高等代数课件(精)

合集下载

高等代数课件--天津科技大学理学院高等代数精品课程教.

高等代数课件--天津科技大学理学院高等代数精品课程教.

V1 V2 1 2 | 1 V1 , 2 V2
定理2:如果V1 ,V2是线性空间V的两个子空
间,那么它们的和 V1+V2也是V的子空间。
高等代数课件--天津科技大学理学院高等代数精品课程教研小组
证明:由于0∈ V1,0∈ V2 , 0=0+0∈ V1+V2 ,因而V1+V2 是非空集合, 如果= 1+ 2 , = 1+ 2 ∈ V1+V2, 因1+1∈ V1、 2+2 ∈ V2 , 有 + =(1+1)+( 2+2) ∈V1+ V2 k=k (1+ 2 )= k 1+k 2 ∈V1+ V2 因此V1+V2 是V的子集. 有限个子空间的和
高等代数课件--天津科技大学理学院高等代数精品课程教研小组
推论2 : 和V1 V2为直和的充分必要条件是 V1 V2 0 证明 : 必要性 V1 V2 , 0 ( ) 0 0 因为V1 V2是直和, 零元素的表示法唯一, 从而 0 , V1 V2 {0} 充分性 任意1 ,V1 , 2 V2 , 如果1 2 0, 有
高等代数课件--天津科技大学理学院高等代数精品课程教研小组
例1 在二位几何空间中,若V1,V2分别是x轴 与y轴,则V1∩V2={0}, V1+V2=R2. 例2 在三位几何空间中,若V1表示过原点的 直线,V2是过原点且与V1垂直的平面,则 V1∩V2={0}, V1+V2=R3.
例3 线性空间Pn中,若V1是As×nx=0的解空 间,V2是Br×nx=0的解空间,
第八章 线性空间
§8.2 子空间及其交与和 子空间的直和
高等代数课件--天津科技大学理学院高等代数精品课程教研小组
子空间的交与和
子空间的交与和是V的子空间集合的 运算。由于两个子空间的并一般未必仍是 子空间,所以集合并的运算不是V的子空 间集合的运算。因此引入子空间的和。我 们切不可把子空间的和与集合的并混为一 谈,例如在R2中,若X,Y分别表示 x 轴和 y 轴上所有点的集合,那么X和Y 都是R2的子空间,且X+Y=R2,显然 ≠X∪Y。

高等代数CAI课件.pptx

高等代数CAI课件.pptx

则 ( y) ( ( y)) (x) y IM( y), 即 IM
∴σ为可逆映射.
2019年7月11
感谢你的观看
24
反之,设 : M M 为可逆映射,则 对y M, 有y 1( y) ( 1( y)) 即, x 1( y) M ,使y ( x). 所以σ为满射.
感谢你的观看
14
例4 判断下列M 到M ´对应法则是否为映射
1)M={a,b,c}、M´={1,2,3,4}
σ:σ(a)=1,σ(b)=1,σ(c)=2
(是)
δ:δ(a)=1,δ(b)=2,δ(c)=3,δ(c)=4
(不是)
τ:τ(b)=2,τ(c)=4
(不是)
2)M=Z,M´=Z+,
σ:σ(n)=|n|, n Z τ:τ(n)=|n|+1, n Z
例6 任意一个在实数集R上的函数 y=f(x)
都是实数集R到自身的映射,即,函数可以看成是 映射的一个特殊情形.
2019年7月11
感谢你的观看
17
2、映射的乘积
设映射 : M M ', : M ' M '',乘积
定义为: (a)=τ(σ(a))
a M
即相继施行σ和τ的结果, 是 M 到 M" 的一个
(双射)
2)M=Z,M´=Z+, τ:τ(n)=|n|+1, n Z
(是满射,但不是单射)
3)M= Pnn ,M´=P,(P为数域)
σ:σ(A)=|A|, A Pnn (是满射,但不是单射)
2019年7月11
感谢你的观看
20
4)M=P,M´= P nn , P为数域, E为n级单位矩阵

高等代数【北大版】课件

高等代数【北大版】课件
线性规划问题
线性方程组是求解线性规划问题的常用工具 。
物理问题建模
在物理问题中,线性方程组可以用来描述各 种现象,如振动、波动等。
投入产出分析
通过线性方程组分析经济系统中各部门之间 的相互关系。
控制系统分析
在控制系统分析中,线性方程组用于描述系 统的动态行为。
PART 03
向量与矩阵
REPORTING
高等代数【北大版】 课件
REPORTING
• 绪论 • 线性方程组 • 向量与矩阵 • 多项式 • 特征值与特征向量 • 二次型与矩阵的相似对角化
目录
PART 01
绪论
REPORTING
高等代数的应用
在数学其他分支的应用
高等代数是数学的基础学科,为其他分支提供了理论基础,如几 何学、分析学等。
PART 04
多项式
REPORTING
一元多项式的定义与运算
总结词
一元多项式的定义、运算性质和运算方法。
详细描述
一元多项式是由整数系数和变量组成的数学对象,具有加法、减法、乘法和除法等运算性质和运算方法。一元多 项式可以表示为$a_0 + a_1x + a_2x^2 + ldots + a_nx^n$的形式,其中$a_0, a_1, ldots, a_n$是整数,$x$是 变量。
矩阵的相似对角化
总结词
矩阵的相似对角化是将矩阵转换为对角矩阵 的过程,有助于简化矩阵运算和分析。
详细描述
矩阵的相似对角化是通过一系列的线性变换 ,将一个矩阵转换为对角矩阵。对角矩阵是 一种特殊的矩阵,其非主对角线上的元素都 为零,主对角线上的元素为特征值。通过相 似对角化,可以简化矩阵运算,并更好地理 解矩阵的性质和特征。

高等代数第一讲代数系统PPT课件

高等代数第一讲代数系统PPT课件
带余除法; 带余除法;
称K为F的子域,F称 而为K的扩域。 则有 deg (fg)=deg f+deg g
C的子域被称作数域,
有理数Q域 是最小的数 --是 域任意数域的子
II Polynomial form
§1- 1基本概念与运算
定义1:(i)设F为一个域X是 ,不属F于 的 任一个符号,则形如
例3:n阶可逆方阵的全体通(常按矩阵的 乘法)是乘法群。一称般为线性.- 群- generallineargrou简 p 记为 GLn(F).
而 SLn(F= ) {AMn(F)detA=1} 称为特殊线性群S- pe- ciaLl ineargroup
定义中的恒元和逆是元乘都在左边的, 可以证明,乘在右有边相也同的性质。 即 aa-1=e, ae=a.
X5 4 X 4 3 X 3 2 X 2 X 1
4X 3
4 45
23 X 2
23 X 3
117 X
23 5 23
586
117 X 2
117 5 117
586 X 586 5 586
r(X)= 2931
于是 q(X)4X323 X211X758,r6(X)29,3 f(X)q(X)(X5)r(X) . r(X)f(5)
若 defgdegg ,则 q令 0。 rf即可
记 fanXnan 1Xn 1 a1Xa0, an0
gbm Xmbm 1Xm 1 b1Xb0,令
q1
an bm
Xnm,
则gq1与f 的首项相同
q1
an bm
Xnm,
则gq1与f 的首项相
f gq1 f1的次数 f 低 比,f1对 同样讨
存在 q1,,qs使 de r0 g de g或 g r00

