高等代数课件(北大版)第九章 欧式空间§9.3
高等代数-9第九章 欧几里得空间

(线性性)
4) ( , ) 0, 当且仅当 o 时 ( , ) 0. (非负性)
则称 ( , )为 和 的内积,称这种定义了内积的 实数域 R上的线性空间V为欧几里得空间.
§1 定义与基本性质
b
§1 定义与基本性质
线性性 ( k f lg , h) a k f ( x ) lg ( x ) h( x )dx
b
k f ( x )h( x )dx l g ( x )h( x )dx
a a
b
b
k ( f , h ) l ( g , h)
非负性 ( f , f ) f ( x ) f ( x ) dx f 2 ( x ) dx 0 a a 且 ( f , f ) 0 f ( x ) 0. 故( f , g) 为一内积, C (a , b) 构成欧氏空间.
注1 欧几里得空间 V是特殊的线性空间. (1)V为实数域 R上的线性空间; (2)V既有向量的线性运算,还有内积运算; (3) , V ,( , ) R. 注2 欧几里得空间,Euclidean Space, 简称欧氏空间. 欧几里得(Euclid,约公元前330 年—前275年),古希腊数学家,是几 何学的奠基人,被称为“几何之 父”. 他最著名的著作是《几何原本》.
b b
§1 定义与基本性质
2. 内积的运算性质 设V为欧氏空间, , , , i V , k , l , ki R
1) ( , k ) k ( , ) 2) ( , ) ( , ) ( , ) 3) ( , k l ) k ( , ) l ( , ) 4) ( k l , ) k ( , ) l ( , )
第九章 欧几里德空间

第九章 欧几里德空间§1基本知识§1. 1 基本概念 1、欧式空间: 2、向量的长度:3、向量之间的夹角:4、单位向量:5、向量的正交:6、度量矩阵:7、正交向量组:8、正交基与标准正交基: 9、正交矩阵:10、欧式空间的同构: 11、正交变换:12、子空间、子空间的正交与正交补: 13、内射影或正射影: 14、对称变换:15、向量之间的距离: 16、最小二乘法:§1. 2 基本定理定理1(正交组的性质定理)正交向量组一定是线性无关组.定理2 (标准正交基的存在性定理)对于n 维欧式空间中任意一组基n ααα,,,21 ,都可以找到一组标准正交基n εεε,,,21 ,使得:n r L L r r ,,2,1),,,,(),,,(2121 ==αααεεε定理3(有限维欧式空间同构的条件)两个有限维欧式空间同构的充分必要条件是:它们的维数相等.定理4(正交变换的等价条件)设σ是n 维欧式空间V 的一个线性变换,则如下条件等价(1)σ是正交变换;(2)σ保持向量的长度不变,即:V ∈∀=ααασ|,||)(|;(3)如果n εεε,,,21 是V 的一组标准正交基,则)(,),(),(21n εσεσεσ 也是V 的一组标准正交基;(4)σ在任意一组标准正交基下的矩阵是正交矩阵。
定理5如果子空间s V V V ,,,21 两两正交,那么:s V V V +++ 21是直和。
定理6(正交补存在性定理)n 维欧式空间V 的任何一个子空间1V 都有唯一的正交补。
定理7(实对称矩阵的性质定理)对于任意一个n 阶实对称矩阵A ,都存在一个n 阶正交矩阵P ,使得:AP P T 为对角矩阵。
§1. 3 基本性质1、欧式空间的性质:(1)零向量且仅有零向量与任何向量的内积为零;(2)对任何R a V ∈∈,,,ζηξ,有:),(),(),(ηζξζηξζ+=+;),(),(ηξηξa a =;(3)s j r i R b a V j i j i ,,2,1;,,2,1,,,, ==∈∈∀ηξ,有:∑∑∑∑=====r i sj j i j i j s j j i r i i b a b a 1111),(),(ηξηξ;(4)V ∈∀βα,,有:),)(,(),(2ββααβα≤,当且仅当βα,线性相关时,等号成立。
高等代数【北大版】课件

