岩石强度及破坏准则优缺点

合集下载

岩石的强度理论及破坏判据[详细]

岩石的强度理论及破坏判据[详细]

分析,库仑准则的有效取值范围由图 6-8给出,并可
用方程表示为:
σ3 σ1=σ3
1
f
2
1
f
3
f
2
1
f
2c
P β
3 1
1
1 2
c
1
1 2
c
0
σc / 2
σc
σ1
-σt
A
S
图7-8 σ1-σ3坐标系中的库仑准则的完整强度曲线
在此库仑准则条件下,岩石可能发生以下四种方式的破坏。
(1)当 0 11 11 22时cc,33岩石t属t单轴拉伸破裂; (2)当 1122cc11 c时c,t岩t石3 属3 0双0轴 拉伸破裂;
四、 格里菲斯强度理论
格里菲斯(Griffith ,1920年)认为:脆性材料断 裂的起因是分布在材料中的微小裂纹尖端有拉应力 集中(这种裂纹称之为Griffith裂纹)。
格里菲斯原理认为:当作用力的势能始终保持不 变时,裂纹扩展准则可写为:
(Wd Wc ) 0 C
式中:C为裂纹长度参数;Wd为裂纹表面的表面能; We为储存在裂纹周围的弹性应变能。
1
τ3
2

式中:为t 岩石的单轴抗拉强度σ;0 σ3 t
n 为待定系数。
σ σ
σ
c
利用图 7-10中的关系,有:
σ 3
1 2
(1 3)
1 2
(1
3)
ctg 2
sin 2
1.双向压7缩应4力2圆,2.双向拉压应力圆,
3..双向拉伸应力圆 图7-10 二次抛物型强度包络线
其中:
n( t )
d ctg2
n
d

岩石_岩体的动力强度与动力破坏准则

岩石_岩体的动力强度与动力破坏准则
[5 ]
动力强 度/ at m
2 730 1 890 4 900 4 000
动力 、 静力 强度之比
6. 5 9. 0 7. 8 5. 7
图 1 和图 2 是相应于实验室中动力等速加载试 验 [ 7 ] ,其中 ,τ 为加载至破坏的时间 , s ;σ 为破坏应 σ 力 ;σ dyn , st 为相应的动力与静力加载下的破坏应 力 ;ε( t ) 为应变率 ;ε 区与 Ⅱ 区之间的分界线 ; 1为 Ⅰ ε 区与 Ⅲ 区的分界线 . 2为 Ⅱ
Fig. 2 The strain rate dependence of strength
1
γ τ
G0 + K T ln
γ γ 0
・ ・

( 5)
式中 : Yτ 为动力剪切强度 ;γ τ 为剪切变形情况下的 活化体积 ; G0 为剪切情况下的活化能 ;γ为剪切应 变率 ;γ0 = γ0 / τ 0 ,其中 γ 0 为材料的极限剪切应变 . 研究表明 [ 10 ] , 在不同的应变率区段 , 不同的机 制起主导作用 . 在应变率较低阶段 ,变形的热活化机 制起主导作用 ; 当应变率大于某一值时 ,材料强度随 应变率的增加而急剧增加 , 此时材料的变形和破坏 具有绝热性质 ,粘性阻尼机制起主导作用 ; 当应变率 很大时 ,粘性系数随应变率增加而减少 ,热活化机制 又重新出现 , 此时 , 裂纹的临界应力不依赖裂纹尺 寸 ,这样在广泛的裂纹尺寸范围内 ,裂纹增长同时启 动 ,多裂纹的增长和连接使得破坏产生 . 岩石等脆性 材料随应变率变化实验曲线的定性一般规律如图 3 所示 .
(1. 解放军理工大学 工程兵工程学院 ,南京 210007 ; 2. 北京建筑工程学院 土木交通学院 ,北京 100044)

