化工热力学 第三版 陈钟秀课后习题答案
热工基础与应用第三版课后题答案

热工基础与应用第三版课后题答案热工基础与应用第三版课后题答案:第一章热力学基础1. 什么是热力学系统?热力学系统的分类?答:热力学系统是指一定空间范围内的物质,它可以与外界进行能量、物质和动量的交换。
热力学系统分为开放系统、闭合系统和孤立系统。
2. 热力学第一定律及其公式表达?答:热力学第一定律是指能量守恒原理,即一定量的能量在各种形式间的转换中,总能量量保持不变。
它的公式表达为: $\Delta U = Q -W$,其中$\Delta U$表示系统内能的变化,$Q$ 表示系统所吸收的热量,$W$表示系统所做的功。
第二章理想气体1. 什么是理想气体?理想气体的特点有哪些?答:理想气体是指在一定温度和压力下,以分子作为粗略模型,遵守物理气体状态方程,没有相互作用力的气体。
理想气体的特点是分子间没有相互作用力,分子大小可忽略不计,分子数很大,分子与容器壁之间的碰撞是完全弹性碰撞。
2. 理想气体状态方程及其公式表达?答:理想气体状态方程是描述理想气体状态的基本方程,公式表达为$pV=nRT$,其中$p$表示压力,$V$表示体积,$n$表示物质的定量,$R$为气体常数,$T$表示气体的绝对温度。
第三章湿空气1. 什么是湿空气?湿空气的组成及其特点?答:湿空气是指空气中含有一定量的水蒸气的气体体系。
湿空气主要由氧气、氮气和水蒸气等气体组成。
湿空气的特点是其含水量随着温度和压力的变化而发生变化,同时湿空气的性质也会随着水蒸气的增加发生改变。
2. 湿空气状态的计算方法?答:湿空气的状态可用气体混合物的状态方程描述,即Dalton分压定律。
同时,根据水蒸气分压度和空气分压度的表格,可以通过查表法来计算湿空气的状态。
第四章热功学性质1. 热功学性质的三种基本类型是什么?答:热功学性质的三种基本类型是热力学势、热容和熵。
2. 熵的基本概念及其计算?答:熵是指物理系统内部不可逆过程的度量。
根据定义,熵的计算公式为$\Delta S = Q/T$,其中$\Delta S$表示熵的变化量,$Q$表示系统吸收的热量,$T$表示系统的温度。
化工热力学 第三版 课后答案完整版 朱自强

临界常数
误差%
误差%
Magoulas等法
757.23
-0.16
11.896
-2.55
Teja等法
759.51
-0.46
12.156
-4.79
CG法
746.91
1.20
11.332
2.31
Hu等法
758.4
-0.32
11.347
2.18
Nikitin等也给出了 和 的推算方程如下:据此也可推算正十九烷的 和 。
(MPa)
误差%
1
2.759
-0.33
2
2.75
2.737
0.47
3
2.695
2.00
4
2.784
-1.24
由上表知,所用四种方法的计算误差都不大,但以RK方程法求得的值和实验值最为接近。其余的方法稍差。第一和第四种方法得到的是负偏差,而第二和第三种方法却是正偏差。
2-5 某气体的p-V-T关系可用RK方程表述,当温度高于 时,试推导出以下两个极限斜率的关系式:(1) ;(2) 。两式中应包含温度T和RK方程的常数a和b。
由附表1查得水蒸气的 、 和 分别为22.05Mpa, 647.3K和0.344,则
,
根据Pitzer的普遍化关联式,有
再由式(E3)和式(E2)得
故
(3)用水蒸气表计算
从水蒸气表(附表3)查得250℃,2000Kpa时的水蒸气的比容为
由于水的摩尔质量为18.02,故
同理
将三种方法计算得到的结果列表比较。
755.00
11.60
青岛化工学院等编写,化学化工物性数据手册(2002)
756
化工热力学第三版课后答案完整版朱自强

第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、下甲烷气体的摩尔体积;1 理想气体方程;2 RK 方程;3PR 方程;4 维里截断式2-7;其中B 用Pitzer 的普遍化关联法计算;解 1 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积id V 为2 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ E1其中从附表1查得甲烷的临界温度和压力分别为c T =, c p =,将它们代入a, b 表达式得以理想气体状态方程求得的id V 为初值,代入式E1中迭代求解,第一次迭代得到1V 值为第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代;故用RK 方程求得的摩尔体积近似为3用PR 方程求摩尔体积将PR 方程稍加变形,可写为()()()RT a V b V b p pV V b pb V b -=+-++- E2式中 220.45724c cR T a p α=从附表1查得甲烷的ω=;将c T 与ω代入上式 用c p 、c T 和α求a 和b,以RK 方程求得的V 值代入式E2,同时将a 和b 的值也代入该式的右边,藉此求式E2左边的V 值,得563563355353558.314673.152.68012104.053100.10864(1.39010 2.6801210)4.05310[1.39010(1.39010 2.6801210) 2.6801210(1.39010 2.6801210)]1.381102.6801210 1.8217101.3896V ------------⨯=+⨯-⨯⨯⨯-⨯⨯⨯⨯⨯⨯+⨯+⨯⨯⨯-⨯=⨯+⨯-⨯=33110m mol --⨯⋅再按上法迭代一次,V 值仍为3311.389610m mol --⨯⋅,故最后求得甲烷的摩尔体积近似为3311.39010m mol --⨯⋅; 4维里截断式求摩尔体积根据维里截断式2-711()c r c rBp p BpZ RT RT T =+=+ E3 01ccBp B B RT ω=+ E40 1.60.0830.422/r B T =- E5 1 4.20.1390.172/r B T =-E6其中已知甲烷的偏心因子ω=,故由式E4~E6可计算得到从式E3可得 因pVZ RT=,故 四种方法计算得到的甲烷气体的摩尔体积分别为31.38110-⨯、31.39010-⨯、31.39010-⨯和31.39110-⨯31m mol -⋅;其中后三种方法求得的甲烷的摩尔体积基本相等,且与第一种方法求得的值差异也小,这是由于该物系比较接近理想气体的缘故;2-2 含有丙烷的3m 的容器具有的耐压极限;出于安全考虑,规定充进容器的丙烷为127℃,压力不得超过耐压极限的一半;试问可充入容器的丙烷为多少千克解 从附表1查得丙烷的c p 、c T 和ω,分别为,和;则用普遍化压缩因子关联求该物系的压缩因子Z;根据r T 、r p 值,从附表7-2,7-3插值求得:(0)0.911Z = ,(1)0.004Z =,故丙烷的分子量为,即丙烷的摩尔质量M 为0.00441 kg;所以可充进容器的丙烷的质量m 为从计算知,可充9.81 kg 的丙烷;本题也可用合适的EOS 法和其它的普遍化方法求解;2-3 根据RK 方程、SRK 方程和PR 方程,导出其常数a 、b 与临界常数的关系式;解 1RK 方程式,0.5()RT ap V b T V V b =--+ E1利用临界点时临界等温线拐点的特征,即22()()0c c T T T T p pV V==∂∂==∂∂ E2将式E1代入式E2得到两个偏导数方程,即20.52211()0()()c c c c c RT a V b T b V V b -+-=-+E330.53311()0()()c c c c c RT a V b T b V V b --=-+ E4临界点也符合式E1,得0.5()c c c c c c RT ap V b T V V b =--+ E5式E3~E5三个方程中共有a 、b 、c p 、c T 和c V 五个常数,由于c V 的实验值误差较大,通常将其消去,用c p 和c T 来表达a 和b;解法步骤如下:令c c c c p V Z RT =临界压缩因子,即 c c c cZ RTV p =; 同理,令2 2.5a c cR T a p Ω=,b c c RT b p Ω=,a Ω和b Ω为两个待定常数;将a 、b 、c V 的表达式代入式E3~E5,且整理得222(2)1()()a cbc c b c b Z Z Z Z Ω+Ω=+Ω-Ω E622333(33)1()()a cbc b c c b c b Z Z Z Z Z Ω+Ω+Ω=+Ω-Ω E711()a c c b c bZ Z Z Ω=-+Ω-ΩE8式E6除以式E7,式E6除以式E8得3223330c b c b c b Z Z Z -Ω-Ω-Ω=E9322232320c c b c b c b b Z Z Z Z -++Ω-Ω-Ω-Ω=E10对式E8整理后,得()(1)c c b c b a c bZ Z Z Z +Ω-+ΩΩ=-ΩE11式E9减去E10,得22(13)(2)0c b b c c Z Z Z -Ω+Ω-=E12由式E12解得13c Z =,或1)b c Z Ω=此解不一定为最小正根,或1)b c Z Ω=-b Ω不能为负值,宜摒弃再将13c Z =代入式E9或式E10,得32110327b b b Ω+Ω+Ω-=E13解式E13,得最小正根为将13c Z =和0.08664b Ω=代入式E11,得0.42748a Ω=,故2 