线性方程组是求解线性规划问题的常用工具 。
物理问题建模
在物理问题中,线性方程组可以用来描述各 种现象,如振动、波动等。
投入产出分析
通过线性方程组分析经济系统中各部门之间 的相互关系。
控制系统分析
在控制系统分析中,线性方程组用于描述系 统的动态行为。
PART 03
向量与矩阵
REPORTING
高等代数【北大版】 课件
REPORTING
• 绪论 • 线性方程组 • 向量与矩阵 • 多项式 • 特征值与特征向量 • 二次型与矩阵的相似对角化
目录
PART 01
绪论
REPORTING
高等代数的应用
在数学其他分支的应用
高等代数是数学的基础学科,为其他分支提供了理论基础,如几 何学、分析学等。
PART 04
多项式
REPORTING
一元多项式的定义与运算
总结词
一元多项式的定义、运算性质和运算方法。
详细描述
一元多项式是由整数系数和变量组成的数学对象,具有加法、减法、乘法和除法等运算性质和运算方法。一元多 项式可以表示为$a_0 + a_1x + a_2x^2 + ldots + a_nx^n$的形式,其中$a_0, a_1, ldots, a_n$是整数,$x$是 变量。
矩阵的相似对角化
总结词
矩阵的相似对角化是将矩阵转换为对角矩阵 的过程,有助于简化矩阵运算和分析。
详细描述
矩阵的相似对角化是通过一系列的线性变换 ,将一个矩阵转换为对角矩阵。对角矩阵是 一种特殊的矩阵,其非主对角线上的元素都 为零,主对角线上的元素为特征值。通过相 似对角化,可以简化矩阵运算,并更好地理 解矩阵的性质和特征。
高等代数【北大版】9

| 1 | 2,
|
3
|
3
4 10
,
| 2 |
2, 6
|
4
|
5
4 14
.
§9.2 标准正交基
于是得 R[ x]4的标准正交基
1
|
1
1
| 1
2 ,
2
2
|
1
2
|
2
6 x
2
3
|
1
3
| 3
10 4
14 (5x3 3x) 4
§9.2 标准正交基
4.标准正交基间的基变换
设 1, 2 , , n与 1,2 , ,n 是 n 维欧氏空间V中的
1. 定义
设 A (aij ) Rnn , 若A满足 则称A为正交矩阵.
AA E
2. 简单性质
1)A为正交矩阵 A 1. 2)由标准正交基到标准正交基的过渡矩阵是正交
矩阵.
§9.2 标准正交基
3)设 1, 2 , , n 是标准正交基,A为正交矩阵,若 (1,2 , ,n ) (1, 2 , , n ) A
(6)
§9.2 标准正交基
由公式(3), 有
(i , j ) a1i1 j a2i 2 j
aninj
1 0
i i
j j
, (7)
把A按列分块为 A A1, A2, , An
由(7)有
A1
AA
A2
A1
,
A2
,
An
, An En
(8)
§9.2 标准正交基
三、正交矩阵
注:
① 由正交基的每个向量单位化, 可得到一组标准 正交基.
第09章 欧式空间

= α s−1
−
(α s−1, ε1 ) (ε1,ε1 )
ε
1
−⋯
−
(α s−1 (ε s−2
,ε ,ε
s −2 s−2
) )
ε
s
−2
,ε s
= αs
−
s −1 k=1
(α s (εk
− εk ) ,εk )
ε
k
① L(ε1 ,⋯,ε s ) = L (α1 ,⋯,αs ) ⇔ ε1,⋯,ε s 与 α1,⋯, αs 等价
α = (ε1,⋯,ε n ) X = (η1,⋯,ηn ) X , X = T X , β = (ε1,⋯,ε n)Y = (η1,⋯,η n)Y ,Y = T Y
(α, β )在基 ε1,⋯,ε n ,η1,⋯,ηn下的度量矩阵分别为 G, G
(α ,
β)
=
X
'GY
=
X
'
T
'GT Y
=
X
'
GY
∴G = T 'GT 即 G~G
⎧R欧式空间
线性空间定义度量性质后 ⎪⎪C酉空间
⎨⎪思维时空空间 ⎪⎩辛空间
三维几何空间 R3
R
2
:设
� a
=
(a1
,
a2
),
� b
=
(b1,
b2)
�� a ⋅b = a1b1 + a2b2 ∈R
� a 的长度:
� a
=
a2 + a2 =
�� a⋅a
1
2
�� a,b
的夹角:
<
�� a, b
>= ar
高等代数欧几里得空间课件