岩石破坏准则

岩石破坏准则

2.1岩石破坏强度准则岩石的破坏主要与外荷载的作用方式、温度及湿度有关。

一般在低温、低围压及高应变率的条件下,岩石表现为脆性破坏,而在高温、高围压、低应变率作用下,岩石则表现为塑性或者塑性流动。

对于较完整的岩石来说,其破坏形式可以分为:1)脆性破坏;3)延性破坏。

图2-1给出了不同应力状态下岩石破裂前应变值、破坏形态示意图和典型的应力-应变曲线示意图。

图2-1岩石破坏形态示意图从图2-1中可以看出岩石破裂种类繁多、岩石破坏过程中的应力、变形、裂纹产生和扩展极为复杂,很难用一种模型进行描述,很多学者针对不同岩石破坏特征提出多种不同岩石的强度破坏准则。

本节主要对已有的岩石强度破坏准则进行总结,找出它们各自的优缺点。

2.1.1最大正应力强度理论最大正应力强度理论也称朗肯理论,该理论是1857年提出的。

它假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。

朗肯根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。

考察挡土墙后主体表面下深度z 处的微小单元体的应力状态变化过程。

当挡土墙在土压力的作用下向远离土体的方向位移时,作用在微分土体上的竖向应力sz 保持不变,而水平向应力sx 逐渐减小,直至达到土体处于极限平衡状态。

土体处于极限平衡状态时的最大主应力为s1=gz ,而最小主应力s3即为主动土压力强度pa 。

根据,当主体中某点处于极限平衡状态时,大主应力1σ和小主应力3σ之间应满足以下关系式:粘性土:213...2tan tan 454522c ϕϕσσ⎛⎫⎛⎫︒︒=-++ ⎪ ⎪⎝⎭⎝⎭(1)无粘性土231.tan 452ϕσσ⎛⎫︒=- ⎪⎝⎭(2)该理论认为材料破坏取决于绝对值最大的正应力。

因此,作用于岩石的三个正应力中,只要有一个主应力达到岩石的单轴抗压强度或岩石的单轴抗拉强度,岩石便被破坏。

岩石的破坏准则汇总

岩石的破坏准则汇总

岩石的破坏准则岩石的破坏准则对岩石试样的室内及现场试验,可获得岩石试样的强度指标,但对复杂应力状态下的天然岩体,又是如何判断其破坏呢?因此,就必须建立判断岩石破坏的准则(或称强度理论)。

岩石的应力、应变增长到一定程度,岩石将发生破坏。

用来表征岩石破坏条件的函数称为岩石的破坏准则。

岩石在外力作用下常常处于复杂的应力状态,许多试验指出,岩石的强度及其在荷载作用下的性状与岩石的应力状态有着很大的关系。

在单向应力状态下表现出脆性的岩石,在三向应力状态下具有延1岩石的破坏准则2性性质,同时它的强度极限也大大提高了。

岩石的破坏准则许多部门和学者从不同角度提出不同的破坏准则,目前岩石破坏准则主要有:最大正应力理论最大正应变理论最大剪应力理论(H.Tresca)八面体应力理论莫尔理论及库伦准则格里菲思理论(Griffith)伦特堡理论(Lundborg)经验破坏准则3岩石的破坏准则41、最大正应力理论这是较早的一种理论,该理论认为岩石的破坏只取决于绝对值最大的正应力。

即岩石内的三个主应力中只要有一个达到单轴抗压或抗拉强度时,材料就破坏。

适用条件: 单向应力状态。

对复杂应力状态不适用。

写成解析式:破坏岩石的破坏准则52、最大正应变理论该理论认为岩石的破坏取决于最大正应变,即岩石内任一方向的正应变达到单向压缩或拉伸时的破坏数值时,岩石就发生破坏。

则破坏准则为式中 m ax ε——岩石内发生的最大应变值;u ε——单向拉、压时极限应变值;这一破坏准则的解析式为(由广义虎克定律)岩石的破坏准则6R — R t 或R c推出:实验指出,该理论与脆性材料实验值大致符合,对塑性材料不适用。

岩石的破坏准则73、最大剪应力理论(H.Tresca )该理论认为岩石材料的破坏取决于最大剪应力,即当最大剪应力达到单向压缩或拉伸时的危险值时,材料达到破坏极限状态。

其破坏准则为:在复杂应力状态下,最大剪应力231max σστ-=岩石的破坏准则8单位拉伸或压缩时,最大剪应力的危险值则有 R ≥-31σσ或写成 {}{}{}0)][)][)][221222232231=------R R R σσσσσσ这个理论适用于塑性岩石,不适用于脆性岩石。