2.50.42748c cR T a p =E140.08664ccRT b p =E15式E14和式E15即为导出的a 、b 与临界常数的关系式;2 SRK 方程立方型状态方程中的a 、b 与临界常数间的通用关系式可写为 SRK 方程的α是c T 与ω的函数,而RK 方程的0.5r T α=,两者有所区别;至于a Ω与b Ω的求算方法对RK 和SRK 方程一致;因此就可顺利地写出SRK 方程中a 、b与临界常数间的关系式为220.42748c cR T a p α=⋅E160.08664ccRT b p =E173PR 方程由于PR 方程也属于立方型方程,a 、b 与临界常数间的通用关系式仍然适用,但a Ω、b Ω的值却与方程的形式有关,需要重新推导PR 方程由下式表达 因()c T T pV=∂∂=0 22()20()[()()]c c c T T c c c c c RT V b pa V Vb V V b b V b =+∂=-+=∂-++- E18 经简化,上式可写为2222222()()()4()c c c c c c c RT a V b V b V b bV V b +=-++-E19把c c c c Z RT V p =、22a c c cR T a p Ω=、b c c RT b p Ω=代入式E19中,化简得出222222()1()()4()a cbc b c b c b c b Z Z Z Z Z Ω+Ω=-Ω+Ω-Ω-ΩE20对式E18再求导,得22222322322322222222[()4()()(44124)]()()[()4()]c c c c c c c c c c T T c c c c RT a V b bV V b V b V b V bV b pV V b V b bV V b =++--+++-∂=+∂-++- 0= E21将上式化简后得出E22再将c c c c Z RT V p =、22a c c cR T a p Ω=、b c c RT b p Ω=代入式E22中,化简得出432234387263544536278(3121445)1()8208268208a c b c b c b c b c b c b c b c b c b c b c b c b c b Z Z Z Z Z Z Z Z Z Z Z Z Z Ω+Ω+Ω+Ω-Ω=-Ω+Ω+Ω+Ω-Ω-Ω+Ω-Ω+ΩE23 PR 方程的c Z =,将其分别代入式E21和E23后,就可联立解出a Ω与b Ω,得到a Ω=和b Ω=;最后得到2 2.50.45724c cR T a p =和 2-4 反应器的容积为3m ,内有45.40kg 乙醇蒸气,温度为227℃;试用下列四种方法求算反应器的压力;已知实验值为;1RK 方程;2SRK 方程;3PR 方程;4 三参数普遍化关联法;解 1用R-K 方程法计算从附表1查得乙醇的c p 和T c 分别为 和;则RK 方程参数a, b 为 再求乙醇在该状态下的摩尔体积,V 按R-K 方程求算压力,有350.5335668.314(227273.15)28.0391.22910 5.82810500.15 1.229*10(1.22910 5.82810)(3.55190.7925)10 2.75910 2.759Pa MPa-----⨯+=-⨯-⨯⨯⨯⨯+⨯=-⨯=⨯=2用SRK 方程计算从附表1查得乙醇的ω为;SRK 方程中的a 和b 分别计算如下: 在给定条件下乙醇摩尔体积为3311.22910m mol --⨯⋅,将上述有关数值代入SRK 方程,得3用PR 方程计算 将上述数值代入PR 方程,得3533553568.314500.151.22910 5.233410 1.372031.22910(1.22910 5.233410) 5.233410(1.22910 5.233410)(3.53390.83848)10 2.695p Pa MPa--------⨯=⨯-⨯-⨯⨯⨯+⨯+⨯⨯-⨯=-⨯=3用普遍化维里系数法计算根据临界常数和以RK 方程求出的p 为初值,求出对比温度和对比压力,即2.7590.43246.38r c p p p ===, 500.150.9689516.2r c T T T === 故已知乙醇的偏心因子ω=,按下式求压缩因子Z 的值, 所以因和比较接近,不需再迭代;将4种方法计算得到的结果列表比较;由上表知,所用四种方法的计算误差都不大,但以RK 方程法求得的值和实验值最为接近;其余的方法稍差;第一和第四种方法得到的是负偏差,而第二和第三种方法却是正偏差;2-5 某气体的p -V -T 关系可用RK 方程表述,当温度高于c T 时,试推导出以下两个极限斜率的关系式:10lim()T P Z p→∂∂ ;2lim()T P Zp →∞∂∂ ;两式中应包含温度T和RK 方程的常数a 和b;解 根据压缩因子的定义pVZ RT=E1将式E1在恒T 下对p 求偏导,得1()()()T T T Z V p V V p p p RT RT p RT RT V-∂∂∂=+=+∂∂∂ E2根据RK 方程 可求出()T pV∂∂, 20.522(2)()()()T p RT a V b V V b T V V b ∂+=-+∂-+ E3将E3代入E2,得120.522(2)()[]()()T Z V p RT a V b p RT RT V b T V V b -∂+=+-+∂-+ E4pRT也用RK 方程来表达,即 1.51()p a RT V b RT V V b =--+ E5将E5代入E4,得(1) 当0p →,V →∞,故 (2) 当p →∞,V b →,故1、2两种情况下得到的结果即为两个极限斜率的关系式;2-6 试分别用普遍化的RK 方程、SRK 方程和PR 方程求算异丁烷蒸气在350K 、下的压缩因子;已知实验值为;解 1 将RK 方程普遍化,可见原书中的2-20c 和2-20d,即1.51 4.9340() 11r hZ h T h =--+ E10.08664h=rrP ZT E2式E2的右边的Z 以1为初值代入进行迭代,直至得到一收敛的Z 值;由附表1查得异丁烷的c p 、c T 分别为c p = ,c T =,则3500.8576408.1r c T T T ===, 1.20.32883.65r c p P p === 以Z=1代入式E2右边,得 把1h 代入式E1右边,得再把1=0.8346Z 代入式E2,解得2h ,代入式E1,得 按此方法不断迭代,依次得3=0.7965Z , 4=0.7948Z , 5=0.7944Z5Z 和4Z 已非常接近,可终止迭代;异丁烷蒸气的压缩因子为=0.7944Z2 SRK 的普遍化形式如下见原书式2-211 4.934011FhZ h h=--+ E3 0.521[1(1)]r rF m T T =+- E4 20.480 1.5740.176m ωω=+- E50.08664rrp h ZT =E6迭代的过程为:求m 和F 值→取0Z =1→求h 值−−−−→←−−−−循环迭代求Z 值→得收敛的Z 值;查得异丁烷的偏心因子,0.176ω=,故根据式E5和式E4可得 以0Z =1代入式E6右边,得 再由式E3可得 按上述方法,依次可得2=0.7947Z ,3=0.7864Z ,4=0.7843Z ,5=0.7839Z ,6=0.7837Z6Z 和5Z 已非常接近,可终止迭代;故=0.7837Z(3) 用普遍化的PR 方程计算若要按例2-4的思路来计算,必先导出类似于式2-21的普遍化的PR 方程; 令bh V=,则 (1)bV b h h+=+,(1)bV b h h-=-,hZRTp b=将上述4式代入式2-18,并简化后,得(1)(1)(1)RTahZRTp b b b bbh h b h h h h h =-=-++-,即 211[][](1)(1)11(1)(1)hRT a a h Z h b h b RTh h h bRT h h h h h=-=-+---++-+ E7将PR 方程中的a 、b 代入式E7,则1 5.8771[]1(1)(1)r h h T h h hα=--++- E8令0.5220.5211[1(1)][1(0.37464 1.542260.26992)(1)]r r r rF k T T T T ωω=+-=++--,则1 5.8771[]1(1)(1)hZ F h h h h =--++- E9且0.0778/0.0778/0.0778/c c c c rrRT p RT p p b h V V ZRT p ZT ==== E10 通过式E9和E10就可迭代求得Z; 第一次迭代,设0Z =1,则继续迭代,依次可得Z 2=,Z 3=,Z 4=,Z 5=,Z 6=;由于前后两次迭代出的Z 值已很接近,从而得出异丁烷的Z =,与实验值相比,误差为%;由RK 和SRK 方程计算得到的异丁烷的Z 分别为和,它们与实验值的计算误差分别为%和%;可见,三种方法中,普遍化PR 方程计算结果显得更好些;2-7 试用下列三种方法计算250℃、2000Kpa 水蒸气的Z 和V ;1维里截断式2-8,已知B 和C 的实验值分别为310.1525B m kmol -=-⋅和2620.580010C m kmol --=-⨯⋅;2式2-7,其中的B 用Pitzer 普遍化关联法求出;3用水蒸气表计算;解 1用维里截断式2-8计算先求出理想气体状态时的摩尔体积,id V 维里截断式2-8为21pV B CZ RT V V==++ 2-8以id