矩阵的定义
矩阵是一个由数字组成的矩形阵列,可 以表示向量之间的关系和线性变换。
VS
矩阵的性质
矩阵具有一些重要的性质,如矩阵的加法、 标量乘法和乘法满足相应的运算规则,矩 阵的转置、行列式、逆等也具有相应的性 质和定义。
矩阵的运算规则
1 2 3
矩阵的加法 矩阵的加法满足交换律和结合律,即 $A+B=B+A$和$(A+B)+C=A+(B+C)$。
运算规则二
如果 $W_1$ 和 $W_2$ 是子空间,且 $W_1 cap W_2 = {0}$, 则 $W_1 + W_2$ 是子空间。
运算规则三
如果 $W$ 是子空间,且 $u in W$,则存在唯一的 $v in W$ 使得 $u + v = 0$。
欧几里得空的同
06
构与等价
同构的定义与性质
等价性质
等价的欧几里得空间具有相同的秩,且线性变换在等价 下是可逆的。
THANKS.
矩阵运算对应线性变换运 算
矩阵的加法、标量乘法和乘法分别对应线性 变换的加法、标量乘法和复合运算。
特征与特征向量
04
特征值与特征向量的定义
特征值
对于一个给定的矩阵A,如果存在一个非零的数λ和相应的非零向量x,使得Ax=λx成立, 则称λ为矩阵A的特征值,x为矩阵A的对应于λ的特征向量。
特征向量
与特征值λ对应的非零向量x称为矩阵A的对应于λ的特征向量。
助于学生更好地理解和掌握这一概念。
04
复数域上的全体二维向量构成的集合是一个二维复数 欧几里得空间。
向量与向量的运算
ห้องสมุดไป่ตู้02
向量的定义与表示
高等代数9-2

有
( , ) ( X )T Y X T AT Y X T ( AY ) ( , )
σ是一个对称变换.
在标准正交基下,对称变换与对称矩阵对应.
定理 对于任意一个n阶实对称矩阵A , 都存在一个n阶正交 矩阵T ,使T T AT T 1 AT为对角矩阵.
定理12 如果σ是n维欧氏空间V的一个对称变换,那么可找
sin x cos y
1 (1,0), 2 (0,1)是一组标准正交基
T 1 (cos , sin ) cos 1 sin 2 T 2 ( sin , cos ) sin 1 cos 2
则称 σ为一个对称变换.
二、 对称变换与对称矩阵的关系
设是n维欧氏空间V的一个对称变换, 1 , 2 , , n 是V的一组 标准正交基. 并设在基 1 , 2 , , n 下的矩阵是
a11 a 21 A a n1 a12 a 22 an2 a1 n a2n a nn
定理6 n维欧氏空间V的每一个子空间V1 都有唯一的正交补.
下证唯一性
设W1 ,W2都是W的正交补,则 V W W1 任取 1 W1 , 则 1 V . 由( 2 )得,1 2
( , ) 0
(1 ) (2)
V W W2
W , 2 W2
证 先证存在性
若W 0, 则正交补就是V . 若W V , 则正交补就是0. 设W V ,0 :
在W中取一组正交基 1 , 2 , , m (1 m n )
把它扩充成V的一组正交基
1 , 2 ,, m , m 1 , , n
那么子空间L( m 1 , , m )就是W的正交补.
高等代数-欧几里得空间