岩石破坏准则

岩石破坏准则

2.1岩石破坏强度准则岩石的破坏主要与外荷载的作用方式、温度及湿度有关。

一般在低温、低围压及高应变率的条件下,岩石表现为脆性破坏,而在高温、高围压、低应变率作用下,岩石则表现为塑性或者塑性流动。

对于较完整的岩石来说,其破坏形式可以分为:1)脆性破坏;3)延性破坏。

图2-1给出了不同应力状态下岩石破裂前应变值、破坏形态示意图和典型的应力-应变曲线示意图。

图2-1岩石破坏形态示意图从图2-1中可以看出岩石破裂种类繁多、岩石破坏过程中的应力、变形、裂纹产生和扩展极为复杂,很难用一种模型进行描述,很多学者针对不同岩石破坏特征提出多种不同岩石的强度破坏准则。

本节主要对已有的岩石强度破坏准则进行总结,找出它们各自的优缺点。

2.1.1最大正应力强度理论最大正应力强度理论也称朗肯理论,该理论是1857年提出的。

它假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。

朗肯根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。

考察挡土墙后主体表面下深度z 处的微小单元体的应力状态变化过程。

当挡土墙在土压力的作用下向远离土体的方向位移时,作用在微分土体上的竖向应力sz 保持不变,而水平向应力sx 逐渐减小,直至达到土体处于极限平衡状态。

土体处于极限平衡状态时的最大主应力为s1=gz ,而最小主应力s3即为主动土压力强度pa 。

根据,当主体中某点处于极限平衡状态时,大主应力1σ和小主应力3σ之间应满足以下关系式:粘性土:213...2tan tan 454522c ϕϕσσ⎛⎫⎛⎫︒︒=-++ ⎪ ⎪⎝⎭⎝⎭(1)无粘性土231.tan 452ϕσσ⎛⎫︒=- ⎪⎝⎭(2)该理论认为材料破坏取决于绝对值最大的正应力。

因此,作用于岩石的三个正应力中,只要有一个主应力达到岩石的单轴抗压强度或岩石的单轴抗拉强度,岩石便被破坏。

岩石强度及破坏准则优缺点

岩石强度及破坏准则优缺点

岩石力学中常用的几种强度准则
Mohr-Coulomb准则
τ
当压力不大(小于10MPa) 时,包络线可采用直线型 近似
f Ctan
破坏角(剪裂面与最大主
应力 σ1的夹角)满足: = +
42
C
1 2
(
1
3
)
φ

O σ3
σ1
σ
Hale Waihona Puke C·ctgφ1 2
(
1
3
)
库仑—莫尔强度条件
岩石力学中常用的几种强度准则
对Mohr-Coulomb强度准则评价:
优点: ➢ 公式简单实用,各参数一般都可以利用常规试验器材和方法 来确定; ➢ 不仅能反映岩体的碎性破坏,而且能反映其塑性破坏特征。
缺点:
该准则为线性破坏准则,在高围压压缩条件下,该准则 评估的岩石三轴强度与试验实测强度数据偏差较大;
该准则没有考虑中间主应力对岩石真三轴强度的影响; 该强度准则还指出,岩体的破坏角θ,但在拉伸条件下,
O
σ
岩石力学中常用的几种强度准则
对Mohr强度理论的评价:
优点: ➢ 适用于塑性岩石,也适用于脆性岩石的剪切破坏; ➢ 较好解释了岩石抗拉强度远远低于抗压强度特征; ➢ 解释了三向等拉时破坏,三向等压时不破坏现象; ➢ 简单、方便:同时考虑拉、压、剪,可判断破坏方向。
缺点:
忽视了σ2 的作用,误差:±15% 没有考虑结构面的影响 不适用于拉断破坏,破裂面趋于分离 不适用于膨胀、蠕变破坏
理上的困难; 1952 年 Drucker 和 Prager 构造了一个内切于 M-C 准则的六棱锥的圆锥屈服面;
函数形式
式中 I1xyz123, 为应力张量第一不变量

