℃教材精华知识点1常量与变量不同的事物在变化过程中,有些量的值是按照某种规律变化的,有些量的值是始终不变的.在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.拓展 常量与变量是相对的,判断常量与变量的前提条件是“在某一变化过程中”,在不同的变化过程中,同一个量在不同过程中可能不同.如工作量问题,工作量=工作效率×工作时间,若工作量一定,则工作效率、工作时间为变量;若工作效率一定,则工作量、工作时间为变量.知识点2 函数的概念一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.函数的定义中包括三个要素:(1)自变量的取值范围;(2)两个变量之间的对应关系;(3)后一个变量被唯一确定而形成的变化范围.拓展 (1)自变量与函数都用什么字母表示无关紧要,自变量可用x 表示,也可用t ,u ,p ,…中的任何一个字母表示,函数可用y 表示,也可用s ,v ,q ,…中的任何一个字母表示.(2)在我们所研究的范围内,有时两个变量之间虽然有一定的关系,但却不符合函数中的对应关系,也就是说,这种关系不是“唯一确定”的关系,那么这两个变量之间就不存在函数关系.(3)函数不是数,函数的本质是对应,函数关系就是变量之间的对应关系,且是一种特殊的对应关系.必须是“对于x的每一个值,y都有唯一的值与之对应”.例如:“一个数与它的绝对值”,若一个数用x表示,它的绝对值用y表示,其中x可以取任意实数,即自变量的取值范围是全体实数,对应关系是一个数与它的绝对值对应,一个数的绝对值是这个数的函数.规律方法小结确定函数关系的方法:判断变量之间是否构成函数关系,就是看是否存在两个变量.并且在这两个变量中,确定好哪个是自变量,哪个是因变量,自变量在变化过程中处于主动地位,因变量在变化过程中处于被动地位,自变量每变一个值,因变量都必须有唯一确定的值与它相对应,这样,它们才能构成函数关系.知识点3 函数关系式用来表示函数关系的等式叫做函数关系式,也称为函数解析式.我们应从以下几个方面来理解函数关系式的概念:(1)函数关系式是等式.例如:y=2x+3就是一个函数关系式,我们可以说代数式2x+3是x 的函数,但不能说2x+3是函数关系式.(2)函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边的代数式中的变量是自变量,等式左边的一个变量表示函数.例如:y=2x2+3中,y是x的函数,x是自变量.(3)书写函数关系式是有顺序的.例如:y=x-3表示y是x的函数;若x=y+3,则表示x是y的函数.也就是说,求y关于x的函数关系式,必须用自变量x的代数式表示y,即得到的等式的左边是一个变量y,右边是一个含x的代数式.(4)用数学式子表示函数的方法叫解析法.知识点4 自变量的取值范围的确定函数自变量的取值范围的确定必须考虑两个方面:首先,自变量的取值必须使含自变量的代数式有意义;其次,自变量的取值应使实际问题有意义.这两个方面缺一不可,尤其是后者,在学习过程中特别容易忽略.因此,在分析具体问题时,一定要细致周到地从多方面考虑.拓展在函数关系式中,自变量的取值要使函数关系有意义,可分下列几种情况:(1)当函数关系式是一个只含有一个自变量的整式时,自变量的取值范围是全体实数.例如:y =2x-1中,自变量x的取值范围是全体实数.(2)当函数关系式表示实际问题时,自变量的取值必须使实际问题有意义.例如:S=πR2中,若R表示圆的半径,则R>0.(3)当函数关系式是分式时,自变量的取值范围是使分母不为零的实数.(4)当函数关系式是二次根式时,自变量的取值范围是使被开方数不小于零的实数.(5)自变量的取值范围可以是有限或无限的,也可以是几个数或单独的一个数.识点5 函数值函数值是指自变量在取值范围内取某个值时,因变量与之对应的确定的值.拓展(1)①当已知函数解析式时,给出自变量的值,求相应的函数值,就是将自变量x代入解析式,求代数式的值.②当已知函数解析式时,给出函数值,求相应的自变量x的值.就是解方程.③已知函数解析式,当自变量确定时,函数值也唯一确定;当函数值确定时,自变量不一定唯一.(2)当函数与实际问题相联系时,函数值与自变量的值都要使实际问题有意义.规律方法小结已知函数值和函数解析式求自变量的过程体现的是一种方程思想,所谓方程思想,就是指对所求的数学问题通过列方程(组)使问题得以解决的数学思想.知识点6 函数的图象一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.拓展(1)函数的图象可以是直线、射线、线段,也可以是双曲线、抛物线等,要形象直观地反映两个变量之间的对应关系.(2)观察图象时要注意弄清横轴和纵轴表示的意义,自变量的取值范围以及图象中函数值随着自变量变化的规律.规律方法小结(1)①利用函数图象,可以求方程的解、不等式的解集、方程组的解集,还可以预测变量的变化趋势.②通常判断一个点是否在函数图象上的方法是:将这个点的坐标代入函数的表达式,若满足,则这个点就在函数的图象上;若不满足,则这个点就不在函数的图象上.函数图象上的任意点A(x,y)中的x,y满足函数关系式;反之,满足函数关系式的任意一对x,y的值所对应的点一定在函数的图象上.(2)在求方程的解、不等式解集的问题中,还有解决一些实际问题的时候,为了使问题更简单,通常用图象来辅助解决问题,这就体现了另一种数学思想——数形结合思想.所谓数形结合思想,就是将数与形结合起来进行分析、研究、解决问题的一种思想方法.知识点7 用描点法画函数图象的一般步骤用描点法画函数图象的一般步骤:(1)列表:给出一些自变量的值及其对应的函数值.(2)描点:在平面直角坐标系中,以自变量的值为横坐标.相应的函数值为纵坐标,描出表格中数值对应的各点.(3)连线:按照横坐标由小到大的顺序把所描出的各点用平滑的曲线连接起来.拓展(1)列表时要根据自变量的取值范围取值,从小到大或自中间向两边选取,取值要有代表性,尽量使画出的函数图象能反映出函数的全貌.(2)描点时要以表中每对对应值为坐标,点取得越多.图象越准确.(3)连线时要用平滑的曲线将所描的点顺次连接起来.