化工高盐废水零排放处理技术
废水零排放分质分盐结晶技术详解

废水零排放分质分盐结晶技术详解煤化工等高盐废水中分盐结晶过程的分离对象主要是氯化钠和硫酸钠。
这是因为废水中的阴离子通常以氯离子和硫酸根离子占绝大多数,一价阳离子则以钠离子为主,二价阳离子经过一系列处理后,也已经在化学软化或离子交换等过程置换成了钠离子。
分盐结晶工艺主要有2种思路:一是直接利用废水中不同无机盐的浓度差异和溶解度差异,通过在结晶过程中控制合适的运行温度和浓缩倍数等来实现盐的分离,即通常所说的热法分盐结晶工艺;二是利用氯离子和硫酸根离子的离子半径或电荷特性等的差异,通过膜分离过程在结晶之前实现不同盐之间的分离或富集,再用热法结晶过程得到固体,即膜法分盐结晶工艺。
一、分盐结晶工艺1、热法分盐结晶工艺高盐废水的热法分盐结晶工艺主要包括直接蒸发结晶工艺、盐硝联产分盐结晶工艺和低温结晶工艺。
(1)直接蒸发结晶工艺当高盐废水中某一种盐含量占比具有较大优势时,可以考虑采用直接蒸发结晶的方式,分离回收该优势盐组分,而其余成分最终以混盐形式结晶析出。
经过预处理的高盐废水首先通过蒸发器进一步浓缩减量,使优势盐组分接近饱和,之后进入纯盐结晶器( 结晶器Ⅰ) ,提取大部分的氯化钠或硫酸钠。
纯盐结晶器的浓缩倍率控制在次优势盐组分接近饱和,纯盐结晶器排出的母液进入混盐结晶器( 结晶器Ⅱ) 获取杂盐。
直接蒸发结晶工艺流程简单,系统控制难度小,但无机盐回收率和杂盐产量对原水无机盐组分特征依赖度高。
此外,在蒸发浓缩过程中,废水中的有机物和杂质盐组分被浓缩并残留在母液中,可能导致粗盐产品纯度低、白度差。
通过洗盐等方式,可以在一定程度上提高产品盐的纯度和白度。
(2)盐硝联产分盐结晶工艺当废水中不存在占比较大的优势盐组分时,采用直接蒸发结晶工艺最终得到的纯盐回收率较低,杂盐产量大,固废处置费用高。
为了解决这一问题,可采用硫酸钠和氯化钠分步结晶的方式,分别在较高温度下结晶得到硫酸钠,在较低温度下结晶得到氯化钠,此工艺称为盐硝联产工艺。
煤化工高盐废水处理工艺设计原则

煤化工高盐废水处理工艺设计原则1、零排放工艺技术目前煤化工废水主要由高有机物与复杂的水盐体系组成,其中废水中以氯化钠、硫酸钠为主体、混盐杂盐为辅,目前典型的零排放工艺基本是“前端预处理+双膜浓缩+蒸发结晶”工艺。
1.1 预处理单元一般包括化学软化沉淀系统、过滤系统、离子交换系统、COD氧化脱除系统等。
化学软化主要是利用高密度沉淀池,投加碳酸钠或石灰、氢氧化钠、镁剂等去除原水中的硬度、碱度、二氧化硅。
原水与药剂在混凝区经过快速搅拌后,与回流污泥一起进入絮凝反应区。
在絮凝反应区内,通过投加PFS、PAM等药剂对水中的沉淀产生絮凝作用,结成较大的矾花,进去斜管沉淀区进行分离。
根据调研情况看,采用法国得利满专利技术的高密度沉淀池运行稳定,出水水质好,其他公司的“高效沉淀池”基本都是得利满高密度沉淀池的“高仿货”,运行一般。
高密度沉淀池出水经加酸调节pH值后,利用多介质过滤器或超滤,进一步降低SS、胶体,使得SDI≤3,为反渗透系统创造条件。
离子交换系统一般选用弱酸性钠床或者螯合型阳离子树脂,通过树脂的选择交换作用,将浓盐水中的钙镁离子进一步去除至1mg/L以下,从而保证后续蒸发系统不存在结垢的风险。
1.2 膜法提浓单元利用双膜法,两级RO将废水TDS提至5%以上,实现废水减量化,大幅降低后续蒸发结晶设备规模和蒸汽消耗量。
目前提浓设备有:高效反渗透膜、碟管式反渗透膜、电渗析提浓均在零排放废水提浓有了应用。
1.3 蒸发结晶总体上分为热法和冷法,主要区别在于利用硫酸钠的溶解度特征,控制其结晶温度。