岩石的强度

岩石的强度
软弱结构面常常是岩体最薄弱的地方,几组软弱结构面可以将岩体分割成各 种形状和大小不同的岩块。岩体的强度决定于这些岩块的强度和结构面的强度。 当然,岩块本身也有一些微结构面(细微裂隙),但这些微结构面甚小(肉眼不易 觉察),一般对试件强度影响甚微。岩块内微结构面的作用将直接反映到岩石试 件的力学性质上。通常所讲的岩石强度,一般是指岩石试件的强度,它实际上 代表岩体内岩块的强度。
Rt PT A
3.2

岩石的强度性质
3.2.2 岩石的抗拉强度
目前常用混凝土试验中的劈裂法测定岩石的抗拉强度。 试件的形状用得最多的是圆柱体和立方体。试验时沿着圆柱体的直径方向施 加集中荷载,这可以在试件与上、下承压板接触处各放一根钢丝来实现。这 样试件受力后就有可能沿着受力的直径裂开,见图 :
4 3 2 1 1 2 3
2 3 4 5
1 2
(M P a )
1
0
0 .5
1 .5
n (m m )
4 .0
图3-16 岩体现场抗剪试验
图3-17 角闪岩的三轴试验结果
3.2
岩石的强度性质
3.2.3 岩石的抗剪强度
现场岩体三轴强度试验
大型岩体三轴强度试验是采用同直剪试验一样的方法制备试件;垂直荷载是用 扁千斤顶通过传力柱传到上部围岩产生的反力供给;侧向荷载分别由x轴、y轴上 的两对扁千斤顶组产生。
3.2
岩石的强度性质
3.2.3 岩石的抗剪强度
直接剪切试验
直接剪切试验采用直接剪切仪来进行。岩石的直接剪切仪与土的直接剪切仪类似, 试验仪器装置如图3-7a所示。仪器主要由上、下两个刚性匣子所组成,试件在平 面内的尺寸,《水利水电工程岩石试验规程》(1981年试行 )规定:对测定软弱结 构面的试件,规定为15×15~30×30cm,并规定结构面上、下岩石的厚度分别约 为断面尺寸的1/2左右,对于测定岩石本身抗剪强度的试件没有明确规定,一般用 5×5cm。

岩石的破坏准则[详细]

岩石的破坏准则[详细]

