初中数学函数总复习题

合集下载

初中数学二次函数知识点总复习含解析(1)

初中数学二次函数知识点总复习含解析(1)

初中数学二次函数知识点总复习含解析(1)一、选择题1.如图,二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,给出以下结论:①abc <0;②3a +c =0;③ax 2+bx ≤a +b ;④若M (﹣0.5,y 1)、N (2.5,y 2)为函数图象上的两点,则y 1<y 2.其中正确的是( )A .①③④B .①②3④C .①②③D .②③④【答案】C 【解析】 【分析】根据二次函数的图象与性质即可求出答案. 【详解】解:①由图象可知:a <0,c >0, 由对称轴可知:2ba->0, ∴b >0,∴abc <0,故①正确; ②由对称轴可知:2ba-=1, ∴b =﹣2a ,∵抛物线过点(3,0), ∴0=9a+3b+c , ∴9a ﹣6a+c =0, ∴3a+c =0,故②正确;③当x =1时,y 取最大值,y 的最大值为a+b+c , 当x 取全体实数时,ax 2+bx+c≤a+b+c , 即ax 2+bx≤a+b ,故③正确;④(﹣0.5,y 1)关于对称轴x =1的对称点为(2.5,y 1): ∴y 1=y 2,故④错误; 故选:C . 【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.2.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是( )A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<0【答案】A【解析】【分析】【详解】解:∵二次函数的图象开口向上,∴a>0.∵对称轴在y轴的左边,∴b2a-<0.∴b>0.∵图象与y轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b﹣2=0.∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣4,∵b>0,∴b=2﹣a>0.∴a<2.∵a>0,∴0<a<2.∴0<2a<4.∴﹣4<2a﹣4<0,即﹣4<P<0.故选A.【点睛】本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.3.抛物线y=-x2+bx+3的对称轴为直线x=-1.若关于x的一元二次方程-x2+bx+3﹣t=0(t为实数)在﹣2<x<3的范围内有实数根,则t的取值范围是()A.-12<t≤3B.-12<t<4 C.-12<t≤4D.-12<t<3【答案】C【解析】【分析】根据给出的对称轴求出函数解析式为y=-x2−2x+3,将一元二次方程-x2+bx+3−t=0的实数根看做是y=-x2−2x+3与函数y=t的交点,再由﹣2<x<3确定y的取值范围即可求解.【详解】解:∵y=-x2+bx+3的对称轴为直线x=-1,∴b=−2,∴y=-x2−2x+3,∴一元二次方程-x2+bx+3−t=0的实数根可以看做是y=-x2−2x+3与函数y=t的交点,∵当x =−1时,y =4;当x =3时,y =-12,∴函数y =-x 2−2x +3在﹣2<x <3的范围内-12<y≤4, ∴-12<t≤4, 故选:C . 【点睛】本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键.4.已知抛物线2y ax bx c =++与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线一定过原点;②方程()200++=≠ax bx c a 的解为0x =或4;③0a b c -+<;④当04x <<时,20ax bx c ++<;⑤当2x <时,y 随x 增大而增大.其中结论正确的个数有( )A .1B .2C .3D .4【答案】D 【解析】 【分析】根据题意,求得,,a b c ,根据二次函数的图像和性质,结合选项进行逐一分析,即可判断. 【详解】 由题可知22ba-=,与x 轴的一个交点坐标为(4,0),则另一个交点坐标为()0,0, 故可得1640a b c ++=,0c =, 故可得4,0a b c -== ①因为0c =,故①正确;②因为二次函数过点()()0,0,4,0,故②正确; ③当1x =-时,函数值为0a b c -+<,故③正确; ④由图可知,当04x <<时,0y <,故④正确; ⑤由图可知,当2x <时,y 随x 增大而减小,故⑤错误; 故选:D. 【点睛】本题考查二次函数的图像和性质,涉及二次函数的增减性,属综合中档题.5.方程2x 3x 10+-=的根可视为函数3y x =+的图象与函数1y x=的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( ) A .010<x <4B .011<x <43C .011<x <32D .01<x <12【答案】C 【解析】 【分析】首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1y x=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围. 【详解】解:依题意得方程3x 2x 10+-=的实根是函数2y x 2=+与1y x=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=14时,21y x 2216=+=,1y 4x ==,此时抛物线的图象在反比例函数下方; 当x=13时,21229y x =+=,1y 3x==,此时抛物线的图象在反比例函数下方; 当x=12时,21224y x =+=,1y 2x==,此时抛物线的图象在反比例函数上方; 当x=1时,2y x 23=+=,1y 1x==,此时抛物线的图象在反比例函数上方. ∴方程3x 2x 10+-=的实根x 0所在范围为:011<x <32. 故选C . 【点睛】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.6.将抛物线y =x 2﹣4x +1向左平移至顶点落在y 轴上,如图所示,则两条抛物线.直线y =﹣3和x轴围成的图形的面积S(图中阴影部分)是()A.5 B.6 C.7 D.8【答案】B【解析】【分析】B,C分别是顶点,A是抛物线与x轴的一个交点,连接OC,AB,阴影部分的面积就是平行四边形ABCO的面积.【详解】抛物线y=x2﹣4x+1=(x-2)2-3的顶点坐标C(2.-3), 向左平移至顶点落在y轴上,此时顶点B(0,-3),点A是抛物线与x轴的一个交点,连接OC,AB,如图,阴影部分的面积就是ABCO的面积,S=2×3=6;故选:B.【点睛】本题考查二次函数图象的性质,阴影部分的面积;能够将面积进行转化是解题的关键.7.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()A.当m=-3时,函数图象的顶点坐标是(13,83)B.当m>0时,函数图象截x轴所得的线段长度大于3 2C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x>14时,y随x的增大而减小【答案】D分析:A 、把m=-3代入[2m ,1-m ,-1-m],求得[a ,b ,c],求得解析式,利用顶点坐标公式解答即可;B 、令函数值为0,求得与x 轴交点坐标,利用两点间距离公式解决问题;C 、首先求得对称轴,利用二次函数的性质解答即可;D 、根据特征数的特点,直接得出x 的值,进一步验证即可解答. 详解:因为函数y=ax 2+bx+c 的特征数为[2m ,1﹣m ,﹣1﹣m]; A 、当m=﹣3时,y=﹣6x 2+4x+2=﹣6(x ﹣13)2+83,顶点坐标是(13,83);此结论正确;B 、当m >0时,令y=0,有2mx 2+(1﹣m )x+(﹣1﹣m )=0,解得:x 1=1,x 2=﹣12﹣12m, |x 2﹣x 1|=32+12m >32,所以当m >0时,函数图象截x 轴所得的线段长度大于32,此结论正确;C 、当x=1时,y=2mx 2+(1﹣m )x+(﹣1﹣m )=2m+(1﹣m )+(﹣1﹣m )=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确.D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x=14m m-,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的. 故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.8.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.抛物线y =x 2+(2a +1)x +a 2﹣a 的顶点的横坐标为:x =﹣212a +=﹣a ﹣12, 纵坐标为:y =()()224214a a a --+=﹣2a ﹣14, ∴抛物线的顶点横坐标和纵坐标的关系式为:y =2x +34, ∴抛物线的顶点经过一二三象限,不经过第四象限, 故选:D . 【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.9.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A .甲B .乙C .丙D .丁【答案】B 【解析】 【分析】利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论. 【详解】解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确 由乙、丁同学的结论可得01442b cb c =-+⎧⎨=++⎩解得:1323b c ⎧=⎪⎪⎨⎪=-⎪⎩∴二次函数的解析式为:221212533636⎛⎫=+-=+ ⎪⎝⎭-y x x x∴当x=16-时,y 的最小值为2536-,与丙的结论矛盾,故假设不成立,故本选项不符合题意;B .假设乙同学的结论错误,则甲、丙、丁的结论都正确 由甲、丙的结论可得二次函数解析式为()213y x =-+当x=2时,解得y=4,当x=-1时,y=7≠0 ∴此时符合假设条件,故本选项符合题意;C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确 由甲乙的结论可得121b b c⎧-=⎪⎨⎪=-+⎩ 解得:23b c =-⎧⎨=-⎩∴223y x x =--当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确 由甲、丙的结论可得二次函数解析式为()213y x =-+当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意. 故选B . 【点睛】此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键.10.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;③a 12>;④b >1,其中正确的结论个数是( )A .1个B .2 个C .3 个D .4 个【答案】C 【解析】 【分析】根据题意和函数图象,可以判断各个小题中的结论是否正确,本题得以解决. 【详解】 由图象可得, a >0,b >0,c <0, ∴abc <0,故①错误,当x =1时,y =a +b +c =2,故②正确, 当x =﹣1时,y =a ﹣b +c <0, 由a +b +c =2得,a +c =2﹣b ,则a ﹣b +c =(a +c )﹣b =2﹣b ﹣b <0,得b >1,故④正确,∵12b a ->-,a >0,得122b a >>,故③正确, 故选C . 【点睛】本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.11.如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于()A .5B .453C .3D .4【答案】A 【解析】 【分析】 【详解】过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,∵BF ⊥OA ,DE ⊥OA ,CM ⊥OA , ∴BF ∥DE ∥CM . ∵OD=AD=3,DE ⊥OA ,∴OE=EA=12OA=2. 由勾股定理得:DE=5.设P (2x ,0),根据二次函数的对称性得出OF=PF=x , ∵BF ∥DE ∥CM ,∴△OBF ∽△ODE ,△ACM ∽△ADE . ∴BF OF CM AMDE OE DE AE ==,,即x 2x 2255-==,,解得:()52x 5BF ?x CM 22-==,. ∴BF+CM=5. 故选A .12.抛物线y =ax 2+bx+c 的顶点为(﹣1,3),与x 轴的交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为( ) ①若点P(﹣3,m),Q(3,n)在抛物线上,则m <n ; ②c =a+3; ③a+b+c <0;④方程ax 2+bx+c =3有两个相等的实数根.A .1个B .2个C .3个D .4个【答案】C 【解析】试题分析:由抛物线与x 轴有两个交点,可知b 2-4ac >0,所以①错误;由抛物线的顶点为D (-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,可知抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y <0,即a+b+c <0,所以②正确; 由抛物线的顶点为D (-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x=2ba-=-1,可得b=2a ,因此a-2a+c=2,即c-a=2,所以③正确;由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确. 故选C .考点:二次函数的图像与性质13.如图,已知()4,1A --,线段AB 与x 轴平行,且2AB =,抛物线2y x mx n =-++经过点()0,3C 和()3,0D ,若线段AB 以每秒2个单位长度的速度向下平移,设平移的时间为t (秒).若抛物线与线段AB 有公共点,则t 的取值范围是( )A .010t ≤≤B .210t ≤≤C .28t ≤≤D .210t <<【答案】B【解析】【分析】 直接利用待定系数法求出二次函数,得出B 点坐标,分别得出当抛物线l 经过点B 时,当抛物线l 经过点A 时,求出y 的值,进而得出t 的取值范围;【详解】解:(1)把点C (0,3)和D (3,0)的坐标代入y=-x 2+mx+n 中,得,23330n m n =⎧⎨-++=⎩解得32n m =⎧⎨=⎩∴抛物线l 解析式为y=-x 2+2x+3,设点B 的坐标为(-2,-1-2t ),点A 的坐标为(-4,-1-2t ),当抛物线l 经过点B 时,有y=-(-2)2+2×(-2)+3=-5,当抛物线l 经过点A 时,有y=-(-4)2+2×(-4)+3=-21,当抛物线l 与线段AB 总有公共点时,有-21≤-1-2t≤-5,解得:2≤t≤10.故应选B【点睛】此题主要考查了二次函数综合以及不等式组的解法等知识,正确利用数形结合分析得出关于t 的不等式是解题关键.14.二次函数2y ax bx c =++(,,a b c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表: x … 2- 1- 0 1 2 …且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③0m <203n +<.其中,正确结论的个数是( ) A .0B .1C .2D .3【答案】C【解析】【分析】 首先确定对称轴,然后根据二次函数的图像和性质逐一进行分析即可求解.【详解】∵由表格可知当x=0和x=1时的函数值相等都为-2∴抛物线的对称轴是:x=-2b a =12; ∴a 、b 异号,且b=-a ;∵当x=0时y=c=-2 ∴c 0<∴abc >0,故①正确;∵根据抛物线的对称性可得当x=-2和x=3时的函数值相等都为t∴2-和3是关于x 的方程2ax bx c t ++=的两个根;故②正确;∵b=-a ,c=-2∴二次函数解析式:2-a -2=y ax x ∵当12x =-时,与其对应的函数值0y >. ∴3204a ->,∴a 83>; ∵当x=-1和x=2时的函数值分别为m 和n ,∴m=n=2a-2,∴m+n=4a-4203>;故③错误 故选:C .【点睛】本题考查了二次函数的综合题型,主要利用了二次函数图象与系数的关系,二次函数的对称性,二次函数与一元二次方程等知识点,要会利用数形结合的思想,根据给定自变量x 与函数值y 的值结合二次函数的性质逐条分析给定的结论是关键.15.若A (-4,1y ),B (-3,2y ),C (1,3y )为二次函数y =x 2+4x -m 的图象上的三点,则1y ,2y ,3y 的大小关系是( )A .1y <2y <3yB .3y <1y <2yC .2y <1y <3yD .1y <3y <2y【答案】C【解析】【分析】分别将点的坐标代入二次函数解析式,然后进行判断即可.【详解】解:y 1=(-4)2+4×(-4)m -=16-16m - =m -,y 2=(-3)2+4×(-3)m - =9-12m - =3m --,y 3=12+4×m - 1=1+4m - =5m -,∵-3m -<m -<5m -,∴y 2<y 1<y 3.故选:C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键在于三个函数值的大小不受m 的影响.16.如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC CD →方向运动,当P 运动到B 点时,P Q 、点同时停止运动.设P 点运动的时间为t 秒,APQ ∆的面积为S ,则表示S 与t 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】本题应分两段进行解答,①点P 在AB 上运动,点Q 在BC 上运动;②点P 在AB 上运动,点Q 在CD 上运动,依次得出S 与t 的关系式,即可判断得出答案.【详解】解:当点P 在AB 上运动,点Q 在BC 上运动时,此时,,2AP t BQ t ==2122APQ S t t t =⋅⋅=V ,函数图象为抛物线; 当点P 在AB 上运动,点Q 在BC 上运动时,此时,AP t =,APQ V 底边AP 上的高保持不变1422APQ S t t =⋅⋅=V ,函数图象为一次函数; 故选:D .【点睛】本题考查的知识点是函数图象,理解题意,分段求出S 与t 之间的函数关系是解此题的关键.17.如图,正方形ABCD 中,AB =4cm ,点E 、F 同时从C 点出发,以1cm /s 的速度分别沿CB ﹣BA 、CD ﹣DA 运动,到点A 时停止运动.设运动时间为t (s ),△AEF 的面积为S (cm 2),则S (cm 2)与t (s )的函数关系可用图象表示为( )A .B .C .D .【答案】D【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S 正方形ABCD ﹣S △ADF ﹣S △ABE ﹣S △CEF 可得S=﹣t 2+4t ,配成顶点式得S=﹣(t ﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t )2=(t ﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断. 解:当0≤t≤4时,S=S 正方形ABCD ﹣S △ADF ﹣S △ABE ﹣S △CEF=4•4﹣•4•(4﹣t )﹣•4•(4﹣t )﹣•t•t=﹣t 2+4t=﹣(t ﹣4)2+8;当4<t≤8时,S=•(8﹣t )2=(t ﹣8)2.故选D .考点:动点问题的函数图象.18.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)【答案】C【解析】【分析】【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C .本题考查二次函数的性质.19.在函数2yx=,3y x=+,2y x=的图象中,是中心对称图形,且对称中心是原点的图象共有()A.0个B.1个C.2个D.3个【答案】B【解析】【分析】根据中心对称图形的定义与函数的图象即可求解.【详解】y=x+3的图象是中心对称图形,但对称中心不是原点;y=x2图象不是中心对称图形;只有函数2yx=符合条件.故选:B.【点睛】本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.20.在同一直角坐标系中,反比例函数图像与二次函数图像的交点的个数至少有() A.0B.1C.2D.3【答案】B【解析】【分析】根据二次函数和反比例函数的图象位置,画出图象,直接判断交点个数.【详解】若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第一,三象限,故两个函数的交点只有一个,在第三象限.同理,若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第二,四象限,故两个函数的交点只有一个,在第四象限.故答案为:B.本题考查了二次函数和反比例函数的图象问题,掌握二次函数和反比例函数的图象性质是解题的关键.。

