钙钛矿太阳能电池全英文介绍
钙钛矿太阳能电池的结构及工作原理

钙钛矿太阳能电池的结构及工作原理
钙钛矿太阳能电池是一种新型的太阳能电池,具有高效率、低成本、易制备等优点,因此备受关注。
它的结构和工作原理如下:
一、结构
钙钛矿太阳能电池的基本结构由五个层次组成:透明导电玻璃(TCO)、钙钛矿吸收层、电子传输层、空穴传输层和金属背电极。
透明导电玻璃是用于光线进入和产生电流的基础。
钙钛矿吸收层是光能转换为电能的地方。
它是由多种有机卤化物或无机盐类组成,通常为CH3NH3PbI3或CsPbI3等。
这些物质具有良好的光吸收性和光生载流子特性。
电子传输层和空穴传输层用于分别运输负载和正载流子。
它们通常由TiO2或ZnO等氧化物材料制成。
金属背电极连接到空穴传输层上,用于提供外部回路。
二、工作原理
当太阳光线照射在钙钛矿吸收层上时,光能被吸收并转化为电能。
这
个过程涉及到光生载流子的产生和运输。
在钙钛矿吸收层中,光子被吸收后会激发出电子和空穴。
电子会被传输到电子传输层,而空穴则会被传输到空穴传输层。
在电子传输层中,电子通过TiO2或ZnO等半导体材料向金属背电极运动。
在空穴传输层中,空穴通过相同的机制向金属背电极运动。
这些载流子的运动会产生外部回路中的电流。
总体来说,钙钛矿太阳能电池采用了一种高效率、低成本、易制备的结构和工作原理。
它具有很大的应用前景,在未来将会成为太阳能领域的一个重要组成部分。
钙钛矿太阳能电池原理

钙钛矿太阳能电池原理
钙钛矿太阳能电池是一种新型的高效太阳能转换器,其原理是利用钙钛矿材料的光电效应来将太阳光转化为电能。
钙钛矿是一种具有特殊晶体结构的半导体材料,其主要成分是钙钛矿矿物。
这种材料能够吸收不同波长范围的太阳光,并将其转化为电流。
钙钛矿太阳能电池通常由多层结构组成,包括透明导电层、钙钛矿吸光层、电子传输材料和电荷传输层。
当太阳光照射到电池表面时,光子被吸收并激发出电子-空穴对。
这些电子-空穴对会在钙钛矿层中分离,形成自由电子和空穴。
自由电子会通过电子传输材料流动,而空穴则会通过电荷传输层流动。
在电流流动的过程中,产生的电子和空穴会被收集起来,在外部电路中形成电流。
通过连接外部负载,可以将这些电子转化为有用的电能。
钙钛矿太阳能电池的优点在于其高效率和低成本。
钙钛矿材料具有优异的光吸收性能和电子传输特性,能够实现高效的太阳能转换。
此外,钙钛矿材料的制备过程相对简单,成本低廉,可以大规模生产。
总之,钙钛矿太阳能电池通过利用钙钛矿材料的光电效应将太阳光能转化为电能。
其高效率和低成本的特性使其成为一种有着广阔应用前景的太阳能转换器。
学术英语作文化学题目

化学主题学术英语作文篇一The application of chemistry in environmental protection has become an increasingly critical area of research, particularly as global environmental challenges such as climate change, pollution, and resource depletion continue to escalate. The integration of chemical principles and technologies into environmental science has led to innovative solutions that not only mitigate environmental damage but also promote sustainable development. This paper aims to explore the multifaceted role of chemistry in addressing environmental issues, with a particular focus on green chemistry, catalytic processes in wastewater treatment, and the development of novel materials for carbon emission reduction.Green chemistry, often referred to as sustainable chemistry, is a revolutionary approach that seeks to design chemical products and processes that minimize the generation of hazardous substances. Unlike traditional chemical practices, which often prioritize yield and efficiency at the expense of environmental health, green chemistry emphasizes the use of renewable resources, energyefficient processes, and nontoxic reagents. For instance, the development of biobased plastics derived from renewable biomass, such as cornstarch or sugarcane, has significantly reduced reliance on petroleumbased plastics, which are notorious for their persistence in the environment and contribution to microplastic pollution. Furthermore, green chemistry has enabled the synthesis of pharmaceuticals and agrochemicals with reduced environmental footprints, as exemplified by the use of enzymatic catalysis, which operates under mild conditions and generates fewer byproducts compared to