五、岩石的破坏准则对岩石试样的室内及现场试验,可获得岩石试样的强度指标,但对复杂应力状态下的天然岩体,又是如何判断其破坏呢?因此,就必须建立判断岩石破坏的准则(或称强度理论).岩石的应力、应变增长到一定程度,岩石将发生破坏.用来表征岩石破坏条件的函数称为岩石的破坏准则.岩石在外力作用下常常处于复杂的应力状态,许多试验指出,岩石的强度及其在荷载作用下的性状与岩石的应力状态有着很大的关系.在单向应力状态下表现出脆性的岩石,在三向应力状态下具有延性性质,同时它的强度极限也大大提高了.许多部门和学者从不同角度提出不同的破坏准则,目前岩石破坏准则主要有:最大正应力理论最大正应变理论最大剪应力理论(H.Tresca)八面体应力理论莫尔理论及库伦准则格里菲思理论(Griffith)伦特堡理论(Lundborg)经验破坏准则1、最大正应力理论这是较早的一种理论,该理论认为岩石的破坏只取决于绝对值最大的正应力.即岩石内的三个主应力中只要有一个达到单轴抗压或抗拉强度时,材料就破坏.适用条件: 单向应力状态.对复杂应力状态不适用.写成解析式:破坏2、最大正应变理论该理论认为岩石的破坏取决于最大正应变,即岩石内任一方向的正应变达到单向压缩或拉伸时的破坏数值时,岩石就发生破坏.则破坏准则为式中ε——岩石内发生的最大应变值;m axε——单向拉、压时极限应变值;u这一破坏准则的解析式为(由广义虎克定律)R —R t或R c推出:实验指出,该理论与脆性材料实验值大致符合,对塑性材料不适用.3、最大剪应力理论(H.Tresca)该理论认为岩石材料的破坏取决于最大剪应力,即当最大剪应力达到单向压缩或拉伸时的危险值时,材料达到破坏极限状态.其破坏准则为:在复杂应力状态下,最大剪应力231 max σστ-=单位拉伸或压缩时,最大剪应力的危险值则有 R ≥-31σσ或写成 {}{}{}0)][)][)][221222232231=------R R R σσσσσσ这个理论适用于塑性岩石,不适用于脆性岩石. 该理论未考虑中间主应力的影响.4、八面体剪应力理论(Von.米ises)该理论认为岩石达到危险状态取决于八面体剪应力.其破坏准则为已知单元体1σ,2σ,3σ ,作一等倾面(其法线夹角相同).为研究等倾面上的应力,取一由等倾面与三个主应力面围成的四面体来研究.N 与x 、y 、z 的夹角分别为γβα、、,且 γβα==. 设:l =αcos ,m =βcos ,n =γcos设等倾面ABC 面积为S,则三个主应力面(1σ,2σ,3σ面)的面积分别为根据力的平衡条件∑=0X , ∑=0Y , ∑=0Z推出:⎪⎩⎪⎨⎧⋅⋅=⋅=⋅⋅=⋅=⋅⋅=⋅=∑∑∑γσβσασcos 0cos 0cos 0321S S p Z S S p Y S S p X z y x , 而 等倾面S 上合力:222z y x p p p p ++=所以另,等倾面S 上的法向应力为各分力p x 、p y 、p z 在N 上的投影之和,即S oct ττ≥,推出适用条件:塑性,5、莫尔理论及莫尔库伦准则该理论是目前应用最多的一种强度理论.该理论假设,岩石内某一点的破坏主要取决于它的大主应力和小主应力,即σ1和σ3,而与中间主应力无关.也就是说,当岩石中某一平面上的剪应力超过该面上的极限剪应力值时,岩石破坏.而这一极限剪应力值,又是作用在该面上法向压应力的函数,即)(στf = .这样,我们就可以根据不同的σ1、σ3绘制莫尔应力图. 每个莫尔圆都表示达到破坏极限时应力状态.一系列莫尔圆的包线即为强度曲线一方面与材料内的剪应力有关,同时也与正应力有关关于包络线:抛物线:软弱岩石双曲线或摆线:坚硬岩石直线:当σ<10米Pa 时为简化计算,岩石力学中大多采用直线形式:c ——凝聚力(米Pa) ϕ——内摩擦角.该方程称为库伦定律,所以上述方法合称为:莫尔库伦准则. 当岩石中任一平面上f ττ≥ 时,即发生破坏.即: ϕσττtg c f ⋅+=≥下面介绍用主应力来表示莫尔库仑准则. 