人教版初中数学二次函数知识点总复习附解析

人教版初中数学二次函数知识点总复习附解析

人教版初中数学二次函数知识点总复习附解析一、选择题1.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )A .1B .2C .3D .4【答案】C【解析】【分析】【详解】 解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误;根据函数对称轴可得:-2b a=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.2.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线的开口向下,则a <0;抛物线的对称轴为x=1,则-2b a=1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误)由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0∵1x ≠2x∴a(x 1+x 2)+b=0∴x 1+x 2=2b a a a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.3.已知抛物线2y ax bx c =++与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线一定过原点;②方程()200++=≠ax bx c a 的解为0x =或4;③0a b c -+<;④当04x <<时,20ax bx c ++<;⑤当2x <时,y 随x 增大而增大.其中结论正确的个数有( )A .1B .2C .3D .4【答案】D【解析】【分析】 根据题意,求得,,a b c ,根据二次函数的图像和性质,结合选项进行逐一分析,即可判断.【详解】 由题可知22b a-=,与x 轴的一个交点坐标为(4,0),则另一个交点坐标为()0,0, 故可得1640a b c ++=,0c, 故可得4,0a b c -==①因为0c ,故①正确;②因为二次函数过点()()0,0,4,0,故②正确;③当1x =-时,函数值为0a b c -+<,故③正确;④由图可知,当04x <<时,0y <,故④正确;⑤由图可知,当2x <时,y 随x 增大而减小,故⑤错误;故选:D.【点睛】本题考查二次函数的图像和性质,涉及二次函数的增减性,属综合中档题.4.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( )A .①④B .②④C .②③D .①②③④【答案】A【解析】【分析】①抛物线与x 轴由两个交点,则240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,所以0abc >,故②错误;③对称轴:直线12b x a=-=-,2b a =,所以24a b c a c +-=-,240a b c a c +-=-<,故③错误;④对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,则抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确.【详解】解:①∵抛物线与x 轴由两个交点,∴240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,∴0abc >,故②错误;③∵对称轴:直线12b x a=-=-, ∴2b a =,∴24a b c a c +-=-,∵0a <,40a <, 0c >,0a <,∴240a b c a c +-=-<,故③错误;④∵对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,∴抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确.故选:A .【点睛】本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.5.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C【解析】【分析】 利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.【详解】 解:抛物线开口向上, 0a ∴>,对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;当1x =时,0y <,0a b c ∴++<,所以②错误;抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =, 即12b a-=, 20a b ∴+=,所以③正确;抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误.综上所述:③正确;①②④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.6.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0),对称轴为直线x =﹣1,当y >0时,x 的取值范围是( )A .﹣1<x <1B .﹣3<x <﹣1C .x <1D .﹣3<x <1【答案】D【解析】【分析】 根据已知条件求出抛物线与x 轴的另一个交点坐标,即可得到答案.【详解】解:∵抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),对称轴为直线x =﹣1,∴抛物线与x 轴的另一交点坐标是(﹣3,0),∴当y >0时,x 的取值范围是﹣3<x <1.所以答案为:D .【点睛】此题考查抛物线的性质,利用对称轴及图象与x 轴的一个交点即可求出抛物线与x 轴的另一个交点坐标.7.二次函数2(,,y ax bx c a b c =++为常数,且0a ≠)中的x 与y 的部分对应值如表: x ···1- 0 1 3 ··· y··· 1- 3 53 ··· 下列结论错误的是( )A .0ac <B .3是关于x 的方程()210ax b x c +-+=的一个根;C .当1x >时,y 的值随x 值的增大而减小;D .当13x 时,()210.ax b x c +-+>【答案】C【解析】【分析】根据函数中的x 与y 的部分对应值表,可以求得a 、b 、c 的值 然后在根据函数解析式及其图象即可对各个选项做出判断.【详解】解:根据二次函数的x 与y 的部分对应值可知:当1x =-时,1y =-,即1a b c -+=-,当0x =时,3y =,即3c =,当1x =时,5y =,即5a b c ++=,联立以上方程:135a b c c a b c -+=-⎧⎪=⎨⎪++=⎩,解得:133a b c =-⎧⎪=⎨⎪=⎩,∴233y x x =-++;A 、1330=-⨯=-<ac ,故本选项正确;B 、方程()210ax b x c +-+=可化为2230x x -++=, 将3x =代入得:232339630-+⨯+=-++=,∴3是关于x 的方程()210ax b x c +-+=的一个根,故本选项正确; C 、233y x x =-++化为顶点式得:2321()24=--+y x , ∵10a =-<,则抛物线的开口向下, ∴当32x >时,y 的值随x 值的增大而减小;当32x <时,y 的值随x 值的增大而增大;故本选项错误; D 、不等式()210ax b x c +-+>可化为2230x x -++>,令2y x 2x 3=-++, 由二次函数的图象可得:当0y >时,13x,故本选项正确;故选:C .【点睛】 本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数与不等式的关系,根据表中数据求出二次函数解析式是解题的关键.8.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.9.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c <0;②a ﹣b +c >1;③abc >0;④9a ﹣3b +c <0;⑤c ﹣a >1.其中所有正确结论的序号是( )A .①②B .①③④C .①②③④D .①②③④⑤【答案】D【解析】【分析】 根据抛物线的开口方向可得出a 的符号,再由抛物线与y 轴的交点可得出c 的值,然后进一步根据对称轴以及抛物线得出当x 1=、 x 1=-、x 3=-时的情况进一步综合判断即可.【详解】由图象可知,a <0,c=1,对称轴:x=b12a-=-, ∴b=2a , ①由图可知:当x=1时,y <0,∴a+b+c <0,正确;②由图可知:当x=−1时,y >1,∴a −b+c >1,正确;③abc=2a 2>0,正确;④由图可知:当x=−3时,y <0,∴9a −3b+c <0,正确;⑤c−a=1−a >1,正确;∴①②③④⑤正确.故选:D .【点睛】本题主要考查了抛物线的函数图像性质的综合运用,熟练掌握相关概念是解题关键.10.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( ) A . B . C . D .【答案】C【解析】【分析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2b a>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .故选C .11.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D【解析】【分析】 根据抛物线开口方向得到a 0>,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a bc ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a bc ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

初中数学函数练习题(大集合)

初中数学函数练习题(大集合)