高等代数北大版ppt课件.ppt

高等代数北大版ppt课件.ppt

n

f ( ) kiai ,
i 1
kn n
则 f :V P 为线性函数,且
f ( i ) ai , i 1, 2, , n
§10.1 线性函数
例1. 设 a1,a2, ,an P, ( x1, x2,
n

f ( ) ai
i 1
是 Pn 到 P的一个线性函数.
, xn ) Pn
解:
f f
( (
1) 2)
f 2
( 3 ) f ( 3
1 )
1
f f
( (
1 2
) )
4 7
f (1) f (2 ) 3
f ( 3 ) 3
所以 f ( x11 x2 2 x3 3 ) 4 x1 7 x2 3 x3 .
§10.1 线性函数
例4. V 是数域 P上的3维线性空间, f 是V上的
x11 x2 2 x3 3 x1a1 x2a2 x3a3 即为V上的线性函数,且 f ( i ) ai , i 1,2, , n
若还有 g 是 V上线性函数使 g( i ) ai , i 1,2, , n,
则 x11 x2 2 x3 3 V , 有
g( ) x1g(1 ) x2 g( 2 ) xn g( n )
f ( ) x2 f ( 2 ) x2 .
§10.1 线性函数
定理1 设V为数域 P上的一个n 维线性空间,
1, 2 , , n为V的一组基, a1,a2 , ,an 为 P中
任意n 个数. 则存在唯一的V上线性函数 f 使
f i ai, i 1,2, ,n.
§10.1 线性函数
证明:映射 f :V P,
x1a1 x2a2 xnan