V 为初值,即0id V V =,代入上式右边,求得1V10200(1)B C V V V V =++ E1将1V 再代入式E1右边得同理,3313 2.00710V m mol --=⨯⋅;2V 和3V 很接近,停止迭代,则水蒸气的摩尔体积为3312.00710V m mol --=⨯⋅;所以2用维里截断式2-7计算 维里截断式2-7为11()c r c rBp p BpZ RT RT T =+=+ E201ccBp B B RT ω=+ E3由附表1查得水蒸气的c p 、c T 和ω分别为, 和,则2.00.090722.05r c p p p ===, 250273.150.8082647.3r c T T T +=== 根据Pitzer 的普遍化关联式,有再由式E3和式E2得 故33310.9319 2.17510 2.02710id ZRTV ZV m mol p---===⨯⨯=⨯⋅ 3用水蒸气表计算从水蒸气表附表3查得250℃,2000Kpa 时的水蒸气的比容为 由于水的摩尔质量为,故 同理 2.0080.92322.175id pV V Z RT V ==== 将三种方法计算得到的结果列表比较;计算结果表明,1、3两种方法所得的结果比较接近;2方法偏差较大,主要是忽略了第三维里系数之故;2-8 试用Magoulas 等法、Teja 等法、CG 法和Hu 等法等估算正十九烷的临界温度、临界压力原书中有误,没有计算压缩因子的要求;查阅其文献值,并与所得计算值进行比较;解 正十九烷的分子式为1940C H ,故19c N = 1用Magoulas 等法 按式2-36, 按式2-37,2用Teja 等式按式2-38, 按式2-39,3用CG 法 按式2-40, 按式2-41,4用Hu 等式 按式2-42, 按式2-43,经查阅,c T 、c p 的手册值如下表所示:从上表知,文献中的c T 、c p 手册值并不完全一致,特别c p 间的差值还有些大;由于Nikitin 等的数据和Poling B E 等专着的手册值更为接近,以Nikitin 等的数据为基准手册值,计算出上述各法的误差列于下表;由表知,对c T 、c p 的推算,分别以Magoulas 等法和Hu 等法为最好,且c p 的推算误差比c T 要大;Nikitin 等也给出了c T 和c p 的推算方程如下:据此也可推算正十九烷的c T 和c p ;误差:756754.611000.18%756-⨯= 误差:11.6011.551000.43%11.60-⨯=由Nikitin 等法估算正十九烷的T c ,其误差仅比Magoulas 等法稍差,但比其它三种方法都要优越些;相反,该法估算p c 的误差却最小,比以上四种方法都好,误差要小近半个数量级,甚至更好;由此可见经常查阅文献,与时俱进是很重要的;2-9 试用Constantinou, Gani 和O ’Connell 法估算下列化合物的偏心因子和时液体摩尔体积;1甲乙酮,2环乙烷,3丙烯酸;解 此题如何计算首先要查阅原书P34脚注中的文献4;从该文献中知晓应用何种方程、并查表此两表已在附表9和附表10中给出获得一阶和二阶的数据1i ω、1i υ和2j ω、2j υ等;1甲乙酮应注意到式2-48仅能用于正烷烃的偏心因子估算;对于甲乙酮则应从查阅的文献中得出求算方程;先估算甲乙酮的偏心因子,查得一阶计算的方程为0.50501exp() 1.15070.4085i i N ωω-=∑E1式中,i N 为要估算化合物分子中基团i 出现的次数;1i ω为i 的偏心因子一阶基团贡献值;甲乙酮可分解为3CH 、2CH 和3CH CO 三种基团,从附表9中可以查得1i ω和1i υ,并列表如下:将有关数据代入式E1,得 解得 0.376ω=;从附表1中查得甲乙酮的0.329ω=,0.3290.37610014.28%0.329-=⨯=-误差;一阶估算的误差较大,试进行二阶估算;从文献得出的计算方程为0.505012exp() 1.15070.4085i i j j N A M ωωω-=∑+∑ E2式中 1A =;j M 是在要估算的化合物分子中基团j 出现的次数;2j ω为j 的偏心因子二阶基团贡献值;经查附表10知,甲乙酮的二阶基团为32CH COCH ,其2j ω和2j υ分别为了和31m kmol -⋅;将相关1i ω和2j ω值代入式E2,得0.5050exp() 1.150710.2960210.146911 1.015221(0.20789)0.40851.458150.20789 1.25026ω-=⨯+⨯+⨯+⨯-=-=将上式简化并解得 0.314ω=,0.3290.314100 4.56%0.329-=⨯=误差;从文献查得估算298K 时的l V 估算式为120.01211l i i j j V N A M ωω-=∑+∑E3一阶估算时,0A =,将已查得的各基团的一阶饱和液体贡献值代入式E3,得从化学化工物性数据手册查得甲乙酮在20℃和40℃时的密度分别为3kg m -⋅和3kg m -⋅;内插得25℃时液体的摩尔密度为3kmol m -⋅,则可得出其摩尔体积为31m kmol -⋅;以此为文献值,进行一阶估算结果的误差计算,得二阶估算时,A=1,除1i υ外,尚需要2j υ,以上都已查得备用,依次代入式E3,得2环乙烷偏心因子的一阶估算时,环乙烷可作如下分解,得出基团,并查出基团贡献值:按式E1从附表1查得环乙烷的偏心因子为,0.2130.207100 2.82%0.213-=⨯=误差偏心因子的二阶估算时,从附表10中查得六元环的基团贡献值为,A=1,则按式E2得298K 时环乙烷的摩尔体积按式E3作一阶估算,此时A=0,则从Poling B E 等着的气体物性估算手册中查得时环乙烷的饱和液体摩尔体积为31m kmol -⋅;以此为文献值,则0.108750.11057100 1.67%0.10875-=⨯=-误差;按式E3作二阶估算时,A=1,从附表10中查得六元环的基团贡献值为31m kmol -⋅,因此对环乙烷而言,不论是ω或是l V ,二阶估算的结果都没有一阶估算的精确; 3丙烯酸丙烯酸可分解成如下的基团,并查得其基团贡献值;一阶估算ω,按式E1,从化学化工物性数据手册查得丙烯酸的ω值为,以此为文献值,进行误差计算,二阶估算ω,按式E2,A=1,一阶估算V,按式E3,A=0,l丙烯酸的密度数据来自化学化工物性数据手册,经换算,丙烯酸在25℃时的液体摩尔体积为31⋅,以此为文献值,则m kmol-二阶估算V,按式E3,A=1,l二阶估算结果显示出,ω的估算结果不如一阶的好,而V则相反,二阶估算结l果要比一阶的好;现把全部所得结果示于下表;由表的结果可以得出如下一些看法和观点:aConsfantinou, Gani 和O ’Connell 法预测估算法,对上述三种不同化合物的偏心因子和298K 饱和液体的摩尔体积都比较成功地进行了预测,误差也不算太大,在工程计算中应该有其应用价值;b 从预期来说,二阶估算的结果应该要比一阶估算的好;但从实际估算结果知,并非如此,例如环乙烷的ω和l V 两者的二阶估算结果都比一阶估算结果差;丙烯酸的ω估算,情况也与上述相同;估计出现相仿情况的场合,恐怕为数不少,说明该法应有改进的需要;2-10 估算150℃时乙硫醇的液体的摩尔体积;已知实验值为31m kmol -⋅;乙硫醇的物性参数为c T =499K 、c p =、c V =31m kmol -⋅、ω=,20℃的饱和液体密度为8393kg m -⋅;解 方法1:用Rackett 方程计算液体摩尔体积; Rackett 方程为 其中: 635.49100.207100.27398.314 4.99c c c c p V Z RT -⨯⨯⨯===⨯故0.2857(10.8480)310.207(0.2739)0.0972SL V m kmol --=⨯=⋅乙硫醇的摩尔体积为31m kmol -⋅,该值和实验值31m kmol -⋅相比,误差为%; 方法2:用Lyderson 方法计算由20℃时的饱和液体密度求出此状态的摩尔体积1V ,M 为乙硫醇的摩尔质量,则20℃时的对比温度为根据1r T 值,从图2-11的饱和液体线上查得对比度密度,1r ρ=;同理,根据此值,从图2-11的饱和液体线上查得2 2.15r ρ=;故根据Lyderson 方程,有乙硫醇的摩尔体积计算值为31m kmol -⋅,和实验值相比,误差为%; 2-11 50℃、由摩尔分数的氮和摩尔分数的乙烯组成混合气体,试用下列4种方法求算混合气体的摩尔体积;已知从实验数据, 1.40Z =实;1理想气体方程;2Amagat 定律和普遍化压缩因子图;3 虚拟临界常数法Kay 规则;4 混合物的第二维里系数法;解 1 理想气体方程法根据理想气体方程求得混合物的摩尔体积id m V 为 2 Amagat 定律和普遍化压缩因子图法 根据Amagat 定律()(/)()id id m i i i i i i m m m iiiV V y y Z RT p y Z V Z V ====∑∑∑E1从附表1查得2N 和24C H 的c p 和c T ,2N 1: c p =3.39MPa ,c T =126.2K 24C H 2: c p =5.04MPa ,c T =282.4K根据c p 、c T 值,求出2N 1和24C H 2的r T 和r p 为2N 1:150273.15 2.561126.2r T +==, 160.9717.993.39r p ==24C H 2:250273.15 1.144282.4r