高等代数课件(北大版)第七章 线性变换§7.9

合集下载

《高等代数》第七章 线性变换

《高等代数》第七章  线性变换

线性变换的多项式有以下性质:
1) f (A ) 是一线性变换.
2) 如果在 P[ x ] 中,有 h(x) = f (x) + g(x) , p(x) = f (x) g(x) ,
那么
h(A ) = f (A ) + g(A ) , p(A ) = f (A ) g(A ) .
特别地,
f (A ) g(A ) = g(A ) f (A ) .
定义为 数乘k变A 换= ,K可A用, K 表示. 显然,当 k = 1 时

们(k便A得)恒(等) =变K换(,A当(k) =) =0 K时A,便(得) .零变换.
显然,k A 还是线性变换. 2. 运算规律 1) ( kl ) A = k ( l A ) , 2) ( k + l ) A = k A + l A , 3) k (A + B ) = k A + k B , 4) 1 A = A .
证毕
五、线性变换的多项式
下面引进线性变换的多项式的概念.
1. 线性变换的幂
既然线性变换的乘法满足结合律,当若干个线
性变换 A 重复相乘时,其最终结果是完全确定的,
与乘积的结合方式无关. 因此当 n 个( n 是正整数)
线性变换 A 相乘时,我们就可以用 A A ... A
n个
来表示,称为 A 的 n 次幂,简单地记作 A n. 即
对于线性变换,我们已经定义了乘法、加法与 数量乘法三种运算. 由加法与数量乘法的性质可知, 线性空间 V 中全体线性变换,对于如上定义的加法 与数量乘法,也构成数域 P 上一个线性空间.
对于线性变换,我们也可定义逆变换.
四、线性变换的逆变换
1. 定义 定义5 线性空间 V 的线性变换 A 称为可逆的 如果有 V 的变换 B 存在,使

高等代数课件

高等代数课件
(1) a111 a212 ar1r
(r ) a1r1 a2r2 arrr (r1) a1,r11 ar,r1r ar1,r1r1 an,r1n
(n ) a1n1 arnr ar1,nr1 annn
这表明关于这个基的矩阵是
A1 O
A3 A2
|W关于W的基1, 2, …, r 的矩阵
定理7.3.3 设V是数域F上的一个n维向量空间, {1, 2, …, n} 是V的一个基, 对于V的每个线性变换, 让它对应于它关于基{1, 2, …, n}的矩阵A. 如此建立的对应关系是L(V)到Mn(F)的一个同构 (保持加法和纯量乘法的双射). 而且如果变换,分别对应于矩阵A,B, 则变换,的乘积对应于矩阵A,B的乘积AB. (保持乘法)
例 6 接例4. V3是L与H的直和. 取L上的一个非零向量1作为它
的基, 取H上的两个正交单位向量2, 3作为它的基, 那么1, 2, 3组
V3的一个基. 关于这个基的矩阵是
1 0
0
0 cos sin
0 sin cos
应该地, 如果V是它的子空间W1, W2, … , Ws的直和, 且每一个都 是的不变子空间. 用这些子空间的基组V的一个基. 则关于这个基
定理7.1.2 设是向量空间V到W的一个线性映射. 则有 (i) 是单射Im()=W. (i) 是满射Ker()={0}.
两个线性映射的合成映射是线性映射. 设U, V, W是数域F上的向量空间, : UV, :VW是线性映射. 则合成映射:VW是U到W线性映射.
如果线性映射:VW有逆映射 1, 则 1是从W到V的线性映 射.
(n ) a1n1 a2n2 annn
其中, (a1j, a2j,…, anj, )是(j )关于基1, 2, …, n的坐标 j=1,2, …,n,. 它们是唯一确定的. 以它为第j列, 做成一个矩阵:

