人教版九年级数学上册24.1 圆的基本性质同步练习含答案【2020编选】

合集下载

人教版九年级数学上册24.1.1《圆》圆的有关性质同步测试及答案

人教版九年级数学上册24.1.1《圆》圆的有关性质同步测试及答案

圆 24.1__圆的有关性质__24.1.1 圆 [见B 本P36]1.下列命题正确的有( C )(1)半圆是弧;(2)弦是圆上两点之间的部分;(3)半径是弦;(4)直径是最长的弦;(5)在同一平面内,到定点的距离等于定长的点都在同一个圆上.A .1个B .2个C .3个D .4个【解析】 (1)弧是圆上任意两点间的部分;任意一条直径的两个端点在圆上把圆分成两条弧,每一条弧叫做半圆,因此(1)是正确的命题.(2)弦是连接圆上任意两点的线段,不是圆上两点之间的部分,因此(2)是错误的命题.(3)半径是连接圆心与圆上任意一点的线段,不是弦.因此(3)是假命题.(4)直径是过圆心的弦,也是最长的弦.如图所示,AB 是⊙O 的直径,CD 是任意一条不过圆心的弦,连接OC ,OD ,在△OCD 中,OC +OD >CD ,而AB =OC +OD ,则AB >CD ,因此直径是最长的弦.(5)圆心为O ,半径为r 的圆可以看成由所有到定点O 的距离等于定长r 的点组成的图形,因此(5)正确.所以(1),(4),(5)正确,选C.2.如图24-1-1所示,⊙O 中点A ,O ,D 以及点B ,O ,C 分别在同一直线上,图中弦的条数为( A )A .2B .3C .4D .5图24-1-1图24-1-2图24-1-33.如图24-1-2,P 是⊙O 内的一点,P 到⊙O 的最小距离为4 cm ,最大距离为9 cm ,则该⊙O 的直径为( C )A .6.5 cmB .2.5 cmC .13 cmD .不可求【解析】 过O ,P 作直径AB ,则AB =P A +PB =4+9=13(cm),故选C.4.图24-1-3中,__AC __是⊙O 的直径;弦有__AB ,BC ,AC __;劣弧有__AB ︵,BC ︵__;优弧有__BAC ︵,BCA ︵__.5.如图24-1-4所示,已知∠AOB =60°,则△AOB 是__等边__三角形.图24-1-4图24-1-56.如图24-1-5,AB 是⊙O 的直径,AC 是弦,若∠ACO =22°, 则∠COB 的度数等于__44°__.【解析】 ∵OA =OC ,∴∠A =∠C =22°,∴∠BOC =∠A +∠C =22°×2=44°.7.如图24-1-6,以O 为圆心的两个同心圆⊙O ,大圆O 的半径OC ,OD 分别交小圆O 于A ,B 两点,求证:AB ∥CD .证明:∵OA =OB ,OC =OD ,∴∠OAB =12(180°-∠O )=∠C ,∴AB ∥CD .图24-1-6图24-1-78.如图24-1-7,在⊙O 中,D ,E 分别为半径OA ,OB 上的点,且AD =BE ,点C 为弧AB 上一点,连接CD ,CE ,CO ,∠AOC =∠BOC .求证:CD =CE .证明:∵OA =OB ,AD =BE ,∴OA -AD =OB -BE ,即OD =OE .在△ODC 和△OEC 中,⎩⎪⎨⎪⎧OD =OE ,∠DOC =∠EOC ,OC =OC ,∴△ODC ≌△OEC ,∴CD =CE .9.如图24-1-8所示,已知⊙O 中,直径MN =10ABCD 的四个顶点分别在半径OM ,OP 以及⊙O 上,并且∠POM =45°,则AB 的长为__5__.【解析】 连接OA ,构造Rt △OAB ,利用勾股定理,求出AB 的长.设正方形ABCD 的边长为x ,则AB =BC =CD =x ,又∠POM =45°,∠DCO =90°,∴∠ODC =∠POM =45°,∴DC =OC =x ,∴OB =2x .在Rt △OAB 中,AB 2+OB 2=OA 2,OA =12MN =5,即x 2+(2x )2=52,∴x = 5.图24-1-810.如图24-1-9,AB ,AC 为⊙O 的弦,连接CO ,BO 并延长分别交弦AB ,AC 于点E ,F ,∠B =∠C .求证:CE =BF .证明:∵OB ,OC 是⊙O 的半径,∴OB =OC .又∵∠B =∠C ,∠BOE =∠COF ,∴△EOB ≌△FOC ,∴OE =OF ,∴CE =BF .11.如图24-1-10,半圆O 的直径AB =8,半径OC ⊥AB ,D 为弧AC 上一点,DE ⊥OC ,DF ⊥OA ,垂足分别为E ,F ,求EF 的长.图24-1-10解:连接OD .∵OC ⊥AB ,DE ⊥OC ,DF ⊥OA ,∴∠AOC =∠DEO =∠DFO =90°, ∴四边形DEOF 是矩形,∴EF =OD .∵OD =OA ,∴EF =OA =4.12.如图24-1-11,AB ,CD 是⊙O 的直径,DF ,BE 是⊙O 的弦,且弦DF =BE .求证:∠B =∠D .图24-1-11【解析】 连接OF ,OE ,证明△DOF ≌△BOE .证明:如图,连接OE ,OF .在△DOF 和△BOE 中,⎩⎪⎨⎪⎧OF =OE ,OD =OB ,DF =BE ,∴△DOF ≌△BOE (SSS).∴∠B =∠D .13.如图24-1-12所示,已知CD 是⊙O 的直径,∠EOD =51°,AE 交⊙O 于点B ,且AB =OC ,求∠A 的度数.图24-1-12【解析】已知∠EOD=51°,与未知∠A构成了内、外角关系,而∠E也未知,且AB=OC这一条件不能直接使用,因此想到同圆的半径相等,需连接半径OB,从而得到OB=AB.解:如图所示,连接OB.∵AB=OC,OB=OC,∴AB=OB,∴∠A=∠1.又∵OB=OE,∴∠E=∠2=∠1+∠A=2∠A,∴∠DOE=∠E+∠A=3∠A.而∠DOE=51°,∴3∠A=51°,∴∠A=17°.。

人教版 九年级数学上册 24.1 圆的有关性质 同步培优(含答案)

人教版 九年级数学上册 24.1 圆的有关性质 同步培优(含答案)