热法分盐工艺依据原理是“高温析硝、低温析盐、热母液循环”,依据氯化钠和硫酸钠溶解度随温度变化的不同而进行分盐。
冷法分盐工艺原理是“高温析盐、低温析硝、冷母液循环”,主要是利用低温下的十水硫酸钠的溶解度较小的特点在低温下分离硫酸根,在高温下蒸发获得氯化钠。
膜法纳滤分盐主要利用纳滤原理将浓盐水中的一价离子与二价离子分开。
煤化工废水零排放技术要点及问题的处理

煤化工废水零排放技术要点及问题的处理摘要:水是生命之源,水质量的高低与人们的身体健康有着紧密的联系。
煤化工建设不断加快,其中煤化工废水处理是煤化工建设最重要的环节和组成部分。
煤化工废水处理在环境保护中扮演着重要角色,占据着关键位置。
为了进一步提升环境质量,我国提高了对于煤化工废水的处理力度。
人们应加强对其的关注与重视,对煤化工废水处理在环境保护工程中的重要性进行分析,以促进我国环境保护工程的有序发展。
1 煤化工废水处理技术设计以某煤化工企业为例,企业建立了当地煤化工废水零排放项目。
水处理单位考察了该煤化工企业,并根据企业的实际情况选择了膜分盐浓缩技术以及分质结晶技术完成对废水的处理。
在试验阶段,水处理单位将企业的部分生产车间用于改造中,将废水采用膜浓缩处理技术后,对剩余的浓水利用分盐结晶单元加以处理,使产出水可以达到生产回收的要求,并且分离出来的硫酸钠晶体以及氯化钠晶体等,均可以达到煤化工副产工业盐的基本要求,促使资源得到高效回收与利用。
同时在处理过程中可将纯净水收集起来用于其他项目的使用。
若将该处理技术用于该煤化工企业的全套废水处理中,可以有效解决当地的废水问题,同时还可以为当地提供更多的水资源,为保护当地生态提供一份力量,并且该项目具有良好的发展前景,将会成为企业的特色,最终为企业经济效益的提高发挥作用。
2 零排放技术在煤化工废水处理中的应用思考2.1 煤化行业废水零排放应用思路1)通过节水来提高对水资源的利用。
通过减少水资源的使用以及将废水和废水加工处理后进行重复利用未达到节约水资源的目的。
2)采用废水处理技术。
将浓度超标的废水采用不同的工艺处理后加工为浓缩液并存放在固定的区域,避免排放到周边居民生活区或者生态环境中。
例如高盐废水,经过浓缩处理后成为固体或者浓缩液,不再以废水的形式进行排放。
2.2 零排放技术在煤化工废水处理中的强化措施2.2.1 水质受影响企业经营者都想用较低的成本换取更大的效益,为了实现高效低能生产,需要根据废水处理要求进行多方面的调整,从而达到理想效果。
高盐废水零排放蒸发处理技术的分析及应用研究

高盐废水零排放蒸发处理技术的分析及应用研究
高盐废水是指含有高浓度盐类物质的废水,通常来自于化工、电镀、制革等工业生产
过程中的废水排放。
由于高盐废水具有较高的污染浓度和难以降解的特点,传统的处理方
法往往难以达到零排放的要求。
针对高盐废水的处理技术一直备受关注。
蒸发处理技术是一种通过将废水蒸发,使得水分蒸发掉而盐类物质得以降解的处理方法。
它具有对废水中盐类物质进行有效处理的优势,并且可以实现零排放的目标。
在高盐
废水处理中,蒸发技术被广泛应用,并且在不断进行技术革新和改进,以满足不同工业生
产中的高盐废水处理需求。
一、高盐废水蒸发处理技术分析
1. 多效蒸发技术
多效蒸发技术是指通过多级的蒸发器进行蒸发,从而提高蒸发效率的技术。
在高盐废
水处理中,多效蒸发技术可以有效地降低能耗和减少体积,将废水中的盐类物质蒸发浓缩,最终实现零排放。
多效蒸发技术还可以根据废水的盐浓度和性质进行调节,适用于不同规
模和不同盐浓度的废水处理项目。
2. 蒸发结晶技术
蒸发结晶技术是一种将废水中的盐类物质溶解后,通过蒸发浓缩至饱和状态,使得盐