T +==, 260.9712.105.04r p ==从普遍化二参数压缩因子图查得相应的i Z 值2N : 1 1.49Z =;24C H :2 1.34Z =代入式E1得3 虚拟临界常数法Kay 规则法根据Kay 规则计算混合物虚拟临界常数, 故可求出混合物的对比温度和对比压力,50273.15 1.470219.8rm T +==, 60.9713.924.38rm p ==根据rm T 和rm p ,查二参数普遍化压缩因子图2-4,得 1.45m Z =,故 4混合物的第二维里系数法 根据式2-712-72e,2211112122222m B y B y y B y B =++E2 01()cij ij ij ij ij cijRT B B B p ω=+E31/2()(0)cij ci c j ij T T T ==这里KE41/31/33()2ci c j cij V V V +=E5()/2cij ci c j Z Z Z =+E6()/2ij i j ωωω=+ E7cij cij cij cijZ RT p V =E80ij B 和1ij B 用Pitzer 的普遍化关联法计算,即0 1.60.0830.422/ij rij B T =- E9 1 4.20.1390.174/ij rij B T =-E10其中 /rij cij T T T =,/rij cij p p p = E11 纯组分的第二维里系数,可按通常的方法求出,即只须用式E3、式E9和式E10,当然此时i=j;而对交叉第二维里系数,须从式E3式E11求出;先从附表1查得各组分的c p 、c T 、c V 、c Z 和ω,具体数值见后面的表1,具体的计算步骤如下: 对2N 1,根据式E11,1111273.1550/ 2.5606126.2r c T T T +===, 111160.97/17.9853.39r c p p p ===根据式E9和E10,011 1.60.4220.0830.010752.5606B =-=-, 1114.20.1740.1390.13572.5606B =-= 代入式E3,得 对24C H 2,根据式E11,2222273.1550/ 1.1443282.4r c T T T +===, 222260.97/12.0975.04r c p p p ===根据式E9和E10,022 1.60.4220.0830.25711.1443B =-=-, 122 4.20.1740.1390.041351.1443B =-= 代入式E3,得交叉第二维里系数12B 的计算如下: 根据式E4式E8, 根据式E11, 代入式E9和E10,012 1.60.4220.0830.095561.7118B =-=-, 112 4.20.1740.1390.12101.7118B =-= 代入式E3得将上述计算结果综合成表1;表1、维里方程计算混合气体的摩尔体积时的一些中间参数i-j T cKp c /MPa V c /m 3kmol -1Z c ω T r B 0 B 1 B/m 3kmol -11-2注:方框中的数值系从附表1查得,其余的分别根据式E3式E11求得;根据式E2求出m B ,得根据维里截断式2-7,求出混合物的压缩因子为若压缩因子为“负值”,意味着摩尔体积为负值;这是没有任何物理意义的,也是不合理的;说明方法4在高达的压力下是不适合的;将四种方法计算结果综合成表2;由表可知,2、3两种方法求出的结果和实验值很接近,而方法1也即理想气体方程求得的结果偏差很大,这是由于系统非理想的缘故;比较2、3两种方法,可以看出2法,也即Amagat 定律,求出的结果为最优;表2、由4种方法计算混合气体的压缩因子和摩尔体积计算方法压缩因子Z m摩尔体积V m/ m 3kmol -1误差 / %实验值计算值1 2 3 4无意义无意义2-12 以化学计量比的2N 和2H 合成氨,在25℃和下,混合气以3311.666710m s --⨯⋅的流速进入反应器;氨的转化率为15%;从反应器出来的气体经冷却和凝缩,将氨分离出后,再行循环;1计算每小时合成氨的量;2若反应器出口的条件为,150℃,求内径为2510m -⨯的出口管中气体的流速;解 先求出2N 1+2H 2混合气体的摩尔体积m V ,拟用Amagat 定律求解; 由附表1分别查得2N 和2H 的c p 、c T 为2N :1 3.39c p MPa =, 1126.2c T K = 2H :2 1.30c p MPa =, 233.2c T K =然后求2N 和2H 的r p 、r T ,2N : 130.3958.9663.39r P ==, 125273.157.237126.2r T +== 2H : 230.39514.401.300.8106r P ==+, 2298.158.96633.28r T ==+根据r P 、r T 查二参数普遍化Z 图得1 1.13Z =,2 1.22Z =因为2N 和2H 是以化学计量比输入,故10.25y =, 20.75y =根据Amagat 定律 故53161.208.314298.159.791030.39510m m Z RT V m mol p --⨯⨯===⨯⋅⨯ 已知混合气体的进口体积流量,331.666710in v m s -=⨯⋅,则混合气体的进口摩尔流速in m 为根据反应的计量关系,22332N H NH −−→+←−−总量 开始 1 3 0 4 结束 330.15-⨯ 20.15⨯ 则每小时合成氨的量可由下式计算得出,2 先求出口气体的组成;因为出口气体中223::(10.15):(330.15):(20.15)N H NH =--⨯⨯,故20.2297N y =,20.6892H y =,30.0811NH y =, 1.000i iy =∑再求出口气体的摩尔流速利用Amagat 定律求出口气体的摩尔体积m V ;先从附表查得3NH 的11.28c p MPa =,405.6c T K =,则可求出各组分的对比性质为2H : 27.8613.201.300.8106r p ==+, 150273.1510.2733.28r T +==+2N : 27.868.2183.39r p ==, 273.151503.353126.2r T +==3NH : 27.86 2.47011.28r p ==, 273.151501.043405.6r T +==根据上述对比参数,查二参数普遍化Z 图,得2 1.15H Z =,2 1.14N Z =,30.380NH Z =则 1.150.0892 1.140.22970.3800.0811 1.085m i i iZ y Z ==⨯+⨯+⨯=∑故43161.0858.314423.15 1.371027.8610m m Z RT V m mol p --⨯⨯===⨯⋅⨯ 出口管中气体的体积流速为出口管中气体的流速,μ,可按下式计算,式中:A 为管子的截面积;计算得出出口管中混合气体的流速为11.10m s -⋅; 58页第2章2-1 求温度、压力的甲烷气体摩尔体积; 解:a 理想气体方程 b 用R-K 方程① 查表求c T 、c p ;② 计算a 、b ;③ 利用迭代法计算V; c 用PR 方程步骤同b,计算结果:1331103893.1--+⋅⋅⋅=mol m V i ; d 利用维里截断式查表可计算r p 、r T 、0B 、1B 和Z 由13310391.1--⋅⋅⋅==⇒=mol m pZRTV RT pV Z 2-2 V=0.5 m 3,耐压 MPa 容器;规定丙烷在T=时,p<;求可充丙烷多少千克 解:a 用理想气体方程136948.815.400314.85.01035.10441.0--⋅⋅=⋅⋅⋅⋅==⇒=⇒=mol m RT MpV m RT M m pV nRT pV b用R-K 方程① 查表求c T 、c p ;② 计算a 、b ;③ 利用迭代法计算V; 则可充丙烷质量计算如下: c 利用维里截断式:查表可计算r p 、r T 、0B 、1B 和Z 由133610257.21035.115.400314.8916.0--⋅⋅⋅=⋅⋅⋅=⇒=mol m V RT pV Z m m 则可充丙烷质量计算如下:2-4 V=1.213 m 3,乙醇45.40 kg,T=,求压力; 解:a 理想气体状态方程 b 用R-K 方程 c 用SRK 方程计算 d 用PR 方程计算 e 用三参数普遍化关联2-6 本题以计算机编程计算提供参考,考试时不能使用aR-K 方程 S-R-K2-7 计算T=,p=2 MPa 的水蒸气的Z 和V 解:a 用维里截断式221pVCRTpV BRT p RT V V C V B RT pV Z ++=⇒++≈=采用迭代法计算V= 之后求得Z= d 利用维里截断式查表可计算r p 、r T 、0B 、1B 可得到Z=; 由13310025.2--⋅⋅⋅==⇒=mol m pZRTV RT pV Z c 水蒸气表 92页第三章 3-4利用三参数压缩因子计算方法,查图表,得到压缩因子: 3-7: 解:注意:J kPa m ⋅=⋅3310 或者 3-9解:乙腈的Antonie 方程为 160℃时,乙腈的蒸气压 2乙腈的标准沸点320℃、40℃和标准沸点时的汽化焓 117页第四章 4-1 4-2 方法一: 经计算得体积流速为:()132210132.02075.0314.32/-⋅⋅=⎪⎭⎫ ⎝⎛⋅⋅=⋅⋅=s m d u V π摩尔流速为:1015.41500000/15.593314.80132.0/-⋅⋅=⋅===s