知识点8 函数的三种表示形式列表法:用表格列出自变量与函数的对应值,表示函数两个变量之间的关系.这种表示函数的方法叫做列表法.它的优点是能明显地显示出自变量的值和与之对应的函数值.但它只能把部分自变量的值和与之对应的函数值列出,不能反映出函数变化的全貌图象法:用图象表示两个变量之间的函数关系,这种表示函数的方法叫做图象法.它的优点是能够形象直观地显示出数据的变化规律,为研究函数的性质提供方便,但所画出的图象是近似的、局部的,所以由图象确定的函数往往不够准确.解析法:用自变量x的各种数学运算构成的式子表示函数y的方法叫做解析法.它的优点是简明扼要,规范准确,便于理解函数的性质,但并非适用于所有函数.课堂检测基本概念题1、(1)在圆的周长公式C=2πR中,常量是,变量是;(2)东风村的耕地面积是109 m2,这个村人均占有耕地面积y随这个村的人数x的变化而变化,其中常量是,变量是,解析式为.基础知识应用题2、如图所示,图中有几个变量?你能将其中某个变量看成是另一个变最的函数吗?如果能,求出当t=12时对应的路程s.3、某地区现有果树1 2000棵,计划今后每年栽果树2000棵.(1)求果树总数y(棵)与年数x(年)的函数关系式;(2)预计到第5年该地区有多少棵果树.综合应用题4、李奶奶晚饭以后外出散步,碰到老邻居交谈一会儿,返回途中,在读报栏前看了一会儿报,如图所示的是据此情况画出的图象,请你回答下列问题.(1)李奶奶是在什么地方碰到老邻居的?交谈了多长时间?(2)读报栏大约离家多远?(3)李奶奶在哪段时间走得最快?你是怎么计算的?(4)图中反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?你能将其中某个变量看成是另一个变量的函数吗?请写出0≤t≤15时,s与t的关系式.5、有一个水箱,它的容积为500 L,水箱内原有水200 L,现需将水箱注满,已知每分钟注入水10 L.(1)写出水箱内水量Q(L)与时间t(min)的函数关系式;(2)求自变量t的取值范围;(3)画出函数图象.探索创新题6、如图所示的图象反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程s(千米)和行驶时间t(小时)之间的关系,根据所给图象,解答下列问题.(1)写出甲的行驶路程s和行驶时间t(t≥0)之间的函数关系式;(2)在哪一段时间内,甲的行驶速度小于乙的行驶速度?在哪一段时间内,甲的行驶速度大于乙的行驶速度?(3)从图象中你还能获得什么信息?请写出其中的一条.体验中考1、写出图象经过点(1,-1)的一个函数关系式:.2、一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km/h,水流速度为5 km/h.轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回甲地.设轮船从甲地出发后所用时间为t(h),航行的路程为s(km),则s与t的函数图象大致是(如图所示) ( )学后反思附:课堂检测及体验中考答案课堂检测1、分析本题考查的是常量与变量的概念.常量是在一个变化过程中,数值不发生改变的量;变量是在一个变化过程中,数值发生变化的量.答案:(1)2π C ,R (2)109y 与x x y 910= 【解题策略】 π是常数.而不是变量.另外,常量不一定都是用具体的数表示的,有时也可用字母表示.2、分析 本题考查变量与函数的概念以及求函数值的方法.从图中可以看出,有两个变量t 与s ,而s =vt ,v 是常量,所以t 与s 构成函数关系,从图中还可以看出,当t =3时,s =20,这说明走20米的路程用了3分钟,则速度320=v 米/分. 解:从图中看出,有两个变量t 和s .如果把t 看做自变量,s 看做因变量,那么路程s 、速度v 、时间t 之间的关系式为s =vt .从图中看出,每取一个t 值,都有一个s 值与之对应,当t =3时,s =20,∴20=3v ,∴320=v 米/分. ∴s 与t 之间的关系式为t s 320=(t ≥0), ∴可以将s 看做t 的函数.∴当t =12时,s =320×12=80(米). 规律·方法 要确定函数关系,就要确定两个变量中,哪个是自变量,哪个是因变量,还要注意到其他的量都必须是常量.求函数值的方法有两种,一种是从图中找出来,另一种是用求代数式的值的方法求出来.3、 分析 果树总数y (棵)=现有果树12000(棵)+历年栽树的棵数.解:(1)y =12000+2000x (x ≥0,且x 为整数).(2)当x =5时.y =12000+2000×5=22000(棵),即预计到第5年该地区有22000棵果树.【解题策略】 确定自变量的取值范围时,不仅需要考虑函数关系式有意义,而且还要注意问题的实际意义.4、分析 本题考查的是由图象分析问题的能力.解:(1)李奶奶是在离家600米处碰到老邻居的,交淡了大约10分钟.(2)读报栏大约离家300米.(3)李奶奶在40~45分这段时间内走得最快,这是因为:李奶奶从家出发到返回家中的行程是这样的:①从出发地点到遇到老邻居,用了15分,走了600米,在这15分时间内,她的平均速度是600÷15=40(米/分);②从15分到25分,她和老邻居交谈了约10分;③从25分到35分,她在返回家的途中,走了600-300=300(米),这一段她的平均速度是300÷10=30(米/分);④从35分到40分,她在读报栏读报,也就是读报栏离家大约300米的距离;⑤从40分到45分,她返回家中,共用时5分,行走了300米,这一段她的平均速度是300÷5=60(米/分).因此李奶奶在40~45分这段时间内走得最快.(4)从图中反映出了李奶奶外出散步时间与离家距离这两个变最之间的关系,其中外出散步时间是自变量,离家距离是因变量,离家距离是散步时间的函数.当0≤t ≤15时,s =40t .5、分析 (1)水箱内的水量=原有水量+t 分钟内注入的水量;(2)由于t 表示时间,则有t ≥0,又因为水箱内的水量必小于或等于水箱的容量,所以200+10t ≤500,解得t≤30;(3)用描点法画出图象,但要注意图象应为一条线段,必须突出线段的端点,用实心点表示.