类物质结晶析出的技术。
蒸发结晶技术适用于处理高浓度盐类废水,并且可以将废水中的
盐类物质稀释处理,降低对环境的影响。
蒸发结晶技术还可以实现对盐类物质的回收利用,减少资源浪费。
1. 电镀工业废水处理
电镀工业是高盐废水的主要产生行业之一,废水中含有大量的金属盐类物质和酸碱性
物质。
采用蒸发处理技术可以将废水中的金属盐类物质蒸发浓缩,同时对酸碱性物质进行
中和,实现对废水的处理和资源回收。
煤化工高盐水“零排放”技术应用探讨

煤化工高盐水“零排放”技术应用探讨煤化工是一种利用煤炭作为原料进行化学加工的技术,其产品广泛应用于能源、化工、冶金等领域。
然而,煤化工过程中产生的高盐废水一直是一个难题,其处理和排放对环境保护具有重要意义。
为了解决高盐废水的排放问题,煤化工高盐水“零排放”技术应运而生。
煤化工高盐水“零排放”技术的核心是采用膜分离技术对高盐废水进行处理。
膜分离技术主要包括反渗透、纳滤和超滤等方法,通过膜的选择性透过性,将废水中的盐类、重金属和有机物等有毒有害物质分离出来,达到净化和回用的目的。
同时,膜分离技术具有能耗低、操作简便、自动化程度高等优点。
在煤化工高盐水“零排放”技术的应用过程中,还需要解决一系列问题。
首先,由于高盐废水中盐类的浓度较高,容易造成膜污染和结垢,降低膜的分离效果。
因此,需要采取适当的预处理措施,如适量稀释、添加抑垢剂、调节pH值等,以降低盐类的浓度和防止膜的污染。
其次,对膜的选择和设计也是关键。
不同的膜对盐类、有机物和重金属的分离效果不同,需要选择适当的膜材料和膜孔径来实现高效分离。
此外,膜模块的排列和操作条件的控制也对技术的应用效果有重要影响。
煤化工高盐水“零排放”技术的应用不仅可以解决高盐废水的处理和排放问题,还可以实现废水资源化利用,减少对淡水资源的需求,提高水资源的利用效率。
此外,该技术还可以避免由于盐类排放引发的土壤盐碱化、地下水和水环境污染等问题,对煤化工行业的可持续发展具有重要意义。
综上所述,煤化工高盐水“零排放”技术的应用是解决高盐废水处理和排放问题的关键措施。
该技术通过膜分离方法对高盐废水进行处理,实现了高效的盐类、有机物和重金属的分离,达到了废水净化和回用的目的。
通过技术的应用,可以有效解决高盐废水对环境的危害,实现废水资源化利用,促进煤化工行业的可持续发展。
未来,我们应该进一步完善和推广煤化工高盐水“零排放”技术,为煤化工行业的发展提供更好的支持。
科技成果——高盐废水“零排放”处理及资源化利用

科技成果——高盐废水“零排放”处理及资源化利用技术开发单位中电环保股份有限公司适用行业适用于化工,石化,煤化工,电力行业等领域高盐废水“零排放”处理及资源化利用。
适用范围含有较多难生化有机物、高含盐、高硬度、高悬浮物的情况的废水能做到有效去除盐分、降低膜污染风险、保证系统稳定运行成果简介本工艺中浓水预处理及提浓装置采用国家科技重大水专项:“重点流域石化废水资源化与零排放关键技术产业化”中研究技术和成果,废水经调节池均质调节后,采用一些列具有自主专利技术的预处理装置处理,保证水质符合双膜法(UF+RO)净化处理进水的要求,净化产水回收利用,高盐浓水经进一步预处理(管式超滤),采用先进的膜技术(浓水反渗透+DTRO)进一步浓缩,小流量浓盐水采用蒸发工艺实现盐的回收利用。
技术效果采用国家科技重大水专项:“重点流域石化废水资源化与零排放关键技术产业化的提浓装置及零排放”技术,废水排放量(工艺自身所需)小于总水量的2%,实现90%的废水回用。
每年可实现约400万立方高含盐废回收利用,减少6820吨溶解性固体的排放,并且实现资源化回收利用。