初中数学函数练习题(大集合)一、单选题1.反比例函数1k y x-=的图象经过点(2,3)-,则k 的值是( ) A .5- B .6- C .7- D .上述答案都不对 2.二次函数y =2x 2﹣1的图象的顶点坐标是( ) A .(﹣1,0)B .(1,0)C .(0,1)D .(0,﹣1)3.已知函数()252m y m x -=+是关于x 的反比例函数,则该函数图象位于( )A .第一、第三象限B .第二、第四象限C .第一、第二象限D .第三、第四象限4.在平面直角坐标系中,如果点(),A a b 在第三象限,那么点(),B a b --所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限5.一次函数()20y kx k =->的图象可能是( )A .B .C .D .6.点(1,2022)A --在( ) A .第一象限B .第二象限C .第三象限D .第四象限7.从地面竖直向上抛出一小球,小球的高度(y 米)与小球运动的时间(x 秒)之间的关系式为()20.y ax bx c a =++≠若小球在第2秒与第6秒时的高度相同,则在下列时间中小球所在高度最高的是( ) A .第3秒B .第4秒C .第5秒D .第6秒 8.如果点()3a a +,到x 轴距离等于4,那么a 的值为( ) A .4B .7-C .1D .7-或19.在同一直角坐标系中,函数y =ax −a 与y =ax(a ≠0)的图象大致是( )A .B .C .D .10.反比例函数4y x=的图象位于( ) A .第一、二象限 B .第三、四象限 C .第二、四象限D .第一、三象限11.某商场降价销售一批名牌衬衫,已知所获得利润y (元)与降价金额x (元)之间的关系是2260800y x x =-++,则获利最多为() A .15元B .400元C .80元D .1250元12.如图,在平面直角坐标系中,点A 的坐标为(3,4),那么tan α的值是( )A .34B .43C .35D .4513.二次函数22(3)4y x =-+的顶点坐标为( ) A .()2,4B .()3,4C .()3,4-D .()3,4--14.在直角坐标平面内,把二次函数2(1)y x =+的图像向左平移2个单位,那么图像平移后的函数解析式是( ). A .2(1)2y x =+-B .2(1)y x =-C .2(1)2y x =++D .2(3)y x =+15.函数y =kx +b 的图象如图所示,则关于x 的不等式kx +b <0的解集是( )A .x >0B .x <0C .x >2D .x <2二、填空题16.如图,一次函数y =kx +b 的图象经过点(4,0),(0,4),那么关于x 的不等式0<kx +b <4的解集是______.17.如图,直线1y kx =+与直线2y x b =-+交于点()1,2A ,由图象可知,不等式12kx x b +≥-+的解为______.18.将直线23y x =-向下平移4个单位后,所得直线的表达式是______. 19.已知直线y =ax ﹣1与直线y =2x +1平行,则直线y =ax ﹣1不经过第 ___象限. 20.将二次函数()212y x =--的图象先向右平移1个单位,再向上平移1个单位后图象顶点坐标为__________.三、解答题21.已知抛物线y =ax 2+bx +c (a >0)经过A (m ,n )、B (2-m ,n )两点. (1)求a 、b 满足的关系式;(2)如果抛物线的顶点P 在x 轴上,△PAB 是面积为1的直角三角形,点C 是抛物线上动点(不与A 、B 重合),直线AC 、BC 分别与抛物线的对称轴交于点M 、N . ①求抛物线的解析式; ②求证:PM =PN .22.如图,在平面直角坐标系中,点A 是抛物线26(0)y x x k k =-+>与y 轴交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的等边ABC 的周长为__________.23.如图,二次函数()20y ax bx c a =++≠的图象的顶点C 的坐标为()13--,,与x 轴交于()30A -,,()10B ,,根据图象回答下列问题:(1)写出方程20ax bx c ++=的根;(2)若方程2ax bx c k ++=有实数根,写出实数k 的取值范围.24.如图,从某建筑物的窗口A 处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直),点A 离地面的高度为6米,抛物线的最高点P 到墙的垂直距离为2米,到地面的垂直距离为8米,如图建立平面直角坐标系.(1)求抛物线的解析式; (2)求水落地离墙的最远距离OB .25.已知,如图,二次函数2y x bx c =-++的图象与x 轴交于A ,B 两点,与y 轴交于点()0,6C ,且经过点()1,10(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标和对称轴.(3)求ABC 的面积,写出>0y 时x 的取值范围.【参考答案】一、单选题 1.A 2.D 3.A 4.A 5.B 6.C 7.B 8.D 9.D 10.D 11.D 12.B 13.B 14.D 15.C 二、填空题16.0<x <417.1≥x 18.27y x =-19.二 20.(2,-1)三、解答题21.(1)2b a =-(2)①221y x x =-+;②见解析 【解析】 【分析】(1)根据题意可得抛物线的对称轴为直线212m mx +-==,即可求解; (2)①根据题意可得点P 的坐标为(1,0),可得抛物线的解析式为()21y a x =-,再由勾股定理可得()221m n -=,然后由△PAB 是面积为1的直角三角形,可得11m n-=,可求出m ,n 的值,即可求解;②点()2,21C t t t -+,然后分别求出直线AC 、BC 的解析式,即可求证. (1)解:∵抛物线y =ax 2+bx +c (a >0)经过A (m ,n )、B (2-m ,n )两点, ∴抛物线的对称轴为直线212m mx +-==, ∴12ba-=, 解得:2b a =-; (2)解:①∵点P 为抛物线的顶点, ∴PA =PB ,点P 的坐标为P (1,0), ∴可设抛物线的解析式为()21y a x =-, ∵△PAB 是直角三角形, ∴∠APB =90°,PA =PB ,∵()()()222222221,21,2PA m n PB m n AB m m =-+=--+=--, ∴()()()222221212m n m n m m -++--+=--, ∴()221m n -=,∵△PAB 是面积为1的直角三角形,∴1212n m m --=, ∴11m n-=, ∴221n n ⎛⎫= ⎪⎝⎭,解得:n =1或n =-1(舍去),∴m =2或0,∴点A 的坐标为(2,1)或(0,1), 当点A (2,1)时,a =1;当点A (0,1)时,a =1;∴抛物线的解析式为()22121y x x x =-=-+; ②由①得:令点A (0,1),则B (2,1),设点()2,21C t t t -+,设直线AC 的解析式为()1110y k x b k =+≠,把点A (0,1),()2,21C t t t -+代入得:1211121b k t b t t =⎧⎨+=-+⎩,解得:1121k t b =-⎧⎨=⎩, ∴直线AC 的解析式为()21y t x =-+, 当x =1时,y =t -1, ∴点M (1,t -1), ∴PM =1t -,同理直线BC 的解析式为12y tx t =+-, 当x =1时,y =1-t , ∴点N (1,1-t ), ∴PN =1t -, ∴PM =PN . 【点睛】本题主要考查了二次函数的图象和性质,一次函数的图象和性质,勾股定理,熟练掌握二次函数和一次函数的图象和性质是解题的关键. 22.18 【解析】 【分析】根据抛物线的解析式即可确定对称轴,则AB 的长度即可求解,即可求出答案. 【详解】根据题意可知抛物线26(0)y x x k k =-+>的对称轴是x =3, 如图,作CD ⊥AB 于点D ,∵AB ∥x 轴 ∴AD =3,AB =2AD ∴AB =2AD =6,则AB 为边的等边△ABC 的周长为3×6=18. 故答案为:18. 【点睛】此题考查了二次函数的性质,根据抛物线的解析式确定对称轴,从而求得AB 的长是关键.23.(1)13x =-,21x = (2)3k ≥- 【解析】 【分析】(1)由一元二次方程20ax bx c ++=的根是二次函数()20y ax bx c a =++≠的图象与x 轴交点的横坐标可得答案;(2)方程2ax bx c k ++=有实数根,则抛物线()20y ax bx c a =++≠与直线y k =有交点,结合抛物线()20y ax bx c a =++≠的顶点坐标为()13,--可得答案. (1)解:∵方程20ax bx c ++=的根是二次函数()20y ax bx c a =++≠的图象与x 轴交点的横坐标,∴方程20ax bx c ++=的根为13x =-,21x =; (2)解:∵方程2ax bx c k ++=有实数根, ∴抛物线2y ax bx c =++与直线y k =有交点, 由函数图象可知3k ≥-. 【点睛】本题考查二次函数的图象,要熟记以下内容:(1)一元二次方程20ax bx c ++=的根是抛物线()20y ax bx c a =++≠与x 轴交点的横坐标;(2)方程2ax bx c k ++=的解是抛物线()20y ax bx c a =++≠与直线y k =交点的横坐标.24.(1)21(2)82y x =--+(2)6米 【解析】 【分析】(1)根据题意可知该抛物线顶点坐标,且经过点A (0,6),即可设抛物线的解析式为2(2)8y a x =-+,再将A (0,6)代入,求出a 即可;(2)对于该抛物线解析式,令y =0,求出x 的值即可. (1)由题意可知抛物线的顶点坐标为(2,8),且经过点A (0,6), ∴设抛物线的解析式为2(2)8y a x =-+, 把A (0,6)代入得486a +=,解得:12a =-,∴21(2)82y x =--+.(2) 令0y =,得()212802x --+=, 解得:16x =,22x =-(舍去), ∴水落地离墙的最远距离为6米. 【点睛】本题考查二次函数的实际应用.根据题意,利用待定系数法求出解析式是解答本题的关键.25.(1)256y x x =-++;(2)顶点坐标是549,24⎛⎫⎪⎝⎭,对称轴是52x =;(3)ABC ∆的面积为21,>0y 时,x 的取值范围是-1<<6x . 【解析】 【分析】(1)直接利用待定系数法将已知点代入得出方程组求出答案; (2)直接利用配方法求出抛物线顶点坐标和对称轴即可;(3)首先求出抛物线与x 轴的交点坐标,然后利用三角形面积公式和图像得出答案. 【详解】(1)∵二次函数2y x bx c =-++的图象经过点()0,6C 、()1,10,∴6110c b c =⎧⎨-++=⎩, 解这个方程组,得56b c =⎧⎨=⎩,∴该二次函数的解析式是256y x x =-++;(2)225495624y x x x ⎛⎫=-++=--+ ⎪⎝⎭,∴顶点坐标是549,24⎛⎫⎪⎝⎭;对称轴是52x =; (3)∵二次函数256y x x =-++的图象与x 轴交于A ,B 两点, ∴2560x x -++=,解这个方程得:11x =-,26x =,即二次函数256y x x =-++与x 轴的两个交点的坐标为()1,0A -,()6,0B . ∴ABC ∆的面积()116162122ABCSAB OC =⨯=⨯--⨯=. 由图像可得,当-1<<6x 时,>0y ,故>0y 时,x 的取值范围是-1<<6x .【点睛】本题主要考查了待定系数法求函数表达式,求三角形面积,图像法求自变量求职范围,用配方法求抛物线顶点坐标和对称轴,求出函数表达式是解决问题的关键.。