解:(1)Q =200+10t . (2)由题意知⎩⎨⎧≤+≥,50010200,0t t 解得0≤t ≤30.(3)图象如图14-5所示.【解题策略】 实际问题中的自变量的取值范围应使实际问题有意义,同时要特别注意实际问题中不可忽略的隐含的限制条件.实际问题的函数图象常为线段或射线,画其图象时必须用实心点或空心圈来表示临界值.6、分析 本题考查对函数图象的观察、理解能力,认真观察图象、理解图象即可解决问题. 解:(1)s =2t (t ≥0).(2)当0<t <1时,甲的行驶速度小于乙的行驶速度;当t >1时,甲的行驶速度大于乙的行驶速度.(3)此题答案不唯一,如在出发后的第3小时两人相遇等.【解题策略】 (1)在描述行程问题的图象中,可以通过点的坐标求速度.比如用P 点坐标(3,6),可以求甲的速度为36=2千米/时,用Q 点坐标(1,3),可以求乙在前一个小时的速度为13=3千米/时.(2)利用坐标系中同一起点处图象的高低可以判断行驶过程中速度的快慢,图象高的行驶速度快.(3)图象相交的时刻就是两人相遇的时刻.体验中考1、分析 本题考查图象上点的坐标与函数关系式的关系,点在图象上,则将点的坐标代入函数关系式,函数关系式成立,本题答案不唯一.可以填y =-x 或y =x 2-2等.2、分析 本题考查用图象表示两个变量之间的关系的能力,随着时间t 的增加,航行的路程先逐渐增加,然后由于停留一段时间,所以有一段时间航行路程保持不变,然后逆流回航.路程仍然逐渐增加,但由于逆行速度比顺流速度慢,所以路程增加的幅度变小.故选C .【解题策略】 本题中明确s 代表的意义是解题的关键,它代表航行的路程而不是离开甲地的距离.19.2一次函数学习目标、重点、难点【学习目标】1、一次函数的有关概念(正比例函数、一次函数)2、一次函数的图象和画法;3、一次函数的性质(正比例函数的性质、一次函数的性质) 【重点难点】1、正比例函数的概念、图象和性质;2、一次函数的概念、图象和性质;3、待定系数法;知识概览图新课导引生活中,我们见到过形形色色的钟表,它是我们日常的计时工具,一声声滴答滴答,提醒我们珍惜时间,时钟的分针每旋转一圈,表示时间过了一个小时,旋转两圈,表示时间过了2个小时,如此下去,时间在不断流逝,那么分针走过的圈数与经过的时间有什么关系呢?应如何表示? 【问题探究】分针旋转一圈,时间便过了相应的一小时,两者之间存在一个一一对应关系,可看做函数,那么可以适当设出变量,用函数关系式表示.【解析】设分针走过的圈数为x ,时间设为y (小时),则两者之间存在一种对应关系,可以用函数关系式y =x 表示,当然也可用表格或图象表示.教材精华知识点1正比例函数的概念、图象和性质概念:一般地,形如y =kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数.正比例函数中自变量的取值范围是全体实数.图象:一般地,正比例函数y =kx (k 是常数,k ≠0)的图象是一条经过原点的直线,我们称它为直线y =kx .性质:当k >0时,y 随x 的增大而增大.当x <0时,y 随x 的增大而减小.拓展 (1)正比例函数y =kx ,也可以说成y 与x 成正比例.要求函数关系式只需通过x ,y 的一组对应值求出k ,从而确定关系式.(2)正比例函数的图象是过原点的直线.当k >0时,直线从左到右呈上升趋势,经过第三、一象限;当k <0时,直线从左到右呈下降趋势,经过第二、四象限.画正比例函数的图象时.只需选取除原点外的一点,过原点和选取点画直线即可,选取的点一般为点(1,k ).(3)正比例函数的性质也可以逆用.如当正比例函数y =kx (k ≠0)中y 随x 的增大而增大时,则k >0,反之k <0;再比如,正比例函数的图象过第一、三象限,则k >0等.知识点2一次函数的概念、图象和性质概念:一般地,形如y =kx +b (k ,b 是常数,k ≠0)的函数,叫做一次函数. 图象:一次函数的图象是一条直线.性质:一次函数y =kx +b (k ,b 常数,k ≠0),当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.拓展 (1)一次函数的关系式是关于自变量的一次关系式,要确定一次函数关系式,只需确定k ,b .(2)一次函数的图象是一条直线,要画出图象只需确定图象上的两点,这两点一般选与x 轴、y轴的交点⎪⎭⎫⎝⎛-0,k b ,(0,b ),过这两点画直线即可.(3)直线y=kx+b也可以看做是把直线y=kx向上(b>0)或向下(b<0时)平移b个单位得到的.(4)直线y=k1x+b1与直线y=k2x+b2的位置关系:当k1=k2,b1=b2时,两直线重合.当k1=k2,b1≠b2时,两直线平行.当k1≠k2,b1=b2时,两直线相交于y轴上的一点(0,b1).当k1≠k2,b1≠b2时.两直线相交.(5)直线y=kx+b(k≠0)的位置与k,b符号的关系.由k,b的符号可以确定直线y=kx+b的位置.反过来,由直线y=kx+b的位置也可以确定k,b的符号.这种数形结合的思想方法,是我们解决图象问题的重要方法.由k,b的符号也可以不通过画图象,直接判定直线的位置,k的符号决定直线的倾斜方向,b的符号决定直线与y轴交点的位置.(6)k的大小决定直线的倾斜程度,即k越大,直线与x轴相交成的锐角度数越大;k越小,直线与x轴相交成的锐角度数越小.b决定直线与y轴交点的位置,b>0时,直线与y轴的交点在y轴的正半轴上;b<0时,直线与y轴的交点在y轴的负半轴上.规律·方法(1)要正确理解一次函数成立的条件.①自变量的指数是1;②一次项系数k≠0.(2)弄清楚一次函数与正比例函数的关系:正比例函数一定是一次函数,但一次函数并不一定是正比例函数.当一次函数y=kx+b中b=0时,一次函数就变成了正比例函数,所以正比例函数是特殊的一次函数.(3)一次函数自变量的取值范围是全体实数,在实际问题中根据实际意义确定.知识点3 待定系数法待定系数法是确定函数关系式的基本方法.