人教版九年级数学上册24.1 圆的有关性质同步培优一、选择题1. 下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为 ()A.1B.2C.3D.42. 如图,在⊙O中,点A,O,D以及点B,O,C分别在一条直线上,则图中的弦有()A.2条B.3条C.4条D.5条3. 与圆心的距离不大于半径的所有点组成的图形是()A.圆的外部(包括边界) B.圆的内部(不包括边界)C.圆D.圆的内部(包括边界)4. 2019·赤峰如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,D是⊙O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°5. 如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A. 5 B.2 5 C.3 D.2 36. 2020·武汉模拟小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a为160 mm,直角顶点A到轮胎与地面接触点B的距离AB为320 mm,请帮小名同学计算轮胎的直径为()A.350 mm B.700 mmC.800 mm D.400 mm7. 如图,⊙O的半径为8 cm,把劣弧AB沿AB折叠,使劣弧AB经过圆心O,再把劣弧CD沿CD折叠,使劣弧CD经过AB的中点E,则折痕CD的长为()A.8 cm B.8 3 cm C.27 cm D.47 cm8. 2019·武汉京山期中在圆柱形油槽内装有一些油,油槽直径MN为10分米.截面如图,油面宽AB为6分米,如果再注入一些油后,油面宽变为8分米,则油面AB上升()A.1分米B.4分米C.3分米D.1分米或7分米二、填空题9. 如图,AC 是圆内接四边形ABCD 的一条对角线,点D 关于AC 的对称点E 在边BC 上,连接AE ,若∠ABC=64°,则∠BAE 的度数为 .10. 如图,△ABC内接于⊙O ,AC 是⊙O 的直径,∠ACB =50°,点D 是BAC ︵上一点,则∠D =________.11. 如图,AB 是⊙O的直径,弦CD ⊥AB 于点E ,若AB =8,CD =6,则BE =________.12. 如图,一下水管道横截面为圆形,直径为100 cm ,下雨前水面宽为60 cm ,一场大雨过后,水面宽为80 cm ,则水位上升了 cm.13. 如图所示,动点C 在⊙O 的弦AB 上运动,AB =23,连接OC ,过点C 作CD ⊥OC 交⊙O 于点D ,则CD 的最大值为________.14. 如图所示,在半圆O 中,AB为直径,P 为AB ︵的中点,分别在AP ︵和PB ︵上取其中点A 1和B 1,再在P A ︵1和PB ︵1上分别取其中点A 2和B 2.若一直这样取下去,则∠A n OB n =________°.15. 只用圆规测量∠XOY 的度数,方法是:以顶点O 为圆心任意画一个圆,与角的两边分别交于点A ,B(如图),在这个圆上顺次截取AB ︵=BC ︵=CD ︵=DE ︵=EF ︵=…,这样绕着圆一周一周地截下去,直到绕第n 周时,终于使第m(m >n)次截得的弧的末端恰好与点A 重合,那么∠XOY 的度数等于________.16. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C ,D 与点A ,B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P.若CD =3,AB =8,PM =l ,则l 的最大值是________.三、解答题 17. 2019·十堰改编 如图,四边形ABCD 内接于⊙O ,AE ⊥CB 交CB 的延长线于点E .若BA 平分∠DBE ,AD =5,CE =13,求AE 的长度.18. 如图,直线AB经过⊙O的圆心,与⊙O相交于点A,B,点C在⊙O上,且∠AOC=30°,P是直线AB上的一个动点(与点O不重合),直线PC与⊙O相交于点Q.在直线AB上使QP=QO成立的点P共有几个?请相应地求出∠OCP的度数.19. 如图,四边形OBCD中的三个顶点在⊙O上,A是优弧BAD上的一个动点(不与点B,D重合).(1)当圆心O在∠BAD的内部时,若∠BOD=120°,则∠OBA+∠ODA=________°.(2)若四边形OBCD为平行四边形.①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数;②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.20. 如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D 为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E.射线AO与射线EB交于点F,与⊙O交于点G.设∠GAB=α,∠ACB=β,∠EAG+∠EBA=γ.(1)点点同学通过画图和测量得到以下近似数据α30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于α(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.人教版九年级数学上册24.1 圆的有关性质同步培优-答案一、选择题1. 【答案】C2. 【答案】B3. 【答案】D4. 【答案】D5. 【答案】D[解析] 如图,过点O作OD⊥AB于点D,连接OA.根据题意,得OD=12OA=1.再根据勾股定理,得AD= 3.根据垂径定理,得AB=2 3.6. 【答案】C7. 【答案】D[解析] 如图,作CD关于AB对称的弦C′D′,连接OE并延长,交CD于点F,交C′D′于点F′.由题意可得OF′⊥C′D′,且OF′=34×8=6(cm),所以C′F′=OC′2-OF′2= 2 7 cm,所以CD=C′D′=2C′F′=4 7 cm.8. 【答案】D二、填空题9. 【答案】52° [解析]∵圆内接四边形对角互补,∴∠B +∠D=180°,∵∠B=64°,∴∠D=116°.∵点D 关于AC 的对称点是点E ,∴∠D=∠AEC=116°. ∵∠AEC=∠B +∠BAE ,∴∠BAE=52°.10. 【答案】40°【解析】AC 是⊙O 的直径⇒∠ABC =90°⇒⎭⎪⎬⎪⎫ ∠A =90°-50°=40°∠A 和∠D 都是BC ︵所对的圆周角 ⇒∠D =∠A =40°.11. 【答案】 4-7 【解析】如解图,连接OC ,∵AB 是⊙O 的直径,CD ⊥AB ,AB =8,CD =6,∴CE =DE =3,OC =OB =4. 在Rt △OCE 中,OE =42-32=7,∴BE =OB -OE =4-7.12. 【答案】10或70 [解析]作OD ⊥AB 于C ,OD 交☉O 于点D ,连接OB.由垂径定理得:BC=AB=30 cm . 在Rt △OBC 中,OC==40(cm).当水位上升到圆心以下且水面宽80 cm 时, 圆心到水面距离==30(cm),水面上升的高度为:40-30=10(cm).当水位上升到圆心以上且水面宽80 cm 时,水面上升的高度为:40+30=70(cm). 综上可得,水面上升的高度为10 cm 或70 cm . 故答案为10或70.13. 【答案】3 [解析] 如图,连接OD ,过点O 作OH ⊥AB 于点H ,则AH =BH=12AB = 3.∵CD ⊥OC ,∴CD =OD 2-OC 2.∵OD 为⊙O 的半径,∴当OC 最小时,CD 最大.当点C 运动到点H 时,OC 最小,此时CD =BH =3,即CD 的最大值为 3.14. 【答案】(902n -1) [解析] 当n =1时,∠A 1OB 1=90°;当n =2时,∠A 2OB 2=90°2=45……所以∠A n OB n =(902n -1)°.15. 【答案】⎝ ⎛⎭⎪⎫360n m ° [解析] 设∠XOY 的度数为x ,则mx =n ×360°,所以x =⎝ ⎛⎭⎪⎫360n m °.16. 【答案】34 [解析] 如图,当CD ∥AB 时,PM 的长最大,连接OM ,OC .∵CD ∥AB ,CP ⊥AB , ∴CP ⊥CD .∵M 为CD 的中点,OM 过点O , ∴OM ⊥CD ,∴∠OMC =∠PCD =∠CPO =90°, ∴四边形CPOM 是矩形, ∴PM =OC .∵⊙O 的直径AB =8, ∴半径OC =4,∴PM =4.三、解答题17. 【答案】解:连接AC,如图.∵BA平分∠DBE,∴∠1=∠2.∵∠1+∠ABC=180°,∠ABC+∠CDA=180°,∴∠1=∠CDA.又∵∠2=∠3,∴∠3=∠CDA,∴AC=AD=5.∵AE⊥CB,∴∠AEC=90°,∴AE=AC2-CE2=52-(13)2=2 3.18. 【答案】解:在直线AB上使QP=QO成立的点P共有3个.(1)如图①.在△QOC中,OC=OQ,∴∠OQC=∠OCQ.在△OPQ中,QP=QO,∴∠QOP=∠QPO.又∵∠QPO=∠OCQ+∠AOC,且∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCQ=120°,∴∠OCQ=40°.即∠OCP=40°.(2)如图②.∵QO=QP,∴∠QPO=∠QOP.设∠QPO=x,则∠OQC=∠QPO+∠QOP=2x.又∵OC=OQ,∴∠OCQ=∠OQC=2x,∴∠AOC=∠OPC+∠OCP=x+2x=3x.∵∠AOC=30°,∴3x=30°,解得x=10°,∴∠OCP=2x=20°.(3)如图③.∵QO=QP,∴∠QOP=∠QPO.∵OC=OQ,∴∠OQC=∠OCQ.设∠QPO=y,则∠OQC=∠OCQ=∠QPO+∠AOC=y+30°,∴在△OPQ中,有y+y+y+30°=180°,解得y=50°,∴∠OCP=180°-50°-30°=100°.综上所述,在直线AB上使QP=QO成立的点P共有3个,∠OCP的度数分别为40°,20°,100°.19. 【答案】52解:(1)60(2)①如图(a).∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC.又∵∠BAD+∠BCD=180°,∠BAD=12∠BOD,∴12∠BOD+∠BOD=180°,解得∠BOD=120°,∴∠BAD=12∠BOD=12×120°=60°,∠OBC=∠ODC=180°-∠BOD=180°-120°=60°.又∵∠ABC+∠ADC=180°,∴∠OBA+∠ODA=∠ABC+∠ADC-(∠OBC+∠ODC)=180°-(60°+60°)=60°.②如图(b)所示,连接AO.∵OA=OB,∴∠OBA=∠OAB.∵OA=OD,∴∠OAD=∠ODA.∵∠OAB=∠OAD+∠BAD,∴∠OBA=∠ODA+∠BAD=∠ODA+60°.如图(c),同理可得∠ODA=∠OBA+60°.20. 【答案】【思维教练】(1)观察表格可猜想β=90°+α,γ=180°-α.连接BG,由直径所对的圆周角为90°和圆内接四边形的对角和为180°即可得出β=90°+α;由题干条件易知△EBD≌△EGD,∠EBC=∠ECB,再由三角形的外角和定理和β=90°+α,利用角度之间的转化即可得出结论;(2)由(1)的结论可以得出α=∠BAG=45°,β=∠ACB=135°,∴∠ECB=45°,∠CEB=90°,△ECD、△BEC、△ABG 都是等腰直角三角形,由CD的长,可得出BE和CE的长,再由题干条件△ABE 的面积是△ABC的面积的4倍可得出AC的长,利用勾股定理在△ABE中求出AB的长,再利用勾股定理在△ABG求出AG的长,即可求出半径长.①(1)①β=90°+α,γ=180°-α证明:如解图①,连接BG,∵AG是⊙O的直径,∴∠ABG=90°,∴α+∠BGA=90°,(1分)又∵四边形ACBG内接于⊙O,∴β+∠BGA=180°,∴β-α=90°,即β=90°+α;(3分)②∵D是BC的中点,且DE⊥BC,∴△EBD≌△ECD,∴∠EBC=∠ECB,∵∠EAG+∠EBA=γ,∴∠EAB+α+∠EBC+∠CBA=γ,∵∠EAB+∠CBA=∠ECB,∴2∠ECB+α=γ,(4分)∴2(180°-β )+α=γ,由①β=90°+α代入后化简得,γ=180°-α;(6分)(2)如解图②,连接BG,②∵γ=135°,γ=180°-α,∴α=45°,β=135°,∴∠AGB=∠ECB=45°,(8分)∴△ECD和△ABG都是等腰直角三角形,又∵△ABE的面积是△ABC的面积的4倍,∴AE=4AC,∴EC=3AC,(9分)∵CD=3,∴CE=32,AC=2,∴AE=42,(10分)∵∠BEA=90°,∴由勾股定理得,AB=BE2+AE2=(32)2+(42)2=50=52,(11分)∴AG=2AB=2×52=10,∴r=5.(12分)。