conventional chemical synthesis.Catalysis, a cornerstone of modern chemistry, plays a pivotal role in environmental remediation, particularly in the treatment of industrial wastewater.Industrial effluents often contain a complex mixture of organic pollutants, heavy metals, and toxic compounds that pose significant risks to aquatic ecosystems and human health. Advanced oxidation processes (AOPs), which utilize highly reactive species such as hydroxyl radicals to degrade pollutants, have emerged as a powerful tool for wastewater treatment. For example, the use of titanium dioxide (TiO2) as a photocatalyst in AOPs has demonstrated remarkable efficiency in breaking down persistent organic pollutants, such as dyes and pharmaceuticals, into harmless byproducts. Moreover, the integration of nanotechnology with catalysis has led to the development of highly efficient and selective catalysts that can operate at lower temperatures and pressures, thereby reducing energy consumption and operational costs. The application of catalytic converters in automotive exhaust systems is another notable example, where platinumgroup metals catalyze the conversion of harmful nitrogen oxides (NOx) and carbon monoxide (CO) into less toxic nitrogen (N2) and carbon dioxide (CO2).The development of novel materials with tailored properties has opened new avenues for reducing carbon emissions and enhancing energy efficiency. Carbon capture and storage (CCS) technologies, which aim to capture CO2 emissions from industrial sources and store them underground, rely heavily on advanced materials such as metalorganic frameworks (MOFs) and zeolites. These materials exhibit high surface areas and tunable pore sizes, enabling the selective adsorption of CO2 from flue gases. For instance, MOFs composed of zinc ions and organic linkers have shown exceptional CO2 adsorption capacities, making them promising candidates for largescale CCS applications. Additionally, the advent of perovskite solar cells, which utilize hybrid organicinorganic materials, has revolutionized the field of photovoltaics by offering higher efficiencies and lower production costs compared to traditional siliconbased solar cells. These materials not only contribute to reducing greenhouse gas emissions but also pave the way for a transition to renewable energy sources.In conclusion, the application of chemistry in environmental protection is a testament to the discipline's transformative potential in addressing some of the mostpressing challenges of our time. Through the principles of green chemistry, the development of advanced catalytic processes, and the innovation of novel materials, chemistry offers a diverse array of tools and strategies for mitigating environmental degradation and promoting sustainability. As the global community continues to grapple with the consequences of industrialization and urbanization, the role of chemistry in shaping a more sustainable future cannot be overstated. It is imperative that ongoing research and collaboration across disciplines are encouraged to further harness the power of chemistry in safeguarding our planet for future generations.中文翻译:化学在环境保护中的应用已成为一个日益重要的研究领域,尤其是在全球环境挑战如气候变化、污染和资源枯竭不断加剧的背景下。