高等代数经典课件

高等代数经典课件

§1 数域关于数的加、减、乘、除等运算的性质通常称为数的代数性质.代数所研究的问题主要涉及数的代数性质,这方面的大部分性质是有理数、实数、复数的全体所共有的.定义1 设P 是由一些复数组成的集合,其中包括0与1.如果P 中任意两个数的和、差、积、商(除数不为零)仍然是中的数,那么P 就称为一个数域.显然全体有理数组成的集合、全体实数组成的集合、全体复数组成的集合都是数域.这三个数域分别用字母Q 、R 、C 来代表.全体整数组成的集合就不是数域.如果数的集合P 中任意两个数作某一种运算的结果都仍在P 中,就说数集P 对这个运算是封闭的.因此数域的定义也可以说成,如果一个包含0,1在内的数集P 对于加法、减法、乘法与除法(除数不为零)是封闭的,那么P 就称为一个数域.例1 所有具有形式2b a +的数(其中b a ,是任何有理数),构成一个数域.通常用)2(Q 来表示这个数域.例2 所有可以表成形式m m n n b b b a a a ππππ++++++ 1010 的数组成一数域,其中m n ,为任意非负整数,),,1,0;,,1,0(,m j n i b a j i ==是整数.例 3 所有奇数组成的数集,对于乘法是封闭的,但对于加、减法不是封闭的.性质:所有的数域都包含有理数域作为它的一部分.一、一元多项式定义2 设n 是一非负整数,形式表达式0111a x a x a x a n n n n ++++-- ,(1)其中n a a a ,,,10 全属于数域P ,称为系数在数域P 中的一元多项式,或者简称为数域P 上的一元多项式.在多项式(1)中,i i x a 称为i 次项,i a 称为i 次项的系数.以后用 ),(),(x g x f 或 ,,g f 等来表示多项式.注意:这里定义的多项式是符号或文字的形式表达式.定义3 如果在多项式)(x f 与)(x g 中,除去系数为零的项外,同次项的系数全相等,那么)(x f 与)(x g 就称为相等,记为)()(x g x f =.系数全为零的多项式称为零多项式,记为0.在(1)中,如果0≠n a ,那么n n x a 称为多项式(1)的首项,n a 称为首项系数,n 称为多项式(1)的次数.零多项式是唯一不定义次数的多项式.多项式)(x f 的次数记为))((x f ∂.二、多项式的运算设0111)(a x a x a x a x f n n n n ++++=--0111)(b x b x b x b x g m m m m ++++=--是数域P 上两个多项式,那么可以写成∑==ni i i x a x f 0)(∑==m j j j x b x g 0)(在表示多项式)(x f 与)(x g 的和时,如m n ≥,为了方便起见,在)(x g 中令011====+-m n n b b b ,那么)(x f 与)(x g 的和为∑=---+=++++++++=+n i i i i n n n n n n xb a b a x b a x b a x b a x g x f 00011111)()()()()()()(而)(x f 与)(x g 的乘积为001001111)()()()(b a x b a b a x b a b a x b a x g x f m n m n m n m n m n ++++++=-+--+其中s 次项的系数是∑=+--=++++s j i j i s s s s b a b a b a b a b a 011110所以)(x f )(x g 可表成 s mn s s j i j i x b a x g x f )()()(0∑∑+==+=.显然,数域P 上的两个多项式经过加、减、乘运算后,所得结果仍然是数域P 上的多项式.对于多项式的加减法,不难看出)))(()),((max())()((x g x f x g x f ∂∂≤+∂.对于多项式的乘法,可以证明,若0)(,0)(≠≠x g x f ,则0)()(≠x g x f ,并且))(())(())()((x g x f x g x f ∂+∂=∂由以上证明看出,多项式乘积的首项系数就等于因子首项系数的乘积.显然上面的结果都可以推广到多个多项式的情形.多项式的运算满足以下的一些规律:1. 加法交换律:)()()()(x f x g x g x f +=+.2. 加法结合律:))()(()()())()((x h x g x f x h x g x f ++=++3. 乘法交换律:. )()()()(x f x g x g x f =4. 乘法结合律:))()()(()())()((x h x g x f x h x g x f =5. 乘法对加法的分配律:)()()()())()()((x h x f x g x f x h x g x f +=+6. 乘法消去律:若)()()()(x h x f x g x f =且0)(≠x f ,则)()(x h x g =.定义4所有系数在数域P中的一元多项式的全体,称为数域P上的一元多项式环,记为]P的系数域.[x[xP,P称为]§3 整除的概念在一元多项式环中,可以作加、减、乘三种运算,但是乘法的逆运算—除法—并不是普遍可以做的.因之整除就成了两个多项式之间的一种特殊的关系.一、整除的概念带余除法 对于][x P 中任意两个多项式)(x f 与)(x g ,其中0)(≠x g ,一定有][x P 中的多项式)(),(x r x q 存在,使)()()()(x r x g x q x f += (1)成立,其中))(())((x g x r ∂<∂或者0)(=x r ,并且这样的)(),(x r x q 是唯一决定的.带余除法中所得的)(x q 通常称为)(x g 除)(x f 的商,)(x r 称为)(x g 除)(x f 的余式.定义5 数域P 上的多项式)(x g 称为整除)(x f ,如果有数域P 上的多项式)(x h 使等式)()()(x h x g x f =成立.用“)(|)(x f x g ”表示)(x g 整除)(x f ,用“)(|)(x f x g /”表示)(x g 不能整除)(x f .当)(|)(x f x g 时,)(x g 就称为)(x f 的因式,)(x f 称为)(x g 的倍式.当0)(≠x g 时,带余除法给出了整除性的一个判别条件.定理1 对于数域P 上的任意两个多项式)(x f ,)(x g ,其中0)(≠x g ,)(|)(x f x g 的充要条件是)(x g 除)(x f 的余式为零.带余除法中)(x g 必须不为零.但)(|)(x f x g 中,)(x g 可以为零.这时0)(0)()()(=⋅=⋅=x h x h x g x f .当)(|)(x f x g 时,如0)(≠x g ,)(x g 除)(x f 的商)(x q 有时也用)()(x g x f来表示.二、整除的性质1. 任一多项式)(x f 一定整除它自身.2. 任一多项式)(x f 都能整除零多项式0.3. 零次多项式,即非零常数,能整除任一个多项式.4. 若)(|)(),(|)(x f x g x g x f ,则)()(x cg x f =,其中c 为非零常数.5. 若)(|)(),(|)(x h x g x g x f ,则)(|)(x h x f (整除的传递性).6. 若r i x g x f i ,,2,1),(|)( =,则))()()()()()((|)(2211x g x u x g x u x g x u x f r r +++ ,其中)(x u i 是数域P 上任意的多项式.通常,)()()()()()(2211x g x u x g x u x g x u r r +++ 称为)(,),(),(21x g x g x g r 的一个组合.由以上性质可以看出,)(x f 与它的任一个非零常数倍)0)((≠c x cf 有相同的因式,也有相同的倍式.因之,在多项式整除性的讨论中,)(x f 常常可以用)(x cf 来代替.最后,两个多项式之间的整除关系不因系数域的扩大而改变.即若)(x f ,)(x g 是][x P 中两个多项式,P 是包含P 的一个较大的数域.当然,)(x f ,)(x g 也可以看成是][x P 中的多项式.从带余除法可以看出,不论把)(x f ,)(x g 看成是][x P 中或者是][x P 中的多项式,用)(x g 去除)(x f 所得的商式及余式都是一样的.因此,若在][x P 中)(x g 不能整除)(x f ,则在][x P 中,)(x g 也不能整除)(x f .例1 证明若)()(|)(),()(|)(2121x f x f x g x f x f x g -+,则)(|)(),(|)(21x f x g x f x g例2 求l k ,,使1|32++++kx x l x x .例3 若)(|)(),(|)(x h x g x f x g /,则)()(|)(x h x f x g +/.§4 多项式的最大公因式一 、多项式的最大公因式如果多项式)(x ϕ既是)(x f 的因式,又是)(x g 的因式,那么)(x ϕ就称为)(x f 与)(x g 的一个公因式.定义 6 设)(x f 与)(x g 是][x P 中两个多项式. ][x P 中多项式)(x d 称为)(x f ,)(x g 的一个公因式,如果它满足下面两个条件:1))(x d 是)(x f 与)(x g 的公因式;2))(x f ,)(x g 的公因式全是)(x d 的因式.例如,对于任意多项式)(x f ,)(x f 就是)(x f 与0的一个最大公因式.特别地,根据定义,两个零多项式的最大公因式就是0.引理 如果有等式)()()()(x r x g x q x f += (1)成立,那么)(x f ,)(x g 和)(x g ,)(x r 有相同的公因式.定理2 对于][x P 的任意两个多项式)(x f ,)(x g ,在][x P 中存在一个最大公因式)(x d ,且)(x d 可以表成)(x f ,)(x g 的一个组合,即有][x P 中多项式)(),(x v x u 使)()()()()(x g x v x f x u x d +=. (2)由最大公因式的定义不难看出,如果)(),(21x d x d 是)(x f ,)(x g 的两个最大公因式,那么一定有)(|)(21x d x d 与)(|)(12x d x d ,也就是说0),()(21≠=c x cd x d .这就是说,两个多项式的最大公因式在可以相差一个非零常数倍的意义下是唯一确定的.两个不全为零的多项式的最大公因式总是一个非零多项式.