最新初中数学二次函数知识点总复习附解析

最新初中数学二次函数知识点总复习附解析

最新初中数学二次函数知识点总复习附解析一、选择题1.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A .甲B .乙C .丙D .丁【答案】B 【解析】 【分析】利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论. 【详解】解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确 由乙、丁同学的结论可得01442b cb c =-+⎧⎨=++⎩解得:1323b c ⎧=⎪⎪⎨⎪=-⎪⎩∴二次函数的解析式为:221212533636⎛⎫=+-=+ ⎪⎝⎭-y x x x∴当x=16-时,y 的最小值为2536-,与丙的结论矛盾,故假设不成立,故本选项不符合题意;B .假设乙同学的结论错误,则甲、丙、丁的结论都正确 由甲、丙的结论可得二次函数解析式为()213y x =-+ 当x=2时,解得y=4,当x=-1时,y=7≠0 ∴此时符合假设条件,故本选项符合题意;C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确 由甲乙的结论可得1201bb c⎧-=⎪⎨⎪=-+⎩ 解得:23b c =-⎧⎨=-⎩∴223y x x =--当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确 由甲、丙的结论可得二次函数解析式为()213y x =-+当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意. 故选B . 【点睛】此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键.2.抛物线2y ax bx c =++(,,a b c 是常数),0a >,顶点坐标为1(,)2m .给出下列结论:①若点1(,)n y 与点23(2)2n y -,在该抛物线上,当12n <时,则12y y <;②关于x 的一元二次方程210ax bx c m -+-+=无实数解,那么( )A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误 【答案】A 【解析】 【分析】①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的解析式,求得m ,再把m 代入一元二次方程ax 2-bx+c-m+1=0的根的判别式中计算,判断其正负便可判断正误. 【详解】解:①∵顶点坐标为1,2m ⎛⎫⎪⎝⎭,12n <∴点(n ,y 1)关于抛物线的对称轴x=12的对称点为(1-n ,y 1), ∴点(1-n ,y 1)与2322n y ⎛⎫-⎪⎝⎭,在该抛物线的对称轴的右侧图像上, 31(1)2022n n n ⎛⎫---=-< ⎪⎝⎭Q3122n n ∴-<- ∵a >0,∴当x >12时,y 随x 的增大而增大, ∴y 1<y 2,故此小题结论正确;②把1,2m ⎛⎫⎪⎝⎭代入y=ax 2+bx+c 中,得1142m a b c =++,∴一元二次方程ax 2-bx+c-m+1=0中, △=b 2-4ac+4am-4a 2211444()4042b ac a a b c a a b a ⎛⎫=-+++-=+-<⎪⎝⎭∴一元二次方程ax 2-bx+c-m+1=0无实数解,故此小题正确; 故选A . 【点睛】本题主要考查了二次函数图象与二次函数的系数的关系,第①小题,关键是通过抛物线的对称性把两点坐标变换到对称轴的一边来,再通过二次函数的增减性进行比较,第②小题关键是判断一元二次方程根的判别式的正负.3.已知抛物线224y x x c =-+与直线2y =有两个不同的交点.下列结论:①4c <;②当1x =时,y 有最小值2c -;③方程22420x x c -+-=有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则52c =;其中正确的结论的个数是( ) A .4 B .3 C .2D .1【答案】B 【解析】 【分析】根据“抛物线224y x x c =-+与直线2y =有两个不同的交点”即可判断①③;根据抛物线的对称轴为直线x=1即可判断②;根据等腰直角三角形的性质,用c 表达出两个交点,代入抛物线解析式计算即可判断④. 【详解】解:∵抛物线224y x x c =-+与直线2y =有两个不同的交点,∴2242x x c -+=有两个不相等的实数根,即22420x x c -+-=有两个不相等的实数根,故③正确,∴1642(2)0c ∆=-⨯⨯->,解得:4c <,故①正确; ∵抛物线的对称轴为直线x=1,且抛物线开口向上, ∴当x=1时,2y c =-为最小值,故②正确;若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形, 则顶点(1,c-2)到直线y=2的距离等于两交点距离的一半, ∵顶点(1,c-2)到直线y=2的距离为2-(c-2)=4-c , ∴两交点的横坐标分别为1-(4-c )=c-3与1+(4-c )=5-c ∴两交点坐标为(c-3,2)与(5-c,2),将(c-3,2)代入224y x x c =-+中得:22(3)4(3)2c c c ---+=解得:72c =或4c = ∵4c <,∴72c =,故④错误, ∴正确的有①②③, 故选:B . 【点睛】本题考查了二次函数与一元二次方程的关系以及二次函数的性质,解题的关键是熟练掌握函数与方程之间的联系.4.在同一平面直角坐标系中,函数y=ax 2+bx 与y=bx+a 的图象可能是( )A .B .C .D .【答案】C 【解析】试题解析:A 、对于直线y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2+bx 来说,对称轴x=﹣2ba<0,应在y 轴的左侧,故不合题意,图形错误. B 、对于直线y=bx+a 来说,由图象可以判断,a <0,b <0;而对于抛物线y=ax 2+bx 来说,图象应开口向下,故不合题意,图形错误.C 、对于直线y=bx+a 来说,由图象可以判断,a <0,b >0;而对于抛物线y=ax 2+bx 来说,图象开口向下,对称轴x=﹣2ba位于y 轴的右侧,故符合题意, D 、对于直线y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2+bx 来说,图象开口向下,a <0,故不合题意,图形错误. 故选C .考点:二次函数的图象;一次函数的图象.5.二次函数y=﹣x 2+mx 的图象如图,对称轴为直线x=2,若关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解,则t 的取值范围是( )A .t >﹣5B .﹣5<t <3C .3<t≤4D .﹣5<t≤4【答案】D 【解析】 【分析】先根据对称轴x=2求得m 的值,然后求得x=1和x=5时y 的值,最后根据图形的特点,得出直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4. 【详解】∵抛物线的对称轴为x =2, ∴22m-=-,m=4 如图,关于x 的一元二次方程﹣x 2+mx ﹣t=0的解就是抛物线y=﹣x 2+mx 与直线y=t 的交点的横坐标当x=1时,y=3, 当x=5时,y=﹣5,由图象可知关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解, 则直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4, ∴﹣5<t≤4. 故选:D . 【点睛】本题考查二次函数与一元二次方程的关系,方程有解,反映在图象上即图象与x 轴(或某直线)有交点.6.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( )A .①④B .②④C .②③D .①②③④【答案】A 【解析】 【分析】①抛物线与x 轴由两个交点,则240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,所以0abc >,故②错误; ③对称轴:直线12bx a=-=-,2b a =,所以24a b c a c +-=-,240a b c a c +-=-<,故③错误;④对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,则抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确. 【详解】解:①∵抛物线与x 轴由两个交点, ∴240b ac ->, 即24b ac >, 所以①正确;②由二次函数图象可知, 0a <,0b <,0c >,∴0abc >, 故②错误;③∵对称轴:直线12bx a=-=-, ∴2b a =,∴24a b c a c +-=-, ∵0a <,40a <,0c >,0a <,∴240a b c a c +-=-<,故③错误;④∵对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-, ∴抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<, 故④正确. 故选:A . 【点睛】本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.7.在平面直角坐标系内,已知点A (﹣1,0),点B (1,1)都在直线1122y x =+上,若抛物线y =ax 2﹣x +1(a ≠0)与线段AB 有两个不同的交点,则a 的取值范围是( )A .a ≤﹣2B .a <98C .1≤a <98或a ≤﹣2 D .﹣2≤a <98【答案】C 【解析】 【分析】分a >0,a <0两种情况讨论,根据题意列出不等式组,可求a 的取值范围. 【详解】∵抛物线y =ax 2﹣x +1(a ≠0)与线段AB 有两个不同的交点,∴令1122x +=ax 2﹣x +1,则2ax 2﹣3x +1=0 ∴△=9﹣8a >0∴a <98①当a <0时,110111a a ++≤⎧⎨-+≤⎩解得:a ≤﹣2 ∴a ≤﹣2②当a >0时,110111a a ++≥⎧⎨-+≥⎩解得:a ≥1∴1≤a <98综上所述:1≤a <98或a ≤﹣2 故选:C . 【点睛】本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键.8.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.9.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .3-B .3C .32D .52【答案】D 【解析】 【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解. 【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B , ∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形, ∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D . 【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.10.如图,矩形ABCD 的周长是28cm ,且AB 比BC 长2cm .若点P 从点A 出发,以1/cm s 的速度沿A D C →→方向匀速运动,同时点Q 从点A 出发,以2/cm s 的速度沿A B C →→方向匀速运动,当一个点到达点C 时,另一个点也随之停止运动.若设运动时间为()t s ,APQ V 的面积为()2cmS ,则()2cm S 与()t s 之间的函数图象大致是( )A .B .C .D .【答案】A 【解析】 【分析】先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论. 【详解】解:由题意得2228AB BC +=,2AB BC =+, 可解得8AB =,6BC =,即6AD =,①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =211222AP AQ t t t ==g g , 图像是开口向上的抛物线,故选项B 、C 不正确; ②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,S △APQ =118422AP AB t t =⨯=g , 图像是一条线段,故选项D 不正确; 故选:A . 【点睛】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.11.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC--运动到点C ,点Q 以1cm/s 的速度沿BC 运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .【答案】B【解析】【分析】分三种情况求出y 与t 的函数关系式. 当0≤t≤2.5时:P 点由B 到A ;当2.5≤t≤4时,即P 点在AD 上时;当4≤t≤6时,即P 点从D 到C 时.即可得出正确选项.【详解】解:作AE ⊥BC 于E ,根据已知可得,AB 2=42+(6-3)2,解得,AB=5cm .下面分三种情况讨论:当0≤t≤2.5时:P 点由B 到A ,21442255y t t t ==gg g ,y 是t 的二次函数.最大面积= 5 cm 2; 当2.5≤t≤4时,即P 点在AD 上时,1422y t t =⨯=, y 是t 的一次函数且最大值=21448cm 2⨯⨯=;当4≤t≤6时,即P 点从D 到C 时,()211226,2y t t t t =⋅-=-+y 是t 的二次函数 故符合y 与t 的函数图象是B .故选:B .【点睛】 此题考查了函数在几何图形中的运用.解答本题的关键在于分类讨论求出函数解析式,然后进行判断.12.如图,抛物线y=ax 2+bx+c (a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a ﹣b+c ,则P 的取值范围是( )A .﹣4<P <0B .﹣4<P <﹣2C .﹣2<P <0D .﹣1<P <0【答案】A【解析】【分析】【详解】 解:∵二次函数的图象开口向上,∴a >0.∵对称轴在y 轴的左边,∴b 2a-<0.∴b >0. ∵图象与y 轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b ﹣2=0. ∴a=2﹣b ,b=2﹣a .∴y=ax 2+(2﹣a )x ﹣2.把x=﹣1代入得:y=a ﹣(2﹣a )﹣2=2a ﹣4,∵b >0,∴b=2﹣a >0.∴a <2. ∵a >0,∴0<a <2.∴0<2a <4.∴﹣4<2a ﹣4<0,即﹣4<P <0.故选A .【点睛】本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.13.若二次函数y =x 2﹣2x+2在自变量x 满足m≤x≤m+1时的最小值为6,则m 的值为( )A 5,5,15,12+B .5,51C .1D .5,15-【答案】B【解析】【分析】由抛物线解析式确定出其对称轴为x=1,分m >1或m+1<1两种情况,分别确定出其最小值,由最小值为6,则可得到关于m 的方程,可求得m 的值.【详解】∵y =x 2﹣2x+2=(x ﹣1)2+1,∴抛物线开口向上,对称轴为x =1,当m >1时,可知当自变量x 满足m≤x≤m+1时,y 随x 的增大而增大,∴当x =m 时,y 有最小值,∴m 2﹣2m+2=6,解得m =1+5或m =1﹣5(舍去),当m+1<1时,可知当自变量x 满足m≤x≤m+1时,y 随x 的增大而减小,∴当x =m+1时,y 有最小值,∴(m+1)2﹣2(m+1)+2=6,解得m =5(舍去)或m =﹣5,综上可知m 的值为1+5或﹣5.故选B .【点睛】本题主要考查二次函数的性质,用m 表示出其最小值是解题的关键.14.若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P (1,0)、Q (2,﹣2)都是“整点”.抛物线y =mx 2﹣4mx +4m ﹣2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( )A .12≤m <1 B .12<m ≤1 C .1<m ≤2 D .1<m <2 【答案】B【解析】【分析】 画出图象,利用图象可得m 的取值范围【详解】 ∵y =mx 2﹣4mx +4m ﹣2=m (x ﹣2)2﹣2且m >0,∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x =2.由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意. 将(1,﹣1)代入y =mx 2﹣4mx +4m ﹣2得到﹣1=m ﹣4m +4m ﹣2.解得m =1. 此时抛物线解析式为y =x 2﹣4x +2.由y =0得x 2﹣4x +2=0.解得12120.622 3.42x x ==-≈+≈,. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意.则当m=1时,恰好有(1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.∴m≤1.【注:m的值越大,抛物线的开口越小,m的值越小,抛物线的开口越大】答案图1(m=1时)答案图2(m=时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意.此时x轴上的点(1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入y=mx2﹣4mx+4m﹣2得到0=0﹣4m+0﹣2.解得m=12.此时抛物线解析式为y=12x2﹣2x.当x=1时,得13121122y=⨯-⨯=-<-.∴点(1,﹣1)符合题意.当x=3时,得13923122y=⨯-⨯=-<-.∴点(3,﹣1)符合题意.综上可知:当m=12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意,∴m=12不符合题.∴m>12.综合①②可得:当12<m≤1时,该函数的图象与x轴所围成的区域(含边界)内有七个整点,故选:B.【点睛】考查二次函数图象与系数的关系,抛物线与x轴的交点,画出图象,数形结合是解题的关键.15.已知抛物线y=x2+2x上三点A(﹣5,y1),B(2.5,y2),C(12,y3),则y1,y2,y3满足的关系式为( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 2【答案】C【解析】【分析】首先求出抛物线y=x 2+2x 的对称轴,对称轴为直线x=-1;然后根据A 、B 、C 的横坐标与对称轴的位置,接着利用抛物线的增减性质即可求解;由B 离对称轴最近,A 次之,C 最远,则对应y 的值大小可确定.【详解】∵抛物线y=x 2+2x ,∴x=-1,而A (-5,y 1),B (2.5,y 2),C (12,y 3),∴B 离对称轴最近,A 次之,C 最远,∴y 2<y 1<y 3.故选:C .【点睛】本题考查了二次函数的图象和性质,二次函数图象上点的坐标特征等知识点,能熟记二次函数的性质是解此题的关键.16.在函数2y x=,3y x =+,2y x =的图象中,是中心对称图形,且对称中心是原点的图象共有( )A .0个B .1个C .2个D .3个【答案】B【解析】【分析】根据中心对称图形的定义与函数的图象即可求解.【详解】 y=x+3的图象是中心对称图形,但对称中心不是原点;y=x 2图象不是中心对称图形;只有函数2y x=符合条件. 故选:B .【点睛】 本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.17.在同一平面直角坐标系中,函数3y x a =+与2+3y ax x =的图象可能是( )A .B .C .D .【答案】C【解析】【分析】根据一次函数及二次函数的图像性质,逐一进行判断.【详解】解:A.由一次函数图像可知a >0,因此二次函数图像开口向上,但对称轴302a -<应在y 轴左侧,故此选项错误;B. 由一次函数图像可知a <0,而由二次函数图像开口方向可知a >0,故此选项错误;C. 由一次函数图像可知a <0,因此二次函数图像开口向下,且对称轴302a->在y 轴右侧,故此选项正确;D. 由一次函数图像可知a >0,而由二次函数图像开口方向可知a <0,故此选项错误; 故选:C .【点睛】本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.18.平移抛物线2:L y x =得到抛物线L ',使得抛物线L '的顶点关于原点对称的点仍在抛物线L '上,下列的平移中,不能得到满足条件的抛物线L '的是( )A .向右平移1个单位,再向下平移2个单位B .向左平移1个单位,再向下平移2个单位C .向左平移32个单位,再向下平移92个单位 D .向左平移3个单位,再向下平移9个单位【答案】D【解析】【分析】通过各个选项的平移分别得到相应的函数关系式,再判断原点是否在该抛物线上即可.【详解】解:由A 选项可得L '为:2(1)2y x =--,则顶点为(1,-2),顶点(1,-2)关于原点的对称点为(-1,2),当x =-1时,y =2,则对称点在该函数图像上,故A 选项不符合题意;由B 选项可得L '为:2(1)2y x =+-,则顶点为(-1,-2),顶点(-1,-2)关于原点的对称点为(1,2),当x =1时,y =2,则对称点在该函数图像上,故B 选项不符合题意;由C 选项可得L '为:239()22y x =+-, 则顶点为(-32,-92),顶点(-32,-92)关于原点的对称点为(32,92), 当x =32时,y =92,则对称点在该函数图像上,故C 选项不符合题意; 由D 选项可得L '为:2(3)9y x =+-,则顶点为(-3,-9),顶点(-3,-9)关于原点的对称点为(3,9),当x =3时,y =27≠9,则对称点不在该函数图像上,故D 选项符合题意;故选:D .【点睛】本题考查了二次函数图像的平移,熟练掌握平移的规律“左加右减,上加下减”是解决本题的关键.19.已知二次函数y =ax 2+bx+c (a≠0)的图象如图,分析下列四个结论:①abc <0;②b 2﹣4ac >0;③3a+c >0;④(a+c )2<b 2,其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】 试题解析:①由开口向下,可得0,a <又由抛物线与y 轴交于正半轴,可得0c >,再根据对称轴在y 轴左侧,得到b 与a 同号,则可得0,0b abc ,故①错误;②由抛物线与x 轴有两个交点,可得240b ac ->, 故②正确;③当2x =-时,0,y < 即420a b c -+< (1)当1x =时,0y <,即0a b c ++< (2)(1)+(2)×2得,630a c +<,即20a c +<,又因为0,a <所以()230a a c a c ,++=+< 故③错误;④因为1x =时,0y a b c =++<,1x =-时,0y a b c =-+>所以()()0a b c a b c ++-+<即()()22()0,a c b a c b a c b ⎡⎤⎡⎤+++-=+-<⎣⎦⎣⎦ 所以22().a c b +<故④正确,综上可知,正确的结论有2个.故选B .20.如图抛物线交轴于和点,交轴负半轴于点,且.有下列结论:①;②;③.其中,正确结论的个数是( )A .B .C .D .【答案】C【解析】【分析】 根据抛物线的开口方向,对称轴公式以及二次函数图象上点的坐标特征来判断a 、b 、c 的符号以及它们之间的数量关系,即可得出结论.【详解】解:根据图象可知a >0,c <0,b >0, ∴, 故③错误;∵.∴B(-c,0)∴抛物线y=ax2+bx+c与x轴交于A(-2,0)和B(-c,0)两点,∴, ac2-bc+c=0∴,ac-b+1=0,∴,故②正确;∴,b=ac+1∴,∴2b-c=2,故①正确;故选:C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.。