mol p RT V V V n m 根据热力学第一定律,绝热时W s = -△H,所以 方法二:根据过热蒸汽表,内插法应用可查得35kPa 、80℃的乏汽处在过热蒸汽区,其焓值h 2= kJ ·kg -1; 1500 kPa 、320℃的水蒸汽在过热蒸汽区,其焓值h 1= kJ ·kg -1; 4-6 解: 通过112T C H T pmhR+=迭代计算温度,T 2= K 4-7 解:经迭代计算参考101页例题4-3得到T 2=;∆HT1T 2T C p T ()⎛⎜⎜⎠d H 2R T 2()+H 1R-8.32725-103⨯J ⋅mol1-⋅;146页第五章5-1:b 5-2: c 5-4: a 5-5: a 5-1:解:可逆过程熵产为零,即005<∆⇒=--∆=∆-∆=∆sys sys f sys g S T S S S S ; 5-2:解:不可逆过程熵产大于零,即00505T S T S S S S sys sys f sys g ->∆⇒>--∆=∆-∆=∆;即系统熵变可小于零也可大于零; 5-4:解:不可逆绝热过程熵产大于零,即0>∆=∆-∆=∆sys f sys g S S S S ;所以流体熵变大于零; 5-5:解:不可逆过程熵产大于零,即0010010T S T S S S S sys sys f sys g >∆⇒>-∆=∆-∆=∆; 5-3:解:电阻器作为系统,温度维持100℃,即,属于放热;环境温度,属于吸热,根据孤立体系的熵变为系统熵变加环境熵变,可计算如下: 5-6:解:理想气体节流过程即是等焓变化,温度不变,而且过程绝热,所以系统的熵变等于熵产,计算如下: 所以过程不可逆; 5-7: 解:∆S g204.184⋅ln 339363⎛⎝⎫⎪⎭⋅304.184⋅ln 339323⎛ ⎝⎫⎪⎭⋅+0.345kJ ⋅K1-⋅s1-⋅;不同温度的S 值也可以直接用饱和水表查得;计算结果是; 5-12解:1循环的热效率 2 水泵功与透平功之比H 2= kJ ·kg -1,H 3= kJ ·kg -1,H 4= kJ ·kg -1,H 5= kJ ·kg -1,3 提供1 kw 电功的蒸气循环量 5-15题: 194页第六章 6-1:解:水蒸气的摩尔流量为:nm M 3600⋅16801000⋅183600⋅25.926mol ⋅s1-⋅a 通过内插法求出时对应的温度,如下b 6-3 6-6:解:理想气体经一锐孔降压过程为节流过程,0=∆H ,且0=Q ,故0=S W ,过程恒温;则绝热膨胀过程的理想功和损耗功计算如下: 6-8:解:1产品是纯氮和纯氧时,2产品是98% N 2和50% O 2的空气时,设计计算流程如下:总的功6-12:解:6-13解:由1pmh 31()2pmh 32(),可得3 使用内插法可求得66.03℃时的熵值, 1利用熵分析法计算损耗功,2利用火用分析法:或者241页第七章7-2解:假设需水m kg,则产品酒中含水产品酒中含醇所以酒的体积7-3解:7-498% N 2 50% O 2解:根据吉布斯-杜亥姆公式,恒温恒压时 则有0=∑ii i V d x ,所以所以设计的方程不合理;。
《化工热力学》详细课后习题答案陈新志

《化⼯热⼒学》详细课后习题答案陈新志2习题第1章绪⾔⼀、是否题1. 孤⽴体系的热⼒学能和熵都是⼀定值。
(错。
和,如⼀体积等于2V 的绝热刚性容器,被⼀理想的隔板⼀分为⼆,左侧状态是T ,P 的理想⽓体,右侧是T 温度的真空。
当隔板抽去后,由于Q =W =0,,,,故体系将在T ,2V ,0.5P 状态下达到平衡,,,)2. 封闭体系的体积为⼀常数。
(错)3. 封闭体系中有两个相。
在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。
(对)4. 理想⽓体的焓和热容仅是温度的函数。
(对)5. 理想⽓体的熵和吉⽒函数仅是温度的函数。
(错。
还与压⼒或摩尔体积有关。
)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态⽅程 P=P (T ,V )的⾃变量中只有⼀个强度性质,所以,这与相律有⽭盾。
(错。
V 也是强度性质)7. 封闭体系的1mol ⽓体进⾏了某⼀过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压⼒相等的过程有。
(对。
状态函数的变化仅决定于初、终态与途径⽆关。
)8. 描述封闭体系中理想⽓体绝热可逆途径的⽅程是(其中),⽽⼀位学⽣认为这是状态函数间的关系,与途径⽆关,所以不需要可逆的条件。
(错。
)9. ⾃变量与独⽴变量是⼀致的,从属变量与函数是⼀致的。
(错。
有时可能不⼀致) 10. ⾃变量与独⽴变量是不可能相同的。
(错。
有时可以⼀致)三、填空题1. 状态函数的特点是:状态函数的变化与途径⽆关,仅决定于初、终态。
2. 单相区的纯物质和定组成混合物的⾃由度数⽬分别是 2 和 2 。
3. 封闭体系中,温度是T 的1mol 理想⽓体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V 表⽰)或(以P 表⽰)。
4. 封闭体系中的1mol 理想⽓体(已知),按下列途径由T 1、P 1和V 1可逆地变化⾄P,则m ,温度为和⽔。
化工热力学——学习方法

化工热力学——学习方法(总6页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除学习方法为了学好这门重要的专业基础课,同学们要重点做好以下几点:1.树立正确的人生观和专业思想目前,就我校来说有1/4~1/3的学生对自己的专业不感兴趣,认为化学工程是夕阳工业,他们将来会去做律师、做官、经商,就是不会做化学工程师。
因此,他们对该专业的所有课程都无兴趣。
针对这种情况,首先要澄清“化学工程是夕阳工业”的错误概念。
因为任何过程只要想将化学家在实验室烧杯里做出来的东西变成大规模生产,都离不开化学工程,离不开化学工程师,就像任何年代离不开医生和理发师一样。
化学工程对人类作出了很大的贡献,其中1983年被美国评选出的化学工程对人类的十大杰出贡献涵盖了我们的衣食住行,例如,如果没有化学工程使青霉素大规模生产,最普通的流感都可能夺去我们的生命;如果没有化肥,那么我们可能食不果腹;如果没有合成纤维,那么就不会有我们今天的美丽。
因此“化学工程绝对不是夕阳工业” !这可以从美国各个行业工程师的年收入得到佐证,例如,在网上查到,2004年美国化学工程师的年收入万美元,排名第二,仅次于电脑工程师万美元,连90年代末很吃香的电机工程师(EE,即所谓的Double E)也在其后。
第二,对于那些一心想脱离化学工程“苦海”的同学,提请他们回答一个问题,“当你去经商时,你准备在什么领域一展宏图——是IT行业吗是水利吗是农业吗如果是的话,你与那些专业毕业的同龄人相比,你有什么优势答案只有一个,那就是你学了四年的化学工程就是你的优势,即使学得不怎么样。
无数的前辈的经历告诉我们,不要说经商,就是做官,其走向都与这四年的专业脱不了干系。
因此,你喜欢别的职业这无可非议,而且你应该为之时刻准备着,准备着这方面的知识、这方面的能力,最不应该的是认为投错了胎,入错了行,然后自暴自弃,浪费了很多宝贵的青春年华。
川大化工热力学习题解答(化学工业出版社)

(1)水吸收的能量最多有百分之几转化为功? (2)假定加热温度不变,求加热过程热损耗。
6-5
6-5
6-5
6-7
空气 qm1=42000 kg/h
PL1=1 atm TL1=38 ℃
Q
烟道气 qm2=45000 kg/h
PH2=1 atm TH2=?
PH2=1 atm TH2=200 ℃
PH1=1 atm TH1=318 ℃
7-19
7-19
7-19
7-19
(2)略
思路完全一致,注意f1id 应使用亨利定律规则。
7-20
7-200
7-20
7-20
7-20
THE END
Thanks !
• 朗肯循环
P2=14 MPa
T2=540℃
P4=0.007 MPa
5-12
5-12
5-12
Review of Ch.5
• 蒸汽压缩制冷循环
2’
蒸汽冷凝放热 饱和蒸汽压缩
饱和液体膨胀
液体汽化吸热
5-13
• 某蒸汽制冷循环用氨为工质,冷凝压力为1.2MPa,蒸发 压力为0.14MPa。工质进压缩机为饱和蒸汽,进节流阀 为饱和液体,压缩机等熵效率为0.8,制冷量为13940 kJ/h。求: (1)制冷系数 (2)氨循环速率 (3)压缩机功率 (4)冷凝器放热量 (5)逆卡洛循环制冷系数
• EOS
• Then
3-4
• 试选用合适的普遍化关联法计算1kmol 1,3丁二烯从2.53Mpa、127℃压缩到12.67Mpa、 227℃时的焓、熵和体积变化。
• 分析:先判断普压还是普维法,接着计算 剩余性质,最后用三步法求得焓等变化。 (注意是求1KMOL丁二烯的变化)
化工热力学(第三版)教学课件ppt作者陈钟秀、顾飞燕、胡望明编著8.高分子体系的热力学性质
化工热力学
*8.6.3 聚合焓和聚合熵
化工热力学
Thank you
化工热力学
④ 高分子化合物的聚集态有晶态、非晶态、液晶态等,
还可以通过物理混合和共聚改性的方法形成多相结构。
化工热力学
8.2 高分子溶液的热力学模型
1
Flory-Huggins晶格模型理论
2
高分子稀溶液理论
化工热力学
8.2.1 Flory-Huggins晶格模型理论
