2019版数学人教A版必修1课件:1.1.2 集合间的基本关系 .pdf

合集下载

1.1.2集合间的基本关系(2)课件(新人教版A必修一)

1.1.2集合间的基本关系(2)课件(新人教版A必修一)

6:子集有关的性质。
(1)任何一个集合是它本身的子集,即 A⊆A; (2) A⊆B, B⊆C⇒ A⊆C;
A⊊B, B⊊C ⇒ A⊊C。
上一页

(1)写出集合{a,b}的所有子集;
(2)写出集合{a,b,c}的所有子集; (3)写出集合{a}的所有子集;
做一做
(4)写出∅的所有子集. 请归纳出规律来!
思考:
观察下面两个例子,你能发现两个集合间的关系 吗?
(1) A={1,2,3},B={1,2,3,4,5}
(2) 设A为高Biblioteka (2)班全体女生组成的集合,B为高一(2)班全体学生组成的集合。
共性:集合A中的任何一个元素都是集合B的元素
对于两个集合A,B,如果集合A中任意一个元 素都是B中的元素,就说这两个集合有包含关系, 称集合A为集合B的子集,记作:AB(或B⊉A)。
返回
练一练
元素个数与集合子集个数的关系:
集合

{a} {a,b} {a,b,c} {a,b,c,d} …
集合元素的个数 集合子集个数 0 1
1 2 3 4 … n个元素
2 4 8 16 …
2n
返回
试一试
例:以下六个写法错误写法的个数( )
①{0} ∈ {0,1} ② ∅ ⊊{0}
③{0,-1,1} ⊆{-1,0,1} ④0 ∈ ∅ ⑤Z={全体整数} ⑥{(0,0)}={0}
做一做 例4:已知A{x|x=8m+14n,m,n ∈Z} , B ={x|x=2k,k ∈Z。 问题:(1)数2和集合A的关系如何? (2)集合A与集合B的关系如何 分析(1):2是否属于A,即2能否表示成 8m+14n形式; (2):判断两个集合A,B的关系先考察包 含关系,即A⊆B, B⊆A是否成立?两个都成立 则A=B。只有一个方面成立考虑是否是真子集如 两方都不成立则两集合不具备包含关系。

1.2 集合间的基本关系课件1-高一上学期数学人教A版(2019)必修第一册

1.2 集合间的基本关系课件1-高一上学期数学人教A版(2019)必修第一册
图形语言
B
A
B
符号语言
A
文字语言
对于任意一个元素a, a A a B,则A B
观察思考:
1、图1与图2相比有什么特点?
A
B
图1
A(B)
图2
2、A={x|x是两条边相等的三角形},
B={x|x是等腰三角形}.集合A,B中的元素有什
么特点?集合A中的元素和集合B中的元素相同.
集合相等:
则A C
C B
A
思考
1.包含关系{a}⊆A 与属于关a∈A有什么区别?
前者为集合之间关系,后者为元素与集合之间的关系.
2.集合A
A
B与集合A⊆B有什么区别 ?
B
A B

A B
AB
例1:
写出集合a , b,c的所有子集 ,并指出它的真子集 .
解 : 没有元素的子集:;
有1个元素的子集 : {a }, {b}, {c };
有2个元素的子集 : {a , b}, {a , c },{b, c };
有3个元素的子集 : {a , b, c }.
集合{a , b, c }的所有子集为:
,{a }, {b}, {c }, {a , b}, {a , c }, {b, c },{a , b, c }.
集合{a , b, c }的所有真子集为:
A B
合B的真子集,记作
STEP 3
Male air bring is Signs
Creepiest god air fish land.
读作“A真包含于B”
图形语言:

Male air bring is
Signs Creepiest

集合的基本关系+课件-高一上学期数学人教A版(2019)必修第一册

集合的基本关系+课件-高一上学期数学人教A版(2019)必修第一册



当N={3}时,由 =3,得a= .