初中数学《二次函数》知识点归纳及相关练习题

初中数学《二次函数》知识点归纳及相关练习题

九上数学二次函数知识点归纳及相关练习题(一)定义:一般地,如果y =ax 2+bx +c (a ,b ,c 是常数,a ≠0),那么y 叫做x 的二次函数.【名师推荐你做】1.判断下列函数是否为二次函数,如果是,指出其二次项系数、一次项系数和常数项:(1)d =12n 2-32n ;(2)2y x =-;(3)y =1-x 2.2.判断①y =5x -4,②t =23x 2-6x ,③y =2x 3-8x 2+3,④y =38x 2-1,⑤y =2312x x-+是否为二次函数,如果是,指出其二次项系数、一次项系数和常数项.3.已知2(1)31k ky k x x +=-++是关于x 的二次函数,求k 的值.【答案与解析】1.【解析】(1)d =12n 2-32n 是二次函数,二次项系数、一次项系数和常数项分别为12、32-、0;(2)2y x =-是一次函数,不是二次函数;(3)y =1-x 2是二次函数,二次项系数、一次项系数和常数项分别为-1、0、1.2.【解析】①y =5x -4,③y =2x 3-8x 2+3,⑤y =2312x x-+不符合二次函数解析式,②t =23x 2-6x ,④y =38x 2-1符合二次函数解析式,②t =23x 2-6x 的二次项系数、一次项系数和常数项分别为23、-6、0,④y =38x 2-1的二次项系数、一次项系数和常数项分别为38、0、-1.3.【答案】-2.【解析】∵函数2(1)31k ky k xx +=-++是关于x 的二次函数,∴2102k k k -≠⎧⎨+⎩=,解得k =-2.(二)二次函数y =ax 2的性质(1)抛物线y =ax 2的顶点是坐标原点,对称轴是y 轴.(2)函数y =ax 2的图像与a 的符号关系.①当a >0时⇔抛物线开口向上⇔顶点为其最低点;②当a <0时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为y =ax 2(a ≠0).【名师推荐你做】1.观察函数y =3x 2与y =-3x 2的图像,回答:抛物线的开口方向,对称轴,顶点坐标及函数的单调性.【解析】(1)抛物线y =3x 2的开口方向是向上,对称轴是y 轴,顶点坐标是(0,0),当x ≠0时,抛物线上的点都在x 轴上方;当x >0时,曲线自左向右逐渐上升,当x <0时,曲线自左向右逐渐下降;二次函数y =-3x 2的开口方向是向下,对称轴是y 轴,顶点坐标是(0,0),当x ≠0时,抛物线上的点都在x 轴下方;当x >0时,曲线自左向右逐渐下降,当x <0时,曲线自左向右逐渐上升.(三)二次函数c bx ax y ++=2、k ax y +=2、()2h x a y -=、()kh x a y +-=2A.二次函数c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.B.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中a b ac k abh 4422-=-=,.C.二次函数由特殊到一般,可分为以下几种形式:①y =ax 2;②y =ax 2+k ;③y =a (x -h )2;④y =a (x -h )2+k ;⑤y =ax 2+bx +c .【名师推荐你做】1.将抛物线y =-2x 2向右平移3个单位,再向上平移5个单位,得到的抛物线解析式是()A.y =-2(x -3)2-5B.y =-2(x +3)2-5C.y =-2(x +3)2+5D.y =-2(x-3)2+5【答案与解析】1.【答案】D【解析】由“左加右减”的原则将函数y =-2x 2的图象向右平移3个单位,所得二次函数的解析式为:y =-2(x -3)2;由“上加下减”的原则将函数y =-2(x-3)2的图象向上平移5个单位,所得二次函数的解析式为:D.y =-2(x -3)2+5.所以选D.(四)抛物线A.抛物线的三要素:开口方向、对称轴、顶点.(1)a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越大,抛物线的开口越小;a 越小,抛物线的开口越大。

(一)初中数学二次函数存在性问题总复习试题

(一)初中数学二次函数存在性问题总复习试题

初中数学二次函数存在性问题总复习试题(1)姓名:学号:评价:1.(10广东深圳)如图,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD 在x轴上,其中A(-2,0),B(-1, -3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使S△P AD=4S△ABM成立,求点P的坐标.2. (10北京)在平面直角坐标系xOy 中,抛物线y = -41-m x 2+45mx +m 2-3m +与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上。

(1) 求点B 的坐标;(2) 点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的 垂线,与直线OB 交于点E 。