Flory-Huggins的晶格模型基于以下假设。 ① 高分子溶液中,分子的排列构象与晶体一样,是晶格 紧密堆砌。
化工热力学
8.5.1 无孔膜
化工热力学
8.5.1 无孔膜
化工热力学
8.5.1 无孔膜
化工热力学
8.5.1 无孔膜
化工热力学
8.5.1 无孔膜
化工热力学
8.5.2 高分子凝胶
化工热力学
8.5.2 高分子凝胶
化工热力学
8.5.2 高分子凝胶
化工热力学
8.5.2 高分子凝胶
化工热力学
8.5.2 高分子凝胶
化工热力学
8.6 聚合反应的热力学特征
1
聚合反应可能性的判断准则
2
聚合上限温度 聚合焓和聚合熵
3
化工热力学
8.6.1 聚合反应可能性的判断准则
聚合反应体系反应前后的自由焓变化
据自由焓定义
化工热力学
8.6.1 聚合反应可能性的判断准则
化工热力学
8.6.1 聚合反应可能性的判断准则
化工热力学
8.6.2 聚合上限温度
1
高分子溶液的渗透压
2
高分子溶液的相分裂 高分子化合物的共混
工程热力学第三版答案【英文】第一章
1-2There is no truth to his claim. It violates the second law of thermodynamics. 1-14A gas tank is being filled with gasoline at a specified flow rate. Based on unit considerations alone, a relation is to be obtained for the filling time. Assumptions Gasoline is an incompressible substance and the flow rate is constant.Analysis The filling time depends on the volume of the tank and the discharge rate of gasoline. Also, we know that the unit of time is ‘seconds’. Therefore, the independent quantities should be arranged such that we end up with the unit of seconds. Putting the given information into perspective, we havet [s] [L], and [L/s}It is obvious that the only way to end up with the unit “s” for time is to divide the tank volume by the discharge rate. Therefore, the desired relation is Discussion Note that this approach may not work for cases that involve dimensionless (and thus unitless) quantities.1-25A process during which the temperature remains constant is called isothermal; a process during which the pressure remains constant is called isobaric; and a process during which the volume remains constant is called isochoric.1-38The change in water temperature given in F unit is to be converted to C, K and R units.Analysis Using the conversion relations between the various temperature scales,1-49The pressure in a pressurized water tank is measured by a multi-fluid manometer. The gage pressure of air in the tank is to be determined. Assumptions The air pressure in the tank is uniform (i.e., its variation with elevation is negligible due to its low density), and thus we can determine the pressure at the air-water interface.Properties The densities of mercury, water, and oil are given to be 13,600, 1000, and 850 kg/m3, respectively.Analysis Starting with the pressure at point 1 at the air-water interface, and moving along the tube by adding (as we go down) or subtracting (as we go up) th e terms until we reach point 2, and setting the result equal to P atm since the tube is open to the atmosphere givesSolving for P1,or,Noting that P1,gage = P1 - P atm and substituting,Discussion Note that jumping horizontally from one tube to the next and realizing that pressure remains the same in the same fluid simplifies the analysis greatly.1-55The pressure in chamber 1 of the two-piston cylinder shown in the figure is to be determined.Analysis Summing the forces acting on the piston in the vertical direction givesF1F2F3which when solved for P1 givessince the areas of the piston faces are given bythe above equation becomes1-63A gas contained in a vertical piston-cylinder device is pressurized by a spring and by the weight of the piston. The pressure of the gas is to be determined. Analysis Drawing the free body diagram of thepiston and balancing the vertical forces yieldF springP atmPW = mgThus,1-74Fresh and seawater flowing in parallel horizontal pipelines are connected to each other by a double U-tube manometer. The pressure difference between the two pipelines is to be determined.Assumptions 1 All the liquids areincompressible. 