故满足条件的a的取值集合为

−,,

.
【易错警示】
错误原因
纠错心得
错解忽略了N=∅这种 空集是任何集合的子集,解这类问题时,一定要
情况.
注意“空集优先”的原则.
精选选择题:
(
1.能正确表示集合 M={x|x∈R 且 0≤x≤1}和集合 N={x∈R|x2=x}关系的 Venn 图是
【解析】①集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B
之间无包含关系.
②等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故 A
B.
③方法一 两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含
有元素“1”,而集合N不含元素“1”,故N
M.
方法二 由列举法知M={1,3,5,7 Nhomakorabea…},N={3,5,7,9,…},所以N
∅={0};⑤{0,1}={(0,1)};⑥0={0}.
A.1
B.2
C.3
D.4
【答案】
B
(2)指出下列各组集合之间的关系:
①A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};
②A={x|x是等边三角形},B={x|x是等腰三角形};
③M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.
确.
4.已知集合 A ={-1,3,2m -1},集合 B ={3, m2},若 B⊆A ,
1
则实数m=_____.
解析:∵B⊆A,∴2m-1=m2,∴m=1.
题型1
例1

人教版高中数学必修1(A版) 1.1.2集合间的基本关系 PPT课件

人教版高中数学必修1(A版) 1.1.2集合间的基本关系 PPT课件

回到目录
三、教师点拨
1.集合的相等
回到目录
三、教师点拨
2.真子集定义
一般地,若集合A中的元素都是集合B的元素, B中至少有一个元素不属于A。我们称集合A是 集合B的真子集。记作:
AÞ B
回到目录
三、教师点拨
2.真子集定义
回到目录
三、教师点拨
3.子集定义 如果集合A的任何一个元素都是集合B的元素, 那么,集合A就叫做集合B的一个子集.记作:
A B
说明:(1)子集包含相等与真子集两种情况, 任何一个集合都是它自身的子集; (2)空集是任何集合的子集,包括它本身;
回到目录
பைடு நூலகம்
三、教师点拨
3.子集的定义
回到目录
四、课堂小结
(1)集合相等定义 (2)真子集的定义 (3)子集的定义 (4)体会类比发现新结论与数形结合的思想
回到目录
自主探究 时间15分钟 (完成所有探究与练习) 集中全部精力!提升自学能力!
回到目录
三、教师点拨
1.集合的相等
一般地,如果集合A的每一个元素都是集合B的元素, 反过来集合B的每一个元素也都是集合A的元素,我们 就说集合A等于集合B。记作:
AB
这里的符号“=”是借用了数学中的等号,它表示两 个集合中的元素完全相同 ( 即两个集合中的元素个数 相等且相应的元素都相同).
标题
§1.1.2集合间的基本关系
§1.1.2集合间的基本关系
一、问题情景 二、自主学习 三、教师点拨 四、课堂小结
本课结束
一、问题情景 山东人组成的集合为A,中国人组成的集 合为B, 某人说:“我是一个山东人”,
那我们马上能反应出这个人也是一个中 国人,集合A与集合B有什么关系呢?

人教版高中数学必修一1.1.2集合间的基本关系ppt课件

人教版高中数学必修一1.1.2集合间的基本关系ppt课件

【类题试解】已知集合P={x|x2+x-6=0},M={x|mx-1=0},若
M P,求满足条件的实数m取值的集合Q.
【解析】P={x|x2+x-6=0}={-3,2}.∵M P,∴M=∅或M≠∅.
(1)当M=∅,即m=0时,满足M P.
(2)当M≠∅,即m≠0时,M={x|mx-1=0}={
=-3或2,解得m= 或 .
1 1, ∴a a≤-2.…………………………11分
2

a

1,
a 0, 综上可知,a≤-2或a=0或a≥2.…………………………12分
【失分警示】
【防范措施】 1.特别关注空集 此题含有条件A⊆B,解答此类含有集合包含关系的问题时,一定要考虑集合 为空集,此类问题往往因为对空集的关注不够而出现不必要的失误. 2.分类讨论的意识 本题中由于a的取值未限定,因而要考虑不等式组解的情况,即需要分a=0, <0三种情况讨论,也就是在解题时要有分类讨论的意识.
1.空集:指的是_____不__含__任__何_的元集素合,记作__,并规定: ∅
空集是________的子集. 任何集合
2.集合间关系具有的性质
(1)任何一个集合是它本身的_____,即______. (2)对于集合A,B,C,如果A⊆B,且B⊆C子,那集么_____. A⊆A
判断:(正确的打“√”,错误的打“×”) (1)集合{0}是空集.( ) (2)集合{x|x2+1=0,x∈R}是空集.( ) (3)空集没有子集.( ) 提示:(1)错误.集合{0}含有一个元素0,是非空集合. (2)正确.由于方程x2+1=0在实数范围内无解,故此集合是空集. (3)错误.空集是任何集合的子集,也是它本身的子集. 答案:(1)× (2)√ (3)×