2) (, ) (, ) (, )
s
s
推广: ( , i ) ( , i )
i 1
i 1
3) (0, ) 0
§9.1 定义与基本性质
二、欧氏空间中向量的长度
1. 引入长度概念的可能性
1)在 R3向量 的长度(模) . 2) 欧氏空间V中, ,V , (, ) 0
使得 有意义.
③ ( , ) R.
§9.1 定义与基本性质
例1.在 Rn 中,对于向量
a1,a2, ,an , b1,b2, ,bn
1)定义 ( , ) a1b1 a2b2 anbn
(1)
易证 ( , ) 满足定义中的性质 1 ~ 4 .
所以, ( , ) 为内积. 这样Rn 对于内积 ( , ) 就成为一个欧氏空间.
2. 向量长度的定义
,V , ( , ) 称为向量 的长度. 特别地,当 1时,称 为单位向量.
§9.1 定义与基本性质
3. 向量长度的简单性质
1) 0; 0 0
2) k k
3)非零向量 的单位化:
1.
(3)
§9.1 定义与基本性质
三、欧氏空间中向量的夹角
1. 引入夹角概念的可能性与困难
注:
① 零向量与任意向量正交.
②
, ,
2
即 cos, 0
.
§9.1 定义与基本性质
5. 勾股定理
设V为欧氏空间, , V
2 2 2
证: 2 , , 2, ,
2 2 2
( , ) 0
.
§9.1 定义与基本性质
推广:若欧氏空间V中向量1,2 , ,m 两两正交,
当 n 3 时,1)即为几何空间 R3中内积在直角 坐标系下的表达式 . ( , )即 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学与计算科学学院
4、同构作为欧氏空间之间的关系具有: ①反身性;②对称性;③传递性. ① 单位变换 I V 是欧氏空间V到自身的同构映射. ② 若欧氏空间V到V'的同构映射是 ,则 欧氏空间V'到V的同构映射. 事实上, 首先是线性空间的同构映射. 其次,对 , V ' , 有
'
§9.3 同构
数学与计算科学学院
( , ) (
1
是
1
( )), (
1
( ))
1
( ),
1
( )
1
为欧氏空间V'到V的同构映射.
数学与计算科学学院
§9.3 同构
③ 若 , 分别是欧氏空间V到V'、V'到V"的同构映射, 则 是欧氏空间V到V"的同构映射. 事实上,首先, 是线性空间V到V"的同构映射. 其次,对 , V , 有
§9.3 同构
数学与计算科学学院
证: 设V为 n 维欧氏空间, 1 , 2 , , n 为V的一组
标准正交基, 在这组基下,V中每个向量 可表成
ቤተ መጻሕፍቲ ባይዱ x 1 1 x 2 2 x n n ,
xi R
作对应 : V R n , ( ) ( x 1 , x 2 , , x n ) 易证 是V到 R n 的 1 1 对应. 且 满足同构定义中条件1)、2)、3), 故 为由V到 R n 的同构映射,从而V与 R n 同构.
( ), ( )
( ( )), ( ( )) ( ), ( )
( , )
为欧氏空间V到V"的同构映射.
数学与计算科学学院
§9.3 同构
5、两个有限维欧氏空间V与V'同构
d im V d im V .
一、欧氏空间的同构
定义: 实数域R上欧氏空间V与V'称为同构的,
如果由V到V'有一个1-1对应 ,适合
1) 2)
( ) ( ) ( ),
( k ) k ( ),
, V ,
k R
3)
( ), ( )
( , ),
这样的映射 称为欧氏空间V到V'的同构映射.
§9.3 同构
数学与计算科学学院
二、同构的基本性质
1、若 是欧氏空间V到V'的同构映射,则 也是
线性空间V到V'同构映射. 2、如果 是有限维欧氏空间V到V'的同构映射, 则
d im V d im V .
'
3、任一 n 维欧氏空间V必与 R n同构.
第九章 欧氏空间
§1 定义与基本性质 §2 标准正交基 §3 同构 §4 正交变换 §5 子空间
§6 对称矩阵的标准形
§7 向量到子空间的 距离─最小二乘法 §8酉空间介绍 小结与习题
2012-9-22
数学与计算科学学院
§9.3 同构
一、欧氏空间的同构 二、同构的基本性质
§9.3 同构
数学与计算科学学院