在这个情形,我们约定,用()(x f ,)(x g )来表示首项系数是1的那个最大公因式.定理证明中用来求最大公因式的方法通常称为辗转相除法(division algorithm).例 设343)(234---+=x x x x x f32103)(23-++=x x x x g求()(x f ,)(x g ),并求)(),(x v x u 使)()()()()(x g x v x f x u x d +=.注:定理2的逆不成立.例如令1)(,)(+==x x g x x f ,则122)1)(1()2(2-+=-+++x x x x x x .但1222-+x x 显然不是)(x f 与)(x g 的最大公因式.但是当(2)式成立,而)(x d 是)(x f 与)(x g 的一个公因式,则)(x d 一定是)(x f 与)(x g 的一个最大公因式.二、多项式互素定义7 ][x P 中两个多项式)(x f ,)(x g 称为互素(也称为互质)的,如果1))(),((=x g x f显然,两个多项式互素,那么它们除去零次多项式外没有其他的公因式,反之亦然.定理3 ][x P 中两个多项式)(x f ,)(x g 互素的充要条件是有][x P 中多项式)(),(x v x u 使1)()()()(=+x g x v x f x u .定理4 如果1))(),((=x g x f ,且)()(|)(x h x g x f ,那么)(|)(x h x f .推论1 如果)(|)(),(|)(21x g x f x g x f ,且1))(),((21=x f x f ,那么)(|)()(21x g x f x f .推论2 如果1))(),((1=x g x f ,1))(),((2=x g x f ,那么1))(),()((21=x g x f x f 推广:对于任意多个多项式)2)((,),(),(21≥s x f x f x f s ,)(x d 称为)2)((,),(),(21≥s x f x f x f s 的一个最大公因式,如果)(x d 具有下面的性质:1)s i x f x d i ,,2,1),(|)( =;2)如果s i x f x i ,,2,1),(|)( =ϕ,那么)(|)(x d x ϕ.我们仍用))(,),(),((21x f x f x f s 符号来表示首项系数为1的最大公因式.不难证明)(,),(),(21x f x f x f s 的最大公因式存在,而且当)(,),(),(21x f x f x f s 全不为零时,))()),(,),(),(((121x f x f x f x f s s -就是)(,),(),(21x f x f x f s 的最大公因式,即))(,),(),((21x f x f x f s =))()),(,),(),(((121x f x f x f x f s s -同样,利用以上这个关系可以证明,存在多项式s i x u i ,,2,1),( =,使))(,),(),(()()()()()()(212211x f x f x f x f x u x f x u x f x u s s s =+++ 如果1))(,),(),((21=x f x f x f s ,那么)(,),(),(21x f x f x f s 就称为互素的.同样有类似定理3的结论.注意 1)当一个多项式整除两个多项式之积时,若没有互素的条件,这个多项式一般不能整除积的因式之一.例如222)1()1(|1-+-x x x ,但22)1(|1+/-x x ,且22)1(|1-/-x x .2) 推论1中没有互素的条件,则不成立.如1)(2-=x x g ,1)(1+=x x f , )1)(1()(2-+=x x x f ,则)(|)(),(|)(21x g x f x g x f ,但)(|)()(21x g x f x f .注意:s )2(≥s 个多项式)(,),(),(21x f x f x f s 互素时,它们并不一定两两互素.例如,多项式34)(,65)(,23)(232221+-=+-=+-=x x x f x x x f x x x f 是互素的,但2))(),((21-=x x f x f . 令P 是含P 的一个数域, )(x d 是][x P 的多项式)(x f 与)(x g 在][x P 中的首项系数为1的最大公因式,而)(x d 是)(x f 与)(x g 在][X P 中首项系数为1的最大公因式,那么)()(x d x d =.即从数域P 过渡到数域P 时, )(x f 与)(x g 的最大公因式本质上没有改变. 互素多项式的性质可以推广到多个多项式的情形:1)若多项式),()()(|)(21x f x f x f x h s )(x h 与)(,),(),(,),(111x f x f x f x f s i i +- 互素,则)1)((|)(s i x f x h i ≤≤.2) 若多项式)(,),(),(21x f x f x f s 都整除)(x h ,且)(,),(),(21x f x f x f s 两两互素,则)(|)()()(21x h x f x f x f s .3) 若多项式)(,),(),(21x f x f x f s 都与)(x h 互素,则1))(),()()((21=x h x f x f x f s .§5 因式分解定理一、不可约多项式Con i x i x x x R on x x x Q on x x x )2)(2)(2)(2()2)(2)(2()2)(2(42224+-+-=++-=+-=-. 定义8 数域P 上次数1≥的多项式)(x p 称为域P 上的不可约多项式(irreducible polynomical),如果它不能表成数域P 上的两个次数比)(x p 的次数低的多项式的乘积.根据定义,一次多项式总是不可约多项式. 一个多项式是否可约是依赖于系数域的.显然,不可约多项式)(x p 的因式只有非零常数与它自身的非零常数倍)0)((≠c x cp 这两种,此外就没有了.反过来,具有这个性质的次数1≥的多项式一定是不可约的.由此可知,不可约多项式)(x p 与任一多项式)(x f 之间只可能有两种关系,或者)(|)(x f x p 或者1))(),((=x f x p .定理5 如果)(x p 是不可约多项式,那么对于任意的两个多项式)(),(x g x f ,由)()(|)(x g x f x p 一定推出)(|)(x f x p 或者)(|)(x g x p .推广:如果不可约多项式)(x p 整除一些多项式)(,),(),(21x f x f x f s 的乘积)()()(21x f x f x f s ,那么)(x p 一定整除这些多项式之中的一个.二、因式分解定理因式分解及唯一性定理 数域P 上次数1≥的多项式)(x f 都可以唯一地分解成数域P 上一些不可约多项式的乘积.所谓唯一性是说,如果有两个分解式)()()()()()()(2121x q x q x q x p x p x p x f t s ==,那么必有t s =,并且适当排列因式的次序后有s i x q c x p i i i ,,2,1,)()( ==.其中),,2,1(s i c i =是一些非零常数.应该指出,因式分解定理虽然在理论上有其基本重要性,但是它并没有给出一个具体的分解多项式的方法.实际上,对于一般的情形,普遍可行的分解多项式的方法是不存在的.在多项式)(x f 的分解式中,可以把每一个不可约因式的首项系数提出来,使它们成为首项系数为1的多项式,再把相同的不可约因式合并.于是)(x f 的分解式成为)()()()(2121x p x p x cp x f s r s r r =,其中c 是)(x f 的首项系数,)(,),(),(21x p x p x p s 是不同的首项系数为1的不可约多项式,而s r r r ,,,21 是正整数.这种分解式称为标准分解式.如果已经有了两个多项式的标准分解,就可以直接写出两个多项式的最大公因式.多项式)(x f 与)(x g 的最大公因式)(x d 就是那些同时在)(x f 与)(x g 的标准分解式中出现的不可约多项式方幂的乘积,所带的方幂的指数等于它在)(x f 与)(x g 中所带的方幂中较小的一个.由以上讨论可以看出,带余除法是一元多项式因式分解理论的基础.若)(x f 与)(x g 的标准分解式中没有共同的不可约多项式,则)(x f 与)(x g 互素.注意:上述求最大公因式的方法不能代替辗转相除法,因为在一般情况下,没有实际分解多项式为不可约多项式的乘积的方法,即使要判断数域P 上一个多项式是否可约一般都是很困难的.例 在有理数域上分解多项式22)(23--+=x x x x f 为不可约多项式的乘积.§6 重因式一、重因式的定义定义9 不可约多项式)(x p 称为多项式)(x f 的k 重因式,如果)(|)(x f x p k ,但)(|)(1x f x p k /+.如果0=k ,那么)(x p 根本不是)(x f 的因式;如果1=k ,那么)(x p 称为)(x f 的单因式;如果1>k ,那么)(x p 称为)(x f 的重因式.注意. k 重因式和重因式是两个不同的概念,不要混淆. 显然,如果)(x f 的标准分解式为)()()()(2121x p x p x cp x f s r s r r =,那么)(,),(),(21x p x p x p s 分别是)(x f 的1r 重,2r 重,… ,s r 重因式.指数1=i r 的那些不可约因式是单因式;指数1>i r 的那些不可约因式是重因式.不可约多项式)(x p 是多项式)(x f 的k 重因式的充要条件是存在多项式)(x g ,使得)()()(x g x p x f k =,且)(|)(x g x p /.二、重因式的判别 设有多项式0111)(a x a x a x a x f n n n n ++++=-- ,规定它的微商(也称导数或一阶导数)是1211)1()(a x n a nx a x f n n n n ++-+='--- .通过直接验证,可以得出关于多项式微商的基本公式:).()()()()()(()())((),()())()((x g x f x g x f x g x f x f c x cf x g x f x g x f '+'=''=''+'='+)))()(())((1x f x f m x f m m '='-同样可以定义高阶微商的概念.微商)(x f '称为)(x f 的一阶微商;)(x f '的微商)(x f ''称为)(x f 的二阶微商;等等. )(x f 的k 阶微商记为)()(x fk .