人教版(新教材)高中数学第一册(必修1)精品课件3:1.2 集合间的基本关系

人教版(新教材)高中数学第一册(必修1)精品课件3:1.2  集合间的基本关系

[微体验] 1.思考辨析 (1)空集可以用表示.( ) (2)空集中只有元素0,而无其余元素.( ) 答案 (1)× (2)×
2.下列四个集合中,是空集的为( )
A.{0}
B.{x|x>8,且x<5}
C.{x∈N|x2-1=0}
D.{x|x>4}
解析 满足x>8且x<5的实数不存在,故{x|x>8,且x<5}=∅. 答案 B
答案 C B A
课堂互动探究
探究一 集合关系的判断
例 1 (1)已知集合 M={x|x2-3x+2=0},N={0,1,2},则集合 M 与 N 的关系是( )
A.M=N
ቤተ መጻሕፍቲ ባይዱ
B.N M
C.M N
D.N⊆M
解析 解方程 x2-3x+2=0 得 x=2 或 x=1,则 M={1,2},
因为 1∈M 且 1∈N,2∈M 且 2∈N,所以 M⊆N.
探究二 子集、真子集问题
例 2 已知集合 A={x|x2-3x+2=0},B={x|0<x<6,x∈N},写出满足 A⊆C⊆B 的集合 C 的所有可能情况.
解 由 A={x|x2-3x+2=0}={1,2},B={x|0<x<6,x∈N}={1,2,3,4,5}, 又因为 A⊆C⊆B,即{1,2}⊆C⊆{1,2,3,4,5}, 所以 C 中至少含有元素 1,2,故 C 的所有可能情况是: {1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5}, {1,2,3,4,5},共 8 个.
A.M⊆P
B.P⊆M
C.M=P
D.M,P互不包含
解析 由于集合M为数集,集合P为点集,因此M与P互不包含. 答案 D

集合间的基本关系课件-高一上学期数学人教A版必修第一册


解析:集合A为方程x2-3x+2=0的解集,即A={1,2},而C={x|x<8,x∈N}
= { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 } . 故 ( 1 ) A = B ; ( 2 ) A C ; ( 3 )⸦{ 2 } ≠
C ; ( 4 )≠2⸦ ∈ C .
题型二 确定有限集的子集、真子集及个数
2.∅,0,{0}与{ ∅}之间的关系
相同点
∅与0
都表示无的 意思
∅与{0}
都是集合
∅与{∅}
都是集合
不同点
∅是集合;0
是实数
∅不含任何元素;
{0}含一个元素0
∅不含任何元素;{∅}
含一个元素,该元素
是∅
关系
0∉∅

⸦ ≠
{0}

⸦ ≠
{∅}
题型一:集合间关系的判断
[例 1] (链接教材 P8 例 2)指出下列各对集合之间的关系: (1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)}; (2)A={x|-1<x<4},B={x|x-5<0}; (3)A={x|x 是等边三角形},B={x|x 是等腰三角形}; (4)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.
记法 规定
特性

空 集 是 任 何 集 合 的 _子__集___,即∅⊆A
(1)空集只有一个子集,即它的本身,∅⊆∅(2)若A≠∅
,则∅
A
⸦ ≠
想一想
{0}与∅相同吗?
提示:不同.{0}表示一个集合,且集合中有且仅有一个元素0;而∅ 表示空集,其不含有任何元素,故{0}≠∅.