华中科技大学半导体物理论文翻译——通过分子内交换技术制造高性能光伏钙钛矿层

通过分子内交换技术制造高性能光伏钙钛矿层Woon Seok Yang, Jun Hong Noh, Nam Joong Jeon, Young Chan Kim, Seungchan Ryu,Jangwon Seo, Sang Il Seok翻译:Crainax英文论文原文标题:2015-High-performance-photovoltaic-perovskite-layers-fabricated-through-intramolecular-exchange摘要与传统的甲基碘化铵(MAPbI3)相比,甲基碘化铅(FAPbI3)钙钛矿的带隙允许吸收更大范围的光谱中的光。
钙钛矿膜的光电性质与膜的质量密切相关,因此沉积致密且均匀的膜对于制造高性能钙钛矿太阳能电池(PSCs)十分关键。
我们报告的关于沉积高质量FAPbI3膜方法中,涉及了FAPbI3结晶通过二甲基亚砜(DMSO)分子插入PbI2与甲脒碘化物的直接分子内交换。
这个过程产生了具有(111)-偏向晶体取向、大颗粒致密微结构和没有残留PbI2平坦表面的FAPbI3膜。
使用该技术制备的膜,能制造具有超过20%最大功率转换效率且基于FAPbI3的PSC。
在过去3年中,器件结构(1-3),高质量成膜方法(4-6)和钙钛矿材料(7-9)的组成工程的快速发展,促进了快速提高功率转换效率(PCE)的钙钛矿太阳能电池(PSCs)的研究。
虽然报道已经声明用于PSCs(10)的电力转换效率(PCE)高达18%,但是进一步实现经济可行性且接近理论值的PCE的技术仍然是太阳能电池行业中最重要的挑战。
甲基碘化铅(FAPbI3)是一种钙钛矿材料,其可以提供比甲基碘化铵(MAPbI3)更好的性能,因为它能吸收更宽的光谱中的光。
此外,具有n-i-p结构(n侧被太阳辐射)的FAPbI3在电流-电压测量期间具有在扫描方向可忽略的滞后(8-13)。
然而,与MAPbI3相比,FAPbI3更难以形成稳定的钙钛矿相和FAPbI3的高质量膜。
太阳能电池板成分

太阳能电池板成分太阳能电池板是一种可以将阳光转化为电能的装置,它由多种不同的材料组成。
在这篇文章中,我们将详细介绍太阳能电池板的成分及其作用。
1. 硅(Silicon):硅是太阳能电池板中最常见的材料之一。
它是一种半导体材料,可以帮助将太阳光转化为电能。
硅可以分为单晶硅、多晶硅和非晶硅三种类型,其中单晶硅的效率最高,但生产成本也相对较高。
2. 硒(Selenium):硒是另一种常见的太阳能电池板材料,通常与硅一起使用。
硒可以增加太阳能电池板的效率,并且有助于减少能量损失。
硒的添加可以提高太阳能电池板的光吸收能力,从而提高电能转化效率。
3. 硒化镉(Cadmium Telluride):硒化镉是一种新型的太阳能电池板材料,具有较高的转化效率和较低的生产成本。
硒化镉太阳能电池板轻薄柔韧,适合在大面积上应用,可以实现大规模的太阳能发电。
4. 铜铟镓硒(Copper Indium Gallium Selenide):铜铟镓硒是一种复合材料,通常用于制造薄膜太阳能电池板。
它具有较高的光吸收率和转化效率,适合在光照条件较差的地区使用。
铜铟镓硒太阳能电池板轻薄灵活,可以应用于建筑物表面等不同场景。
5. 钙钛矿(Perovskite):钙钛矿是一种新兴的太阳能电池板材料,具有高效率和低成本的优势。
钙钛矿太阳能电池板可以实现高效率的光电转换,并且制作工艺相对简单,可以大规模生产。
总的来说,太阳能电池板的成分多种多样,每种材料都有其独特的特性和用途。
随着科技的不断发展和进步,太阳能电池板的效率和成本将不断提升,为可再生能源的发展做出更大的贡献。
希望未来能够看到更多高效、环保的太阳能电池板材料的问世,推动太阳能产业的快速发展。
钙钛矿太阳能电池原理

钙钛矿太阳能电池原理
钙钛矿太阳能电池是一种新型的太阳能电池技术,具有高效、低成本和易制备
等优点,因此备受关注。
其工作原理主要是利用钙钛矿材料对太阳光的吸收和电荷分离来产生电能。
本文将对钙钛矿太阳能电池的原理进行详细介绍。
首先,钙钛矿是一种具有特殊结构和优异光电性能的材料,其晶体结构使得它
具有良好的光吸收能力。
当太阳光照射到钙钛矿表面时,光子被材料吸收并激发了材料内的电子,使得电子跃迁到导带中,产生自由载流子。
这一过程是钙钛矿太阳能电池能够转换光能为电能的基础。
其次,钙钛矿太阳能电池中的电荷分离过程至关重要。
在钙钛矿材料中,光激
发的自由载流子会被电场分离,并在电极上产生电流。
这一过程需要在材料内部形成适当的电场,以促进自由载流子的分离和运输。
因此,钙钛矿太阳能电池的电极设计和材料工艺对于电荷分离过程至关重要。
最后,钙钛矿太阳能电池的工作原理可以总结为,光吸收、电子激发、电荷分
离和电流输出。
当太阳光照射到钙钛矿太阳能电池表面时,材料吸收光子并产生电子-空穴对。
随后,电子和空穴被电场分离并在电极上产生电流,从而实现对太阳
能的转换。
总的来说,钙钛矿太阳能电池的工作原理是基于钙钛矿材料对太阳光的光电转
换过程。
通过光吸收、电子激发和电荷分离,钙钛矿太阳能电池能够将太阳能转化为电能,具有广阔的应用前景。
随着对钙钛矿材料和太阳能电池技术的深入研究,相信钙钛矿太阳能电池将在未来发挥更大的作用,为可再生能源领域带来新的突破。
钙钛矿太阳能原理介绍
钙钛矿太阳能原理介绍
钙钛矿太阳能电池原理是:当阳光照在电池上,光子能量高于带隙时,钙钛矿层就会吸收光子并产生
"电子-空穴对"。
电子传输层将分离出来的电子传输到负极上,空穴传输层则将