一个)1(≥n n 次多项式的微商是一个1-n 次多项式;它的n 阶微商是一个常数;它的1+n 阶微商等于0.定理6 如果不可约多项式)(x p 是多项式)(x f 的一个)1(≥k k 重因式,那么)(x p 是微商)(x f '的1-k 重因式.分析: 要证)(x p 是微商)(x f '的1-k 重因式,须证)(|)(1x f x p k '-,但)(|)(x f x p k '/.注意:定理6的逆定理不成立.如333)(23++-=x x x x f , 22)1(3363)(-=+-='x x x x f ,1-x 是)(x f '的2重因式,但根本不是)(x f 是因式.当然更不是三重因式.推论 1 如果不可约多项式)(x p 是多项式)(x f 的一个)1(≥k k 重因式,那么)(x p 是)(x f ,)(x f ',…,)()1(x fk -的因式,但不是)()(x fk 的因式.推论2 不可约多项式)(x p 是多项式)(x f 的重因式的充要条件是)(x p 是)(x f 与)(x f '的公因式.推论3 多项式)(x f 没有重因式1))(),((='⇔x f x f这个推论表明,判别一个多项式有无重因式可以通过代数运算——辗转相除法来解决,这个方法甚至是机械的.由于多项式的导数以及两个多项式互素与否的事实在由数域P 过渡到含P 的数域P 时都无改变,所以由定理6有以下结论:若多项式)(x f 在][x P 中没有重因式,那么把)(x f 看成含P 的某一数域P 上的多项式时, )(x f 也没有重因式.例1 判断多项式2795)(234+-+-=x x x x x f有无重因式三、去掉重因式的方法设)(x f 有重因式,其标准分解式为s r s r r x p x p x cp x f )()()()(2121 =.那么由定理5),()()()()(1121121x g x p x p x p x f s r s r r ---='此处)(x g 不能被任何),,2,1)((s i x p i =整除.于是11211)()()()())(),((21---=='s r s r r x p x p x p x d x f x f用)(x d 去除)(x f 所得的商为)()()()(21x p x p x cp x h s =这样得到一个没有重因式的多项式)(x h .且若不计重数, )(x h 与)(x f 含有完全相同的不可约因式.把由)(x f 找)(x h 的方法叫做去掉重因式方法.例2 求多项式16566520104)(23456++++--=x x x x x x x f的标准分解式.§7 多项式函数到目前为止,我们始终是纯形式地讨论多项式,也就是把多项式看作形式表达式.在这一节,将从另一个观点,即函数的观点来考察多项式.一、多项式函数 设0111)(a x a x a x a x f n n n n ++++=-- (1)是][x P 中的多项式,α是P 中的数,在(1)中用α代x 所得的数0111a a a a n n n n ++++--ααα称为)(x f 当α=x 时的值,记为)(αf .这样,多项式)(x f 就定义了一个数域上的函数.可以由一个多项式来定义的函数就称为数域上的多项式函数.因为x 在与数域P 中的数进行运算时适合与数的运算相同的运算规律,所以不难看出,如果,)()()(,)()()(21x g x f x h x g x f x h =+=那么.)()()(,)()()(21ααααααg f h g f h =+=定理7(余数定理)用一次多项式去除多项式)(x f ,所得的余式是一个常数,这个常数等于函数值)(αf .如果)(x f 在α=x 时函数值0)(=αf ,那么α就称为)(x f 的一个根或零点. 由余数定理得到根与一次因式的关系.推论 α是)(x f 的根的充要条件是)(|)(x f x α-.由这个关系,可以定义重根的概念. α称为)(x f 的k 重根,如果)(α-x 是)(x f 的k 重因式.当1=k 时,α称为单根;当1>k 时,α称为重根.定理8 ][x P 中n 次多项式)0(≥n 在数域P 中的根不可能多于n 个,重根按重数计算.二、多项式相等与多项式函数相等的关系在上面看到,每个多项式函数都可以由一个多项式来定义.不同的多项式会不会定义出相同的函数呢?这就是问,是否可能有)()(x g x f ≠,而对于P 中所有的数α都有)()(ααg f =?由定理8不难对这个问题给出一个否定的回答.定理9 如果多项式)(x f ,)(x g 的次数都不超过n ,而它们对n+1个不同的数有相同的值即)()(i i g f αα=,1,,2,1+=n i ,那么)(x f =)(x g .因为数域中有无穷多个数,所以定理9说明了,不同的多项式定义的函数也不相同.如果两个多项式定义相同的函数,就称为恒等,上面结论表明,多项式的恒等与多项式相等实际上是一致的.换句话说,数域P 上的多项式既可以作为形式表达式来处理,也可以作为函数来处理.但是应该指出,考虑到今后的应用与推广,多项式看成形式表达式要方便些.三、综合除法根据余数定理,要求)(x f 当c x =时的值,只需用带余除法求出用c x -除)(x f 所得的余式.但是还有一个更简便的方法,叫做综合除法.设n n n n n a x a x a x a x a x f +++++=---122110)(并且设r x q c x x f +-=)()()(. (2)其中.)(12322110-----+++++=n n n n n b x b x b x b x b x q比较等式(2)中两端同次项的系数.得到.,,,,121112201100-----=-=-=-==n n n n n cb r a cb b a cb b a cb b a b a⇒ .,,,,112121210100n n n n n a cb r a cb b a cb ba cb b a b +=+=+=+==----这样,欲求系数k b ,只要把前一系数1-k b 乘以c 再加上对应系数k a ,而余式r 也可以按照类似的规律求出.因此按照下表所指出的算法就可以很快地陆续求出商式的系数和余式:rb b b b cb cb cb cb a a a a ac n n n n n |)|12112101210---------------------------------+表中的加号通常略去不写.例1 用3+x 除94)(24-++=x x x x f .例2 求k 使355)(234+++-=kx x x x x f 能被3-x 整除注意 :若)(x f 缺少某一项,在作综合除法时该项系数的位置要补上零. 四、拉格朗日插值公式已知次数n ≤的多项式)(x f 在)1,,2,1(+==n i c x i的值)1,,,2,1()(+==n i b c f i i .设∑+=++-----=111111)())(()()(n i n i i i c x c x c x c x k x f依次令c x =代入)(x f ,得)())(()(1111++-----=n i i i i i i ii c c c c c c c c b k∑+=++-++---------=1111111111)())(()()())(()()(n i n i i i i i i n i i i c c c c c c c c c x c x c x c x b x f这个公式叫做拉格朗日(Lagrange)插值公式.例3 求次数小于3的多项式)(x f ,使3)2(,3)1(,1)1(==-=f f f .下面介绍将一个多项式表成一次多项式α-x 的方幂和的方法.所谓n 次多项式)(x f 表成α-x 的方幂和,就是把)(x f 表示成0111)()()()(b x b x b x b x f n n n n +-++-+-=--ααα的形式.如何求系数011,,,,b b b b n n -,把上式改写成01211)]()()([)(b x b x b x b x f n n n n +-++-+-=---ααα ,就可看出0b 就是)(x f 被α-x 除所得的余数,而12111)()()(b x b x b x q n n n n ++-+-=--- αα就是)(x f 被α-x 除所得的商式.又因为123121)]()()([)(b x b x b x b x q n n n n +-++-+-=---ααα .又可看出1b 是商式)(1x q 被α-x 除所得的余式,而233122)()()()(b x b x b x b x q n n n n +-++-+-=---ααα .就是)(1x q 被α-x 除所得商式.这样逐次用α-x 除所得的商式,那么所得的余数就是n n b b b b ,,,,110- .例4 将5)2()2(3)2(2)2()(234+-+---+-=x x x x x f 展开成x 的多项式. 解 令2-=x y ,则2+=y x .于是532)2(234++-+=+y y y y y f .问题变为把多项式532234++-+y y y y 表成2+y (即x )的方幂和, -2 | 1 2 -3 1 5+) -2 0 6 -14 ------------------------------------------------------- -2 | 1 0 -3 7 | -9 +) -2 4 -2------------------------------------------------------ -2 | 1 -2 1 | 5 +) -2 8----------------------------------------------- -2 | 1 -4 | 9 +) -2----------------------------------1 | -6 所以9596)(234-++-=x x x x x f .注意:将)(x f 表成α-x 的方幂和,把α写在综合除法的左边,将α-x 的方幂和展开成x 的多项式,那么相当于将)(x f 表成c c x +-)(的方幂和,要把c -写在综合除法的左边.§8 复系数和实系数多项式的因式分解一、 复系数多项式因式分解定理代数基本定理 每个次数1≥的复系数多项式在复数域中有一个根. 利用根与一次因式的关系,代数基本定理可以等价地叙述为:每个次数1≥的复系数多项式在复数域上一定有一个一次因式.由此可知,在复数域上所有次数大于1的多项式都是可约的.换句话说,不可约多项式只有一次多项式.