高等代数课件(北大版)第七章-线性变换§7.3

高等代数课件(北大版)第七章-线性变换§7.3

1,2, ,n A B
∴ + 在基 1, 2 , , n下的矩阵为A+B.
§7.3 线性变换的矩阵
② 1,2, ,n 1,2, ,n 1,2, ,n B 1, 2, , n B
1,2, ,n AB
∴ 在基 1, 2 , , n下的矩阵为AB.
③ k 1,2, ,n k 1 , ,k n k 1 , ,k n k 1 , , n
k 1, 2, , n k 1,2, , n A 1,2, ,n kA
∴ k 在基 1, 2 , , n下的矩阵为 kA.
§7.3 线性变换的矩阵
④ 由于单位变换(恒等变换) E对应于单位矩阵E.
所以, E
与 AB=BA=E 相对应.
因此,可逆线性变换 与可逆矩阵A对应,且 逆变换 - 1 对应于逆矩阵 A- 1.
x1
,
n
A
x2
xn
1, 2 ,
y1
,n
y2
1, 2 ,
yn
x1
,
n
A
x2
xn
由于 1, 2 ,
, n线性无关,所以
y1 x1
y2
=A
x2
.
yn xn
§7.3 线性变换的矩阵
4.同一线性变换在不同基下矩阵之间的关系
定理4 设线性空间V的线性变换 在两组基
显然,1,2 , ,n 也是一组基,且 在这组基下的
矩阵就是B.
§7.3 线性变换的矩阵
(3)相似矩阵的运算性质 ① 若 B1 X 1A1X , B2 X 1A2 X , 则 B1 B2 X 1( A1 A2 )X , B1B2 X 1( A1A2 )X . 即, A1 A2 B1 B2 , A1 A2 B1B2 .

高等代数第7章线性变换[1]PPT课件

高等代数第7章线性变换[1]PPT课件
设A,BL(V), 定义A与B的和为V的一个变
换, 使"aV, 有 (A+B)(a) =A(a)+B(a).
1、A + B 也是V的一个线性变换.
因为对于所有的a,bV和数k,lP,有
(A+B)(ka+lb) = A(ka+lb ) +B(ka+lb ) = kA(a)+lA(b)+kB(a)+lB(b) = k (A+B)(a)+l (A+B)(b)
精选
2、乘法适合结合律,即 (AB)C = A(BC)
因为映射的合成满足结合律 3、乘法不满足交换律,即一般地
AB BA 如求微分变换D 与求积分变换J , 有
DJ = E ,但一般地 JD E 4、单位变换的作用 AE = EA = A 5、零变换的乘法 OA = AO = O
精选
二、线性变换的加法及其性质
精选
2、(1)交换律 A +B =B +A (2)结合律 (A+B)+C =A+(B+C) (3)零变换 A+O =A (4)负变换 A+(-A) = O
其中 (-A)(a)= -A(a), 从而
(A - B) = (A+ (-B)) 3、分配律 A(B+C) = AB +AC
(A+B)C = AC+BC
D是一个线性变换,称为微分变换.
例7 闭区间[a, b]上所有连续函数全体 组成实数域R上的线性空间C0(a, b). 定义变换
x
则J是一个J(线f (性x))变=换精选.a f (t)dt
二、线性变换的简单性质

高等代数【北大版】7.9

高等代数【北大版】7.9

LLLLL
0 ≠ 0. ( J aE )k 1 = M O O 0 1 0 L 0
k ∴ J 的最小多项式为 ( x a ) .
§7.9 最小多项式
6.(定理13) A ∈ P n×n与对角矩阵相似 (定理13)
A 的最小多项式是 上互素的一次因式的积. 的最小多项式是P上互素的一次因式的积 上互素的一次因式的积
第七章 线性变换
§1 线性变换的定义 §2 线性变换的运算 §3 线性变换的矩阵 §4 特征值与特征向量 §5 对角矩阵 §6线性变换的值域与核 §7不变子空间 §8 若当标准形简介 §9 最小多项式 小结与习题
§7.9 最小多项式
一,最小多项式的定义 二,最小多项式的基本性质
§7.9 最小多项式
二,最小多项式的基本性质
1.(引理1)矩阵 的最小多项式是唯一的 (引理1 矩阵A的最小多项式是唯一的 的最小多项式是唯一的. 都是A的最小多项式 的最小多项式. 证:设 g1 ( x ), g2 ( x ) 都是 的最小多项式 由带余除法,g1 ( x ) 可表成 由带余除法,
g1 ( x ) = q( x ) g2 ( x ) + r ( x )
∴ g1 ( x ) h( x ), g2 ( x ) h( x ).
从而
g ( x ) h( x ).
的最小多项式. 故 g( x ) 为A的最小多项式 的最小多项式
§7.9 最小多项式
推广: 若A是一个准对角矩阵 是一个准对角矩阵
A1 A2 O As
且 Ai 的最小多项式为 gi ( x ), i = 1,2,..., s 则A的最小多项式是为 [ g1 ( x ), g2 ( x ),..., g s ( x )]. 的最小多项式是为 两两互素, 特别地,若 g1 ( x ), g2 ( x ),..., g s ( x ) 两两互素,即