集合间的基本关系【新教材】人教A版高中数学必修第一册课件PPT3

第一章
集合与常用逻辑用语
1.2 集合间的基本关系
• 【素养目标】 • 1.理解集合之间包含和相等的含义,并会用符号和Venn图表示.(直观想
象) • 2.会识别给定集合的真子集,会判断给定集合间的关系,并会用符号
和Venn图表示.(直观想象) • 3.在具体情境中理解空集的含义.(数学抽象)
• 【学法解读】
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
•知识点4 Venn图 • 在 Ve数nn学图中,,这经种常表用示平集面合上的_方__法__叫_封_做_闭_图_曲_示_线的法内.部代表集合,这种图称为 • 注意:1.用Venn图可以直观、形象地表示出集合之间的关系.
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
• [归纳提升] 判断集合间关系的常用方法 • (1)列举观察法 • 当集合中元素较少时,可列出集合中的全部元素,通过定义得出集合之
间的关系. • (2)集合元素特征法 • 首先确定集合的代表元素是什么,弄清集合元素的特征,再利用集合元
合 A 与集合 B 相等,记作 A=B.
符号语言
A⊆B 且 B⊆A⇔A=B
图形语言
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)

1.2集合间的基本关系-【新教材】人教A版(2019)高中数学必修第一册讲义

新教材必修第一册1.2:集合间的基本关系课标解读:1.子集的含义.(理解)2.真子集的含义.(理解)3.集合相等的含义.(理解)4.空集的含义.(理解)5.Veen图.(了解)学习指导:1.准确理解子集的概念,把握子集与真子集之间的关系.2.注意灵活运用集合的三种语言(文字语言、符号语言、图形语言)分析解决有关问题.3.谨防掉进“空集”陷阱.4.本节难点是对相似概念及符号的理解,例如:区别元素与集合,属于与包含等概念及其符号表示.知识导图:教材全解知识点1:Veen图在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图形称为Veen图.例1-1:用Veen图表示集合之间的关系:}xxB=,是平行四边形xA=x|{|}{是菱形,xxD=是矩形xC=x}|}.,{|{是正方形答案:知识点2:子集例2-2:给出下列说法:①任意集合必有子集;②若集合BA⊆,则A中元素的个数一定少于集合B中的元素个数;③若集合A是集合B的子集,集合B是集合C的子集,集合C是集合D的子集,则集合A是集合D的子集;④若不属于集合A的元素也一定不属于集合B,则集合B是集合A的子集,其中正确的是()A. ②③B.①③④C.①③D.①②④ 答案:B例2-3:设集合}1,1{},,3,1{2+-==a a B a A ,且A B ⊆,则a 的值为 . 答案:-1或2知识点3:集合的相等一般地,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等,记作A=B.也就是说,若B A ⊆且A B ⊆,则A=B.例3-4:集合},12|{Z n n x x X ∈+==,},14|{z k k y y Y ∈±==,试证明Y X =. 答案:(1)设X x ∈0,则,1200+=n x 且.0Z n ∈①若0n 是偶数,可设Z m m n ∈=,20,则Z m m x ∈+=,140,∴Y x ∈0②若0n 是奇数,可设Z m m n ∈-=,120,则Z m m m x ∈-=+-=,141)12(20,∴Y x ∈0 ∴不论0n 是奇数还是偶数,都有Y x ∈0. ∴Y X ⊆. (2)设Y y ∈0,则.,141400000Z k k y k y ∈-=+=,或∵Z k k k y k k y ∈+-⋅=-=+⋅=+=00000001)12(21412214,,或, ,12,200Z k Z k ∈-∈ ∴X y ∈0,则X Y ⊆ 由(1)(2)得,Y X =. 知识点4:真子集例4-5:在“新冠肺炎”疫情期间,某社区男、女党员自发组成自愿者队伍,参加社区防疫工作.若集合A={参与防疫工作的志愿者},集合B={参与防疫工作的男党员},集合C={参与防疫工作的女党员},则下列关系正确的是( ) A. B A ⊆ B. C B ⊆ C.A C ⊄ D.B ⫋A 答案:D例4-6:指出下列各组集合之间的关系: (1))};1,1(),1,1(),1,1(),1,1{(},1,1{----=-=B A (2)}6,3,2{=A ,B=}12|{的约数是x x ;(3)}|{}|{是等腰三角形,是等边三角形x x B x x A ==; (4)},12|{+∈-==N n n x x M ,},12|{+∈+==N n n x x N .答案:(1)A 与B 无包含关系;(2)A ⫋B ;(3)A ⫋B ;(4)N ⫋M .知识点5:空集 1.空集的定义一般地,我们把不含任何元素的集合叫做空集,记为∅. 2.空集的性质(1)空集是任何集合的子集;(2)空集的任何非空集合的真子集,即∅⫋A (A 为非空集合). 由上述性质可知空集只有一个子集,即它本身. 辨析明理:∅、0、{0}、{ ∅}之间的关系:例5-7:下面四个集合中,表示空集的是( ). A. {0} B.