九年级数学上册 第二十四章 圆 24.1 圆的有关性质 24.1.4 圆周角同步检测(含解析)(新版)新人教版

九年级数学上册 第二十四章 圆 24.1 圆的有关性质 24.1.4 圆周角同步检测(含解析)(新版)新人教版

24.1.4 圆周角测试时间:30分钟一、选择题1.(2017黑龙江哈尔滨中考)如图,☉O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B 的大小是( )A.43°B.35°C.34°D.44°2.(2017贵州黔东南州中考)如图,☉O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为( )A.2B.-1C.D.43.(2017山东潍坊中考)如图,四边形ABCD为☉O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为( )A.50°B.60°C.80°D.90°4.如图,AB是☉O的直径,弦BC=2 cm,F是弦BC的中点,∠ABC=60°.若动点E以2 cm/s的速度从A点出发沿着A→B方向运动(到点B终止运动),设运动时间为t(s),连接EF,当△BEF 是直角三角形时,t=( )A.1 sB. sC.1 s或 sD.1 s或 s二、填空题2 25.(2017浙江绍兴中考)如图,一块含45°角的直角三角板,它的一个锐角顶点A 在☉O 上,边AB,AC 分别与☉O 交于点D,E,则∠DOE 的度数为 .6.如图,A 、B 、C 、D 四点都在☉O 上,AD 是☉O 的直径,且AD=6 cm,若∠ABC=∠CAD,则弦AC 的长为 .三、解答题7.(2018湖北黄石大冶月考)已知:如图,△ABC 内接于☉O,AF 是☉O 的弦,AF⊥BC,垂足为D,点E 为弧BF 上一点,且BE=CF. (1)求证:AE 是☉O 的直径; (2)若∠ABC=∠EAC,AE=8,求AC 的长.8.如图,在△ABC 中,AB=AC,以AC 为直径的☉O 交AB 于点D,交BC 于点E. (1)求证:BE=CE;(2)若∠B=70°,求的度数; (3)若BD=2,BE=3,求AC 的长.24.1.4 圆周角一、选择题1.答案 B ∵∠D=∠A=42°,∠APD=77°,∴∠B=∠APD -∠D=35°,故选B.2.答案 A ∵☉O 的直径AB 垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=OC=1,∴CD=2CE=2,故选A.3.答案 C 如图,∵A、B、D、C四点共圆,∠GBC=50°,∴∠GBC=∠ADC=50°,∵AE⊥CD,∴∠AED=90°,∴∠EAD=90°-50°=40°,延长AE交☉O于点M,∵AO⊥CD,∴=,∴∠DBC=2∠EAD=80°.故选C.4.答案 C ∵AB是☉O的直径,∴∠ACB=90°,∵∠ABC=60°,BC=2 cm,∴AB=2BC=4 cm,∵F 是弦BC的中点,∴BF=BC=1 cm.当∠BFE=90°时,∠B=60°,则BE=2BF=2 cm,则AE=AB-BE=2 cm,此时t==1(s);当∠BEF=90°时,∠B=60°,则BE=BF= cm,则AE=AB-BE= cm,此时t==(s).综上所述,t=1 s 或 s.故选C.二、填空题5.答案90°解析∵∠A=45°,∴∠DOE=2∠A=90°.6.答案3 cm解析如图,连接CD,∵∠ABC=∠CAD,∴AC=CD,∵AD是☉O的直径,∴∠ACD=90°.∵AD=6 cm,∴AC2+CD2=36,∴AC=3cm.三、解答题7.解析(1)证明:∵BE=CF,∴=,∴∠BAE=∠CAF.34 4∵AF⊥BC, ∴∠ADC=90°, ∴∠FAC+∠ACD=90°. ∵∠E=∠ACD, ∴∠E+∠BAE=90°, ∴∠ABE=90°, ∴AE 是☉O 的直径. (2)如图,连接OC,∵∠AOC=2∠ABC,∠ABC=∠CAE, ∴∠AOC=2∠CAE. 又∵OA=OC,∴∠CAO=∠ACO=∠AOC, ∴△AOC 是等腰直角三角形. ∵AE=8,∴AO=CO=4, ∴AC=4.8.解析 (1)证明:如图,连接AE, ∵AC 为☉O 的直径,∴∠AEC=90°, ∴AE⊥BC,∵AB=AC, ∴BE=CE.(2)如图,连接OD 、OE,在Rt△ABE 中,∠BAE=90°-∠B=90°-70°=20°, ∴∠DOE=2∠DAE=40°, ∴的度数为40°. (3)如图,连接CD,BC=2BE=6, 设AC=x,∵AB=AC,BD=2,∴AD=x -2, ∵AC 为☉O 的直径, ∴∠ADC=90°,在Rt△BCD 中,CD 2=BC 2-BD 2=62-22=32, 在Rt△ADC 中,AD 2+CD 2=AC 2, ∴(x -2)2+32=x 2,解得x=9, 即AC 的长为9.5。

人教版九年级数学上学期(第一学期)第24章《圆的基本性质》同步练习及答案(3).docx

人教版九年级数学上学期(第一学期)第24章《圆的基本性质》同步练习及答案(3).docx

24.1 圆(第四课时 )--------圆周角知识点1、圆周角定义:顶点在 ,并且两边都和圆 的角叫圆周角。

2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角 ,都等于这条弧所对的圆心角的 。

推论1、在同圆或等圆中,如果两个圆周角 ,那么它们所对的弧 。

推论2、半圆(或直径)所对的圆周角是 ; 900的圆周角所对的弦是 。

3、圆内接四边形:定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做 ,这个圆叫做 。

性质:圆内接四边形的对角一、选择题1.如图,在⊙O 中,若C 是BD 的中点,则图中与∠BAC 相等的角有( )A.1个B.2 个C.3个D.4个2.如图,△ABC 内接于⊙O ,∠A=40°,则∠BOC 的度数为( )A. 20°B. 40°C. 60°D.80°C · BD OA3.如图,AB是⊙O的直径,点C在⊙O上,若∠A=40 º,则∠B的度数为()A.80 ºB.60 ºC.50 ºD.40 º4.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50°B.60°C.70°D.80°5.如图,AB、CD是⊙O的两条弦,连接AD、BC,若∠BAD=60°,则∠BCD的度数为()A.40°B.50°C.60°D.70°A CBO6.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内⊙C上一点,∠BMO=120°,则⊙C的半径为()A.6 B.5 C.3 D.327、如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=23,则⊙O的半径为()A.43B.63C.8 D.128、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()B.A F=BF C.O F=CF D.∠DBC=90°A.AD BD二、填空题1.如图,点A、B、C在⊙O上,∠AOC=60°,则∠ABC的度数是.2.如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB= 度.3.已知如图,四边形ABCD内接于⊙O,若∠A=60°,则∠DCE= .4.如图,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD= ..5、如图,AB是⊙O的直径,点C是圆上一点,∠BAC=70°,则∠OCB= .6、如图,若AB是⊙O的直径,AB=10cm,∠CAB=30°,则BC= cm.7、如图所示⊙O中,已知∠BAC=∠CDA=20°,则∠ABO的度数为.8、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC= .9、如图,圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD= .10、如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒,点E在量角器上对应的读数是度.A BC D O三、解答题1、如图,⊙O 的直径AB 为10cm ,弦AC 为6cm ,∠ACB 的平分线交⊙O 于D ,求BC ,AD ,BD 的长.2. 如图,AB 是⊙O 的直径,C 是BD 的中点,CE ⊥AB 于 E ,BD 交CE 于点F .(1)求证:CF ﹦BF ;(2)若CD ﹦6, AC ﹦8,则⊙O 的半径为 ,CE 的长是 .3、如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC 是等边三角形; A CBDE FO(2)求圆心O到BC的距离OD.4、如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.5、如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.24.1 圆(第四课时)--------圆周角知识点1.圆上相交2.相等一半相等一定相等直角直径3.圆内接多边形这个多边形的外接圆互补一、选择题1.C2.D3.C4.C5. C6.C7、A8、C二、填空题1.150°2.25°3.60°4. 40° .5、20°6、57、50° 8.239、30°10、144°三、解答题1、A B CD O2222222BC AB AC 1068cm CD ACBACD BCD 45AD BDAD BDBD AB 100100AD BD 52cm 2∴∠∠︒∴=-=-=∠∴∠=∠=︒∴=∴=+==∴===解:AB 是O 的直径ACB=ADB=90在Rt ABC 中,AB=10cm,AC=6cm,平分在Rt ADC 中,AB=10cmAD 2.解:(1) 证明:∵AB 是⊙O 的直径,∴∠ACB ﹦90° 又∵CE ⊥AB , ∴∠CEB ﹦90° ∴∠2﹦90°-∠A ﹦∠1又∵C 是弧BD 的中点,∴∠1﹦∠A ∴∠1﹦∠2,∴ CF ﹦BF ﹒(2) ⊙O 的半径为5 , CE 的长是524﹒3、解:(1)在△ABC 中,∵∠BAC=∠APC=60°,又∵∠APC=∠ABC ,∴∠ABC=60°, ACB D E FO 1 2∴△ABC是等边三角形;(2)∵△ABC为等边三角形,⊙O为其外接圆,∴O为△ABC的外心,∴BO平分∠ABC,∴∠OBD=30°,∴OD=8×12=4.4、证明:(1)∵OD⊥AC OD为半径,∴CD AD,∴∠CBD=∠ABD,∴BD平分∠ABC;(2)∵OB=OD,∴∠OBD=∠0DB=30°,∴∠AOD=∠OBD+∠ODB=30°+30°=60°,又∵OD⊥AC于E,∴∠OEA=90°,又∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,BC=12 AB,∵OD=CD ADAB,∴BC=OD.5、(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC,∵DC=CB,∴AD=AB,∴∠B=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC中,AC2+BC2=AB2,∴(x﹣2)2+x2=42,解得:x1=1+,x2=1﹣(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.。