与电子分离的空穴传输到正极上,在外电路形成电荷定向移动,从而产生电流,实现光能向电能的转换。
钙钛矿太阳能电池是以钙钛矿型(ABX3型)晶体作为吸光层材料的电池。
它的结构类似于"三明治",两个电极像三明治的两片面包分别位于最外层,由外向内挨着电极的是空穴传输层和电子传输层,而钙钛矿层则居于最中间。
锡基钙钛矿太阳能电池研究进展
物 理 化 学 学 报Acta Phys. -Chim. Sin. 2021, 37 (4), 2007006 (1 of 17)Received: July 2, 2020; Revised: July 31, 2020; Accepted: August 3, 2020; Published online: August 7, 2020. *Correspondingauthor.Email:*******************.© Editorial office of Acta Physico-Chimica Sinica[Review] doi: 10.3866/PKU.WHXB202007006 Recent Advances in Tin-Based Perovskite Solar CellsHaomiao Li 1, Hua Dong 1,2, Jingrui Li 3, Zhaoxin Wu 1,2,*1 Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information PhotonicTechnique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China. 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China.3 Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi'an 710049, China .Abstract: Since 2009, organic-inorganic halide perovskites have been widely studied in the field of optoelectric materials due to their unique optical and electrical properties. Pb-based halide perovskite solar cells (PSCs), in particular, currently have a record efficiency of 25.2%, thus showing strong potential in commercialization. However, the market prospects of PSCs have been hampered by the toxicity of lead-based materials. Therefore the seeking of less toxic and environmentally friendly elements that can replace Pb is of great interest. Tin-based perovskites are the most promising choice at present due to its similar electronic configuration as Pb, and can even have more superior semiconductor properties. As a rising star of lead-free perovskite solar cells, tin-based PSCs have drawn much attention and made promising progress duringthe past few years. However, it is still challenging to obtain ef ficient and stable tin-based PSCs because of the low defects formation energy and the oxidation of bivalent tin. Among all Pb-free perovskite materials that show photovoltaic performance, formamidinium tin tri-iodide (FASnI 3) based PSCs are the most promising because of the suitable band gap, low exciton bind energy, and high carrier mobility. The main drawbacks of tin-based perovskite material are its instability because of the easy oxidation of Sn 2+ into Sn 4+ and high dark current which arises from high p -type carrier concentration. The latter originates from the low formation energy of Sn vacancies. Many strategies have been developed to overcome these problems and promote the performance of tin-based PSCs. On one type of pursuit to avoid the oxidation of Sn 2+, reduction additives (e.g., SnF 2, pyrazine, hydrazine vapor, hydroxybenzene sulfonic acid or its salt, and π-conjugated polymer) and solvent-free processing have been introduced and shown to be effective up to a point. In another type, Cs or Br alloying and construction of