延长PE 到点D 。

使得ED =PE 。

以PD 为斜边在PD 右侧作等腰直角三角形PCD (当P 点运动 时,C 点、D 点也随之运动)当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求 OP 的长;若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一 点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止 运动,P 点也同时停止运动)。

过Q 点作x 轴的垂线,与直线AB 交于点F 。

延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点,N 点也随之运动)。

若P 点运动到t 秒时,两个等腰直角三角形分 别有一条直角边恰好落在同一条直线上,求此刻t 的值。

3.(10贵州遵义)如图,已知抛物线)0(2≠++=a c bx ax y 的顶点坐 标为Q ()1,2-,且与y 轴交于点C ()3,0,与x 轴交于A 、B 两 点(点A 在点B 的右侧),点P 是该抛物线上一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴, 交AC 于点D .(1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在问题(2)的结论下,若点E 在x 轴上,点F 在抛物线上, 问是否存在以A 、P 、E 、F 为顶点的平行四边形?若存在, 求点F 的坐标;若不存在,请说明理由.4.(10湖北黄冈)已知抛物线2(0)y ax bx c a =++≠顶点为C (1,1)且过原点O.过抛物线上一点P (x ,y )向直线54y =作垂线,垂足为M ,连FM (如图).(1)求字母a ,b ,c 的值;(2)在直线x =1上有一点3(1,)4F ,求以PM 为底边的等腰三角形PFM 的P 点的坐标,并证明此时△PFM 为正三角形;(3)对抛物线上任意一点P ,是否总存在一点N (1,t ),使PM =PN 恒成立,若存在请求出t 值,若不存在请说明理由.初中数学二次函数存在性问题总复习试题(2)姓名:学号:评价:1错误!未指定书签。

初中数学函数练习题汇总

初中数学函数练习(一)1反比例函数、一次函数基础题1、函数.① 1)2(=+y x ②. 11+=x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x = ;其中是y 关于x 的反比例函数的有:_________________。

2、如图.正比例函数(0)y kx k =>与反比例函数2y x=的图象相交于A 、C 两点.过点A 作AB ⊥x 轴于点B.连结BC .则ΔABC 的面积等于( ) A .1 B .2 C .4 D .随k 的取值改变而改变.3、如果y 是m 的反比例函数.m 是x 的反比例函数.那么y 是x 的( )A .反比例函数B .正比例函数C .一次函数D .反比例或正比例函数4、已知函数12y y y =-.其中1y 与x 成正比例, 2y 与x 成反比例.且当x =1时.y =1;x =3时.y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时.y 的值.5、若反比例函数22)12(--=mx m y 的图象在第二、四象限.则m 的值是( )A 、 -1或1;B 、小于12的任意实数; C 、-1; D、不能确定 6、已知0k >.函数y kx k =+和函数ky x=在同一坐标系内的图象大致是( )7、正比例函数2x y =和反比例函数2y x=的图象有 个交点. 8、下列函数中.当0x <时.y 随x 的增大而增大的是( ) A .34y x =-+ B .123y x =-- C .4y x=-D .12y x =.9、矩形的面积为6cm 2.那么它的长y (cm )与宽x (cm )之间的函数关系用图象表示为( )o y xy xo y xo yxo ABCDABCDxyOxyOxyOxyOB C D yxOACB(一)2反比例函数、一次函数提高题10、反比例函数k y x=的图象经过(-32.5)点、(,3a -)及(10,b )点.则k = .a = .b = ;11、已知y -2与x 成反比例.当x =3时.y =1.则y 与x 间的函数关系式为 ;12、()7225---=m m xm y 是y 关于x 的反比例函数.且图象在第二、四象限.则m 的值为 ;13、若y 与-3x 成反比例.x 与4z成正比例.则y 是z 的( ) A 、 正比例函数 B 、 反比例函数 C 、 一次函数 D 、 不能确定 14、在同一直角坐标平面内.如果直线1y x k =与双曲线2k y x=没有交点.那么1k 和2k 的关系一定是( )A 、1k <0. 2k >0B 、1k >0. 2k <0C 、1k 、2k 同号D 、1k 、2k 异号 15、已知反比例函数()0ky k x=<的图象上有两点A(1x .1y ).B(2x .2y ).且21x x <.则21y y -的值是( )A 、正数B 、 负数C 、 非正数D 、 不能确定 16、已知直线2y kx =+与反比例函数my x=的图象交于AB 两点,且点A 的纵坐标为-1,点B 的横坐标为2,求这两个函数的解析式.17(8分)已知,正比例函数y ax =图象上的点的横坐标与纵坐标互为相反数,反比例函数ky x=在每一象限内y x 随的增大而减小,一次函数24y x k a k =-++过点()2,4-. (1)求a 的值.(2)求一次函数和反比例函数的解析式.(二)1二次函数基础题1、若函数y =1)1(++a xa 是二次函数.则=a 。

初中数学第二十二章二次函数总复习练习题(单元测试卷)附带答案及详细解析

初中数学第二十二章二次函数数学考试姓名:__________ 班级:__________考号:__________一、单选题(共18题;共36分)1.(2020九上·杭州月考)若点A(3,y1),B(0,y2),C(−2,y3)在抛物线y=x2−4x+k 上,则y1,y2,y3的大小关系是()A. y2>y3>y1B. y2>y1>y3C. y3>y2D. y1>y2>y32.(2020九上·达拉特旗月考)抛物线y=5(x-2)2-3的顶点坐标是()A. (2,-3)B. (2,3)C. (-2,3)D. (-2,-3)3.二次函数y=ax2+bx+a(a≠0)的最大值是零,则代数式|a|+ 4a2−b2化简结果为()4aA. aB. 1C. ﹣aD. 04.若二次函数y=ax2的图象经过点P(2,8),则该图象必经过点A. (2,-8)B. (-2,8)C. (8,-2)D. (-8,2)5.(2017九上·云梦期中)若方程ax2+bx+c=0的两个根是﹣4和2,那么二次函数y=ax2+bx+c 的图象的对称轴是直线()A. x=﹣2B. x=﹣1C. x=0D. x=16.抛物线y=x2-2x+1的顶点坐标是( )A. (1,0)B. (-1,0)C. (-2,1)D. (2,-1)7.(2020九上·商丘月考)关于x的二次函数y=﹣(x﹣1)2+2,下列说法正确的是()A. 图象的开口向上B. 当x>1时,y随x的增大而减小C. 图象的顶点坐标是(﹣1,2)D. 图象与y轴的交点坐标为(0,2)8.(2019九下·武冈期中)在下列函数中,其图象与x轴没有交点的是()A. y=2xB. y=﹣3x+1C. y=x2D. y= 1x9.(2018九上·金山期末)将抛物线y=−(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为()A. 向下平移3个单位;B. 向上平移3个单位;C. 向左平移4个单位;D. 向右平移4个单位.10.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为()A. y=(x+1)2+4B. y=(x-1)2+4C. y=(x+1)2+2D. y=(x-1)2+211.将抛物线y=3x2先向上平移3个单位,再向左平移2个单位后得到的抛物线解析式为()A. y=3(x+2)2+3B. y=3(x−2)2+3C. y=3(x+2)2−3D. y=3(x−2)2−312.对于每个x,函数y是y1=-x+6,y2=-2x2+4x+6这两个函数的较小值,则函数y的最大值是()A. 3B. 4C. 5D. 613.(2017九上·仲恺期中)关于二次函数y=3(x﹣2)2+6,下列说法正确的是()A. 开口方向向下B. 顶点坐标为(﹣2,6)C. 对称轴为y轴D. 图象是一条抛物线(a≠0,c>0)的图象是14.(2019九上·萧山月考)下列各图中有可能是函数y=ax2+c, y=ax()A. B. C. D.15.(2019九上·遵义月考)如图,二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc >0;②b2-4ac<0 ;③2a+b>0 ;④a+b+c>0,其中正确的个数()A. 1B. 2C. 3D. 416.抛物线y=(x+3)2−2可以由抛物线y=x2平移得到,则下列平移过程正确的是()A. 先向左平移3个单位,再向上平移2个单位B. 先向右平移3个单位,再向下平移2个单位C. 先向左平移3个单位,再向下平移2个单位D. 先向右平移3个单位,再向上平移2个单位17.(2017九上·常山月考)已知二次函数y=2(x−3)2+1.下列说法:①其图象的开口向上;②其图象的对称轴为直线x=3;③其图象顶点坐标为(3,1);④当x<3时,y随x 的增大而减小.则其中说法正确的有()A. 1个B. 2个C. 3个D. 4个18.(2018·吉林模拟)二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则()A. ac+1=bB. ab+1=cC. bc+1=aD. 以上都不是二、填空题(共18题;共20分)19.(2018·长宁模拟)已知点A(﹣2,m)、B(2,n)都在抛物线y=x2+2x﹣t上,则m与n 的大小关系是m________n.(填“>”、“<”或“=”)20.(2020九上·吴兴月考)当x=0时,函数y=2x2+1的值为________.21.(2020九上·亳州月考)关于x的函数y=(m−2)x|m|−4是二次函数,则m=________.22.(2020·淮安模拟)把抛物线y=x2向下平移4个单位,所得的抛物线的函数关系式为________.23.(2019九上·闵行期末)抛物线y=x2+3x+2与y轴的公共点的坐标是________.24.(2017九上·孝南期中)抛物线y=x2-3x-4与y轴的交点坐标为________.25.(2018九上·江海期末)把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式为________26.(2019九上·万州期末)抛物线y=﹣x2+2x﹣3顶点坐标是________;对称轴是________.27.(2019九上·河西期中)请写出一个对称轴为x=1的抛物线的解析式________.28.如图,分别过点P i(i,0)(i=1、2、…、n)作x轴的垂线,交y=12x2的图象于点A i,交直线y=12x于点B i.则1A1B1+1A2B2+⋯+1A nB n=________.29.(2020九上·德清期末)定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”.若抛物线y=ax2﹣2ax+a+3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,则a的取值范围是________.30.(2019九上·衢州期中)如图,在平面直角坐标系xOy中,已知抛物线y=-x(x-3)(0≤x≤3) 在x轴上方部分记作C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,C2与x 轴交于另一点A2.继续操作并探究:将C2绕点A2旋转180°得C3,与x 轴交于另一点A3;将C3绕点A 2旋转180°得C4,与x 轴交于另一点A4,这样依次得到x轴上的点A1,A2,A3,…,A n,…,及抛物线C1,C2,…,C n,….则点A4的坐标为________;C n的顶点坐标为________(n为正整数,用含n的代数式表示) .31.(2020·上城模拟)当-1≤a≤ 14时,则抛物线y=-x²+2ax+2-a的顶点到x轴距离的最小值________。