人教版九年级数学上册24.1.1《圆》圆的有关性质同步测试及答案【新】

人教版九年级数学上册24.1.1《圆》圆的有关性质同步测试及答案【新】

圆 24.1__圆的有关性质__24.1.1 圆 [见B 本P36]1.下列命题正确的有( C )(1)半圆是弧;(2)弦是圆上两点之间的部分;(3)半径是弦;(4)直径是最长的弦;(5)在同一平面内,到定点的距离等于定长的点都在同一个圆上.A .1个B .2个C .3个D .4个【解析】 (1)弧是圆上任意两点间的部分;任意一条直径的两个端点在圆上把圆分成两条弧,每一条弧叫做半圆,因此(1)是正确的命题.(2)弦是连接圆上任意两点的线段,不是圆上两点之间的部分,因此(2)是错误的命题.(3)半径是连接圆心与圆上任意一点的线段,不是弦.因此(3)是假命题.(4)直径是过圆心的弦,也是最长的弦.如图所示,AB 是⊙O 的直径,CD 是任意一条不过圆心的弦,连接OC ,OD ,在△OCD 中,OC +OD >CD ,而AB =OC +OD ,则AB >CD ,因此直径是最长的弦.(5)圆心为O ,半径为r 的圆可以看成由所有到定点O 的距离等于定长r 的点组成的图形,因此(5)正确.所以(1),(4),(5)正确,选C.2.如图24-1-1所示,⊙O 中点A ,O ,D 以及点B ,O ,C 分别在同一直线上,图中弦的条数为( A )A .2B .3C .4D .5图24-1-1图24-1-2图24-1-33.如图24-1-2,P 是⊙O 内的一点,P 到⊙O 的最小距离为4 cm ,最大距离为9 cm ,则该⊙O 的直径为( C )A .6.5 cmB .2.5 cmC .13 cmD .不可求【解析】 过O ,P 作直径AB ,则AB =P A +PB =4+9=13(cm),故选C.4.图24-1-3中,__AC __是⊙O 的直径;弦有__AB ,BC ,AC __;劣弧有__AB ︵,BC ︵__;优弧有__BAC ︵,BCA ︵__.5.如图24-1-4所示,已知∠AOB =60°,则△AOB 是__等边__三角形.图24-1-4图24-1-56.如图24-1-5,AB 是⊙O 的直径,AC 是弦,若∠ACO =22°, 则∠COB 的度数等于__44°__.【解析】 ∵OA =OC ,∴∠A =∠C =22°,∴∠BOC =∠A +∠C =22°×2=44°.7.如图24-1-6,以O 为圆心的两个同心圆⊙O ,大圆O 的半径OC ,OD 分别交小圆O 于A ,B 两点,求证:AB ∥CD .证明:∵OA =OB ,OC =OD ,∴∠OAB =12(180°-∠O )=∠C ,∴AB ∥CD .图24-1-6图24-1-78.如图24-1-7,在⊙O 中,D ,E 分别为半径OA ,OB 上的点,且AD =BE ,点C 为弧AB 上一点,连接CD ,CE ,CO ,∠AOC =∠BOC .求证:CD =CE .证明:∵OA =OB ,AD =BE ,∴OA -AD =OB -BE ,即OD =OE .在△ODC 和△OEC 中,⎩⎪⎨⎪⎧OD =OE ,∠DOC =∠EOC ,OC =OC ,∴△ODC ≌△OEC ,∴CD =CE .9.如图24-1-8所示,已知⊙O 中,直径MN =10ABCD 的四个顶点分别在半径OM ,OP 以及⊙O 上,并且∠POM =45°,则AB 的长为__5__.【解析】 连接OA ,构造Rt △OAB ,利用勾股定理,求出AB 的长.设正方形ABCD 的边长为x ,则AB =BC =CD =x ,又∠POM =45°,∠DCO =90°,∴∠ODC =∠POM =45°,∴DC =OC =x ,∴OB =2x .在Rt △OAB 中,AB 2+OB 2=OA 2,OA =12MN =5,即x 2+(2x )2=52,∴x = 5.图24-1-810.如图24-1-9,AB ,AC 为⊙O 的弦,连接CO ,BO 并延长分别交弦AB ,AC 于点E ,F ,∠B =∠C .求证:CE =BF .证明:∵OB ,OC 是⊙O 的半径,∴OB =OC .又∵∠B =∠C ,∠BOE =∠COF ,∴△EOB ≌△FOC ,∴OE =OF ,∴CE =BF .11.如图24-1-10,半圆O 的直径AB =8,半径OC ⊥AB ,D 为弧AC 上一点,DE ⊥OC ,DF ⊥OA ,垂足分别为E ,F ,求EF 的长.图24-1-10解:连接OD .∵OC ⊥AB ,DE ⊥OC ,DF ⊥OA ,∴∠AOC =∠DEO =∠DFO =90°, ∴四边形DEOF 是矩形,∴EF =OD .∵OD =OA ,∴EF =OA =4.12.如图24-1-11,AB ,CD 是⊙O 的直径,DF ,BE 是⊙O 的弦,且弦DF =BE .求证:∠B =∠D .图24-1-11【解析】 连接OF ,OE ,证明△DOF ≌△BOE .证明:如图,连接OE ,OF .在△DOF 和△BOE 中,⎩⎪⎨⎪⎧OF =OE ,OD =OB ,DF =BE ,∴△DOF ≌△BOE (SSS).∴∠B =∠D .13.如图24-1-12所示,已知CD 是⊙O 的直径,∠EOD =51°,AE 交⊙O 于点B ,且AB =OC ,求∠A 的度数.图24-1-12【解析】已知∠EOD=51°,与未知∠A构成了内、外角关系,而∠E也未知,且AB=OC这一条件不能直接使用,因此想到同圆的半径相等,需连接半径OB,从而得到OB=AB.解:如图所示,连接OB.∵AB=OC,OB=OC,∴AB=OB,∴∠A=∠1.又∵OB=OE,∴∠E=∠2=∠1+∠A=2∠A,∴∠DOE=∠E+∠A=3∠A.而∠DOE=51°,∴3∠A=51°,∴∠A=17°.。

人教版九年级数学上册 24.1.1 圆 同步练习题(含答案)

人教版九年级数学上册   24.1.1 圆 同步练习题(含答案)

人教版九年级数学上册第24章 24.1.1 圆 同步练习题一、选择题1.下列条件中,能确定唯一一个圆的是(C)A .以点O 为圆心B .以2 cm 长为半径C .以点O 为圆心,5 cm 长为半径D .半径为2 cm ,且经过点A 2.已知⊙O 中最长的弦为8 cm ,则⊙O 的半径为(B)A .2 cmB .4 cmC .8 cmD .16 cm 3.下列命题中正确的有(A)①弦是圆上任意两点之间的部分;②半径是弦;③直径相等的两个圆是等圆;④弧是半圆,半圆是弧;⑤长度相等的两条弧是等弧.A .1个B .2个C .3个D .4个4.如图所示,以坐标原点O 为圆心的圆与y 轴交于点A ,B ,且OA =1,则点B 的坐标是(B)A .(0,1)B .(0,-1)C .(1,0)D .(-1,0) 5.如图所示,MN 为⊙O 的弦,∠N =52°,则∠MON 的度数为(C)A .38°B .52°C .76°D .104°6.如图所示,AB ,MN 是⊙O 中两条互相垂直的直径,点P 在AM ︵上,且不与点A ,M 重合,过点P 作AB ,MN 的垂线,垂足分别是D ,C.当点P 在AM ︵上移动时,矩形PCOD 的形状、大小随之变化,则PC 2+PD 2的值(C)A .逐渐变大B .逐渐变小C .不变D .不能确定二、填空题7.到点O 的距离等于8 cm 的点的集合是以点O 为圆心,以8cm 长为半径的圆. 8.如图,在⊙O 中,弦有AC ,AB ,直径是AB ,优弧有ABC ︵,CAB ︵,劣弧有AC ︵,BC ︵.9.如图,在△ABC 中,∠ACB =90°,∠A =20°,以点C 为圆心、CB 为半径的圆交AB 于点D ,则∠ACD =50°.10.已知A ,B 是半径为6的圆上的两个不同的点,则弦长AB 的取值范围是0<AB ≤12. 11.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =1,以边AC 上一点O 为圆心,OA为半径的⊙O 经过点B ,则⊙O 312.如图,AB是⊙O的直径,D是圆上的一点,∠DOB=75°,DC交BA的延长线于点E,交圆于点C,且CE=AO,则∠E=25°.13.如图,点D,E在△ABC的边BC,AB上,过A,C,D三点的圆的圆心为点E,以点D为圆心的圆过点B,E.如果∠A=57°,那么∠B=22°.14.如图所示,将半径为1的⊙A向右平移2个单位长度至⊙B,两圆相交于C,D两点,则CD=2.15.如图,C是以点O为圆心,AB为直径的半圆上一点,且CO⊥AB,在OC两侧分别作矩形OGHI和正方形ODEF,且点I,F在OC上,点H,E在半圆上,可证:IG=FD.小云发现连接图中已知点得到两条线段,便可证明IG=FD.请回答:小云所作的两条线段分别是OH和OE.16.如图,正方形ABCD和正方形CEFG,点A,F在半圆O上,B,C,E在半圆O的直径上,AB=5,FE=4,则OA三、解答题17.矩形ABCD 的对角线AC ,BD 相交于点O .求证:A ,B ,C ,D 四个点在以点O 为圆心的同一个圆上.证明:∵四边形ABCD 为矩形,∴OA =OC =12AC ,OB =OD =12BD ,AC =BD .∴OA =OC =OB =OD .∴A ,B ,C ,D 四个点在以点O 为圆心,OA 为半径的圆上(如图).18.如图,AB ,AC 为⊙O 的弦,连接CO ,BO 并延长,分别交弦AB ,AC 于点E ,F ,∠B =∠C.求证:CE =BF.证明:∵OB ,OC 是⊙O 的半径, ∴OB =OC.又∵∠B =∠C ,∠BOE =∠COF , ∴△EOB ≌△FOC(ASA). ∴OE =OF.∴OE +OC =OF +OB ,即CE =BF.19.如图所示,AB 是⊙O 的弦,半径OC ,OD 分别交AB 于点E ,F ,且AE =BF ,请写出线段OE 与OF 的数量关系,并给予证明.解:OE =OF. 证明:连接OA ,OB. ∵OA ,OB 是⊙O 的半径, ∴OA =OB. ∴∠OAB =∠OBA. 又∵AE =BF ,∴△OAE ≌△OBF(SAS). ∴OE =OF.20.如图,BD ,CE 是△ABC 的高,M 为BC 的中点.试说明点B ,C ,D ,E 在以点M 为圆心的同一个圆上.证明:连接ME ,MD.∵BD ,CE 分别是△ABC 的高,M 为BC 的中点, ∴ME =MD =MC =MB =12BC.∴点B ,C ,D ,E 在以点M 为圆心的同一个圆上.。