用待定系数法确定一次函数表达式的步骤为:(1)设出函数关系式的一般形式y=kx+b.(2)把自变量x 与函数y 的对应值代入函数关系式中,得到关于待定系数的方程或方程组. (3)求出待定系数. (4)写出函数关系式.拓展 确定实际问题中一次函数关系式时,首先要将实际问题转化为数学问题,即建立数学模型,其次是建立函数与自变量之间的关系式,要注意确定自变量的取值范围.课堂检测基础知识应用题1、下列函数(以x 为自变量)中,一次函数有 ,正比例函数有 . ①x y 2=;②131+=x y ;③y =-4x ;④12-=x y ;⑤y =5x 2. 2、若正比例函数y =(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是 ( )A .m <0B .m >0C .m <21 D .m >213、已知y -3与x 成正比例,且当x =2时,y =7. (1)写出y 与x 之间的函数关系式; (2)当x =4时,求y 的值; (3)当y =4时,求x 的值.综合应用题4、已知直线y =(1-3k )x +2k -1. (1)k 为何值时,直线经过原点?(2)k 为何值时,直线与y 轴交点的纵坐标是-2? (3)k 为何值时,直线与x 轴交于点(43,0)? (4)k 为何值时,直线经过第二、三、四象限? (5)k 为何值时,已知直线与直线y =-3x -5平行?探索创新题5、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x (h),两车之间的距离为y (km),如图所示的折线表示y 与x 之间的函数关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; (3)求慢车和快车的速度;(4)求线段BC 表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇30 min 后,第二列快车与慢车相遇,求第二列快车比第一列快车晚出发多少小时.体验中考1、对于函数y =k 2x (k 是常数,k ≠0)的图象,下列说法不正确的是 ( )A .是一条直线B .过点⎪⎭⎫⎝⎛k k ,1C .经过一、三象限或二、四象限D .y 随x 的增大而增大2、一次函数y =kx +b ,若x 的值减小1,y 的值就减小2,则当x 的值增加2时,y 的值 ( ) A .增加4 B .减小4 C .增加2 D .减小23、直线y =-2x -4分别交x 轴、y 轴于点A ,B ,O 为坐标原点,则S △AOB = .4、已知一次函数y =kx +b 的图象经过点A (-1,3)和点B (2,-3). (1)求这个一次函数的表达式;(2)求直线AB 与坐标轴围成的三角形的面积.学后反思附: 课堂检测及体验中考答案 课堂检测1、分析 本题需要运用概念进行判断,要结合一次函数、正比例函数的特征,另外,要特别注意正比例函数是一次函数,而一次函数不都是正比例函数,①中x2是分式,④中x 2是根式,⑤中的5x 2是二次式,因而这几个函数都不是一次函数,当然也不是正比例函数. 答案:②③ ③规律·方法 判定一次函数的方法:(1)必须是整式;(2)自变量的次数必须是一次;(3)一般形式y =kx +b 中k ≠0,k 和b 为常数.2、分析 本题考查正比例函数的图象和性质,因为当x 1<x 2时,y 1>y 2,所以y 随x 的增大而减小,所以1-2m <0,所以m >21.故选D . 【解题策略】 此类问题也可以结合图象进行判定.根据两点坐标的关系,找出y 随x 的变化规律,从而利用函数的增减性确定k 的符号,这种类型的问题在中考中经常出现.3、分析 本题考查利用待定系数法求函数解析式的方法.由y -3与x 成正比例,可设y -3=kx ,由x =2,y =7可求出k ,则可以写出关系式. 解:(1)由于y -3与x 成正比例,可设y -3=kx . 把x =2,y =7代入y -3=kx 中,得7-3=2k ,∴k =2.∴y 与x 之间的函数关系式为y -3=2x ,即y =2x +3. (2)当x =4时,y =2×4+3=11. (3)当y =4时,4=2x +3,∴21=x . 【解题策略】 本题中把y -3看做一个整体,从而设y -3=kx .4、分析 (1)正比例函数的图象经过原点(或当b =0时,直线经过坐标原点);(2)直线y =kx +b 与y 轴交点的纵坐标是b ;(3)直线y =kx +b 与x 轴交点的横坐标为-kb;(4)当k <0,b <0时,直线y =kx +b 经过第二、三、四象限;(5)如果直线y 1=k 1x +b 1与直线y 2=k 2x +b 2平行,那么k 1=k 2,b 1≠b 2,反过来也成立. 解:(1)当2k -1=0,即k =21,直线经过原点. (2)当x =0时,y =-2,即2k -1=-2,解得k =-21, 即当k =-21时直线与y 轴交点的纵坐标是-2.(3)当x =43时,y =0,即43(1-3k )+2k -1=0,解得k =-1,即当k =-1时,直线与x 轴的交点坐标为(43,0).(4)当⎩⎨⎧--,0<12,0<31k k ,即31<k <21时,直线经过第二、三、四象限.(5)当1-3k =-3,即k =34时,2k -1=35≠-5,此时,已知直线与直线y =-3x -5平行. 规律·方法 本题从不同的方面考查了一次函数图象的基本知识,解题时,我们应做到由解析式或k ,b 的符号,联想到图象的大致位置,或由图象联想到函数解析式或k ,b 的符号,真正做到数与形的紧密结合.5、 解:(1)900(2)图中点B 的实际意义是:当慢车行驶4 h 时,慢车和快车相遇.。
八年级数学下册 19.2.2 一次函数(第1课时)导学案4(无答案)(新版)新人教版

A.图像必过点( -1,-3) B.图像经过第一和第三象限
C.y随x的增大而减小D.不论x为何值,总有y<0
(4)已知正比例函数y=kx过点( 2, 4) ,则k=______,图像经过_____________象限, y随x的_______________.