任一平面上的应力状态可按下式计算①②α(σ1)力圆,可建力之间关系1)c和ϕ值与σ1、σ3和α角关系在σ1~σ3的应力圆上,找出2α的应力点T(T米为半径为231σσ-) 则,与直径T米垂直且与圆相切的直线即为ϕστtgc⋅+=根据几何关系,902)2180(90-=--=ααϕ,得出代入ϕστtg c ⋅+=中,得到另由公式推导:将σ1、σ3表示的 σ 和 τ 代入ϕστtg c ⋅+=中,导出对α求导,01=ασd d 推出:245ϕα+= 破坏面与最大主应力面的夹角而与最大主应力方向的夹角2).用主应力σ1、σ3表达的强度准则 将 σ 和 τ 的表达式代入 ϕστtg c ⋅+=中,ϕασσσσασσtg c ⎥⎦⎤⎢⎣⎡-+++=-2cos 222sin 2313131利用关系:ααϕ2sin )902cos(cos =-= ααϕ2cos )902sin(sin -=-= 化简得:当σ3=0时(单轴压缩):ϕϕσsin 1cos 21-==c R c ,令ϕϕϕsin 1sin 1-+=N ,则,σ1当σ1=0时(单轴抗拉该值为 )(στf =但与实测的R t 线段进行修正.岩石破坏的判断条件:ϕ>, 破坏sin极限ϕ<,稳定sin6、格里菲思(Griffith)理论以上各理论都是把材料看作为连续的均匀介质,格里菲思则认为:当岩石中存在许多细微裂隙,在力的作用下,在缝端产生应力集中,岩石的破坏往往从缝端开始,裂缝扩展,最后导致破坏.方向成β角.且形状接近于椭圆,的局部抗拉强度,的边壁就开始破裂.1).任一裂隙的应力.假定:①椭圆可作为半元限弹性介质中的单个孔洞处理, ②二维问题处理,取0=z σ椭圆参数方程:αcos a x =,αsin b y = 椭圆的轴比为:ab m =椭圆裂隙周壁上偏心角的α的任意点的切向应力 可用弹性力学中英格里斯(Inglis)公式表示:由于裂缝很窄,轴比很小,形状扁平,所以最大应力显然发生在靠近椭圆裂隙的端部,即α很小的部位,当0→α时,αα→sin ,1cos →α又由于米,α很小,略去高次项,则有米为定值,当1σ,2σ,3σ确定时,y σ、xy τ也为定值,则b σ仅随α而变.这是任一条裂隙沿其周边的切向应力.显然在椭圆周边上,随α不同b σ有不同的值,对α求导.2mτxy则,2).岩块中的最大切向应力所在的裂隙上面导出了 某一条裂隙上的最大切向应力,但在多条裂隙中,哪一条裂隙的b σ 最大?y σ,xy τ与1σ,3σ的关系为:βσσσσσ2cos 223131--+=y , βσστ2sin 231--=xy代入 m ax ,b σ中,显然m ax ,b σ与β有关,对其求导,便可求得b σ为最大的那条裂隙,即确定出β角. 即取 0m ax ,=⋅βσd d m b则①02sin =β,有β=0或 90代入m ax ,b σ中,β=0时, mb 3max ,2σσ= 或 0 β= 90时,mb 1max ,2σσ=或0. 共四个可能极值,与σ1平行或垂直的裂隙.②将)(22cos 3131σσσσβ+-=代入 m ax ,b σ中,共有两个极值,即与σ1斜交裂隙中有两个方向裂隙的切向应力达极值.因为β=0或 90时,12cos =β或-1.因此,与σ1斜交时,必须β≠0或 90, 即 12cos <β 时 才是与σ1斜交,则要求或 0331>+σσ此时,裂隙的最大拉应力为(*)如果0331<+σσ, 则1)(23131>+-σσσσ,则3σ必为负值(拉应力)此时由12cos ≥β推出12cos =β,即β为0或90°,表明裂隙与σ1平行或正交.因为03<σ,考查β=0, 90的极值,则3max ,2σσ=b m (**) 为最大拉应力.式(*)(**)即为岩石中的m ax ,b m σ达到某一临界值时就会产生破坏. 为了 确定米值,做单轴抗拉试验,使σ3垂直裂隙面(椭圆长轴),则这时的t R -=3σ 推出 t b R m 2max ,-=σ 这说明裂隙边壁最大应力m ax ,b m σ与米乘积必须满足的关系.此时,格菲思强度理论的破坏准则为:I. 由(**)式,,t b R m 2max ,-=σ, 则 322σ=-t RII. 由(*)式,代入 t b R m 2max ,-=σ, 则有:等于0,处于极限状态; 大于0, 破坏; 小于0, 稳定.