人教版九年级数学上24.1圆的有关性质同步检测试卷含答案


()
A.14° B.28° C.56° D.84° 3.如图,⊙O 的直径 CD 过弦 EF 的中点 G,∠DCF=20°,则∠EOD 等于( )
A.10° B.20° C.40° D.80° 4.如图,已知点 C,D 是半圆 上的三等分点,连接 AC,BC,CD,OD,BC 和 OD 相交于点 E.则下列结论: ①∠CBA=30°,②OD⊥BC,③OE= AC,④四边形 AODC 是菱形. 正确的个数是( )
24.如图,P 是⊙O 外一点,A、B、C 是⊙O 上的三点,∠AOB=60°,PA、PB 分别交 N 两点,则∠APB 的范围是______.
于 M、
第 5 页(共 8 页)
A.AD=AB B.∠BOC=2∠D C.∠D+∠BOC=90° D.∠D=∠B
第 3 页(共 8 页)
14.如图,在⊙O 中,∠CBO=45°,∠CAO=15°,则∠AOB 的度数是( )
A.75° B.60° C.45° D.30° 15.如图,⊙O 是△ABC 的外接圆,∠OCB=40°,则∠A 的度数是( )
A. B.2 C.2 D.4 11.如图,在⊙O 中,已知∠OAB=22.5°,则∠C 的度数为( )
A.135° B.122.5° C.115.5° D.112.5° 12.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠ BCD 等于( )
A.116° B.32° C.58° D.64° 13.如图,在⊙O 中,直径 CD⊥弦 AB,则下列结论中正确的是( )
圆的有关性质
一、选择题(共 16 小题) 1.如图,△ABC 内接于⊙O,AB=BC,∠ABC=120°,AD 为⊙O 的直径,AD=6,那么 AB 的值 为( )

人教版九年级上《24.1圆的有关性质》同步练习含答案(共4份)