low-dimensional structures in tin-based perovskite have also been shown to be promising. In this review, the optical and electrical properties of tin-based perovskite are systematically discussed. And then, the film fabrication methods and different device architectures of tin-based PSCs are summarized. Finally, the current challenges and a future outlook for tin-based PSCs are discussed.Key Words: Tin-based; Organic-inorganic perovskite; Solar cell; Film fabrication method; Device architecture锡基钙钛矿太阳能电池研究进展李淏淼1,董化1,2,李璟睿3,吴朝新1,2,*1西安交通大学电子科学与工程学院,电子物理与器件教育部重点实验室,陕西省信息光子技术重点实验室,西安 710049 2山西大学极端光学协同创新中心,太原 0300063西安交通大学电子科学与工程学院,电子陶瓷与器件教育部重点实验室,国际电介质研究中心,西安 710049摘要:自2009年以来,有机-无机卤化物钙钛矿因其独特的光学和电学性能,在光电材料领域受到了广泛的研究,尤其是Pb 基的卤化物钙钛矿太阳能电池,目前光电转换效率高达创纪录的约25.2%,显示出强大的商业化潜力。
钙钛矿太阳能电池原理
钙钛矿太阳能电池原理钙钛矿太阳能电池是一种新型的太阳能电池技术,具有高效率、低成本和环保等优点,因此备受关注。
在深入了解钙钛矿太阳能电池的原理之前,我们先来了解一下太阳能电池的基本原理。
太阳能电池是利用光电效应将太阳能转化为电能的一种器件。
其基本原理是当光线照射到半导体材料上时,光子会激发材料中的电子,使其跃迁到导带中,形成电子-空穴对。
这些电子-空穴对在电场的作用下分离,形成电流,从而产生电能。
这就是太阳能电池的基本工作原理。
而钙钛矿太阳能电池是基于钙钛矿材料构建的太阳能电池。
钙钛矿是一种晶体结构独特的材料,具有优异的光电性能,因此被广泛应用于太阳能电池领域。
那么,钙钛矿太阳能电池的工作原理是什么呢?钙钛矿太阳能电池的工作原理主要包括光吸收、电子传输和电荷分离三个过程。
首先,当阳光照射到钙钛矿太阳能电池上时,钙钛矿材料会吸收光子,激发内部电子,形成电子-空穴对。
接着,这些电子-空穴对会在材料内部传输,最终达到电子传输层和电子受体层。
在这个过程中,电子会被输送到电子传输层,而空穴则会留在钙钛矿材料中。
接下来,电子传输层中的电子会被输送到外部电路中,形成电流,从而产生电能。
而空穴则会在钙钛矿材料中留下,等待下一轮光照。
这样,电子和空穴被有效地分离,形成电荷分离,从而产生电能。
总的来说,钙钛矿太阳能电池的工作原理是利用钙钛矿材料吸收光子,激发电子-空穴对,然后通过电子传输和电荷分离的过程,将光能转化为电能。
这种原理使得钙钛矿太阳能电池具有高效率和良好的光电性能,成为太阳能电池领域的研究热点。
总的来说,钙钛矿太阳能电池的原理是通过光吸收、电子传输和电荷分离等过程,将太阳能转化为电能。
这种原理使得钙钛矿太阳能电池具有高效率和良好的光电性能,成为太阳能电池领域的研究热点。
希望通过本文的介绍,能让大家对钙钛矿太阳能电池的工作原理有一个更加深入的了解。
钙钛矿太阳能电池的结构及工作原理
钙钛矿太阳能电池的结构及工作原理钙钛矿太阳能电池是一种新型的太阳能电池,它具有高效转换太阳能为电能的特点。
本文将从结构和工作原理两个方面来介绍钙钛矿太阳能电池。
一、结构钙钛矿太阳能电池的结构相对简单,一般包括五个主要部分:透明导电玻璃基底、电子传输层、钙钛矿吸收层、电解质层和电极。
1.透明导电玻璃基底:位于钙钛矿太阳能电池的底部,负责接收太阳光并将其传输到下一层。
2.电子传输层:位于透明导电玻璃基底上方,其主要作用是接受来自钙钛矿吸收层的电子,并将其传输到电极。
3.钙钛矿吸收层:位于电子传输层上方,是钙钛矿太阳能电池的关键部分。
钙钛矿是一种具有良好光吸收性能的材料,能够将光能转化为电能。
4.电解质层:位于钙钛矿吸收层上方,其作用是分离正负电荷,并促进电子的流动。
5.电极:位于电解质层上方,负责收集电流并将其传输到外部电路。
二、工作原理钙钛矿太阳能电池的工作原理可以概括为光电转换过程。
当太阳光照射到钙钛矿吸收层时,光子被吸收并激发钙钛矿中的电子。
这些激发的电子会在钙钛矿中移动,最终被电子传输层接收并传输到电极。
在这个过程中,光能被转化为电能。
具体来说,当光子进入钙钛矿吸收层后,它们会与钙钛矿中的电子发生相互作用,将其激发至导带。
激发的电子会在导带中移动,形成自由电子,而在价带中留下空穴。
这些自由电子和空穴会被电子传输层和电解质层分别接收。
电子传输层会将自由电子传输到电极,而电解质层则会将空穴传输到另一个电极。
这样,在电解质层中形成了正负电荷的分离,从而产生了电势差。
当外部电路连接到电极上时,电子和空穴会通过电路流动,形成电流,完成能量转换的过程。
需要注意的是,钙钛矿太阳能电池的效率较高,这主要归功于钙钛矿材料具有良好的光吸收和电荷传输性能。
此外,钙钛矿太阳能电池还具有较宽的光谱响应范围和较高的光稳定性,这使得它在太阳能电池领域具有广阔的应用前景。
钙钛矿太阳能电池是一种高效转换太阳能为电能的新型太阳能电池。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Small
Volume 11, Issue 1, pages 10-25, 30 OCT 2014 DOI: 10.1002/smll.201402767
11
/doi/10.1002/smll.201402767/full#smll201402767-fig-0005
2. Facile low temperature solution-based fabrication method; 3. High absorption coefficient. 4. Higher stability in air. 5. High diffusion length, high charge-carrier mobilities.