2 The effect of aircolumn on pressure is negligible.FreshWaterh wh seah airSeaWaterMercuryAirh HgProperties The densities of seawaterand mercury are given to be sea =1035 kg/m3 and Hg = 13,600 kg/m3.We take the density of water to be w=1000 kg/m3.Analysis Starting with the pressurein the fresh water pipe (point 1) andmoving along the tube by adding (aswe go down) or subtracting (as wego up) the terms until we reach thesea water pipe (point 2), and settingthe result equal to P2givesRearranging and neglecting the effect of air column on pressure, Substituting,Therefore, the pressure in the fresh water pipe is 3.39 kPa higher than the pressure in the sea water pipe.Discussion A 0.70-m high air column with a density of 1.2 kg/m3 corresponds to a pressure difference of 0.008 kPa. Therefore, its effect on the pressure difference between the two pipes is negligible.1-83A multi-fluid container is connected to a U-tube. For the given specific gravities and fluid column heights, the gage pressure at A and the height of a mercury column that would create the same pressure at A are to be determined.Assumptions 1 All the liquids areincompressible. 2 The multi-fluidcontainer is open to the atmosphere.A90 cm70 cm30 cm15 cmGlycerinSG=1.26OilSG=0.90Water20 cmProperties The specific gravities aregiven to be 1.26 for glycerin and 0.90for oil. We take the standard density ofwater to be w=1000 kg/m3, and thespecific gravity of mercury to be 13.6.Analysis Starting with the atmosphericpressure on the top surface of thecontainer and moving along the tube byadding (as we go down) or subtracting(as we go up) the terms until we reachpoint A, and setting the result equal toP A giveRearranging and using the definition of specific gravity,orSubstituting,The equivalent mercury column height isDiscussion Note that the high density of mercury makes it a very suitable fluid for measuring high pressures in manometers.1-109The gage pressure in a pressure cooker is maintained constant at 100 kPa by a petcock. The mass of the petcock is to be determined.Assumptions There is no blockage of the pressure release valve.W = mgP atmPAnalysis Atmospheric pressure is acting on allsurfaces of the petcock, which balances itself out.Therefore, it can be disregarded in calculations ifwe use the gage pressure as the cooker pressure. Aforce balance on the petcock (F y = 0) yields1-119A relation for the air drag exerted on a car is to be obtained in terms of on the drag coefficient, the air density, the car velocity, and the frontal area of the car.Analysis The drag force depends on a dimensionless drag coefficient, the air density, the car velocity, and the frontal area. Also, the unit of force F is newton N, which is equivalent to kgm/s2. Therefore, the independent quantities should be arranged such that we end up with the unit kgm/s2 for the drag force. Putting the given information into perspective, we haveF D [ kgm/s2] C Drag [], A front [m2],[kg/m3], and V [m/s]It is obvious that the only way to end up with the unit “kgm/s2” for drag force is to multiply mass with the square of the velocity and the fontal area, with the drag coefficient serving as the constant of proportionality. Therefore, the desired relation isDiscussion Note that this approach is not sensitive to dimensionless quantities, and thus a strong reasoning is required.。
化工热力学 陈钟秀版 第三版 总复习 ppt课件
28
液体:
1 V
V T
p
dH
C p dT
V
T
V T
p
dP
C p dT
V
1
T
dp
ppt课件
29
c.内能变化的普遍关系
dU
CV dT
T
p T
V
p dV
恒容过程: dU CV dT
热力学基本关系式
dU TdS pdV dH TdS Vdp dA pdV SdT dG Vdp SdT
记忆辅助图
ppt课件
21
麦克斯韦关系式:
dZ MdX NdY
M / Y N / X
X
Y
dU TdS pdV dH TdS Vdp dA SdT pdV
ppt课件
30
1.2.2 剩余性质
剩余性质MR(Residual Property):是 指在相同T和P下,真实气体状态热力学函 数值MR 与理想气体状态热力学函数值Mig 之差。
其中:M = V、U、H、S、A、G、Cp、CV
MR = M - Mig
ppt课件
31
1.2.2 剩余性质
对于焓和熵 H = Mig + HR S = Mig + SR
ppt课件
13
c.Soave - Redlich - Kwong ( SRK )方程
p
RT V b
V
a
V
b
a
沈阳化工大学化工热力学第二三章习题课--答案
第二、三章习题课答案一、填空题(1)处于单相区的纯物质,可以独立改变的参数为 2 。
(2)Pitzer 三参数普遍化方法以 偏心因子 为第三参数,其定义式为00.1)log(7.0T r--==S r p ω。
(3)纯物质的维里系数是 物质和温度 的函数,混合物的维里系数是 物质、温度和组成 的函数。
(4)纯物质的临界等温线在临界点的斜率和曲率均为零,数学上可以表示为 0=⎪⎭⎫⎝⎛∂∂=TcT v p022=⎪⎪⎭⎫ ⎝⎛∂∂=TcT v p 。
(5)由热力学基本关系式p V T S G d d d +-=,写出对应的Maxwell 关系式为p TT V p S ⎪⎭⎫⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂ 。
(6)理想气体等温过程的焓变为 0 ,等压过程的焓变为TC H T T ig p ig p d 21⎰=∆ 。
(7)剩余性质的定义式为 ()()p T M p T M M igR ,-,= 。
(8)某物质符合状态方程RT b V p =-)(,对应的剩余焓为 bp ;若理想气体的热容为ig p C ,则该真实气体的焓变()()1122,,p T H p T H -为TC p p b T T ig p d )(2112⎰+-。
二、判断题(1)恒温下的任何气体,当压力趋于零时,pV 乘积也趋于零。
( × ) (2)对给定的化合物来说,其临界性质Tc 、Vc 、Pc 和Zc 是常数。
( √ ) (3)压缩因子Z 总是小于或等于1。
( × )(4)纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