高等代数课件(北大版)第七章-线性变换§7.7

高等代数课件(北大版)第七章-线性变换§7.7

若 V W1 W2 Ws,则
11, ,1n1 , 21, , 2一组基,且在这组基下 的矩阵为准对角阵
A1
A2
.
As
2023/8/17§7.7 不变子空间 数学与计算科学学院
(1)
反之,若 在基 11, ,1n1 , 21, , 2n2 , , s1, , sns 下的矩阵为准对角矩阵(1), 则由 i1, i2 , , ini 生成 的子空间 Wi 为 的不变子空间,且V具有直和分解:
其次,任取 Vi , 设
( i E )ri Wi 0.
1 2 s , i Wi . 即 1 2 (i ) s 0 令 j j , ( j i); i i .
2023/8/17§7.7 不变子空间 数学与计算科学学院
由(2), 有 ( i E)ri (i ) 0, i 1,2, , s. 又 ( i E)ri (i ) ( i E)ri (i )
Wi fi ( )V , 则Wi 是 fi ( ) 的值域, Wi是 的不变子空间.
又 ( i E)ri Wi ( i E)ri fi ( )V
( i E)ri fi ( ) V f V
( i E)ri Wi 0.
(2)
2023/8/17§7.7 不变子空间 数学与计算科学学院
下证 V V1 V2 Vs . 分三步:
1 . 证明 V W1 W2 Ws .
2 . 证明f1(V1),fV2(2), fVs (s是)直和1 .
3∴. 证存明在多Vi 项 W式i
, i
u1 (
1, 2,
), u2(
, s. ),
, us ( ),
使
u1( ) f ( )1 u2( ) f2( ) us ( ) fs ( ) 1

高等代数 讲义 第七章

高等代数 讲义 第七章

(στ ) δ
= σ (τδ )
D( f ( x )) = f ′( x )
J ( f ( x ) ) = ∫ f ( t )dt
x
(2) Eσ = σ E = σ ,E为单位变换 (3)交换律一般不成立,即一般地,
( DJ ) ( f ( x ) ) = D ∫0 f ( t ) dt
x
στ ≠ τσ .
2.线性变换保持线性组合及关系式不变,即
若 β = k1α1 + k2α 2 + L + krα r , 则 σ ( β ) = k1σ (α1 ) + k2σ (α 2 ) + L + krσ (α r ).
例4. 闭区间 [a , b]上的全体连续函数构成的线性空间
C ( a , b ) 上的变换
σ ( X ) = AX , τ ( X ) = XB ,
∀X ∈ P n×n
则 σ ,τ 皆为 P n×n 的线性变换,且对 ∀X ∈ P n×n , 有
(στ )( X ) = σ (τ ( X )) = σ ( XB ) = A( XB ) = AXB , (τσ )( X ) = τ (σ ( X )) = τ ( AX ) = ( AX ) B = AXB .
= σ (τ (α )) + σ (τ ( β )) = (στ )(α ) + (στ )( β ), (στ )( kα ) = σ (τ ( kα )) = σ ( kτ (α )) = kσ (τ (α )) = k (στ )(α )
§7.1 线性变换的定义
2.基本性质
(1)满足结合律:
例1. 线性空间 R[ x ]中,线性变换

高等代数第七章

高等代数第七章
l A ( X Y ) A( X Y ) AX AY l A ( X ) l A (Y ), l A ( kX ) A( kX ) k ( AX ) kl A ( X );