上面的准则是用σ1、σ3表示的,也可用y σ,xy τ表示 将t b R m 2max ,-=σ 代入 )(122max ,xy y y b mτσσσ+±=中, 222xyy y t R τσσ+±=- 推出:t y xy y R 222+=+±στσ,22224)2(t y t y xy y R R +=+=+σστσ 在0<σ时的包线更接近实际.7、修正的格里菲思理论格里菲思理论是以张开裂隙为前提的,如果压应力占优势时裂隙会发生闭合,压力会从裂隙一边壁传递到另一边,从而缝面间将产生摩擦,这种情况下,裂隙的发展就与张开裂隙的情况不同.麦克林托克(米eclintock)考虑了这一影响,对格里菲思理论进行了修正.麦克林托克认为,在压缩应力场中,当裂缝在压应力作用下闭合时,闭合后的裂缝在全长上均匀接触,并能传递正应力和剪应力.由于均匀闭合,正应力在裂纹端部不产生应力集中,只有剪应力才能引起缝端的应力集中.这样,可假定裂纹面在二向应力条件下,裂纹面呈纯剪破坏.其强度曲线如图.由图可知 OC =c τBD=)(2131σσ-(半径)OD=)(2131σσ+(圆心)EB=τ, OE=σ,ED=OD-OE=)(2131σσ+-σAB=EB ϕcos ⋅=ϕτcos ⋅ϕsin ⋅=ED DA =ϕσϕσσsin sin )(2131⋅-+由 AB=BD-AD,可推出式中,摩擦系数ϕtg f =另外,推出tyt xy R R στ+=12取y σ为c σ,裂隙面上的压应力,则有②当c σ很小时,取c σ=0时(勃雷斯Brace)=t R 4当时c σ<0时(拉应力),上两式不适用.低应力时,格里菲思与修正的格里菲思理论较为接近,高应力时差别大(当σ3>0时).8、伦特堡(Lundborg)理论定限度,于晶体破坏,大抗剪强度.的破坏状态:σ,τ——研究点的正应力和剪应力(米Pa)τ——当没有正应力时(σ=0)岩石的抗切强度(米Pa)i τ——岩石晶体的极限抗切强度(米Pa)A ——系数,与岩石种类有关.当岩石内的剪应力τ和正应力σ达到上述关系时,岩石就发生破坏.式中的τ实际上是代表最大的剪应力,因而是强度.上式中的0τ,i τ,A 由试验确定,见P55表3-5.9、经验破坏准则现行的破坏理论并不能全面的解释岩石的破坏性态,只能对某一方面的岩石性态做出合理的解释,但对其它方面就解释不通.因此,许多研究者在探求经验准则,目前应用较多的经验破坏准则为霍克(Hoke)和布朗(Brown)经验破坏准则.①Hoke和Brown发现,大多数岩石材料(完整岩块)的三轴压缩试验破坏时的主应力之间可用下列方程式描述:R c—完整岩石单轴抗压强度(米Pa); 米—与岩石类型有关的系数米值是根据岩石的完整程度,结晶及胶结情况,通过大量试验结果及经验而确定的.岩石完整、结晶或胶结好,米值就越大,最大的为25.②对于岩体,Hoke和Brown建议:米和S——常数,取决于岩石的性质以及在承受破坏应力σ1和σ3以前岩石扰动或损伤的程度.完整岩块S=1,岩石极差时S=0.当取σ3=0时,可得到岩体的单轴抗压强度:由于s =0~1,则c cm R R ≤ 如果令σ1=0,则得到岩体的单轴抗拉强度.从R厘米和R t 米中可看出,当S=1时,R 厘米=R c 为完整岩块,当S=0时,R t 米=R 厘米=0为完全破损的岩石.因此,处于完整岩石和完全破损岩石之间的岩体,其S 值在1~0之间.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Mohr强度准则
τ
=f
强度力及剪应力
O
σ
3
岩石力学中常用的几种强度准则
对Mohr强度理论的评价:
优点: 适用于塑性岩石,也适用于脆性岩石的剪切破坏; 较好解释了岩石抗拉强度远远低于抗压强度特征; 解释了三向等拉时破坏,三向等压时不破坏现象; 简单、方便:同时考虑拉、压、剪,可判断破坏方向。 缺点:
12
岩石力学中常用的几种强度准则
对Grriffith强度准则评价:
优点: 岩石抗压强度为抗拉强度的8倍,反映了岩石的真实情况 证明了岩石在任何应力状态下都是由于拉伸引起破坏 指出微裂隙延展方向最终与最大主应力方向一致
缺点:
仅适用于脆性岩石,对一般岩石莫尔强度准则适用性远大于Griffith 准则 对裂隙被压闭合,抗剪强度增高解释不够 Griffith准则是岩石微裂隙扩展的条件,并非宏观破坏
岩石力学与石油工程
岩石力学中常用的几种强度准则
指导老师: 组 时 员: 间:
梁利喜