根据可靠计算,每吨水可节约排污费用3元,节约取水费用0.9元。
以示范工程为例,每年大约节约费用1600万元。
应用情况示范工程名称:中盐昆山迁建年产60万吨纯碱项目污水回用及废水零排放项目,所在地江苏昆山,设计回用水量550m3/h,高盐浓水约8m3/h,该工艺废水排放量小于总处理量的2%,实现90%的废水回用。
市场前景高盐废水的“零排放”及资源化利用会提上更加新的高度,相比于生物处理(低于5000mg/L含盐量)的局限性,以及单纯蒸发工艺的高投资,采用膜法工艺可解决上述难题的同时,也可降低占地面积,在节约投资成本的同时更好的实现废水的循环利用。
高盐废水零排放处理设备及工艺!废水能够全部回用就是零排放

高盐废水零排放处理设备及工艺!废水能够全部回用就是零排放五硫化二磷法工艺五硫化二磷法是以五硫化二磷与无水酒精为原料,经过硫化阶段、氯化阶段、水解阶段及精馏阶段最终生成高纯度产品(图1 五硫化二磷法工艺流程图)。
(1)硫化阶段:将五硫化二磷与无水乙醇在催化剂的作用下,生成乙基硫化物及硫化氢,再通过氢氧化钠将硫化氢制备为硫化钠。
(2)氯化阶段:将硫化阶段生成的乙基硫化物与氯气反应,制取粗乙基氯化物产品。
(3)水解工段:通过加入硫化阶段生成的硫化钠去除氯化阶段产生的二氯二硫杂质的过程。
(4)蒸馏工段:将上述工段的产品进行蒸馏提纯,获得高纯度的乙基硫化物产品。
图1-五硫化二磷法工艺流程图3.三废处理从图1 五硫化二磷法工艺流程图可以看出,三废主要包括:氯化氢气体、二氧化硫气体、硫磺、氯化钠溶液,除此之外,还有乙基氯化物精馏后残余在废水中含硫、磷的有机物。
三废中,氯化氢气体使用二级吸收罐进行吸收,生成工业副产物盐酸,二氧化硫废气及氯化氢未被吸收的废气使用碱液吸收中和,生成无机盐溶解于废水中,硫磺单质通过过滤机进行过滤分离,剩余废水内包含氯化钠、亚硫酸钠以及含硫、磷的有机物,经过后续的处理达到零排放的目标(图2 三废处理流程图)。
图2 三废处理流程图二、废水处理再利用系统工艺由于废水组分复杂,处理难度较高,此处理工艺选用“预处理+蒸发结晶+生化处理”的流程形式进行零排放处理(图3 高盐高有机物废水零排放处理工艺流程图)。
1.酸化吹脱乙基氯化物生产线在经蒸馏提纯获得产品后,所产生废水内残留少量未被提取的乙基氯化物,此部分残留物需最先分解,以免对后续处理工艺造成负面影响。
为处理此部分残余乙基氯化物,可利用其在酸性条件下会发生水解反应的性质,其反应如下:通过空气吹脱水解反应生成的硫化氢气体并使用碱液吸收,促进残余的乙基氯化物正向水解反应的进行,将其分解为乙醇、正磷酸及硫化氢。
图3 高盐高有机物废水零排放处理工艺流程图2.催化氧化对经过酸化吹脱的高盐废水使用较为先进的芬顿氧化法进行催化氧化,芬顿氧化作为一种均相氧化技术,其氧化作用是通过二氧化氢作为氧化剂在二价铁离子的催化作用下产生的氢氧根来实现的。
化工清洗废水零排放项目MVR蒸发结晶-技术方案

化工清洗废水零排放项目技术部分目录第一章设计说明 (3)1.1处理能力 (3)1.2进水水质 (3)1.3处理要求情况 (3)第二章工艺设计 (4)2.1工艺选择 (4)2.2设计思想 (4)第三章蒸发系统设计 (6)3.1MVR蒸发系统参数设计 (6)3.2MVR蒸发系统流程框图 (7)第四章设备清单 (8)第五章公用工程消耗一览表 (11)第六章稳定性保障 (12)6.1系统设计 (12)6.2防堵设计 (12)6.3防垢除垢 (13)6.4罗茨压缩机 (15)6.5设备保障 (15)6.6安全保证 (16)第七章总体设计 (18)7.1原则 (18)7.2平面布置 (18)7.3竖向设计 (18)1.1处理能力进水量按1吨/小时设计1.2进水水质组成见下表:1.3处理要求情况处理要求:零排放,出杂盐。