同样可验证 rA , A 为 n n 的线性变换. 注意:
A l A rA
1 2 + 1 n 1 L 2! ( n1)!
另一方面, 由 n 0 知
1 2 1 n 1 )n 0, ( 2! ( n1)!
即下述线性变换 幂零:
【例2】 设 E 3 为欧氏空间中 一切几何向量(有向线 段)所 构 成的三维线性空间, 为其中选定的一个 平面. 如图, 对于此空间中任何一个向量 , 我们用 R ( ) 表示向量 以平面 镜面的镜像 . 验证 R 为 E 3 的线性变换 , 且 R1 R .
【验证】 如图, 为平面 的法向; R ( ) 2 P ( ) ( ) 2 P ( ) ( 2 P )( ); R 2 P 为线性变换; P ( )
【定义1】 对于 , (V ), 我们如下定义它们的 乘积 : ( )( ) ( ( ))( V ), 即 : ( ) ( ( )).
【线性变换乘积的性质】 (如下有 , , (V ); k , l )
(3) dim (V ) n 2 ;
2. 线性变换代数*
(如下有 , , (V ); k , l ) ( )(k ) ( ( k )) (k ( )) k ( ( )) k ( )( ).
(2) ( ) ( ); (3) ( ) , ( ) ; (4) ( 为单位线性变换); (5) 0; (6) ( k ) ( k ) k ( ).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
使
B T
1
AT .
AT ) T
1
g A ( A )T 0
g A ( x ) 也以B为根,
从而
gB ( x) gA( x).
同理可得
gA( x) gB ( x).
又 g A ( x ), g B ( x ) 都是首1多项式, g A ( x ) g B ( x ).
2012-9-23§7.9 最小多项式
即A为 g ( x ) 的根.
2012-9-23§7.9 最小多项式
数学与计算科学学院
所以 g ( x ) 被A的最小多项式整除. 其次,如果 h ( A ) 0 , 则
0 h ( A1 ) h( A ) 0 h ( A2 ) 0
从而 h ( A1 ) 0 , h ( A 2 ) 0 .
2012-9-23§7.9 最小多项式
数学与计算科学学院
引入
由哈密尔顿―凯莱定理, A P 是A的特征多项式,则 f ( A ) 0 . 因此,对任定一个矩阵 多项式 f ( x ) P [ x ],
A P
n n
n n
, f ( ) | E A |
,总可以找到一个
使 f ( A ) 0 . 此时,也称
第七章 线性变换
§1 线性变换的定义 §2 线性变换的运算 §3 线性变换的矩阵 §4 特征值与特征向量 §5 对角矩阵
§6线性变换的值域与核
§7不变子空间 §8 若当标准形简介 §9 最小多项式 小结与习题
2012-9-23
数学与计算科学学院
§7.9 最小多项式
一、最小多项式的定义
二、最小多项式的基本性质
数学与计算科学学院
2012-9-23§7.9 最小多项式
由最小多项式的定义, r ( x ) 0 .
g ( x ) f ( x ).
由此可知: 若 g ( x )是A的最小多项式,则 g ( x )整 除 任何一 个以A为根的多项式,从而整除A的特征多项式. 即
3. 矩阵A的最小多项式是A的特征多项式的一个
数学与计算科学学院
解: 的特征多项式
x 1 1 1 x 1 f ( x ) | E A E | 1 1
( x n)x
n1
1 1 x1

A 0, A nE 0, A 0
2

A
A( A nE ) 0.
的最小多项式为 x ( x n ).
则 的最小多项式与A的最小多项式相同,设为 g ( x ), 则
g ( )(V ) 0 .
数学与计算科学学院
2012-9-23§7.9 最小多项式
若 g ( x )为P上互素的一次因式的乘积:
g ( x ) ( x a 1 )( x a 2 )...( x a s )

V V 1 V 2 ... V S ,
数学与计算科学学院
6.(引理4)k 级若当块
a 1 a 1 J 1 a
的最小多项式为
(x a) .
k
证:J的特征多项式为
( J aE ) 0.
k
(x a)
k
2012-9-23§7.9 最小多项式
数学与计算科学学院
g1 ( x ) h( x ) , g 2 ( x ) h( x ) . g ( x ) h( x ) .
从而
故 g ( x ) 为A的最小多项式.
2012-9-23§7.9 最小多项式
数学与计算科学学院
推广: 若A是一个准对角矩阵
A1 A2 As
且 A i 的最小多项式为 g i ( x ), i 1, 2 , ..., s 则A的最小多项式是为 [ g 1 ( x ), g 2 ( x ), ..., g s ( x )].
数学与计算科学学院
2012-9-23§7.9 最小多项式