于是,因式分解定理在复数域上可以叙述成:复系数多项式因式分解定理 每个次数1≥的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.因此,复系数多项式具有标准分解式s l s l l n x x x a x f )()()()(2121ααα---=其中s ααα,,,21 是不同的复数,s l l l ,,,21 是正整数.标准分解式说明了每个n 次复系数多项式恰有n 个复根(重根按重数计算).二、实系数多项式因式分解定理对于实系数多项式,以下事实是基本的:如果α是实系数多项式)(x f 的复根,那么α的共轭数α也是)(x f 的根,并且α与α有同一重数.即实系数多项式的非实的复数根两两成对.实系数多项式因式分解定理 每个次数1≥的实系数多项式在实数域上都可以唯一地分解成一次因式与含一对非实共轭复数根的二次因式的乘积.实数域上不可约多项式,除一次多项式外,只有含非实共轭复数根的二次多项式.因此,实系数多项式具有标准分解式r s k r r k l s l l n q x p x q x p x c x c x c x a x f )()()()()()(211221121++++---=其中r r s q q p p c c ,,,,,,,,111 全是实数,s l l l ,,,21 ,r k k ,,1 是正整数,并且),,2,1(2r i q x p x i i =++是不可约的,也就是适合条件r i q p i i ,,2,1,042 =<-..代数基本定理虽然肯定了n 次方程有n 个复根,但是并没有给出根的一个具体的求法.高次方程求根的问题还远远没有解决.特别是应用方面,方程求根是一个重要的问题,这个问题是相当复杂的,它构成了计算数学的一个分支.三、n 次多项式的根与系数的关系. 令.)(11n n n a x a x x f +++=- (1)是一个n (>0)次多项式,那么在复数域C 中)(x f 有n 个根,,,,21n ααα 因而在][x C 中)(x f 完全分解为一次因式的乘积:).())(()(21n x x x x f ααα---=展开这一等式右端的括号,合并同次项,然后比较所得出的系数与(1)式右端的系数,得到根与系数的关系.,)1(),()1(),(),),(21323112111124213213131212211n n n n n n n n n n n n n n a a a a a αααααααααααααααααααααααααααααα-=+++-=+++-=+++=+++-=------(其中第),,2,1(n k k =个等式的右端是一切可能的k 个根的乘积之和,乘以k )1(-.若多项式n n n a x a x a x f +++=- 110)(的首项系数,10≠a 那么应用根与系数的关系时须先用0a 除所有的系数,这样做多项式的根并无改变.这时根与系数的关系取以下形式:.)1(,),(21013121022101n n nn n n a a a a a a αααααααααααα -=+++=+++-=- 利用根与系数的关系容易求出有已知根的多项式. 例1 求出有单根5与-2,有二重根3的四次多项式. 例2. 分别在复数域和实数域上分解1-n x 为标准分解式.§9 有理系数多项式作为因式分解定理的一个特殊情形,有每个次数≥1的有理系数多项式都能分解成不可约的有理系数多项式的乘积.但是对于任何一个给定的多项式,要具体地作出它的分解式却是一个很复杂的问题,即使要判别一个有理系数多项式是否可约也不是一个容易解决的问题,这一点是有理数域与复数域、实数域不同的.在这一节主要是指出有理系数多项式的两个重要事实:第一,有理系数多项式的因式分解的问题,可以归结为整(数)系数多项式的因式分解问题,并进而解决求有理系数多项式的有理根的问题.第二,在有理系数多项式环中有任意次数的不可约多项式.一、有理系数多项式的有理根 设011)(a x a x a x f n n n n +++=--是一个有理系数多项式.选取适当的整数c 乘)(x f ,总可以使)(x cf 是一个整系数多项式.如果)(x cf 的各项系数有公因子,就可以提出来,得到)()(x dg x cf =,也就是)()(x g cdx f =其中)(x g 是整系数多项式,且各项系数没有异于±1的公因子.如果一个非零的整系数多项式011)(b x b x b x g n n n n +++=-- 的系数01,,,b b b n n -没有异于±1的公因子,也就是说它们是互素的,它就称为一个本原多项式.上面的分析表明,任何一个非零的有理系数多项式)(x f 都可以表示成一个有理数r 与一个本原多项式)(x g 的乘积,即)()(x rg x f =.可以证明,这种表示法除了差一个正负号是唯一的.亦即,如果)()()(11x g r x rg x f ==,其中)(),(1x g x g 都是本原多项式,那么必有)()(,11x g x g r r ±=±=因为)(x f 与)(x g 只差一个常数倍,所以)(x f 的因式分解问题,可以归结为本原多项式)(x g 的因式分解问题.下面进一步指出,一个本原多项式能否分解成两个次数较低的有理系数多项式的乘积与它能否分解成两个次数较低的整系数多项式的乘积的问题是一致的.定理10(Gauss 引理) 两个本原多项式的乘积还是本原多项式.定理11 如果一非零的整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它一定可以分解两个次数较低的整系数多项式的乘积.以上定理把有理系数多项式在有理数域上是否可约的问题归结到整系数多项式能否分解成次数较低的整系数多项式的乘积的问题.推论 设)(x f ,)(x g 是整系数多项式,且)(x g 是本原多项式,如果)()()(x h x g x f =,其中)(x h 是有理系数多项式,那么)(x h 一定是整系数多项式.这个推论提供了一个求整系数多项式的全部有理根的方法. 定理12 设011)(a x a x a x f n n n n +++=--是一个整系数多项式.而sr是它的一个有理根,其中s r ,互素,那么(1) 0|,|a r a s n ;特别如果)(x f 的首项系数1=n a ,那么)(x f 的有理根都是整根,而且是0a 的因子.(2) ),()()(x q srx x f -= 其中)(x q 是一个整系数多项式.给了一个整系数多项式)(x f ,设它的最高次项系数的因数是k v v v ,,,21 ,常数项的因数是.,,,21l u u u 那么根据定理12,欲求)(x f 的有理根,只需对有限个有理数ji v u 用综合除法来进行试验.当有理数jiv u 的个数很多时,对它们逐个进行试验还是比较麻烦的.下面的讨论能够简化计算.首先,1和-1永远在有理数jiv u 中出现,而计算)1(f 与)1(-f 并不困难.另一方面,若有理数)1(±≠a 是)(x f 的根,那么由定理12,)()()(x q x x f α-=而)(x q 也是一个整系数多项式.因此商)1(1)1(),1(1)1(--=+-=-q af q af 都应该是整数.这样只需对那些使商a f a f +--1)1(1)1(与都是整数的ji v u 来进行试验.(我们可以假定)1(f 与)1(-f 都不等于零.否则可以用1-x 或1+x 除)(x f 而考虑所得的商.)例1 求多项式2553)(234-+++=x x x x x f的有理根.例2 证明15)(3+-=x x x f在有理数域上不可约.二、有理数域上多项式的可约性定理13 (艾森斯坦(Eisenstein)判别法) 设011)(a x a x a x f n n n n +++=--是一个整系数多项式.若有一个素数p ,使得1. n a p |/; 2. 021,,,|a a a p n n --;3. 02|a p /.则多项式)(x f 在有理数域上不可约.由艾森斯坦判断法得到:有理数域上存在任意次的不可约多项式.例如2)(+=n x x f .,其中n 是任意正整数.艾森斯坦判别法的条件只是一个充分条件.有时对于某一个多项式)(x f ,艾森斯坦判断法不能直接应用,但把)(x f 适当变形后,就可以应用这个判断法.例3 设p 是一个素数,多项式1)(21++++=--x x x x f p p叫做一个分圆多项式,证明)(x f 在][x Q 中不可约.证明:令1+=y x ,则由于1)()1(-=-p x x f x ,yCyC y y y yf p pp ppp 1111)1()1(--+++=-+=+ ,令)1()(+=y f y g ,于是1211)(---+++=p p p p p C y C y y g ,由艾森斯坦判断法,)(y g 在有理数域上不可约,)(x f 也在有理数域上不可约.第一章 多项式(小结)一元多项式理论,主要讨论了三个问题:整除性理论(整除,最大公因式,互素);因式分解理论(不可约多项式,典型分解式,重因式);根的理论(多项式函数,根的个数).其中整除性是基础,因式分解是核心.一、基本概念.1.一元多项式(零多项式),多项式的次数.多项式的相等,多项式的运算,一元多项式环.2.基本结论:(1) 多项式的加法,减法和乘法满足一些运算规律. (2))).(())(())()(())),(()),((max())()((0000x g x f x g x f x g x f x g x f ∂+∂=∂∂∂≤+∂(3) 多项式乘积的常数项(最高次项系数)等于因子的常数项(最高次项系数)的乘积.二、整除性理论1.整除的概念及其基本性质.2.带余除法. (1) 带余除法定理.(2) 设1)()()()(|)(,0)(][)(),(=⇔≠∈x r x f x g x f x g x g x F x g x f 的余式除,. 因此多项式的整除性不因数域的扩大而改变.3. 最大公因式和互素. (1) 最大公因式,互素的概念.(2) 最大公因式的存在性和求法------辗转相除法.(3) 设)(x d 是)(x f 与)(x g 的最大公因式,则)()()()()(x d x v x g x u x f =+.反之不然.(4) 1)()()()(:)(),(1))(),((=+∃⇔=x v x g x u x f x v x u x g x f .(5)).(|)()(1))(),((),(|)(),(|)().(|)(1))(),((),()(|)(x h x g x f x g x f x h x g x h x f x h x f x g x f x h x g x f ⇒=⇒=三、 因式分解理论。