},01|{2R x x x ∈=+ C.},01|{2R x x x ∈>- D.},,0|),{(22R y R x y x y x ∈∈=+ 答案:B例5-8:若集合==+-=}02|{2m x x x A ∅,则实数m 的取值范围是( ) A.1-<m B.1<m C.1>m D.1≥m 答案:C知识点6:有限集合的子集个数 对于集合A 的子集我们有如下结论: 集合AA的所有子集子集个数 真子集个数 非空真子集个数}{a ∅,}{a 122= 1 0 },{b a ∅,}{a ,}{b ,},{b a 224=3 2 },,{c b a∅,}{a ,}{b ,}{c ,},{b a ,},{c a ,},{c b ,},,{c b a328=76猜想:A=},...,,{21n a a a n 2 12-n 22-n例6-9:已知集合},,01234|),{(++∈∈<-+=N y N x y x y x A ,则集合A 的子集个数为( ).A.3B.4C.7D.8 答案:D例6-10:已知集合M 满足}2,1{⫋M }5,4,3,2,1{⊆,则有满足条件的集合M 的个数是( ).A.6B.7C.8D.9 答案:B知识点7:集合的图示法 1.Veen 图(1)用Veen 图表示集合间基本关系,如图所示:(2)用Veen图表示集合之间的关系:A⫋B⫋C可表示为如图:2.数轴法对于由连续实数组成的集合,通常用数轴表示,这也属于集合表示的图示法.在数轴上,若端点值是集合中元素,则用实心点表示;若端点值不是集合中的元素,则用空心点表示.集合}3<-xx≤xx与用数轴分别表示如图:{{≥}5|1|例7-11:图中反映的是“文学作品”、“散文”、“小说”、“叙事散文”这四个文学概念之间的关系,请在下面的空格上填入适当的内容:A为;B为;C为;D为 .答案:{小说} {文学作品} {叙述散文} {散文}例7-12:已知集合A=}2{<≤-xx,则集合A与B的关系是 .|2{-≥x|x,集合B=}8答案:B⫋A题型与方法例13:指出下列各组集合之间的关系: (1)}.50|{},51|{<<=<<-=x x B x x A (2)}.,4|{},,2|{Z n n x x B Z n n x x A ∈==∈==(3)}.,2)1(1|{},0|{2Z n x x B x x x A n∈-+===-= (4)}.0,00,0|),{(},0|),{(<<>>=>=y x y x y x B xy y x A 或 (5)}.,54|),{(},,1|{22++∈+-==∈+==N a a a x y x B N a a x x A答案:(1)B ⫋A ;(2)B ⫋A ;(3)A=B ;(4)A=B ;(5)B A ⊆;(6)A ⫋B.例14:已知集合}|{},3,2,1{A x x Y A ⊆==,则下列结论错误的是( ) A.Y ⊆}1{ B.Y A ∈ C.∅Y ⊆ D.{∅}⫋Y 答案:A变式训练:已知集合},612|{},312|{},,61|{Z c c x x C Z b b x x B Z a a x x A ∈+==∈-==∈+==,,则A ,B ,C 满足的关系是( )A. A=B ⫋CB. A ⫋B=CC. A ⫋B ⫋CD.B ⫋C ⫋A 答案:B题型2:确定集合的子集、真子集例15:设}0)45)(16(|{22=++-=x x x x A ,写出集合A 的子集,并指出其中哪些是它的真子集.答案:集合A 的子集为:∅、{-4}、{-1}、{4}、{-4、-1}、{-4、4}、{-1、4}、{-4、-1、4},集合A 的真子集为:∅、{-4}、{-1}、{4}、{-4、-1}、{-4、4}、{-1、4}.例16:已知集合A={1,3,5},则集合A 的所有非空子集的元素之和为 . 答案:36变式训练:已知集合A=}065|{},033|{22=+-∈==++∈x x R x B x x R x ,A P ⊆⫋B ,求满足条件的集合P. 答案:∅或{2}或{3}例17:已知}012|{},082|{222=-++∈==+-∈=a ax x R x B x x R x A ,若A=B ,则实数a 的取值范围为 . 答案:}44|{>-<a a a 或例18:已知集合}.121|{},52|{-≤≤+=≤≤-=m x m x B x x A (1)若B ⫋A ,求实数m 的取值范围; (2)若B A ⊆,求实数m 的取值范围.答案:(1)}.3|{≤m m (2)不存在m 使得B A ⊆.变式训练:已知}|{},31|{a x x B x x A <=<<-=,若B A ⊄,则实数a 的取值范围是( ). A.}3|{<a a B.}3|{≤a a C.}1|{->a a D.}1|{-≥a a 答案:A例19:已知集合},|{},,12|{},1,1|{2A x x z z C A x x y y B R a a a x x A ∈==∈-==∈->≤≤-=且,是否存在实数a 使得B C ⊆?若存在,求出实数a 的取值范围;若不存在,请说明理由. 答案:当1=a 时,B C ⊆易错题型易错1:混淆属于关系和包含关系例20:已知集合A={0,1},B=}|{A x x ⊆,则下列关于集合A 与B 的关系正确的是( ) A.A B ⊆ B.A ⫋B C.B ⫋A D.B A ∈ 答案D易错2:忽略对参数的讨论例21:已知集合},0)1(|{},0|{22=--===x a x x F x x E 判断集合E 和F 的关系. 