证:充分性显然,只证必要性 由带余除法, f ( x ) 可表成
f ( x ) q ( x ) g ( x ) r ( x ),
其中 r ( x ) 0 或 ( r ( x )) ( g ( x )).
于是有

f ( A) q( A)g( A) r( A) 0
r( A) 0
因子.
2012-9-23§7.9 最小多项式
数学与计算科学学院
例1、数量矩阵kE的最小多项式是一次多项式 x k ; 特别地,单位矩阵的最小多项式是 x 1 ; 零矩阵的最小多项式是 x .
反之,若矩阵A的最小多项式是一次多项式,则 A一定是数量矩阵.
例2、求
1 1 0 A 0 1 0 0 0 1
g 1 ( x ) cg 2 ( x ), c 0
又 g 1 ( x ), g 2 ( x ) 都是首1多项式, 故
g 1 ( x ) g 2 ( x ).
数学与计算科学学院
c 1
2012-9-23§7.9 最小多项式
2.(引理2)设 g ( x ) 是矩阵A的最小多项式,则
f ( x ) 以A为根 g ( x ) f ( x ).
0 0. 0 1 0 0

J
的最小多项式为
(x a) .
k
数学与计算科学学院
2012-9-23§7.9 最小多项式
6.(定理13) A P n n与对角矩阵相似
A
的最小多项式是P上互素的一次因式的积.
证:由引理3的推广,必要性显然. 只证充分性. 根据矩阵与线性变换之间的对应关系, 设V上线性变换 在某一组基下的矩阵为A,
∴ A的最小多项式为
2012-9-23§7.9 最小多项式
( x 1) .
2
数学与计算科学学院
4. 相似矩阵具有相同的最小多项式. 证:设矩阵A与B相似,g A ( x ), g B ( x )分别为它们的 最小多项式. 由A相似于B,存在可逆矩阵T , 从而
g A ( B ) g A (T
数学与计算科学学院
注:反之不然,即最小多项式相同的矩阵未必相似.
如:
1 0 A 0 0 1 1 0 0 0 0 1 0 0 1 0 0 , B 0 0 2 0
2
1 1 0 0
0 0 2 0
0 0 0 2
的最小多项式皆为 ( x 1) ( x 2 ),

0 1 0 1 0 J aE 0, 1 0
0 0 0 1 0 0 2 (J aE ) 0, 1 0 0

( J aE )
k 1
多项式 f ( x ) 以A为根.
本节讨论,以矩阵A为根的多项式的中次数最低的
那个与A的对角化之间的关系.
2012-9-23§7.9 最小多项式
数学与计算科学学院
一、最小多项式的定义
定义: 设
A P
n n
,
在数域P上的以A为根的多项
式中,次数最低的首项系数为1的那个多项式,称 为A的最小多项式.
A1 0 A 0 A2
并设 A1 , A 2 的最小多项式分别为 g 1 ( x ), g 2 ( x ). 则A的最小多项式为 g 1 ( x ), g 2 ( x ) 的最小公倍式. 证:记 g ( x ) [ g 1 ( x ), g 2 ( x )] 首先,
0 g ( A1 ) g( A) 0 g ( A2 ) 0
其中 V i { | V , ( a i E )( ) 0 }. (此结论的证明步骤同定理12) 把 V 1 , V 2 , , V S 各自的基合起来就是V的一组基. 在这组基中,每个向量都属于某个 V i , 即是 的 特征向量. 所以, 在这组基下的矩阵为对角矩阵.
其中 r ( x ) 0 或 ( r ( x )) ( g 2 ( x )).
于是有
2012-9-23§7.9 最小多项式
数学与计算科学学院
g1 ( A ) q ( A ) g 2 ( A ) r ( A ) 0
r( A) 0
由最小多项式的定义, r ( x ) 0 , 即, g 2 ( x ) g 1 ( x ) . 同理可得, g 1 ( x ) g 2 ( x ).
2012-9-23§7.9 最小多项式
数学与计算科学学院
二、最小多项式的基本性质
1.(引理1)矩阵A的最小多项式是唯一的. 证:设 g 1 ( x ), g 2 ( x ) 都是A的最小多项式. 由带余除法,g 1 ( x ) 可表成
g1 ( x ) q ( x ) g 2 ( x ) r ( x )
的最小多项式.
2012-9-23§7.9 最小多项式
数学与计算科学学院
解:A的特征多项式为
x 1 1 0 3 f ( x ) | x E A | 0 x1 0 ( x 1) 0 0 x1
又 A E 0,
(A E) A 2A E
2 2
1 2 0 2 2 0 1 0 0 0 1 0 0 2 0 0 1 0 0 0 0 1 0 0 2 0 0 1
| E A | ( x 1) ( x 2 ),
3
但A与B不相似.
| E B | ( x 1) ( x 2 )
2
2
即 | E A | | E B | .
2012-9-23§7.9 最小多项式
相关文档
最新文档