24.1.1圆知识点1圆的定义1.圆的形成定义:在一个平面内,线段绕它固定的一个端点旋转________,另一个端点所形成的图形叫做圆.圆的集合定义:圆心为O、半径为r的圆可以看成是所有到定点O 的距离等于________的点的集合.2.下列条件中,能确定圆的是()A.以已知点O为圆心B.以1 cm长为半径C.经过已知点A,且半径为2 cmD.以点O为圆心,1 cm长为半径3.如图24-1-1所示,以坐标原点O为圆心的圆与y轴交于点A,B,且OA=1,则点B的坐标是()图24-1-1A.(0,1) B.(0,-1)C.(1,0) D.(-1,0)4.如图24-1-2所示,若BD,CE都是△ABC的高.求证:B,C,D,E四点在同一个圆上.图24-1-2知识点2与圆有关的概念5.如图24-1-3所示,在⊙O中,________是直径,________是弦,劣弧有________,优弧有________.图24-1-36.如图24-1-4,在⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数是()图24-1-4A.2 B.3 C.4 D.57.下列命题中是真命题的有()①两个端点能够重合的弧是等弧;②圆的任意一条弦把圆分成优弧和劣弧两部分;③长度相等的弧是等弧;④半径相等的两个圆是等圆;⑤直径是圆中最长的弦.A.2个B.3个C.4个D.5个8.若圆的半径为3,则弦AB的长度的取值范围是__________.9.已知:如图24-1-5,OA,OB为⊙O的半径,C,D分别为OA,OB的中点.求证:AD=BC.图24-1-510.已知:如图24-1-6,在⊙O中,AB为弦,C,D两点在弦AB上,且AC=BD.求证:△OAC≌△OBD.图24-1-611.如图24-1-7,AB 是⊙O 的直径,点D ,C 在⊙O 上,AD ∥OC ,∠DAB =60°,连接AC ,则∠DAC 等于( )图24-1-7A .15°B .30°C .45°D .60°12.如图24-1-8所示,AB ,MN 是⊙O 中两条互相垂直的直径,点P 在AM ︵上,且不与点A ,M 重合,过点P 作AB ,MN 的垂线,垂足分别是D ,C.当点P 在AM ︵上移动时,矩形PCOD 的形状、大小随之变化,则PC 2+PD 2的值( )图24-1-8A .逐渐变大B .逐渐变小C .不变D .不能确定13.如图24-1-9,已知P 是⊙O 外一点,Q 是⊙O 上的动点,线段PQ 的中点为M ,连接OP ,OM.若⊙O 的半径为2,OP =4,则线段OM 的最小值是( )图24-1-9A .0B .1C .2D .314.如图24-1-10,在Rt △ABC 中,以点C 为圆心,BC 长为半径的圆交AB 于点D ,交AC 于点E ,∠BCD =40°,则∠A =________°.图24-1-1015.如图24-1-11,C 是以点O 为圆心,AB 为直径的半圆上一点,且CO ⊥AB ,在OC 两侧分别作矩形OGHI 和正方形ODEF ,且点I ,F 在OC 上,点H ,E 在半圆上,可证:IG =FD.小云发现连接图中已知点得到两条线段,便可证明IG =FD.请回答:小云所作的两条线段分别是________和________.图24-1-1116.⊙O 1与⊙O 2的半径分别是r 1,r 2,且r 1和r 2是关于x 的方程x 2-ax +14=0的两个根.若⊙O 1与⊙O 2是等圆,则a 2019的值为________.17.如图24-1-12所示,AB 是⊙O 的弦,半径OC ,OD 分别交AB 于点E ,F ,且AE =BF ,请你指出线段OE 与OF 的数量关系,并给予证明.图24-1-1218.在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图24-1-13①,当PQ∥AB时,求PQ的长;(2)如图24-1-13②,当点P在BC上移动时,求PQ长的最大值.图24-1-13教师详解详析1.一周 定长r2.D [解析]∵圆心和半径都确定后才可以确定圆,只有D 选项中具备这两个条件, ∴D 选项正确.3.B [解析]∵圆的半径都相等,∴OB =OA =1, ∴点B 的坐标是(0,-1).故选B .4.证明:如图,取BC 的中点F ,连接DF ,EF.∵BD ,CE 都是△ABC 的高, ∴△BCD 和△BCE 都是直角三角形,∴DF ,EF 分别是Rt △BCD 和Rt △BCE 斜边上的中线, ∴DF =EF =BF =CF ,∴B ,C ,D ,E 四点在以点F 为圆心,BF 的长为半径的圆上. 5.AD AD ,AC AC ︵,CD ︵ ADC ︵,CAD ︵6.B [解析] 图中的弦有AB ,BC ,CE ,共3条.7.A [解析] 等弧是完全重合的弧,故①③错误;直径把圆分成两条相等的弧,即两个半圆,故②错误;半径相等的圆可以完全重合,是等圆,故④正确;直径是圆中最长的弦,故⑤正确.故选A .8.0<AB ≤69.证明:∵OA ,OB 为⊙O 的半径,∴OA =OB. ∵C ,D 分别为OA ,OB 的中点, ∴OC =OD.在△AOD 和△BOC 中,∵⎩⎨⎧OA =OB ,∠O =∠O ,OD =OC ,∴△AOD ≌△BOC(SAS ), ∴AD =BC.10.证明:∵OA =OB , ∴∠A =∠B.在△OAC 和△OBD 中,∵⎩⎨⎧OA =OB ,∠A =∠B ,AC =BD ,∴△OAC ≌△OBD(SAS ). 11.B [解析]∵OA =OC , ∴∠CAO =∠ACO.∵AD ∥OC ,∴∠DAC =∠ACO , ∴∠DAC =∠CAO.∵∠DAB =60°,∴∠DAC =12∠DAB =30°.12.C [解析] 连接OP.∵四边形PCOD 是矩形,∴PC =OD ,∴PC 2+PD 2=OD 2+PD 2=OP 2,为一定值.故选C .13.B [解析] 设OP 与⊙O 交于点N ,连接MN ,OQ ,如图.∵OP =4,ON =2,∴N 是OP 的中点. 又∵M 是PQ 的中点, ∴MN 为△POQ 的中位线, ∴MN =12OQ =12×2=1,∴点M 在以点N 为圆心,1为半径的圆上, ∴当点M 在ON 上时,OM 的值最小,最小值为1. 故选B .14.20 [解析]∵CB =CD ,∴∠B =∠CDB. ∵∠B +∠CDB +∠BCD =180°,∴∠B =12(180°-∠BCD)=12(180°-40°)=70°.又∵∠ACB =90°,∴∠A =90°-∠B =20°.15.OH OE [解析] 连接OH ,OE ,如图所示.∵在矩形OGHI 和正方形ODEF 中,IG =OH ,OE =FD , 又∵OH =OE , ∴IG =FD.16.1 [解析]∵⊙O 1与⊙O 2是等圆,∴r 1=r 2,即方程x 2-ax +14=0有两个相等的实数根,∴Δ=b 2-4ac =a 2-4×14=0,即a 2=1,∴a =±1.又∵r 1=r 2>0,a =r 1+r 2,∴a =1, ∴a 2019=12019=1.17.解:OE =OF.证明:连接OA ,OB. ∵OA =OB ,∴∠A =∠B. 又∵AE =BF , ∴△OAE ≌△OBF , ∴OE =OF.18.解:(1)连接OQ.∵PQ ∥AB ,PQ ⊥OP ,∴OP ⊥AB. ∵AB =6,∴OB =3. ∵∠ABC =30°, ∴PB =2OP.在Rt △PBO 中,由勾股定理,得PB 2=OP 2+OB 2. 设OP =x ,则PB =2x ,则(2x)2=x 2+32, 解得x =3(负值已舍去),∴OP = 3.在Rt △OPQ 中,由勾股定理,得PQ =OQ 2-OP 2=32-(3)2= 6. (2)连接OQ ,由勾股定理得 PQ =OQ 2-OP 2=9-OP 2.要使PQ 取最大值,需OP 取最小值,此时OP ⊥BC. ∵∠ABC =30°, ∴OP =12OB =32,此时PQ 最大值=9-94=323.24.1.2 垂直于弦的直径知识点 1 圆的对称性1.下列说法中,不正确的是( ) A .圆既是轴对称图形,又是中心对称图形 B .圆绕着它的圆心旋转任意角度,都会与自身重合 C .圆的对称轴有无数条,对称中心只有一个 D .圆的每一条直径都是它的对称轴 知识点 2 垂径定理2.如图24-1-14,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( )图24-1-14A .CM =DM B.CB ︵=DB ︵C .∠ACD =∠ADC D .OM =MB3.如图24-1-15所示,⊙O 的半径为13,弦AB 的长度是24,ON ⊥AB ,垂足为N ,则ON 的长度为( )图24-1-15A .5B .7C .9D .114.2017·泸州如图24-1-16,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,AE=1,则弦CD的长是()图24-1-16A.7B.27C.6 D.85.2017·金华如图24-1-17,在半径为13 cm的圆形铁片上切下一块高为8 cm的弓形铁片,则弓形弦AB的长为()图24-1-17A.10 cm B.16 cm C.24 cm D.26 cm6.2017·长沙如图24-1-18,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________.图24-1-187.2016·宿迁如图24-1-19,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC =2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为________.图24-1-198.如图24-1-20,两个圆都以点O为圆心,大圆的弦AB交小圆于C,D两点.求证:AC=BD.图24-1-209.如图24-1-21,已知AB,CD是⊙O的两条弦,OE⊥AB于点E,OF⊥CD于点F,OE=OF.求证:AB=CD.图24-1-21知识点3垂径定理的推论10.下列说法正确的是()A.垂直于弦的直线平分弦所对的两条弧B.平分弦的直径垂直于弦C.垂直于直径的弦平分这条直径D.弦的垂直平分线经过圆心11.如图24-1-22所示,⊙O的直径CD=10 cm,AB是⊙O的弦,AM=BM,OM∶OC=3∶5,则AB的长为()图24-1-22A.8 cm B.91cmC.6 cm D.2 cm12.如图24-1-23所示,AB是⊙O的直径,∠BAC=42°,D是弦AC的中点,则∠DOC=________°.图24-1-2313.2017·西宁如图24-1-24,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP =6,∠APC=30°,则CD的长为()图24-1-24A.15B.2 5C.2 15D.814.已知⊙O的半径为13 cm,弦AB∥CD,AB=24 cm,CD=10 cm,则AB与CD之间的距离为()A.17 cm B.7 cmC.12 cm D.17 cm或7 cm15.如图24-1-25,AB是⊙O的弦,AB的长为8,P是⊙O上一个动点(不与点A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为________.图24-1-2516.如图24-1-26,⊙O的直径为10 cm,弦AB=8 cm,P是弦AB上的一个动点,则OP长的取值范围是________________.图24-1-2617.如图24-1-27,点A,B,C,D在⊙O上,AB是⊙O的直径,BE=CE.(1)请写出四个不同类型的正确结论;(2)若BE=4,AC=6,求DE的长.图24-1-2718.如图24-1-28,一条公路的转弯处是一段圆弧AB ︵.(1)用直尺和圆规作出AB ︵所在圆的圆心O (要求保留作图痕迹,不写作法); (2)若AB ︵的中点C 到弦AB 的距离为20 m ,AB =80 m ,求AB ︵所在圆的半径.