(3)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h,再减常数100,所得的差是G的值.
__________________________
(4)把一个长12厘米,宽7厘米的长方形的长减少x厘米,宽不变,长方形的面积y(单位:平方厘米)随x的值而变化.
__________________________
【关键问题】
一次函数、正比例函数的概念及关系,
【预习评价】
问题1.(1)一般地,形如_______________( )的函数,叫做正比例函数,其中k叫做.
(2)下列函数是正比例函数的有____________________.
①y = 2x②y = 2x + 5③y = - x④y =
⑤y = -5x - 6⑥y = -6x⑦y = 7x-8⑧y = -3x + 8
思考:上面这些函数的形式都有什么共同点?
_______________________________________________________
归纳:一次函数的定义
_________________________________________________________
请同学们认真思考:
当b=0时,一次函数y=kx+b变为________ ,所以说正比例函数是一种特殊的______________;所以,正比例函数是__________,而_____________不一定是______________.
八年级数学下册 19.2.2 一次函数的概念 第1课时 优质导学案

第十九章 函数. . x y )(1+=π. . 与温度 t (单位:℃)有关,cm 为单位量出身高值 h ,22元和拨打电话 x min y (单位:cm 2). 是多少. 3x+2);(5)y=213x -. .一、要点探究探究点1:一次函数的概念问题1:一次函数的定义是什么?它与正比例函数又有何联系?例1 已知函数y=(m-1)x+1-m 2(1)当m 为何值时,这个函数是一次函数? (2)当m 为何值时,这个函数是正比例函数? 要点归纳:1.一次函数y=kx+b 的特点如下:(1)解析式中自变量x 的次数是 次;(2)比例系数k ;(3)常数项:通常不为0,但也可以等于0.2.(1)当b 时,y=kx+b 即y= (k ≠0)是正比例函数.(2)正比例函数是一种特殊的一次函数.例2 已知一次函数 y=kx+b ,当 x=1时,y=5;当x=-1时,y=1.k 和 b 的值.方法总结:将两组自变量及对应的函数值代入函数解析式中,关于k ,b 的方程组,解方程即可.1.已知函数y=2x |m|+(m+1).(1)若这个函数是一次函数,求m 的值;(2)若这个函数是正比例函数,求m 的值.2.已知y 与x -3成正比例,当x =4时,y =3.(1)写出y 与x 之间的函数关系式,并指出它是什么函数;(2)求x =2.5时,y 的值.探究点2:一次函数的简单应用例3 汽车油箱中原有油50升,如果汽车每行驶50千米耗油9升求油箱的油量y (单位:升)随行驶时间x 数关系式,并写出自变量的取值范围,y 是x 的一次函数吗?1.我国现行个人工资、薪金所得税征收办法规定:月收入低于元的部分不收税;月收入超过3500元但低于50003%的所得税……如某人月收入3860元,他应缴个人工资、税为:(3860-3500)×3%=10.8元.(1)当月收入大于3500元而又小于5000元时,写出应缴所得税y(元与收入x(元)之间的函数解析式;(2)某人月收入为4160元,他应缴所得税多少元? (3)如果某人本月应缴所得税19.2元,2.如图,△ABC 是边长为x 的等边三角形.(1)求BC 边上的高h 与x 之间的函数解析式.h 是x 吗?如果是,请指出相应的k 与b 的值.(2)当x 的值.(3)求△ABC 的面积S 与x 的函数解析式.S 是x 的一次函数吗?二、课堂小结1.下列说法正确的是( )A.一次函数是正比例函数B.正比例函数不是一次函数C.不是正比例函数就不是一次函数D.正比例函数是一次函数 2.在函数①y=2-x ;②y=8+0.03t ;③y=1+x+1x ;④y=+3x x中,是一次函数的有________. 3.要使y=(m-2)x n-1+n 是关于x 的一次函数,n,m 应满足_________,_________.4.如果长方形的周长是30cm ,长是xcm ,宽是ycm. (1)写出y 与x 之间的函数解析式,它是一次函数吗? (2)若长是宽的2倍,求长方形的面积.5.一个小球由静止开始沿一个斜坡向下滚动,其速度每秒增加2 m/s . (1)求小球速度v (单位:m/s )关于时间t (单位:s )的函数解析式; (2)求第2.5 s 时小球的速度;(3)时间每增加1 s ,速度增加多少,速度增加量是否随着时间的变化而变化?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.2.2一次函数(第1课时)学习目标:1.在列函数解析式的基础上认识什么是一次函数.2.弄清正比例函数和一次函数间的关系.3.树立学生应用数学知识解决实际问题的意识.认识一次函数学习重点:一次函数解析式的特点学习难点:1.一次函数解析式的特点.2.一次函数与正比例函数关系的正确理解一、自主学习1.函数的概念是2.正比例函数的概念是3.正比例函数图象性质是:4.某登山队大本营所在地的气温为15°,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处的位置的气温是y℃.试用解析式表示y与x的关系:这个函数是正比例函数吗?它与正比例函数有什么不同?这种形式的函数叫函数.二、合作探究1.下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式.(注意范围)(1)有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(℃)有关,即C•的值约是t的7倍与35的差.(2)有一种计算成年人标准体重G(单位:kg)的方法是:以厘米为单位量出身高值h,再减常数105,所得差是G的值.(3)某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.1元/分收取).(4)把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(单位:cm2)随x的值而变化.上面这些函数的形式都是自变量x的k(常数)倍与一个常数的.如果我们用b来表示这个常数的话.这些函数形式就可以写成:三、数学概念一次函数的概念:一般地,形如的函数叫一次函数.