2015年11月19日
1
岩石力学与石油工程
Mohr强度准则 Mohr-Coulomb准则
Drucker-Prager强度准则
Hoek-Brown强度准则 Griffith强度准则
2
岩石力学中常用的几种强度准则
C
φ
1 ( 1 3 ) 2

O C· ctgφ
σ
3
=

4
+

1 ( 1 3 ) 2
σ
σ
1
2
库仑—莫尔强度条件
5
岩石力学中常用的几种强度准则
对Mohr-Coulomb强度准则评价:
优点: 公式简单实用,各参数一般都可以利用常规试验器材和方法 来确定; 不仅能反映岩体的碎性破坏,而且能反映其塑性破坏特征。 缺点: 该准则为线性破坏准则,在高围压压缩条件下,该准则 评估的岩石三轴强度与试验实测强度数据偏差较大; 该准则没有考虑中间主应力对岩石真三轴强度的影响; 该强度准则还指出,岩体的破坏角θ,但在拉伸条件下, 其破坏面一般垂直拉应力方向,实质为张破裂,与压缩 条件属于两种不同的破坏机理。
对D-P强度准则评价:
优点: 考虑了中间主应力和静水压力的影响; 考虑了平均应力σm=I1/3的影响; 在岩石力学中应用较广,特别是在弹塑性有限元计算中 应用广泛;
缺点: 把岩石看成完整、无裂隙的连续介质,而实际上,岩石是多裂隙的 结构体;
8
岩石力学中常用的几种强度准则
Hoek-Brown强度准则
6
岩石力学中常用的几种强度准则
Drucker-Prager强度准则
准则的提出
M-C 准则不能反映中间主应力对屈服和破坏的影响及单纯静水压力引起的屈服特性;
M-C屈服面在主应力空间中是一个带尖顶的六棱锥面,如果应力点位于棱线或锥顶上,将引起数学处 理上的困难;
1952 年 Drucker 和 Prager 构造了一个内切于 M-C 准则的六棱锥的圆锥屈服面;
13
14
忽视了σ2 的作用,误差:±15% 没有考虑结构面的影响 不适用于拉断破坏,破裂面趋于分离 不适用于膨胀、蠕变破坏
4
岩石力学中常用的几种强度准则 Mohr-Coulomb准则
当压力不大(小于10MPa) 时,包络线可采用直线型 近似
τ
f C tan
破坏角(剪裂面与最大主 应力 σ1 的夹角)满足:
准则的提出
常规三轴强度试验中发现大多数岩石强度曲线并不是直线,而是各种类型 的曲线,也就是说随着围压的增加,破坏角是变化的 函数形式
1 = 3 + m c 3 s c
2
9
岩石力学中常用的几种强度准则
对Hoek-Brown强度准则评价:
优点: 综合考虑了岩块强度、结构面强度、岩块结构等多种因素的影 响,能更好的反映岩块的非线性破坏特征; 提供岩块破坏时强度条件,而且能对岩块破坏机理进行描述; 弥补了Mohr-Coulomb强度准则中岩体不能承受拉应力,以及 对低应力区不太适应的不足,能解释低应力区、拉应力及最小 主应力 σ3 对强度的影响,因而更符合岩块的破坏特点。 缺点: 该准则没有考虑中间主应力对岩石真三轴强度的影响; 该准则在高围压条件下评估的岩石三轴强度与试验实测 强度数据偏差较大; 准则各参数的确定受主观性影响程度较大。
函数形式
式中 I1 x y z 1 2 3 , 为应力张量第一不变量
1 2 2 2 J 2 [ 1 2 2 3 3 1 ] ,为第二应力偏量不变量 6
α 和K为 D-P 准则材料常数
7
岩石力学中常用的几种强度准则
10
岩石力学中常用的几种强度准则
Griffith强度准则
基本假设: ①物体内随机分布许多裂隙; ②所有裂隙都张开、贯通、独立; ③裂隙断面呈扁平椭圆状态; ④在任何应力状态下,裂隙尖端产生拉应力集中,导致裂隙沿 某个有利方向进一步扩展; ⑤最终在本质上都是拉应力引起岩石破坏。
外力作用下,材料中裂隙的端部及其附近由于应力集中而产生很大的 拉应力,超过岩石抗拉强度时,裂隙便不断扩展而导致材料破坏。
11
岩石力学中常用的几种强度准则
Griffith强度准则
1 3 3 0时, 3 - t ( 1 3 ) 2 1 3 3 0时, 8 t 1 3
①数学式
②最有利破裂的方向角
1 2 1 arccos 2 2( 1 3 )
相关文档
最新文档