图24-1-2819.有一石拱桥的桥拱是圆弧形,如图24-1-29所示,正常水位下水面宽AB=60 m,水面到拱顶距离CD=18 m,当洪水泛滥,水面到拱顶距离为3.5 m时需要采取紧急措施,当水面宽MN=32 m时,是否需要采取紧急措施?请说明理由.图24-1-29教师详解详析1.D2.D [解析]∵AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,∴M 为CD 的中点,即CM =DM ,选项A 成立.由已知得B 为CD ︵的中点,即CB ︵=DB ︵,选项B 成立.在△ACM 和△ADM 中,∵AM =AM ,∠AMC =∠AMD =90°,CM =DM ,∴△ACM ≌△ADM ,∴∠ACD =∠ADC ,选项C 成立.而OM 与MB 不一定相等,选项D 不成立.故选D .3.A [解析] 因为ON ⊥AB ,所以AN =12AB =12×24=12,∠ANO =90°.在Rt △AON中,由勾股定理,得ON =OA 2-AN 2=132-122=5.故选A .4.B [解析] 连接OC ,则OC =4,OE =3,在Rt △OCE 中,CE =OC 2-OE 2=42-32=7.因为CD ⊥AB ,所以CD =2CE =2 7.5.C [解析] 如图,过点O 作OD ⊥AB 于点C ,交⊙O 于点D. ∵CD =8 cm ,OD =13 cm , ∴OC =5 cm . 又∵OB =13 cm , 在Rt △BCO 中,根据勾股定理,得BC =OB 2-OC 2=132-52=12(cm ) .∵OC ⊥AB , ∴AB =2BC =24 cm .6.5 [解析] 如图,连接OC , ∵AB 为⊙O 的直径,CD ⊥AB ,∴CE =DE =12CD =12×6=3.设⊙O 的半径为x ,则OC =x ,OE =OB -BE =x -1. 在Rt △OCE 中,OC 2=OE 2+CE 2, 即x 2=(x -1)2+32, 解得x =5, ∴⊙O 的半径为5.7.2 3 [解析] 如图,作CE ⊥AB 于点E.∠B =180°-∠BAC -∠ACB =180°-20°-130°=30°.在Rt △BCE 中,∵∠CEB =90°,∠B =30°,BC =2, ∴CE =12BC =1,BE =BC 2-CE 2= 3.∵CE ⊥BD ,∴BD =2BE =2 3.8.证明:过点O 作OH ⊥AB 于点H ,如图,则AH =BH ,CH =DH ,∴AH -CH =BH -DH ,即AC =BD.9.证明:∵OE ⊥AB ,OF ⊥CD , ∴AE =BE ,CF =DF.在Rt △OBE 与Rt △ODF 中,∵⎩⎨⎧OB =OD ,OE =OF ,∴Rt △OBE ≌Rt △ODF(HL ),∴BE =DF ,∴2BE =2DF ,即AB =CD. 10.D11.A [解析] 如图所示,连接OA. ∵⊙O 的直径CD =10 cm ,∴⊙O 的半径为5 cm ,即OA =OC =5 cm . ∵OM ∶OC =3∶5,∴OM =3 cm . ∵AM =BM ,∴AB ⊥CD.在Rt △AOM 中,AM =52-32=4(cm ), ∴AB =2AM =2×4=8(cm ).故选A .12.48 [解析]∵AD =CD ,∴OD ⊥AC. ∴∠CDO =90°,∴∠DOC +∠ACO =90°. ∵OA =OC ,∴∠ACO =∠A =42°, ∴∠DOC =90°-∠ACO =48°.13.C [解析] 作OH ⊥CD 于点H ,连接OC ,如图, ∵OH ⊥CD ,∴HC =HD.∵AP =2,BP =6,∴AB =8,∴OA =4, ∴OP =OA -AP =2.在Rt △OPH 中,∵∠OPH =30°, ∴OH =12OP =1.在Rt △OHC 中,∵OC =OA =4,OH =1, ∴CH =OC 2-OH 2=15, ∴CD =2CH =2 15.14.D [解析]①当弦AB 和CD 的位置如图①所示时,过点O 作OE ⊥AB 于点E ,延长OE 交CD 于点F ,则OF ⊥CD. ∵AB =24 cm ,CD =10 cm , ∴AE =12 cm ,CF =5 cm . ∵OA =OC =13 cm , ∴OE =5 cm ,OF =12 cm , ∴EF =12-5=7(cm ).②当弦AB 和CD 的位置如图②所示时,过点O 作OE ⊥AB 于点E ,延长EO 交CD 于点F ,则OF ⊥CD.∵AB =24 cm ,CD =10 cm , ∴AE =12 cm ,CF =5 cm . ∵OA =OC =13 cm , ∴OE =5 cm ,OF =12 cm , ∴EF =OF +OE =17(cm ).∴AB 与CD 之间的距离为7 cm 或17 cm . 15. 4 [解析]∵OC ⊥AP ,OD ⊥PB , ∴AC =PC ,PD =BD , ∴CD 是△ABP 的中位线. ∵AB 的长为8, ∴CD =12AB =4.16.3 cm ≤OP ≤5 cm [解析] 作直径MN ⊥弦AB ,垂足为D.由垂径定理,得AD =DB =12AB =4 cm .由⊙O 的直径为10 cm ,连接OA ,可得OA =5 cm . 由勾股定理,得OD =OA 2-AD 2=3 cm . ∵垂线段最短,半径最长,∴OP 长的取值范围是3 cm ≤OP ≤5 cm .17.解:(1)不同类型的正确结论有:BE =12BC ,BD ︵=CD ︵,BD =CD ,OD ⊥BC ,△BOD是等腰三角形,△BDE ≌△CDE ,OB 2=OE 2+BE 2等(答案不唯一,合理即可).(2)∵AB 是⊙O 的直径,∴OA =OB.∵BE =CE ,∴OD ⊥BC ,OE 为△ABC 的中位线, ∴OE =12AC =12×6=3.在Rt △OBE 中,由勾股定理,得 OB =OE 2+BE 2=32+42=5, ∴OD =OB =5,∴DE =OD -OE =5-3=2.18.解:(1)如图①,连接AC ,BC ,作线段AC ,BC 的垂直平分线交于点O ,点O 即为所求.(2)如图②,连接OA ,AB ,OC ,OC 交AB 于点D.∵C 为AB ︵的中点,∴OC ⊥AB , ∴AD =BD =12AB =40 m .设⊙O 的半径为r m ,则OA =r m ,OD =OC -CD =(r -20)m . 在Rt △OAD 中,∵OA 2=OD 2+AD 2, ∴r 2=(r -20)2+402,解得r =50. 即AB ︵所在圆的半径是50 m .19.解:不需要采取紧急措施.理由:∵CD 为弓形的高,∴AB ︵所在圆的圆心在直线CD 上.设圆心为O ,连接OA ,OC ,OM.设OA =R m ,在Rt △AOC 中,AC =12AB =30 m ,OC =OD -CD =(R -18)m ,∴R 2=302+(R -18)2,解得R =34.设CD 交MN 于点E ,DE =x m ,在Rt △MOE 中,ME =12MN =16 m ,OE =OD -DE=(34-x)m ,∴342=162+(34-x)2,即x 2-68x +256=0, 解得x 1=4,x 2=64(不合题意,舍去), ∴DE =4 m .∵4 m >3.5 m , ∴不需要采取紧急措施.24.1.3 弧、弦、圆心角知识点 1 圆心角的概念及其计算1.下面四个图中的角,是圆心角的是( )图24-1-302.如图24-1-31,已知AB 为⊙O 的直径,点D 为半圆周上的一点,且AD ︵所对圆心角的度数是BD ︵所对圆心角度数的2倍,则圆心角∠BOD =________°.图24-1-313.在半径为2的⊙O 中,弦AB 的长为2,则弦AB 所对的圆心角的度数为________. 知识点 2 弧、弦、圆心角之间的关系4.如图24-1-32,AB ,CD 是⊙O 的两条弦. (1)∵∠AOB =∠COD ,∴________,________. (2)∵AB ︵=CD ︵,∴____________,____________. (3)∵AB =CD ,∴____________,____________.图24-1-325.已知:如图24-1-33,AB 是⊙O 的直径,C ,D 是BE ︵的三等分点,∠AOE =60°,则∠COE 等于( )图24-1-33A .40°B .60°C .80°D .120°6.如图24-1-34,AB 是⊙O 的直径,BC ,CD ,DA 是⊙O 的弦,且BC =CD =DA ,则∠B 等于( )图24-1-34A .50°B .60°C .70°D .80°7.如图24-1-35,在⊙O 中,C 是AB ︵的中点,∠A =50°,则∠BOC =________°.图24-1-358.如图24-1-36所示,在⊙O 中,弦AB 与弦CD 相等.求证:AD ︵=BC ︵.图24-1-369.已知:如图24-1-37,在⊙O 中,AB ︵=CD ︵,则下列结论:①AB =CD ;②AC =BD ;③∠AOC =∠BOD ;④AC ︵=BD ︵.其中正确的有( )图24-1-37A .1个B .2个C .3个D .4个10.如图24-1-38所示,在⊙O 中,如果AB ︵=2AC ︵,那么( )图24-1-38A .AB =AC B .AB =2AC C .AB <2ACD .AB >2AC11.如图24-1-39,已知在△ABC 中,∠ACB =90°,∠B =35°,以点C 为圆心,CA 长为半径的圆交AB 于点D ,则AD ︵所对的圆心角为________度.图24-1-3912.如图24-1-40所示,A ,B 是半径为3的⊙O 上的两点,若∠AOB =120°,C 是AB ︵的中点,则四边形AOBC 的周长等于________.图24-1-4013.2017·牡丹江如图24-1-41,在⊙O 中,AC ︵=CB ︵,CD ⊥OA 于点D ,CE ⊥OB 于点E .求证:AD =BE .图24-1-4114.如图24-1-42,AB,CD是⊙O的两条直径,过点A作AE∥CD交⊙O于点E,连接BD,DE.求证:BD=DE.图24-1-4215.已知:如图24-1-43,在⊙O 中,M ,N 分别是半径OA ,OB 的中点,且CM ⊥OA ,DN ⊥OB .求证:AC ︵=BD ︵.图24-1-4316.如图24-1-44所示,∠AOB =90°,C ,D 是AB ︵的三等分点,AB 与OC ,OD 分别交于点E ,F .求证:AE =BF =CD .图24-1-44教师详解详析1.D [解析]∵圆心角的顶点必须在圆心, ∴选项A ,B ,C 均不对.故选D . 2.603.60° [解析] 如图,连接OA ,OB.∵OA =OB =AB =2,∴△OAB 是等边三角形,∴∠AOB =60°. 故弦AB 所对的圆心角的度数为60°. 4.(1)AB ︵=CD ︵AB =CD (2)∠AOB =∠COD AB =CD (3)∠AOB =∠COD AB ︵=CD ︵5.C [解析]∵C ,D 是BE ︵的三等分点, ∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD =∠DOE.∵∠AOE =60°,∴∠BOC =∠COD =∠DOE =13(180°-∠AOE)=13(180°-60°)=40°,∴∠COE =80°.6.B [解析] 连接OC ,OD.∵BC =CD =DA ,∴∠BOC =∠COD =∠AOD =13×180°=60°,∴△OBC ,△OCD ,△AOD 都是等边三角形,∴∠B =60°.7.40 [解析]∵在⊙O 中,OA =OB ,∠A =50°,∴∠B =50°, ∴∠AOB =180°-∠A -∠B =80°.∵C 是AB ︵的中点, ∴∠BOC =12∠AOB =40°.8.