(1)自变量系数(常数)k≠0;(2)自变量x的次数为1;(3)当b=0时,y=kx+b即y=kx,故正比例函数是一次函数.一次函数与正比例函数的辨证关系可以用下图来表示:一次例函数四、例题讲解完成下面各题.1.下列函数关系式中,哪些是一次函数,哪些又是正比例函数?(1)y=–x –4;(2) y=5x 2+6;(3) y=–8x ;(4) y=–8x ;(5)y+x=6;(6)y=kx 2.下列说法不正确的是( )(A)一次函数不一定是正比例函数 (B)不是一次函数就一定不是正比例函数(C)正比例函数是特定的一次函数 (D)不是正比例函数就不是一次函数3.在一次函数y=kx+b 中,当x=3时,y=3;当x=1,y=–1.(1)求此函数;(2)求当x=4时y 的值;(3)求当y=7时x 的值.五、反馈练习练习第90页、91页第1、2、3题.六、能力提升已知函数223(3)(2)1m y p x m x m n -=-+-++-:(1)当m 、n 、p 满足 ,此函数是正比例函数.(2)当m 、n 、p 满足 ,此函数是一次函数.注意:一次函数和正比例函数的联系与区别.七、检测验收1.在一次函数y=–3x –5中,k =_______,b =_______2.下列函数中,是一次函数的有_______,是正比例函数的有__________(1) y=–2x ;(2) y=2x;(3)y=2x 2+3x –1; (4)y=–0.5x –1 (5)y=x ;(6)y=2(x+3);(7)y=4–3x3.若函数y=(b –1)x+b 2–9是正比例函数,则b = _________4.若函数y=(m –3)x+2–m 是一次函数,则m__________5.下列说法正确的是( )A.y=kx+b 是一次函数B.一次函数是正比例函数C.正比例函数是一次函数D.不是正比例函数就一定不是一次函数6.仓库内原有粉笔400盒,如果每个星期领出36盒,则仓库内余下的粉笔盒Q与星期数t 之间的函数关系式是________________,它是__________函数.(1)请写出一个正比例函数,且x=2时,y=–6 .(2)请写出一个一次函数,且x=–6时,y=2.7.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米,则树高x 815y 与年数x 之间的函数关系式是_____________,它是_______函数,同学们在3年之后毕业,则这些树高________米. 8.梯形的上底长x,下底长15,高8; (1)写出梯形的面积S 与上底x 的关系式,是一次函数吗?(2)当x 每增加1时, S 是如何变化的? (3)当x=0时, S 等于多少?此时S 的意义是什么?2019-2020学年初二下学期期末数学模拟试卷一、选择题(每题只有一个答案正确)1.要得到函数y =2x +3的图象,只需将函数y =2x 的图象( )A .向左平移3个单位B .向右平移3个单位C .向下平移3个单位D .向上平移3个单位2.下列各图象中,不是y 关于x 的函数图象的是( )A .B .C .D .3.如图所示,直角三角形ABO 的周长为100,在其内部有个小直角三角形周长之和为( )A .90B .100C .110D .1204.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于点E ,交AC 于点F ,过点O 作OD AC ⊥于点D ,某班学生在一次数学活动课中,探索出如下结论,其中错误的是( )A .EF BE CF =+B .点O 到ABC ∆各边的距离相等 C .90BOC A ∠=+∠D .设OD m =,AE AF n +=,则12AEF S mn ∆= 5.下列几红数中,是勾股数的有( ). ①5、12、13;②13、14、15;③3k 、4k 、5k (k 为正整数);④23、2、73. A .1组 B .2组 C .3组 D .4组6.下列事件中,属于必然事件的是()A .经过路口,恰好遇到红灯;B .四个人分成三组,三组中有一组必有2人;C .打开电视,正在播放动画片;D .抛一枚硬币,正面朝上;7.如图,在ABC ∆中,4AB =,5BC =,8AC =.点D ,E ,F 分别是相应边上的中点,则四边形DFEB的周长等于( )A .8B .9C .12D .13 8. 如果解关于x 的方程+1=(m 为常数)时产生增根,那么m 的值为( )A .﹣1B .1C .2D .﹣29.若3x -在实数范围内有意义,则x 的取值范围是( )A .3x ≥B .3x ≤C .3x ≠D .x <310.下列曲线中不能表示y 是x 的函数的是( )A .(A )B .(B )C .(C )D .(D )二、填空题 11.如图,已知△ABC 中,AB=AC ,AD 平分∠BAC,E 是AB 的中点,若AC=6,则DE 的长为 _____________12.在平面直角坐标系中,已知点()()2,7,9,6A B ,直线()0y kx k =≠与线段AB 有交点,则k 的取值范围为__________.13.如图,在平面直角坐标系xOy 中,有两点A (2,4),B (4,0),以原点O 为位似中心,把△OAB 缩小得到△OA'B'.若B'的坐标为(2,0),则点A'的坐标为_____.14.若2-是关于x 的一元二次方程()221240k x kx -++=的一个根,则k =____.15.已知点(2,7)在函数y=ax+3的图象上,则a 的值为____.16.如图,将一块边长为 12 cm 正方形纸片 ABCD 的顶点 A 折叠至DC 边上的 E 点,使 DE =5,折痕为 PQ ,则 PQ 的长为_________cm .17.如图,已知在△ABC 中,BC 边上的高AD 与AC 边上的高BE 交于点F ,且∠BAC=45°,BD=6,CD=4,则△ABC 的面积为_____.三、解答题18.6月18日,四川宜宾长宁县发生6.0级地震,为救助灾区,某校学生会向全校学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答下列问题:(1)本次被调查的学生有______人,扇形统计图中m =______.(2)将条形统计图补充完整.(3)本次调查获取的样本数据的众数是______,中位数是______;(4)若该校有1800名学生,根据以上信息,估计全校本次活动捐款金额为10元的学生有多少人. 19.(6分)如图正比例函数y=2x 的图像与一次函数 y kx b =+的图像交于点A (m,2),一次函数的图象经过点B (-2,-1)与y 轴交点为C 与x 轴交点为D .(1)求一次函数的解析式;(2)求AOD ∆的面积.20.