初中数学二次函数知识点总复习附答案解析

初中数学二次函数知识点总复习附答案解析一、选择题1.抛物线y =ax 2+bx+c 的顶点为(﹣1,3),与x 轴的交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为( ) ①若点P(﹣3,m),Q(3,n)在抛物线上,则m <n ; ②c =a+3; ③a+b+c <0;④方程ax 2+bx+c =3有两个相等的实数根.A .1个B .2个C .3个D .4个【答案】C 【解析】试题分析:由抛物线与x 轴有两个交点,可知b 2-4ac >0,所以①错误;由抛物线的顶点为D (-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,可知抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y <0,即a+b+c <0,所以②正确; 由抛物线的顶点为D (-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x=2b a-=-1,可得b=2a ,因此a-2a+c=2,即c-a=2,所以③正确;由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确. 故选C .考点:二次函数的图像与性质2.抛物线y =-x 2+bx +3的对称轴为直线x =-1.若关于x 的一元二次方程-x 2+bx +3﹣t =0(t 为实数)在﹣2<x <3的范围内有实数根,则t 的取值范围是( ) A .-12<t ≤3 B .-12<t <4C .-12<t ≤4D .-12<t <3【答案】C 【解析】 【分析】根据给出的对称轴求出函数解析式为y =-x 2−2x +3,将一元二次方程-x 2+bx +3−t =0的实数根看做是y =-x 2−2x +3与函数y =t 的交点,再由﹣2<x <3确定y 的取值范围即可求解.【详解】解:∵y =-x 2+bx +3的对称轴为直线x =-1, ∴b =−2, ∴y =-x 2−2x +3,∴一元二次方程-x 2+bx +3−t =0的实数根可以看做是y =-x 2−2x +3与函数y =t 的交点,∵当x =−1时,y =4;当x =3时,y =-12,∴函数y =-x 2−2x +3在﹣2<x <3的范围内-12<y≤4, ∴-12<t≤4, 故选:C . 【点睛】本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键.3.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【解析】 【分析】利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2ba=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断. 【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间. ∴当x=-1时,y >0, 即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2ba=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误; ∵抛物线的顶点坐标为(1,n ),∴244ac b a-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确; ∵抛物线与直线y=n 有一个公共点, ∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确. 故选C . 【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.4.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .BC .32D .52【答案】D 【解析】 【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解. 【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形, ∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D . 【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.5.在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点(x 1,m )、(x 2,m )、(x 3,m ),则x 1+x 2+x 3的结果是( )A .3122m -+B .0C .1D .2【答案】D 【解析】 【分析】根据二次函数的对称性和一次函数图象上点的坐标特征即可求得结果.【详解】解:如图,在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点A (x 1,m )、B (x 2,m )、C (x 3,m ), ∵y =a (x ﹣m ﹣1)2+c (a≠0) ∴抛物线的对称轴为直线x =m+1,∴232x x +=m+1, ∴x 2+x 3=2m+2,∵A (x 1,m )在直线y =﹣12x 上, ∴m =﹣12x 1, ∴x 1=﹣2m ,∴x 1+x 2+x 3=﹣2m+2m+2=2, 故选:D .【点睛】本题考查了二次函数的对称性和一次函数图象上点的坐标特征,解题的关键是利用数形结合思想画出函数图形.6.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )A .1B .2C .3D .4【答案】C 【解析】 【分析】 【详解】解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误; 根据函数对称轴可得:-2ba=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.7.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表: t 0 1 2 3 4 5 6 7 … h8141820201814…下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线92t =;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m. 其中正确结论的个数是( ) A .1 B .2C .3D .4【答案】B【分析】 【详解】解:由题意,抛物线的解析式为y =ax (x ﹣9),把(1,8)代入可得a =﹣1, ∴y =﹣t 2+9t =﹣(t ﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m ,故①错误, ∴抛物线的对称轴t =4.5,故②正确,∵t =9时,y =0,∴足球被踢出9s 时落地,故③正确, ∵t =1.5时,y =11.25,故④错误,∴正确的有②③, 故选B .8.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D 【解析】 【分析】根据抛物线开口方向得到a 0>,根据对称轴02bx a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a b c ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02bx a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确. ②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a b c ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

初中数学中考复习:25锐角三角函数综合复习(含答案)