高等代数课件

高等代数课件
a21 a31 a22 a32 a23 = a11a22 a33 + a12 a23 a31 + a13 a21a32 a33 − a13a22 a31 − a12 a21a33 − a11a23 a32
★三阶行列式与三元一次方程组的解的关系: 三阶行列式与三元一次方程组的解的关系
a11 xb1 当三元一次方程组 a21 x1 + a22 x2 + a23 x3 = b2 的系数行列式 a x + a x + a x = b 31 1 32 2 33 3 3
0 c d 0 根据行列式的定义计算: 例1 根据行列式的定义计算 0 e f 0 g 0 0 h
1 + a1 2 + a1 3 + a1 计算行列式: 例2 计算行列式 1 + a2 2 + a2 3 + a2 1 + a3 2 + a3 3 + a3
0 1 1L1 1 0 1L1 计算n阶行列式 阶行列式: 例3 计算 阶行列式 1 1 0 L 1 LLLLL 1 1 1L0
1.2 排列
一. 基本概念
排列: 个数码 个数码1,2,…,n的一个排列是指由这 个数码 的一个排列是指由这n个数码 1. 排列 n个数码 的一个排列是指由这 组成的一个有序组. 个数码的不同排列共有 个数码的不同排列共有n!个 组成的一个有序组 n个数码的不同排列共有 个. 反序数: 在一个排列里, 2. 反序数 在一个排列里 如果一个较大的数排在一个较 小的数的前面, 则称这两数构成一个反序 反序. 小的数的前面 则称这两数构成一个反序 一个排列中所 有反序的个数称为这个排列的反序数 例如排列213的反 反序数. 有反序的个数称为这个排列的反序数 例如排列 的反 序数是1, 而排列231的反序数是 的反序数是2. 序数是 而排列 的反序数是 奇排列, 偶排列: 如果一排列的反序数是奇(偶 数 3. 奇排列, 偶排列 如果一排列的反序数是奇 偶)数, 则 称这个排列为奇 偶 排列 例如213是奇排列 231是偶排 排列. 是奇排列, 称这个排列为奇(偶)排列 例如 是奇排列 是偶排 列. 对换: 把一个排列中的数码i和 的位置互换 的位置互换, 4. 对换 把一个排列中的数码 和j的位置互换 而其它数 码的位置保持不变则得到一个新的排列. 码的位置保持不变则得到一个新的排列 对排列进行的这 对换, 符号(i, 表示 表示. 样一种变换称为一个对换 样一种变换称为一个对换 并用符号 j)表示