(6分)先化简,再求值:(x ﹣1+331x x -+)÷21x x x -+,其中x 的值从不等式组23241x x -≤⎧⎨-<⎩的整数解中选取. 21.(6分)解分式方程:(1)22124x x =--; (2)211323x x x-=+--. 22.(8分)如图,在平行四边形ABCD 中,点E ,F 分别是边AD ,BC 上的点,且AE=CF ,求证:AF=CE .23.(8分)如图,已知ABC ∆中,90C ∠=︒,AB 的垂直平分线交BC 于M ,交AB 于N ,若3AC =,2MB MC =,求AB 的长.24.(10分)如图,在平面直角坐标系中,直线122y x =+与x 轴,y 轴的交点分别为,A B ,直线212y x =-+交x 轴于点C ,两条直线的交点为D ,点P 是线段DC 上的一个动点,过点P 作PE x ⊥轴,交x 轴于点E ,连接BP .()1求DAC △的面积;()2在线段DC上是否存在一点P,使四边形BOEP为矩形,若存在,求出P点坐标:若不存在,请说明理由;()3若四边形BOEP的面积为S,设P点的坐标为(),x y,求出S关于x的函数关系式,并写出自变量x 的取值范围.25.(10分)阅读下列材料,并解答其后的问题:我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,△ABC的面积为S=+++-+-+-a b c a b c a c b b c a()()()().(1)(举例应用)已知△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且a=4,b=5,c=7,则△ABC 的面积为;(2)(实际应用)有一块四边形的草地如图所示,现测得AB=(26+42)m,BC=5m,CD=7m,AD =46m,∠A=60°,求该块草地的面积.参考答案一、选择题(每题只有一个答案正确)1.D【解析】平移后相当于x不变y增加了3个单位,由此可得出答案.【详解】解:由题意得x值不变y增加3个单位应向上平移3个单位.故选:D.【点睛】本题考查一次函数图象的几何变换,注意平移k值不变的性质.2.B【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:由函数的定义可知,每一个给定的x,都有唯一确定的y值与其对应的才是函数,故选项A、C、D中的函数图象都是y关于x的函数,B中的不是,故选:B.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.3.B【解析】过小直角三角形的直角定点作AO,BO的平行线,则四边形DEFG和四边形EFOH是矩形.∴DE=GF,DG=EF=OH,∴小直角三角形的与AO平行的边的和等于AO,与BO平行的边的和等于BO.∴小直角三角形的周长等于直角△ABC的周长.∴这n个小直角三角形的周长为1.故选B.4.C【解析】利用角平分线的性质、等腰三角形的判定与性质逐一判定即可.【详解】∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O∴∠OBC=12∠ABC ,∠OCB=12∠ACB ,∠A+∠ABC+∠ACB=180°, ∴∠OBC+∠OCB=90°-12∠A ∴∠BOC=180°-(∠OBC+∠OCB )=90°+12∠A ,故C 错误; ∵∠EBO=∠CBO ,∠FCO=∠BCO ,//EF BC∴∠EBO=∠EOB ,∠FCO=∠FOC ,∴BE=OE ,CF=OF∴EF=EO+OF=BE+CF ,故A 正确;由已知,得点O 是ABC ∆的内心,到ABC ∆各边的距离相等,故B 正确;作OM ⊥AB ,交AB 于M ,连接OA ,如图所示:∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O∴OM=OD m =∴()11112222AEF AOE AOF S S S AE OM AF OD OD AE AF mn =+=⋅+⋅=⋅+=△△△,故D 选项正确; 故选:C.【点睛】此题主要考查运用角平分线的性质、等腰三角形的判定与性质,解题关键是注意数形结合思想的运用. 5.B【解析】【分析】勾股数是满足a 2+b 2=c 2 的三个正整数,据此进行判断即可.【详解】解:∵满足a 2+b 2=c 2 的三个正整数,称为勾股数,∴是勾股数的有①5、12、13;③3k 、4k 、5k (k 为正整数).故选:B .【点睛】本题主要考查了勾股定理的逆定理,一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数. 6.B【解析】分析:必然事件就是一定能发生的事件,根据定义即可作出判断.详解:A 、经过路口,恰好遇到红灯是随机事件,选项错误;B 、4个人分成三组,其中一组必有2人,是必然事件,选项正确;C 、打开电视,正在播放动画片是随机事件,选项错误;D 、抛一枚硬币,正面朝上是随机事件,选项错误.故选B .点睛:本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.B【解析】【分析】根据三角形中位线的性质及线段的中点性质求解即可.【详解】 解:点D ,E ,F 分别是相应边上的中点EF DF ∴、是三角形ABC 的中位线112222EF AB AB ∴====,BD 同理可得,15152222DF BC BC ∴====,BE ∴四边形DFEB 的周长5522922EF BD DF BE =+++=+++= 故答案为:B【点睛】本题考查了三角形的中位线,熟练运用三角形中位线的性质求线段长是解题的关键.8.A【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣5=0,求出x的值,代入整式方程计算即可求出m的值.【详解】方程两边都乘以x﹣5,得:x﹣6+x﹣5=m.∵方程有增根,∴x=5,将x=5代入x﹣6+x﹣5=m,得:m=﹣1.故选A.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.9.B【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,3-x≥0,解得,x≤3,故选:B.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.10.B【解析】分析:函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可判断.