中考总复习:锐角三角函数综合复习—巩固练习(提高)【巩固练习】一、选择题1. 在△ABC中,∠C=90°,cosA=,则tan A等于( )A.B.C.D.2.在Rt△ABC中,∠C=90°,把∠A的邻边与对边的比叫做∠A的余切,记作cotA=.则下列关系式中不成立的是( )A.tanA•cotA=1 B.sinA=tanA•cosA C.cosA=cotA•sinA D.tan2A+cot2A=1第2题第3题3.如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于( )A.B.C.D.4.如图所示,直角三角形纸片的两直角边长分别为6、8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是( )A.B.C.D.5.如图所示,已知∠α的终边OP⊥AB,直线AB的方程为y=-x+,则cosα等于( )A.B.C.D.第5题第6题6.如图所示,在数轴上点A所表示的数x的范围是( )A. B.C. D.;二、填空题7.设θ为锐角,且x2+3x+2sinθ=0的两根之差为.则θ=.8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为.9.已知△ABC的外接圆O的半径为3,AC=4,则sinB= .第8题第9题第11题10.当0°<α<90°时,求的值为.11.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan∠OBE=.12.已知:正方形ABCD的边长为2,点P是直线CD上一点,若DP=1,则tan∠BPC的值是 .三、解答题13.如图所示,某拦河坝截面的原设计方案为AH∥BC,坡角∠ABC=74°,坝顶到坝脚的距离AB=6m 为了提高拦河坝的安全性,现将坡角改为55°,由此,点A需向右平移至点D,请你计算AD的长.(精确到0.1m)14. 为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,如图所示.按规定,地下停车库坡道1:3上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE(精确到0.1 m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)15.如图所示,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)16. 在△ABC中,AB=AC,CG⊥BA,交BA的延长线于点G.一等腰直角三角尺按如图①所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系;然后证明你的猜想;(3)当三角尺在②的基础上沿AC方向继续平移到图③所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)【答案与解析】一、选择题1.【答案】D;【解析】在Rt△ABC中,设AC=3k,AB=5k,则BC=4k,由定义可知tan A=.故选D.2.【答案】D;【解析】根据锐角三角函数的定义,得A、tanA•cotA==1,关系式成立;B、sinA=,tanA•cosA=,关系式成立;C、cosA=,cotA•sinA=,关系式成立;D、tan2A+cot2A=()2+()2≠1,关系式不成立.故选D.3.【答案】B;【解析】连接BD.∵E、F分別是AB、AD的中点.∴BD=2EF=4∵BC=5,CD=3∴△BCD是直角三角形.∴tanC=故选B.4.【答案】C;【解析】设CE=x,则AE=8-x.由折叠性质知AE=BE=8-x.在Rt△CBE中,由勾股定理得BE2=CE2+BC2,即(8-x)2=x2+62,解得,∴tan∠CBE.5.【答案】A;【解析】∵y=-x+,∴当x=0时,y=,当y=0时,x=1,∴A(1,0),B,∴OB=,OA=1,∴AB==,∴cos∠OBA=.∴OP⊥AB,∴∠α+∠OAB=90°,又∵∠OBA+∠OAB=90°,∴∠α=∠OBA.∴cosα=cos∠OBA=.故选A.6.【答案】D;【解析】由数轴上A点的位置可知,<A<2.A、由sin30°<x<sin60°可知,×<x<,即<x<,故本选项错误;B、由cos30°<x<cos45°可知,<x<×,即<x<,故本选项错误;C、由tan30°<x<tan45°可知,×<x<1,即<x<1,故本选项错误;D、由cot45°<x<cot30°可知,×1<x<,即<x<,故本选项正确.故选D.二、填空题7.【答案】30°;【解析】x1·x2=2sinθ,x1+x2=-3,则(x1-x2)2=(x1+x2)2-4x1x2=9-8sinθ=()2,∴sinθ=,∴θ=30°.8.【答案】;【解析】∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由题意得:∠EFC=∠B=90°,CF=BC=5,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∵在Rt△DCF中,CF=5,CD=4,∴DF=3,∴tan∠AFE=tan∠DCF==.9.【答案】;【解析】连接AO并延长交圆于E,连CE.∴∠ACE=90°(直径所对的圆周角是直角);在直角三角形ACE中,AC=4,AE=6,∴sin∠E=;又∵∠B=∠E(同弧所对的的圆周角相等),∴sinB=.10.【答案】1;【解析】由sin2α+cos2α=1,可得1-sin2α=cos2α∵sin2α+cos2α=1,∴cos2α=1-sin2α.∴.∵0°<α<90°,∴cosα>0.∴原式==1.11.【答案】;【解析】连接EC.根据圆周角定理∠ECO=∠OBE.在Rt△EOC中,OE=4,OC=5,则tan∠ECO=.故tan∠OBE=.12.【答案】2或;【解析】此题有两种可能:(1)当点P在线段CD上时,∵BC=2,DP=1,CP=1,∠C=90°,∴tan∠BPC==2;(2)当点P在CD延长线上时,∵DP=1,DC=2,∴PC=3,又∵BC=2,∠C=90°,∴tan∠BPC=.故答案为:2或.三、解答题13.【答案与解析】解:如图所示,过点A作AE⊥BC于点E,过点D作DF⊥BC于点F.在Rt△ABE中,,∴AE=ABsin∠ABE=6sin 74°≈5.77(cm);,∴BE=ABcos∠ABE=6cos 74°≈1.65(m).∵AH∥BC,∴DF=AE≈5.77m.在Rt△BDF中,,∴(m).∴AD=EF=BF-BE=4.04-1.65≈2.4(m).14.【答案与解析】解:在Rt△ABD中,∠ABD=90°,∠BAD=18°,∴,BD=tan∠BAD·AB=tan 18°×9,∴CD=tan 18°×9-0.5.在Rt△DCE中,∠DEC=90°,∠CDE=72°,∴,=sin 72°×(tan 18°×9-0.5)≈2.3(m).即该图中CE的长约为2.3m.15.【答案与解析】解:如图所示,由已知可得∠ACB=60°,∠ADB=45°.∴在Rt△ABD中,BD=AB.又在Rt△ABC中,∵,∴,即.∵BD=BC+CD,∴.∴CD=AB-AB=180-180×=(180-60)米.答:小岛C、D间的距离为(180-)米.16.【答案与解析】解:(1)BF=CG.证明:在△ABF和△ACG中,∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC,∴△ABF≌△ACG(AAS),∴BF=CG.(2)DE+DF=CG.证明:过点D作DH⊥CG于点H(如图所示).∵DE⊥BA于点E,∠G=90°,DH⊥CG,∴四边形EDHG为矩形,∴DE=HG.DH∥BG.∴∠GBC=∠HDC∴AB=AC.∴∠FCD=∠GBC=∠HDC.又∵∠F=∠DHC=90°,CD=DC,∴△FDC≌△HCD(AAS),∴DF=CH.∴GH+CH=DE+DF=CG,即DE+DF=CG.(3)仍然成立.(注:本题还可以利用面积来进行证明,比如(2)中连结AD)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学函数总复习题《函数》复习题坐标1(P(1-m, 3m+1)到x,y轴的的距离相等,则P点坐标为2(A(4,3),B点在坐标轴上,线段AB的长为5,则B点坐标为3(正方形的两边与x,y轴的负方向重合,其中正方形一个顶点为C(a-2, 2a-3),则点C的坐标为 .4(点A(2x,x-y)与点B(4y,12Cos60?)关于原点对称,P(x,y)在双曲线x2上,则k的值为 5(点A(3x-4,5-x)在第二象限,且x是方程的解,则A点的坐标为6((2006年芜湖市)如图,在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转得到,则点的坐标是( ),(,,((4,,(,4) ,((3,函数概念和图象:1(已知等腰三角形周长是20,?底边长y与腰长x的函数关系是 ;?自变量x的取值范围是 ;?画出函数的图象(坐标轴方向,原点,关系式,自变量范围)2(已知P(tanA,2)为函数图象不在)在函数y=x-1图象上;Q(23x上一点,则Q(3cosA,sinA) (答在、x轴y 轴、关于原点的对称点到直线y=x-13cosA,sinA)关于的距离分别是3((05甘肃兰州)四边形ABCD为直角梯形,CD?AB,CB?AB,且CD=BC=12AB,若直线l?AB,直线l截这个所得的位于此直线左方的图形面积为y,点A到直线1的距离为x,则y与x的函数关系的大致图象为( )4((05北京)在平行四边形ABCD中,?DAB=60?,AB=5,BC=3,点P从起点D出发,沿DC,CB向终点B匀速运动,设点P走过的路程为x点P经过的线段与线段AD,AP 围成图形的面积为y,y随x的变化而变化,在下列图象中,能正确反映y与x的函数关系的是( )15((05江苏徐州)有一根直尺的短边长2厘米,长边长10厘米,还有一块锐角为45?的直角三角形纸板,它的斜边长12厘米,如图?,将直尺的短边DE放置与直角三角形纸板的斜边AB重合,且点D与点A重合,将直尺沿AB方向平移如图?,设平移的长度为x厘米(0?x?10),直尺和角三角形纸板的重叠部分(图中阴影部分)的面积为S, (1)当x=0时(如图?),S= ;当x=10时,S= (2)当0&lt;x?4时, (如图?), 求S关于x的函数关系式;(3)当4&lt;x&lt;10时, 求S关于x的函数关系式;并求出S的最大值(同学可在图??中画草图)6((05河南课改)Rt?PMN中,?P=90?,PM=PN,MN=8厘米,矩形ABCD的长和宽分别为8厘米和2厘米,C点和M点重合,BC和MN在一条直线上,令Rt?PMN不动,矩形ABCD沿MN所在直线向右以每秒1厘米的速度移动,直到C点与N点重合为止,设移动x秒后,矩形ABCD与?PMN重叠部分的面积为y平方厘米,则y与x之间的函数关系是7((2006重庆)如图1所示,一张三角形纸片ABC,?ACB=90?,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成和两个三角形(如图2所示).将纸片沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.(1) 当平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;(2) 设平移距离D2D1为x,与重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;(3)对于(2)中的结论是否存在这样的x的值,使重叠部分的面积等于原面积的若存在,求x的值;若不存在,请说明理由.14.8((07西城期末试题)在等腰梯形ABCD中AB?DC,已知AB=12,BC=42,?DAB=45?,2以AB所在直线为x轴,A为坐标原点建立直角坐标系,将等腰梯形ABCD绕A 点按逆时针方向旋转90?,得到等腰梯形OEFG(0、E、F、G分别是A、B、C、D旋转后的对应点)(1) 写出C、F两点坐标(2) 将等腰梯形ABCD沿x轴的负半轴平行移动,设移动后的OA的长度是x如图2,等腰梯形ABCD与等腰梯形OEFG重合部分的面积为y,当点D移动到等腰梯形OEFG的象限2. (06陕西)直线与x轴,y轴围的三角形面积为3(直线y=kx+b与直线平行且与直线的交点在y 轴上,则直线y=kx+b与两轴围成的三角形的面积为4(直线只可能是( )5((06昆明)直线与直线L交于P点,P点的横坐标为-1,直线L与y轴交于A(0,-1)点,则直线L的解析式为6((2006浙江金华)如图,平面直角坐标系中,直线AB与x轴,y轴分别交于A(3,0),B(0,3)两点, ,点C为线段AB上的一动点,过点C作CD?x轴于点D.(1)求直线AB的解析式;(2)若S梯形OBCD,3,求点C的坐标;(3)在第一象限象限32((05四川)如图直线AB与x轴y轴交于B、A,与双曲线的一个交点是C,CD?x轴于D,OD=2OB=4OA=4,则直线和双曲线的解析式为3((06南京)某种灯的使用寿命为1000小时,它可使用天数y与平均每天使用小时数x之间的函数关系是4((06北京)直线y=-x绕原点O顺时针旋转90?得到直线l,直线1与反比例函数的图象的一个交点为A(a,3),则反比例函数的解析式为5((06天津)正比例函数的图象与反比例函数(4,2)(1)则这两个函数的解析式为 (2)这两个函数的其他交点为 6(点P(m,n)在第一象限,且在双曲线6xmx的图象都经过kx和直线上,则以m,n 为邻边的矩形面积为 ;若点P(m,n)在直线y=-x+10上则以m,n 为邻边的矩形的周长为二次函数1((06大连)如图是二次函数y1,ax,bx,c和一次函数y2,mx,n的图象,观察图象写出y2?y1时,x的取值范围______________ 2((06陕西)抛物线的函数表达式是( ) A((((3((06南通)已知二次函数当自变量x取两个不同的值x1,x2时,函数值相等,则当自变量x取时的函数值与( )A(时的函数值相等 B(时的函数值相等 C(14942D(时的函数值相等时的函数值相等24((06山东)已知关于x的二次函数2与22,这两个二次函数的图象中的一条与x轴交于A,B两个不同的点,(1)过A,B两点的函数是 ; (2)若A(-1,0),则B点的坐标为(3)在(2)的条件下,过A,B两点的二次函数当x 时,y的值随x的增大而增大 5((05江西)已知抛物线与x轴交点为A、B(B2在A的右边),与y轴的交点为C.(1)写出m=1时与抛物线有关的三个结论;(2)当点B在原点的右边,点C在原点的下方时,是否存在?BOC为等腰三角形,若存在,求出m的值;若不存在,请说明理由; (3)请你提出一个对任意的m值都能成立的正确命题.4的图象经过点M(1,-2)、N(-1, 6((2006年长春市)如图二次函数6)((1)求二次函数的关系式(BC放在坐标系内,其中?CAB = 90?,点A、B的坐标分别为(1, (2)把Rt?A0)、(4,0),BC = 5(将?ABC沿x轴向右平移,当点C落在抛物线上时,求?ABC平移的距离(7((2006湖南长沙)如图1,已知直线与抛物线交于A,B两点((1)求A,B两点的坐标;(2)求线段AB的垂直平分线的解析式;(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处(用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形,如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由(8((2006吉林长春)如图,在平面直角坐标系中,两个函数的图象交于2点A.动点P从点O开始沿OA方向以每秒1个单位的速度运动,作PQ?x轴一边向下作正方形PQMN,设它与?OAB重叠部分交直线BC于点Q,以PQ为的面积为S.(1)求点A的坐标.(2)试求出点P在线段OA上运动时,S与运动时间t(秒)的关系式.(3)在(2)的条件下,S是否有最大值,若有,求出t为何值时,S有最大值,并求出最大值;若没有,请说明理由.(4)若点P经过点A后继续按原方向、原速度运动,当正方形PQMN与?OAB重叠部分面积最大时,运动时间t满足的条件是____________.9(?M交x,y轴于A(-1,0),B(3,0),C(0,3)(1)求过A,B,C三点的抛物线的解析式;(2)求过A,M的直线的解析式;(3)设(1)(2)中的抛物线与直线的另一个交点为P,求?PAC的面积.10((00上海)已知二次函数的图象经过A(-3,6),并与x轴交于点B(-1,)求这个二次函数的解析式;(2)设D为线段OC上 0)和点C,顶点为P(1一点,且?DPC=?BAC,求D点坐标11.(06北京)已知抛物线与x轴交于A、B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A、B不重合),D是OC的中点,连结BD并延长,交AC于点E,(1)用含m的代数式表示点A、B的坐标;(2)求CE的值;(3)当C、A两点AE到y轴的距离相等,且时,求抛物线和直线BE的解析式.5《函数》复习题答案.坐标 1( (1,1) ; (2, -2) 2(B(0,0); B(6,0) ;(8,0) 2( 3( 4((-1,--7 (-7, 6)12,0)6. A函数概念及图象1((1)y=-2x+20,(2)5&lt;x&lt;10, (3)略 2(在, 3(A 4(A 5.当423,22 2,22,22,时,S最大1226(27. ADCC1C21BAD1D2B图1图2[解] (1)因为C1D1?C2D2,所以又因为,CD是斜边上的中线,所以,,即所以,,所以6所以,同理:又因为,所以AD2所以(2)因为在中,,所以由勾股定理,得即又因为,所以所以在中,C2到BD2的距离就是的AB边上的高,为245.设的BDh11边上的高为h,由探究,得?,所以.5所以12252又因为,所以又因为,5.所以4x ,S165x2而622525x所以18x22425(3) 存在. 当1S182244时,即25整理,得3x2解得,3即当或时,重叠部分的面积等于原面积的4 8(略一次函数 1( 2 2( 33( 8124( D5(7] (1)直线AB解析式为: 6.[解3333x+3(),那么OD,x,CD, (2)方法一:设点,坐标为(x,33x+3(S梯形OBCD,36,3623(由题意:23 ,433,解得(舍去),(,,3312)方法二:?332,S梯形OBCD,433,?36(由OA=3OB,得?BAO,30?,AD=3CD( 12,CD×AD,32CD,236(可得CD,33(AD=,,OD,,(?C(,,(,)当?OBP,Rt?时,如图33)(若?BOP??OBA,则?BOP,?BAO=30?,BP=3OB=3,33P1(3,)(若?BPO??OBA,则?BPO,?BAO=30?,OP=33OB=1(P2(1,3)(当?OPB,Rt?时过点P作OP?BC于点P(如图),此时?PBO??OBA,?BOP,?BAO, 30?过点P作PM?OA于点M( 方法一: 在Rt?PBO中,BP,12OB,32,OP,3BP,32(在Rt?P,O中,?OPM,30?,8OM,12OP,34;PM,3OM,334(?P3(34,3343)(方法二:设,(x ,3x+3),得OM,x ,PM,33由?BOP,?BAO,得?POM,?ABO(tanPOM==PM3OM=x,tan?ABOC=OAOB=(3,解得x,333x+3,3x4(此时,P3(4,33)(4若?POB??OBA(如图),则?OBP=?BAO,30?,?POM,30?( ? PM,3OM,3(34P34(4,34)(由对称性也可得到点P4的坐标)(时,点P在,轴上,不符合要求. 当?OPB,Rt?综合得,符合条件的点有四个,分别是:P1(3,33),P2(1,3),P3( 3334,4),P34(4,34)(反比例函数 1(四 2( 4x3(4(5(12x,8xA’6(6,20 二次函数1((D 3(B24(9(2). (3,0)(3). X&lt;1-22 (3)最大值 5.(1)顶点(1,1); 对称轴为x=1; 顶点到y轴的距离为1 (2)m= -2为1 6.(1)(2)527. [解](1)解:依题意得解之得,,,2))作AB的垂直平分线交x轴,y轴于C,D两点,交AB于M(如图1) 由 (2 (1)可知:122OMOE54过B作BE?x轴,E为垂足由?BEO??OCM,得:5,,图1同理:,,,,设CD的解析式为的垂直平分线的解析式为:52((3)若存在点P使?APB的面积最大,则点P在与直线AB平行且和抛物线只有一个交10点的直线1( 上,并设该直线与x轴,y轴交于G,H两点(如图2) 212142抛物线与直线只有一个交点, 2,25在直线GH:254中,,,设O到GH的距离为d,121GH,到AB的距离等于O到GH的距离d( S1最大面积121254(8. [解] (1)由可得A(4,4).(2)点P在y = x上,OP = t,则点P坐标为(222t,2t).图21121点Q的纵坐标为2t,并且点Q在上. ?2 ,即点Q坐标为2t).2t. 当时,当0,时,当点P到达A点时,,当32,t,42时,(3)有最大值,最大值应在0,中,当时,S的最大值为12.(4)2(3)S?PAC=358122 (,0) 3511.(1) A(-m,0) B(2m,0) (2). CE343抛物线13。

相关文档
最新文档