答案:①当1=a 时,E=F ;②当1≠a 时,E ⫋F.易错3:忽略空集例22:已知集合A={-1,1},B=A B ax x x ⊆+=若},1|{,则实数a 的所有可能取值组成的集合为( ).A.{-1}B.{1}C.{-1,1}D.{-1,0,1} 答案:D易错4:利用数轴求参数范围时,忽略端点值是否能取到例23:已知集合},31|{},54|{R a a x a x B x x x A ∈+≤≤+=-<≥=或,若A B ⊆,则a 的取值范围为 .答案:}38|{≥-<a a a 或创新升级例24:已知非空集合21A A ,是集合A 的子集,若同时满足两个条件:(1)若21A a A a ∉∈,则;(2)若12A a A a ∉∈,则,则称),(21A A 是集合A 的“互斥子集”,并规定),(21A A 与),(12A A 为不同的“互斥子集组”,则集合A={1,2,3,4}的不同“互斥子集组”的个数是 . 答案:50组感知高考考向1:集合间关系判定及应用例25:已知集合A={1,2,3},B={2,3},则( )A.A=BB.A B ∈C.A ⫋BD.B ⫋A答案:D例26:已知集合A=},1{a ,B={1,2,3},那么( ).A.若3=a ,则B A ⊆B.若B A ⊆,则3=aC.若3=a ,则B A ⊄D.若B A ⊆,则2=a 答案:C 考向2 :子集的个数 例27:已知集合A=},023|{2R x x x x ∈=+-,B=},50|{N x x x ∈<<,则满足条件B C A ⊆⊆的集合C 的个数为( ).A. 1B. 2C. 3D. 4答案:D基础巩固:1.已知下列四个命题:①;则且若C A C B B A ⊆⊆⊆,②且若B A ⊆B ⫋C ,则A ⫋C ;③若A ⫋B 且B ⊆C ,则A ⫋C ;④若A ⫋B 且B ⫋C ,则A ⫋C.其中正确命题的个数是( )A. 1B. 2C. 3D. 42.满足M a ⊆}{⫋},,,{d c b a 的集合M 共有( )A.6个B. 7个C. 8个D.15个3.已知集合U=R ,则正确表示集合U ,M={-1,0,1},N=}0|{2=+x x x 之间的Veen 图是().4.集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则( )A.N M =B.N ⫋MC.M ⫋ND.M 与N 没有相同的元素5.设结合A={-1,1},集合B=},1|{R a ax x ∈=,则使得A B ⊆的a 的所有取值构成的集合是 .6.已知7.已知集合A=}.52|{≤≤-x x(1)若}126{-≤≤-=⊆m x m B B A ,,求实数m 的取值范围;(2)是否存在实数m ,使得A=B ,}126{-≤≤-=m x m B ?若存在,求出实数m 的范围;若不存在,请说明理由.综合提升:8.集合A=},,1{y x ,B=}2,,1{2y x ,若A=B ,则实数x 的取值集合为( ) A.{21} B.{2121-,} C.{210,} D.{21210-,,}9.下列四个结合中,是空集的是( )A.}33|{=+x xB.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x xD.},01|{2R x x x x ∈=+-10.集合},54|{2R a a a x x A ∈+-==,},344|{2R b b b y y B ∈++==,则下列关系正确的是( ). A. A=B B.B ⫋A C.A B ⊆ D.A B ⊄11.同时满足①}5,4,3,2,1{⊆M ,②M a M a ∈-∈6,且的非空集合M 的个数为( )A. 16B.15C. 7D. 612.若一个集合中含有n 个元素,则称该元素集合为“n 元集合”,已知集合}4,3,21,2{-=A ,则其“2元子集”的个数为( )A. 6B. 8C. 9D. 1013.设集合A=}023|{2=+-x x x ,集合B=},04|{2为常数a a x x x =+-,若A B ⊆,则实数a 的取值范围是 .14.已知集合A=}40|{≤<∈x Z x ,若A M ⊆,且M 中至少有一个偶数,则这样的集合M 的个数为 .15.若规定E=},...,,{1021a a a 的子集},...,,{21ni i i a a a 为E 的第k 个子集,其中1112...2221---+++=ni i i k ,则:(1)},{31a a 是E 的第 个子集;(2)E 的第211个子集为 .16.已知三个集合}02|{}01|{},023|{222=+-==-+-==+-=bx x x C a ax x x B x x x A ,,同时满足B ⫋A ,C ⊆A 的实数b a ,是否存在?若存在,求出b a ,的所有值;若不存在,请说明理由.参考答案1. D2. B3. B4. C5. {-1,0,1}6. }41|{≤a a7. (1)}43|{≤≤m m ;(2)不存在.8. A9. D10.B11.C12.A13.}4|{≥a a14. 1215.(1)5;(2)},,,,{87521a a a a a .16.存在2222,23,2<<-===b a b a 或满足要求.。