详解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项B中的曲线,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.故B中曲线不能表示y是x的函数.故选:B.点睛:考查了函数的概念,理解函数的定义,是解决本题的关键.二、填空题11.3【解析】∵AB=A C,AD平分∠BAC,∴D 是BC 中点.∵E 是AB 的中点,∴DE 是△ABC 的中位线, 116322DE AC ∴==⨯= . 12.2732k ≤≤ 【解析】【分析】要使直线()0y kx k =≠与线段AB 交点,则首先当直线()0y kx k =≠过A 是求得k 的最大值,当直线过B 点时,k 取得最小值.因此代入计算即可.【详解】解:当直线过A 点时,72k = 解得72k =当直线过B 点时,69k = 解得6293k == 所以要使直线与线段AB 有交点,则2732k ≤≤ 故答案为:2732k ≤≤ 【点睛】本题主要考查正比例函数的与直线相交求解参数的问题,这类题型是考试的热点,应当熟练掌握. 13.(1,2)【解析】【分析】根据位似变换的性质,坐标与图形性质计算.【详解】点B 的坐标为(4,0),以原点O 为位似中心,把△OAB 缩小得到△OA'B',B'的坐标为(2,0), ∴以原点O 为位似中心,把△OAB 缩小,得到△OA'B',∵点A 的坐标为(2,4),∴点A'的坐标为(2×,4×),即(1,2),故答案是:(1,2).【点睛】考查的是位似变换,坐标与图形性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .14.0【解析】【分析】根据一元二次方程的解即可计算求解.【详解】把x=-2代入方程得()241440k k --+=,解得k=1或0,∵k 2-1≠0,k ≠±1,∴k=0【点睛】此题主要考查一元二次方程的解,解题的关键是熟知一元二次方程二次项系数不为0.15.1.【解析】【分析】利用待定系数法即可解决问题;【详解】∵点(1,7)在函数y=ax+3的图象上,∴7=1a+3,∴a=1,故答案为:1.【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型. 16.13【解析】【分析】先过点P 作PM ⊥BC 于点M ,利用三角形全等的判定得到△PQM ≌△ADE ,从而求出PQ=AE .【详解】过点P 作PM ⊥BC 于点M ,由折叠得到PQ ⊥AE ,∴∠DAE+∠APQ=90°,又∠DAE+∠AED=90°,∴∠AED=∠APQ,∵AD∥BC,∴∠APQ=∠PQM,则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD∴△PQM≌△ADE∴13=故答案是:13.【点睛】本题主要考查正方形中的折叠问题, 正方形的性质.解决本题的关键是能利用折叠得出PQ⊥AE从而推理出∠AED=∠APQ=∠PQM,为证明三角形全等提供了关键的条件.17.1【解析】分析:首先证明△AEF≌△BEC,推出AF=BC=10,设DF=x.由△ADC∽△BDF,推出AD BDDC DF=,构建方程求出x即可解决问题;详解:∵AD⊥BC,BE⊥AC,∴∠AEF=∠BEC=∠BDF=90°,∵∠BAC=45°,∴AE=EB,∵∠EAF+∠C=90°,∠CBE+∠C=90°,∴∠EAF=∠CBE,∴△AEF≌△BEC,∴AF=BC=10,设DF=x.∵△ADC∽△BDF,∴AD BD DC DF=,∴1064xx+=,整理得x2+10x﹣24=0,解得x=2或﹣12(舍弃),∴AD=AF+DF=12,∴S△ABC=12•BC•AD=12×10×12=1.故答案为1.点睛:本题考查勾股定理、等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.三、解答题18.(1)50,32;(2)图略;(3)10元,15元;(4)全校本次活动捐款金额为10元的学生约有576人.【解析】【分析】(1)根据捐款5元的人数与占比即可求出本次被调查的学生人数,再利用捐款10元的人数即可求出m 的值;(2)求出捐款15元的人数即可补全统计图;(3)根据众数与平均数的定义即可求解;(4)利用学校总人数乘以捐款10元的占比即可求解.【详解】解:(1)本次被调查的学生有4÷8%=50人 ,16÷50=32%,故m=32;(2)本次被调查中捐款15元的人数为50-4-16-10-8=12人故补全统计图如下:(3)由条形统计图可知,本次调查获取的样本数据的众数是10元,中位数是15元;(4)180032%576⨯=(人)答:全校本次活动捐款金额为10元的学生约有576人.【点睛】此题主要考查统计调查的应用,解题的关键是根据扇形统计图与直方图求出本次被调查的学生总数. 19.(1)一次函数的解析式为1y x =+;(2)1.【解析】【分析】(1)首先根据正比例函数解析式求得m 的值,再进一步运用待定系数法求得一次函数的解析式;(2)根据(1)中的解析式,令y=0求得点C 的坐标,从而求得三角形的面积.【详解】解:(1)由题可得,把点A (m,2)代入正比例函数y=2x 得2=2mm=1所以点A (1,2)因为一次函数图象又经过点B (-2,-1),所以221k b k b +=⎧⎨-+=-⎩解方程组得11k b =⎧⎨=⎩ 这个一次函数的解析式为1y x =+(2)因为一次函数图象与x 轴的交点为D ,所以点D 的坐标为(-1,0)因为AOD ∆的底为OD=1,高为A 点的纵坐标2 所以1212AOD S ∆⨯== 【点睛】此题综合考查了待定系数法求函数解析式、直线与坐标轴的交点的求法,关键是根据正比例函数解析式求得m 的值.20.原式=20x x-= 【解析】试题分析:先根据分式的混合运算顺序和法则化简原式,再求出不等式组的整数解,由分式有意义得出符合条件的x 的值,代入求解可得.试题解析:原式=2133(1)()111x x x x x x x ---+÷+++ =23211(1)x x x x x x -++⋅+-=(1)(2)11(1)x x x x x x --+⋅+-=2x x - 解不等式组23241x x -≤⎧⎨-<⎩得:﹣1≤x <52,∴不等式组的整数解有﹣1、1、1、2,∵不等式有意义时x≠±1、1,∴x=2,则原式=222-=1. 点睛:本题主要考查分式的化简求值及解一元一次不等式组的能力,熟练掌握分式的混合运算顺序和法则及解不等式组的能力、分式有意义的条件是解题的关键.21.(1)32x =-;(2)原方程无解. 【解析】【分析】 (1)先去分母,把分式方程变成整式方程,求出整式方程的解,最后进行检验即可;(2)先去分母,把分式方程变成整式方程,求出整式方程的解,最后进行检验即可。