高等代数 北大 课件

高等代数 北大 课件

拉普拉斯定理与因式分解
总结词
拉普拉斯定理的表述、应用和因式分解的方法。
详细描述
拉普拉斯定理是行列式计算中的重要定理,它提供了计算行列式的一种有效方法。因式分解是将多项式分解为若 干个因子的过程,是解决代数问题的重要手段之一。
CHAPTER 04
矩阵的分解与二次型
矩阵的分解
01
02
03
矩阵的三角分解
矩阵的乘法
矩阵的乘法满足结合律和分配律,但不一定满足 交换律。
பைடு நூலகம்
矩阵的逆与行列式
矩阵的逆
对于一个非奇异矩阵,存在一个逆矩阵,使得原矩阵 与逆矩阵相乘等于单位矩阵。
行列式的定义
行列式是一个由矩阵元素构成的数学量,可以用于描 述矩阵的某些性质。
行列式的性质
行列式具有一些重要的性质,如交换律、结合律、分 配律等。
将一个矩阵分解为一个下 三角矩阵和一个上三角矩 阵之积。
矩阵的QR分解
将一个矩阵分解为一个正 交矩阵和一个上三角矩阵 之积。
矩阵的奇异值分解
将一个矩阵分解为若干个 奇异值和若干个奇异向量 的组合。
二次型及其标准型
二次型的定义
一个多项式函数,可以表示为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n} sum_{ j=1}^{n} a_{ij} x_i x_j$,其中 $a_{ij}$是常数。
VS
二次型的标准型
通过线性变换,将一个二次型转化为其标 准形式,即一个平方项之和减去另一个平 方项之和。
正定二次型与正定矩阵
正定二次型的定义
对于一个二次型,如果对于所有 的非零向量$x$,都有$f(x) > 0$ ,则称该二次型为正定二次型。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对F[x]中任意多项式f (x),g(x),h(x),我们都有 1) f (x)+g(x)=g(x)+f (x); 2) (f (x)+g(x))+h(x)=f (x)+(g(x)+h(x)); 3) f (x)g(x) = g(x) f (x); 4) (f (x)g(x)) h(x)=f (x)(g(x) h(x)); 5) f (x)(g(x)+h(x))=f (x)g(x)+f (x) h(x).
i a x i i 0 n
其中aixi称为多项式(1)的i次项, ai称为多项式(1)的i次项的系数. 零次 项 a0通常也称为(1)的常数项. 定义2 在多项式(1)中,把项按次数从低到高的顺序排列, 如果 an≠0, 那么我们称anxn为多项式(1)的最高次项, n称为多项式(1)的 次数.
r1(x)=q3(x)r2(x)+r3(x), (※ )
………
rs-2(x)=qs(x)rs-1(x)+rs(x), rs-1(x)=qs+1(x)rs(x)+0. 于是,由定理4.2.3知, rs(x)就是f(x)与g(x) 的最大公因式. 进一步,我们还能利用(※)求出u(x),v(x),使得
§4.3 多项式的因式分解
§4.2 最大公因式
一、最大公因式的概念 则称 ( x)为 f ( x) 和 g ( x) 的公因式。 g ( x) 是P[x]中的多项式, 2、最大公因式:设 f ( x )、 如果在P[x]中 ,满足条件: x) 存在的多项式 d ( 1)d(x)是f(x)和g(x)的因式 ,即d(x) ︳f(x), d(x) ︳g(x) 2) f(x)与g(x)的因式都是 d(x)的因式,即一旦h(x) ︳f(x), h(x) ︳ ) 我们就称 d ( x为 与 的最大公因式。 g(x) ,就有h(x) ︳d(x). f (x ) g(x ) 最大公因式的性质:
二、不可约多项式的性质
定理4.3.1 设p(x) ∈F[x], p(x)的次数大于零,则p(x)是F上的不 可 约多项式当且仅当p(x)不能表示成F[x]中两个次数都小于degp(x)的 多项式的乘积.
定理4.3.3 设p(x),f(x),g(x) ∈F[ x],且p(x)是F上的不可约多项式, 如果p(x) ︱f(x)g(x),那么p(x) ︱f(x),或者p(x) ︱g(x). 三、因式分解及唯一性定理 定理4.3.5 设f(x) ∈F[x] ,且f(x)的次数大于零. (1) f(x)可分解为若干个F上的不可约多项式的乘积; (2) 如果 f(x)=p1(x)p2(x)…pr(x) , 且 f(x)=q1(x)q2(x)…qs(x) , 这里pi(x)和qj(x) (i=1,2, …,r; j=1,2, …,s)都是F上的不可约多项式, 那么r=s,且适当地给q1(x),q2(x),qr(x)重新编号,可使 pi(x)=ciqi(x), i=1,2, …,r, 其中ci(i=1,2, …,r)都是F中的非零常数. 四、重因式 定义2 设p(x),f(x) ∈ F[x],p(x)是F上的不可约多项式,如果 pk(x) 整除f(x),但是pk+1(x)不整除f(x),那么p(x)就称为f(x)的k重因式. 定理4.3.6 设p(x),f(x) ∈ F[x],且p(x)是F上的不可约多项式, 正整数k≥2.如果p(x)是f(x)的k重因式,那么p(x)是f′ (x) 的k-1重因式.
多项式用f (x), g(x),… 来表示. 数域F上关于文字x的全体多项式所作成的集合记为F[x]. 定义3 设f (x)与g(x)是F[x]中的多项式.如果f(x) 与g(x)的同次项 的系数相等,那么就称f (x)与g(x)是相等的,记为 f (x) = g(x). F[x]中非零多项式f (x)的次数记为deg f (x). 各项系数都为0的多项式称为零多项式,将其记为0.从定义可 以看出,零多项式是F[x]中唯一没有次数的多项式. 一元多项式的运算 设 f (x) = a0+a1x+a2x2+…+a n1 xn1+ anxn, g(x) = b0+b1x+b2x2+…+b m1 x m1+ bmxm 都是F[x]中多项式.不妨设m≤n. 多项式f (x)与g(x)的和f (x)+g(x)是 指多项式 (a0+b0)+(a1+b1)x+…+(a n1+b n1) xn1+( an+ bn)xn, (2) 这里当m<n时, bm+1=…=bn= 0. 多项式f (x)与g(x)的积f (x)g(x)是指多项式 c0+c1x+c2x2+…+ckxk+…+cn+mxn+m,
关于多项式的和与积的次数,我们有 引理4.1.1 设f (x),g(x)是F[x]中非零多项式.则 (i) 当f (x)+g(x)≠0时, deg( f (x)+g(x))≤max{deg f (x),deg g(x)}. (ii) deg( f (x)g(x)) = deg f (x)+deg g(x). 推论4.1.2 设f (x), g(x) , h(x) ∈F[x]. (i) 如果f (x) g(x)=0,那么f (x) =0,或者 g(x)=0; (ii) 如果f (x) g(x) = f (x) h(x),且f (x)≠0,那么g(x) =h(x). 定理 带余除法定理 设 f ( x ), g ( x) F [ x], f ( x) 0,则存在唯一的 , q( x), r( x) F [ x] 使
一、不可约多项式Βιβλιοθήκη 概念定义:设p(x)是F[x]中次数大于零的多项式,如果p(x)不能表示 成数域F[x]中两个次数都大于零的多项式的乘积,就称p(x)是数域 F 上的不可约多项式。如果p(x)能表示成数域F[x]中两个次数都大于 零的多项式的乘积,就称p(x)是数域F上的可约多项式。 注:(1)F上的一次多项式就是数域F上的不可约多项式。 (2)多项式是否可约依赖于系数域。 (3)p(x)不可约当且仅当p(x)的因式只有非零常数c和c与 它 自身的非零常数倍cp(x).
其中
ck=
i j k
a b
i j
k=1,2,3, …,n+m.
对多项式g(x) = b0+b1x+b2x2+…+b m1x m1+bmxm, 所谓g(x) 的负多项式-g(x) 是指多项式 -b0-b1x-b2x2-…-b m1 x m1-bmxm. 多项式f (x)与g(x)的差f (x)-g(x)是指多项式f (x)+(-g(x)).
设f(x)与g(x)是F[x]的两个多项式,如果 f(x)与g(x)中有一个是零 多项式 ,那么另一个就是他们的最大公因式; 现在我们总假设f(x)与g(x) 都不是零多项式,且degg(x) ≤degf(x). 做带余除法,用f(x)去除g(x),得到商q1(x),余式为r1(x) ;如果 r1(x) ≠0,那么再用r1(x)去除g(x),得到商q2(x),余式为r2(x) ;如果r2(x) ≠0,那么再用r2(x)去除r1(x),得到商q3(x),余式为r3(x) ;如此辗 转 相除下去,显然所得余式的次数不断降低,因此,在有限次之后, 必然有一个余式为零.于是得到一串带余除法算式: f(x)=q1(x)g(x)+r1(x), g(x)=q2(x)r1(x)+r2(x),
g ( x) q( x) f ( x) r ( x),
其中 r ( x) 0 或 deg r ( x) deg f ( x) 我们把q(x)和r(x)分别称为用g(x)去除f(x)所得的商和余式。
推论4.14
设f ( x) F[ x], a F , 那么存在唯一的q(x) F[x],r F,
高等代数课件
陇南师范高等专科学校数学系
2008年制作
第四章 多项式与矩阵
4.1 带余除法 多项式的整除性
4.2 最大公因式
4.3 多项式的因式分解
4.6多项式的根
4.1 带余除法 多项式的整除性
定义1 设F是一个数域. 所谓F上关于文字x的多项式(也叫一元多 项式)是指形式表达式 a0+a1x+a2x2+…+a n1 xn1+anxn, (1) 这里n是非负整数,并且a0,a1, a2, …,an都是F中的数. 我们规定x0 =1,那么多项式(1)可以表示为
1、公因式:如果多项式 ( x) 即是 f ( x )的因式,又是g ( x) 的因式,
1)如果f(x)与g(x)都等于0,那么0就是f(x)和g(x)的一个最大公因 式;
2)如果g(x) ︳f(x),那么g(x)就是f(x)与g(x)的一个最大公因式;
3)对任一多项式来说,f(x)总是零多项式与f(x)的最大公因式; 4)如果c是F中的非零常数,f(x)是F[x]中任一多项式,那么F中 任一非零常数a都是c与f(x)的最大公因式。 定理4.2.1 如果F[x]中的多项式f(x)与g(x)有一个最大公因式d(x), 那么{cd(x) ︱c∈F,c≠0}就是f(x)与g(x)的全部最大公因式. 定理4.2.2 设f(x),g(x) ∈F[x], 1)f(x)与g(x)的最大公因式总是存在的; 2)若d(x)是f(x)与g(x)的一个最大公因式,则存在F[x]中的多项 式u(x),v(x)使得 u(x)f(x)+v(x)g(x)=d(x). 定理4.2.3 设f(x),g(x),q(x),r(x) ∈F[x].如果 f(x)=g(x)q(x)+r(x), 那么, 1)h(x)是f(x)与g(x)的公因式当且仅当h(x)是g(x)与r(x)的公因 式. 2)d(x)是f(x)与g(x)的最大公因式当且仅当d(x)是g(x)与r(x)的 最大公因式.
使得f ( x) ( x a)q( x) r
定义4 设f (x), g(x)F[x].如果存在u(x)F[x],使得 f (x)=u(x) g(x), 那么就称g(x)整除f (x),或者说f (x)能够被g(x)所整除,记作 g(x)│f (x). 同时g(x)叫做f (x)的因式,f (x)叫做g(x)的倍式. 推论4.1.5 设f (x), g(x)F[x],且g(x) 0.那么g(x)整除f (x)的充分 必要条件是用g(x)去除f (x)所得的余式为0. 零多项式只能整除零多项式. 定理4.1.6 在F [x]中 (i) 如果g(x)│f (x),那么对F中任意非零常数c,总有 c g(x)│f (x) , 并且 g(x)│cf (x). (ii) 如果h(x)│g(x) , 并且g(x)│f (x), 那么h(x)│f (x). (iii) 如果g(x)│f (x), g(x)│h (x),那么g(x)│(f (x) h (x)). (iv) 如果g(x)│f (x), 那么对F[x]中的任意多项式h (x),总有 g(x)│f (x) h (x).
相关文档
最新文档