Small
Volume 11, Issue 1, pages 10-25, 30 OCT 2014 DOI: 10.1002/smll.201402767
10
/doi/10.1002/smll.201402767/full#smll201402767-fig-0004
• Changing in any of A, M and X in AMX3 changes the bandgap • The bandgap also can be tuned in between 1.55 eV and 1.17 eV
by varying the ratio of lead to tin
• Mesoporous TiO2 layer usually is used to collect the electrons • Organic Hole transporting material (HTM) collects the holes • Planar structure has simpler structure and higher efficiency
6. very high values of open-circuit voltages (VOC) typically obtained.
5
Perovskite Crystal Structure
• Usually have stoichiometry of AMX3 • X is an oxide or halide anion such as Cl, Br and I. • M refers to a metal cation with a coordination number of 6. • The MX6 octahedra share corners and A is usually a large cation
Basic Structure of a Photovoltaic Solar Cell
• A photovoltaic solar cell is madeht Absorber; converting incident photons to electron and holes • Carrier Collector/s; capturing the carriers • Metal Contacts: transferring the carriers to the circuit
• CH3NH3PbI3 is most common used materials for making high efficiency perovskite solar cells.
• CH3NH3PbI3 is a semiconducting pigment with a direct bandgap of 1.55 eV with absorption coefficient as high as 104–105 cm−1
Preparation Method cont.
• All deposition process happens at a low temperature (below 150 °C), which is suitable for the fabrication of flexible solar cells based on PET substrates.
Phys. Rev. B 90, 045207
8
Band Gap Tuning
• Bandgap tuning is required to extend the absorption to longer wavelengths without sacrificing the absorption coefficient.
• CH3NH3PbI3 degrades in humid conditions and forms PbI2 at higher temperatures due to the loss of CH3NH3I
13%
• CdTe (Cadmium Telluride)
17%
• CIGS (Copper Indium Gallium Selenium)
20%
• Low Cost and high Efficient:
• DSSC (Dye-sensitized solar cells) • QDSSC (Quantum Dot-sensitized solar cells) • OPV (Organic photovoltics) • QDs-Polymer Hybrid solar cells • Perovskite Solar Cells
3
Emergence of Perovskite Solar Cells
• Efficiency jump in photovoltaics research • From 3.8 % in 2009 to 15.9 % in 2014
15% perovskite solar cell made in University of Oxford
• The large size and aspherical shape of MA cause distortion in network and drives several phase transitions by decreasing T.
• For T <160 K orthorhombic, 162.2 K<T< 327.4 K tetragonal and T > 327.4 K cubic.
• The heart of a solar cell is the absorber layer
Basic schematic of a photovoltaic solar cell
2
Three Generations of Solar Cells
• Wafer based:
Highest efficiency
FA: formamidinium HC(NH2)2+
Small
Volume 11, Issue 1, pages 10-25, 30 OCT 2014 DOI: 10.1002/smll.201402767
9
/doi/10.1002/smll.201402767/full#smll201402767-fig-0002
Short Overview of Perovskite Solar Cells
New Promising Materials for Next Generation Solar Cells Hadi Maghsoudi 27 February 2015
Slides at: /hadimaghsoudi/perovskite-solar-cells
Science 18 October 2013: Vol. 342 no. 6156 pp. 317-318
4
Superiorities of Perovskite Solar Cells
1. High efficiency; with an efficiency of 15.9% after only several years work.
• First three-dimensional organic–inorganic hybrid perovskite, discovered by replacing caesium in CsPbX3 (X = Cl, Br or I) with methylammonium cations (MA = CH3NH3+) by Dieter Weber, in 1978.
that fills the cuboctahedral holes with coordination number of 12. • A can be Ca, K, Na, Pb, Sr, other rare metals.
CrystEngComm, 2010, 12, 2646-2662
6
Organic–inorganic Hybrid Perovskites
• it means that the light-generated electrons and holes can move large enough distances to be extracted as current, instead of losing their energy as heat within the cell
• Monocrystalline silicon
25%
• Polycrystalline silicon
20%
• Multi-junction cell (different band-gap materials)
40%
• Thin Films:
• Amorphous thin film silicon
Device structure
• The device structure, related materials, and interfacial modification are key factors in performance of solar cells.