高一数学(人教A版)必修1课件:1-1-2 集合间的基本关系


通过以上所学,完成下面练习. (1)写出 N,Z,Q,R 之间的包含关系,并用 Venn 图表 示.
[解析] N Z Q R,用 Venn 图表示如图所示.
(2)判断下列两个集合之间的关系: A={x|x 是 4 与 10 的公倍数,x∈N*}, B={x|x=20m,m∈N*}. [答案] A=B
(2)当B是A的子集即B⊆A或真子集B A时,要特别注意B =∅的情况,不要遗漏,否则会丢解.
②若B≠∅,则B={-4}或B={0},此时方程x2+2(a+ 1)x+a2-1=0有两个相等的实数根.
∴Δ=4(a+1)2-4(a2-1)=0,解得a=-1.经验证知B= {0}满足条件.
综上可知所求实数a的值为a=1或a≤-1.
判断下列各组中集合之间的关系: (1)A={x|x是12的约数},B={x|x是36的约数}; (2)A={x|x2-x=0},B={x∈R|x2+1=0}; (3)A={x|x是平行四边形},B={x|x是菱形},C={x|x是 四边形},D={x|x是正方形}; (4)M={x|x=n2,n∈Z},N={x|x=12+n,n∈Z}.
①a⊆M; ②M⊇{a}; ③{a}∈M; ④{∅}∈{a}; ⑤2a∉M; 其中正确的关系式共有( ) A.2个 B.3个 C.4个 D.5个
规律总结:当给定的问题涉及元素与集合、集合与集 合的关系时,要抓住基本概念去解题.此时要注意辨明集合 中元素的特征,对“包含”与“包含于”、“真包含”与 “真包含于”、“属于”与“不属于”等符号要进行仔细辨 认,以避免因疏忽而出错.
第一章 集合与函数概念
第一章
1.1 集 合
第一章
1.1.2 集合间的基本关系
课前自主预习
温故知新 1.用适当的符号(∈,∉)填空: (1)1 ∈ {x|x2-3x+2=0}; (2)0 ∈ N; (3)a ∈ {a,b,c,d}; (4)2 ∉ {x|x2-2=0}; (5) 3 ∉ {x|x≤ 2}; (6){1} ∈ {{1},2,3}.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档