2.1工艺选择1)来料盐属于高盐废水,因此选择蒸发结晶工艺来进行处理。
从表MVR和三效蒸发的比较可知,MVR蒸发结晶系统具有较大的运行成本的优势。
因此本系统采用MVR工艺。
2)强制循环工艺具有以下特点:◆传热系数大◆适合粘度较大或含有颗粒的物料◆抗盐析、抗结垢2.2设计思想1)根据所提供的水质情况,本蒸发系统,进水量为1m3/h,TDS 3.9%。
2)整个系统产生的废气排至业主废气处置系统。
3)管道排布优化:a)出料管道设计有冲洗水注入口,如果积攒结晶,可以开自来水进行溶解清洗,无需拆解管道。
b)出料管道采用分段安装,即可以分段拆解,如果结晶堵塞可快速分段进行清理,大大降低了堵塞后的清理工作。
c)出料管道采取出料泵推动流体一直循环流动的设计,避免了物料在管内流速低,温降大,而析出结晶堵塞管道的可能。
6)设备防堵措施:针对易结晶、易堵塞的特性,对出料管道系统做了独特的设计:采用高速循环出料设计,使浓缩液在出料管路内保持高速的流动状态,从而降低浓缩液在管道内的停留时间,并配备优良的保温措施,最大限度的避免浓缩液在管道内冷却结晶,降低了堵管的机率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品整理
化工高盐废水零排放处理技术
一、技术概述
本技术以源头控制到过程减量,少量终端处理的全新水系统设计为研究思路。
针对目前煤化工企业废水排放瓶颈问题及特定地区废水“零排放”的具体工程案例进行了详细调研分析,借鉴盐化工、制糖、果汁、海水淡化等方面的工程经验,通过行业间的技术交叉以及大系统集成创新确定了能源化工废水“零排放”初步的技术方案及研究工作,在行业无工程先例的情况下,确定了由五大子系统(颗粒物脱除,结垢性离子脱除,有机污染物脱除,三级分离浓缩、结晶分离)以及十二个运行单元所组成的整个零排放及资源化工程系统工艺方案。
二、技术优势
(1)混凝沉淀技术
通过对混凝沉淀体系反应顺序和速度的研究,开发出强化混凝沉淀工艺,确定了高密混凝沉淀池的加药品类及运行工艺参数,将混凝沉淀脱除硬度的效果效果由行业普遍的30~50mg/L提升至3~5mg/L。
(2)高pH多级反渗透的技术
本技术可使反渗透工艺在高pH条件下连续运行,减小硅和有机物对反渗透膜的污染,虽然其对操作控制的精确性要求高,但其工艺流程短,后端可结合非晶种蒸发结晶装置,单元装置的回收率可保持在90%以上,估算其运行成本(电耗+药剂消耗)为8元/m3。
(3)无反向流停机技术
通过大量的研究试验,在高压泵仍工作的情况下采用产水置换浓水侧浓水的方法,消除渗透压,从根本上解决了反向流及其引发的相应问题。
并通过调整控制各产排阀的时间,浓水侧不断地被稀释,直到两侧的浓度靠近时再停机,从本质上避免了反向流的存在,相比其他化工废水处理行业,膜装置的使用寿命可由1年延长至3年。
(4)分盐技术
纳滤双向分离技术不仅实现了单级纳滤处理双组份无机盐溶液,将氯化钠的纯度提升至98.5%以上,而且在运行成本上较其他行业的分盐方式具有更大的优势,采用分盐工艺将废水盐做成合格的工业产品,大大减轻了当地工业产区的环境问题与社会问题。
三、适用范围
主要适用于西北煤炭资源丰富,但水资源匮乏的地区,其水质具有高盐高有机污染物的特点。
需要开发出一种工业水循环处理的新技术,达到提高转化效率和资源利用率,降低能耗和水耗,实现经济效益和环境效益协同发展的目标,本技术可以作成化工废水深度处理回用的成套装置。