( × ) (5)纯物质的三相点随着所处的压力或温度的不同而改变。
( × )(6)RK 方程中,常数的混合规则分别为 ∑∑==i i m i i m b y b a y a 。
( × ) (7)热力学基本关系式d H=T d S+V d p 只适用于可逆过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 2-1.使用下述方法计算1kmol甲烷贮存在体积为0.1246m3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K方程;(3)普遍化关系式。 解:甲烷的摩尔体积V=0.1246 m3/1kmol=124.6 cm3/mol 查附录二得甲烷的临界参数:Tc=190.6K Pc=4.600MPa Vc=99 cm3/mol ω=0.008 (1) 理想气体方程 P=RT/V=8.314×323.15/124.6×10-6=21.56MPa (2) R-K方程
∴0.5RTaPVbTVVb =19.04MPa (3) 普遍化关系式
323.15190.61.695rcTTT 124.6991.259rcVVV<2
∴利用普压法计算,01ZZZ ∵ crZRTPPPV ∴ crPVZPRT 迭代:令Z0=1→Pr0=4.687 又Tr=1.695,查附录三得:Z0=0.8938 Z1=0.4623 01ZZZ=0.8938+0.008×0.4623=0.8975 此时,P=PcPr=4.6×4.687=21.56MPa 同理,取Z1=0.8975 依上述过程计算,直至计算出的相邻的两个Z值相差很小,迭代结束,得Z和P的值。 ∴ P=19.22MPa 2-2.分别使用理想气体方程和Pitzer普遍化关系式计算510K、2.5MPa正丁烷的摩尔体积。已知实验值为1480.7cm3/mol。 解:查附录二得正丁烷的临界参数:Tc=425.2K Pc=3.800MPa Vc=99 cm3/mol ω=0.193 (1)理想气体方程 V=RT/P=8.314×510/2.5×106=1.696×10-3m3/mol
误差:1.6961.4807100%14.54%1.4807 (2)Pitzer普遍化关系式 对比参数:510425.21.199rcTTT 2.53.80.6579rcPPP—普维法
∴ 01.61.60.4220.4220.0830.0830.23261.199rBT 01c
c
BPBBRT=-0.2326+0.193×0.05874=-0.2213 11crcrBPBPPZRTRTT=1-0.2213×0.6579/1.199=0.8786
∴ PV=ZRT→V= ZRT/P=0.8786×8.314×510/2.5×106=1.49×10-3 m3/mol 误差:1.491.4807100%0.63%1.4807 2-3.生产半水煤气时,煤气发生炉在吹风阶段的某种情况下,76%(摩尔分数)的碳生成二氧化碳,其余的生成一氧化碳。试计算:(1)含碳量为81.38%的100kg的焦炭能生成1.1013MPa、303K的吹风气若干立方米?(2)所得吹风气的组成和各气体分压。 解:查附录二得混合气中各组分的临界参数: 一氧化碳(1):Tc=132.9K Pc=3.496MPa Vc=93.1 cm3/mol ω=0.049 Zc=0.295 二氧化碳(2):Tc=304.2K Pc=7.376MPa Vc=94.0 cm3/mol ω=0.225 Zc=0.274 又y1=0.24,y2=0.76 ∴(1)由Kay规则计算得:
303263.11.15rmcmTTT 0.1011.4450.0157rmcmPPP—普维法
利用真实气体混合物的第二维里系数法进行计算 又0.50.5132.9304.2201.068cijcicjTTTK
∴ 303201.0681.507rijcijTTT 0.10135.08380.0199rijcijPPP
∴01612121212126128.314201.0680.1360.1370.108339.84105.083810ccRTBBBP 2211112122222mByByyByB
26626630.247.3781020.240.7639.84100.76119.931084.2710/cmmol
∴
1mmBPPVZRTRT→V=0.02486m3/mol
∴V总=n V=100×103×81.38%/12×0.02486=168.58m3
(2) 1110.2950.240.10130.0250.2845cmZPyPMPaZ 2-4.将压力为2.03MPa、温度为477K条件下的2.83m3NH3压缩到0.142 m3,若压缩后温度448.6K,则其压力为若干?分别用下述方法计算:(1)Vander Waals方程;(2)Redlich-Kwang方程;(3)Peng-Robinson方程;(4)普遍化关系式。 解:查附录二得NH3的临界参数:Tc=405.6K Pc=11.28MPa Vc=72.5 cm3/mol ω=0.250 (1) 求取气体的摩尔体积 对于状态Ⅰ:P=2.03 MPa、T=447K、V=2.83 m3
477405.61.176rcTTT 2.0311.280.18rcPPP—普维法
∴01.61.60.4220.4220.0830.0830.24261.176rBT 11crcrBPPVBPPZRTRTRTT→V=1.885×10-3m3/mol
∴n=2.83m3/1.885×10-3m3/mol=1501mol 对于状态Ⅱ:摩尔体积V=0.142 m3/1501mol=9.458×10-5m3/mol T=448.6K (2) Vander Waals方程 (3) Redlich-Kwang方程 (4) Peng-Robinson方程
∵448.6405.61.106rcTTT ∴220.37461.542260.269920.37461.542260.250.269920.250.7433k ∴aTRTPVbVVbbVb (5) 普遍化关系式 ∵ 559.458107.25101.305rcVVV<2 适用普压法,迭代进行计算,方法同1-1(3) 2-6.试计算含有30%(摩尔分数)氮气(1)和70%(摩尔分数)正丁烷(2)气体混合物7g,在188℃、6.888MPa条件下的体积。已知B11=14cm3/mol,B22=-265cm3/mol,B12=-9.5cm3/mol。
解:2211112122222mByByyByB
1mmBPPVZRTRT→V(摩尔体积)=4.24×10-4m3/mol 假设气体混合物总的摩尔数为n,则 0.3n×28+0.7n×58=7→n=0.1429mol ∴V= n×V(摩尔体积)=0.1429×4.24×10-4=60.57 cm3 2-8.试用R-K方程和SRK方程计算273K、101.3MPa下氮的压缩因子。已知实验值为2.0685 解:适用EOS的普遍化形式 查附录二得NH3的临界参数:Tc=126.2K Pc=3.394MPa ω=0.04 (1)R-K方程的普遍化
∴562.67810101.3101.19528.314273BbbPhZVZRTZZ ① 111.5511111AhhZhBhhh
②
①、②两式联立,迭代求解压缩因子Z (2)SRK方程的普遍化
∴562.67810101.3101.19528.314273BbbPhZVZRTZZ ① 110.39751111AhhZhBhhh
②
①、②两式联立,迭代求解压缩因子Z 第三章 3-1. 物质的体积膨胀系数和等温压缩系数k的定义分别为:1PVVT,1TVkVP。试导出服从Vander Waals
状态方程的和k的表达式。 解:Van der waals 方程2RTaPVbV 由Z=f(x,y)的性质1yxzzxyxyz得 1TPVPVTVTP
又 232TPaRTVVVb VPRTVb 所以 2321PaRTVVbVTRVb 故 22312PRVVbVVTRTVaVb 3-2. 某理想气体借活塞之助装于钢瓶中,压力为34.45MPa,温度为93℃,反抗一恒定的外压力3.45 MPa而等温膨胀,直到两倍于其初始容积为止,试计算此过程之U、H、S、A、G、TdS、pdV、Q和W。 解:理想气体等温过程,U=0、H=0
∴ Q=-W=21112ln2VVVVRTpdVpdVdVRTV=2109.2 J/mol ∴ W=-2109.2 J/mol 又 PPdTVdSCdPTT 理想气体等温膨胀过程dT=0、PVRTP
∴ RdSdPP ∴ 222111lnlnln2SPPPSPSdSRdPRPR=5.763J/(mol·K) AUTS=-366×5.763=-2109.26 J/(mol·K)
GHTSA=-2109.26 J/(mol·K)
TdSTSA=-2109.26 J/(mol·K)
2111
2ln2VV
VVRT
pdVpdVdVRTV=2109.2 J/mol
3-3. 试求算1kmol氮气在压力为10.13MPa、温度为773K下的内能、焓、熵、VC、pC和自由焓之值。假设氮气服从理想气体定律。已知: (1)在0.1013 MPa时氮的pC与温度的关系为27.220.004187J/molKpCT; (2)假定在0℃及0.1013 MPa时氮的焓为零; (3)在298K及0.1013 MPa时氮的熵为191.76J/(mol·K)。