证明:∵AB =CD ,∴AB ︵=CD ︵, ∴AB ︵-DB ︵=CD ︵-DB ︵,即AD ︵=BC ︵.9.D [解析]∵AB ︵=CD ︵,根据同弧所对的弦相等,∴AB =CD ,故①正确.∵AB ︵-CB ︵=CD ︵-CB ︵,∴AC ︵=BD ︵,故④正确.根据同弧所对的弦、圆心角都相等,得②③正确.10.C [解析] 取AB ︵的中点D ,连接AD ,BD ,则AD ︵=BD ︵=AC ︵,∴AD =BD =AC.又∵在△ABD 中,AB <AD +BD ,∴AB <2AC.11.7012.12 [解析]∵C 是AB ︵的中点,∴∠AOC =∠BOC.又∵∠AOB =120°,∴∠AOC =∠BOC =60°,∴△AOC 和△BOC 都是等边三角形,∴OA =OB =CA =CB =3,∴四边形AOBC 的周长等于12.13.证明:连接OC ,∵AC ︵=CB ︵, ∴∠AOC =∠BOC.∵CD ⊥OA 于点D ,CE ⊥OB 于点E , ∴∠CDO =∠CEO =90°. 在△COD 与△COE 中,∵⎩⎨⎧∠DOC =∠EOC ,∠CDO =∠CEO ,CO =CO ,∴△COD ≌△COE(AAS ), ∴OD =OE. ∵AO =BO ,∴AO -OD =BO -OE ,即AD =BE. 14.证明:如图,连接OE.∵OA =OE ,∴∠A =∠OEA. ∵AE ∥CD ,∴∠BOD =∠A ,∠DOE =∠OEA , ∴∠BOD =∠DOE ,∴BD =DE. 15.证明:连接OC ,OD ,则OC =OD.∵M ,N 分别是半径OA ,OB 的中点, ∴OM =ON.∵CM ⊥OA ,DN ⊥OB , ∴∠OMC =∠OND =90°. 在Rt △OMC 和Rt △OND 中,⎩⎨⎧OM =ON ,OC =OD ,∴Rt △OMC ≌Rt △OND(HL ), ∴∠MOC =∠NOD ,∴AC ︵=BD ︵. 16.证明:连接AC ,BD. ∵C ,D 是AB ︵的三等分点,∴AC =CD =BD ,且∠AOC =13×90°=30°.∵OA =OC ,∴∠OAC =∠OCA =75°. ∵∠AOB =90°,OA =OB , ∴∠OAE =∠OBF =45°,∴∠AEC =∠OAE +∠AOC =45°+30°=75°, ∴AE =AC.同理可证BF =BD ,∴AE =BF =CD.24.1.4 圆周角知识点 1 圆周角的概念1.下列四个图中,∠α是圆周角的是( )图24-1-452.如图24-1-46,图中有多少个圆周角?BC ︵所对的圆周角有几个?CD ︵所对的圆周角有几个?图24-1-46知识点 2 圆周角定理3.2017·徐州如图24-1-47,点A ,B ,C 在⊙O 上,∠AOB =72°,则∠ACB 等于( )图24-1-47A .28°B .54°C .18°D .36°4.如图24-1-48所示,把一个量角器放置在△ABC 的上面,根据量角器的读数可得∠BAC 的度数是( )图24-1-48A .60°B .30°C .20°D .15°5.如图24-1-49,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( )图24-1-49A.2B .2 C .2 2D .46.2017·义乌如图24-1-50,一块含45°角的三角尺,它的一个锐角顶点A 在⊙O 上,边AB ,AC 分别与⊙O 交于点D ,E ,则∠EOD =________°.图24-1-50知识点 3 圆周角定理的推论7.如图24-1-51,在⊙O 中,AB ︵=AC ︵,∠BAC =50°,则∠AEC 的度数为( )图24-1-51A .50°B .55°C .65°D .75°8.如图24-1-52,已知AB 是⊙O 的直径,点C 在⊙O 上,若∠CAB =40°,则∠ABC =________°.图24-1-529.2017·湖州如图24-1-53,已知在△ABC 中,AB =AC .以AB 为直径作半圆O ,交BC 于点D .若∠BAC =40°,则AD ︵的度数是________度.图24-1-5310.如图24-1-54所示,已知四边形ABCD 的四个顶点均在⊙O 上,AB =BC ,BD 交AC 于点E .求证:DB 平分∠ADC .图24-1-54知识点4圆内接多边形11.2017·淮安如图24-1-55,在圆内接四边形ABCD中,若∠A,∠B,∠C的度数之比为4∶3∶5,则∠D的度数是________°.图24-1-5512.如图24-1-56所示,四边形ABCD内接于⊙O,∠B=50°,∠ACD=25°,∠BAD=65°.求证:(1)AD=CD;(2)AB是⊙O的直径.图24-1-5613.2017·云南如图24-1-57,B,C是⊙A上的两点,AB的垂直平分线与⊙A交于E,F两点,与线段AC交于点D.若∠BFC=20°,则∠DBC=()图24-1-57A.30°B.29°C.28°D.20°14.2017·西宁如图24-1-58,四边形ABCD内接于⊙O,点E在BC的延长线上,若∠BOD=120°,则∠DCE=________°.图24-1-5815.如图24-1-59,一块三角尺ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是58°,则∠ACD=________°.图24-1-5916.已知:如图24-1-60,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O 于点E,∠BAC=45°.(1)求∠EBC的度数;(2)求证:BD=CD.图24-1-6017.如图24-1-61,AB 是⊙O 的直径,C 为AE ︵的中点,CD ⊥AB 于点D ,交AE 于点F ,连接AC .求证:AF =CF .图24-1-6118.2017·六盘水如图24-1-62,MN 是⊙O 的直径,MN =4,点A 在⊙O 上,∠AMN=30°,B 为AN ︵的中点,P 是直径MN 上一动点.(1)利用尺规作图,确定当P A +PB 最小时点P 的位置(不写作法,但要保留作图痕迹); (2)求P A +PB 的最小值.图24-1-62教师详解详析1.C [解析] 根据圆周角的定义,顶点在圆上,可排除选项D .根据两边都与圆相交可排除选项A ,B .故选C .2.解:图中有8个圆周角,BC ︵所对的圆周角有1个,是∠BDC ;CD ︵所对的圆周角有2个,分别是∠CBD ,∠CAD.3.D [解析] 根据同弧所对的圆周角等于圆心角的一半,得∠ACB =12∠AOB =12×72°=36°.4.D5.C [解析] 如图,连接OA ,OB.因为∠APB 和∠AOB 分别是AB ︵所对的圆周角和圆心角,所以∠AOB =2∠APB =2×45°=90°.在Rt △AOB 中,OA =OB =2,由勾股定理,得AB =2 2.故选C .6.90 [解析]∠EOD =2∠A =2×45°=90°.7.C [解析]∵AB ︵=AC ︵,∴AB =AC.∵∠BAC =50°,∴∠ABC =12(180°-50°)=65°,∴∠AEC =∠ABC =65°.故选C .8.50 [解析]∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ABC =90°-∠CAB =90°-40°=50°.9.140 [解析] 连接AD ,OD.∵AB 为圆的直径,∴∠ADB =90°.又∵AB =AC ,∠BAC =40°,根据“等腰三角形三线合一”得到AD 平分∠BAC ,∴∠OAD =20°.又∵OA =OD ,∴∠BOD =2∠OAD =40°,∴∠AOD =140°.即AD ︵的度数是140度.10.证明:∵AB =BC ,∴AB ︵=BC ︵,∴∠ADB =∠BDC , 即DB 平分∠ADC.11.120 [解析] 因为四边形ABCD 是⊙O 的内接四边形,所以∠A +∠C =∠B +∠D =180°.因为∠A ,∠B ,∠C 的度数之比为4∶3∶5,所以∠A ,∠B ,∠C ,∠D 的度数之比为4∶3∶5∶6,所以∠D =63+6×180°=120°.12.证明:(1)∵四边形ABCD 内接于⊙O , ∴∠D =180°-∠B =130°. 又∵∠ACD =25°,∴∠DAC =180°-∠D -∠ACD =180°-130°-25°=25°, ∴∠DAC =∠ACD ,∴AD =CD.(2)∵∠BAC =∠BAD -∠DAC =65°-25°=40°,∠B =50°, ∴∠ACB =180°-∠B -∠BAC =180°-50°-40°=90°, ∴AB 是⊙O 的直径.13.A [解析]∵∠BFC =20°, ∴∠BAC =2∠BFC =40°. ∵AB =AC ,∴∠ABC =∠ACB =180°-40°2=70°.又∵EF 是线段AB 的垂直平分线, ∴AD =BD ,∴∠A =∠ABD =40°,∴∠DBC =∠ABC -∠ABD =70°-40°=30°. 故选A .14.60 [解析]∵∠BOD =120°,∴∠BAD =60°.又∵∠BAD +∠BCD =180°,∠DCE +∠BCD =180°,∴∠DCE =∠BAD =60°.15.61 [解析] 设AB 的中点为O ,连接OD.∵三角尺ABC 的斜边AB 与量角器的直径恰好重合,∴点C 在以AB 为直径的圆上.∵点D 对应的刻度是58°,∴∠DCB =12×58°=29°,∴∠ACD =90°-29°=61°.16.解:(1)∵AB 是⊙O 的直径, ∴∠AEB =90°.又∵∠BAC =45°,∴∠ABE =45°. ∵AB =AC ,∴∠ABC =∠C =67.5°,∴∠EBC =∠ABC -∠ABE =67.5°-45°=22.5°. (2)证明:连接AD. ∵AB 是⊙O 的直径, ∴∠ADB =90°,∴AD ⊥BC. 又∵AB =AC , ∴BD =CD.17.证明:如图,连接BC.∵AB 是⊙O 的直径, ∴∠ACB =90°, 即∠ACF +∠BCD =90°.∵CD ⊥AB ,∴∠B +∠BCD =90°, ∴∠ACF =∠B. ∵C 为AE ︵的中点,∴AC ︵=CE ︵, ∴∠B =∠CAE , ∴∠ACF =∠CAE , ∴AF =CF.18.[解析] (1)画出点A 关于MN 的对称点A′,连接A′B ,与MN 的交点即为点P. (2)利用∠AMN =30°得∠AON =∠A′ON =60°,又由B 为AN ︵的中点,可得∠BON =30°,∴∠A ′OB =90°,再由勾股定理求得PA +PB 的最小值为2 2.解:(1)如图,点P 即为所求.(2)如图,连接OA ,OA ′,OB.由(1)可得,PA +PB 的最小值即为线段A′B 的长.∵点A′和点A 关于MN 对称且∠AMN =30°,∴∠AON =∠A′ON =2∠AMN =60°.又∵B 为AN ︵的中点,∴∠BON =12∠AON =30°,∴∠A ′OB =90°.∵MN =4,∴OB =OA ′=2.在Rt △A ′OB 中,由勾股定理得A ′B =22+22=2 2.∴PA +PB 的最小值是2 2.。

人教版九年级数学上册第24章24.1《圆的基本性质》同步练习及答案(2).docx

初中数学试卷 桑水出品24.1 圆(第三课时 )--------- 弧、弦、圆心角知识点1、圆心角定义:顶点在的角叫做圆心角2、定理:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量 ,它们所对应的其余各组量也分别 。

一、选择题1.如果两个圆心角相等,那么( )A .这两个圆心角所对的弦相等;B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等;D .以上说法都不对2.下列语句中不正确的有( )①相等的圆心角所对的弧相等 ②平分弦的直径垂直于弦 ③圆是轴对称图形,任何一条直径所在直线都是它的对称轴 ④长度相等的两条弧是等弧A.3个B.2个C.1个D.以上都不对3.已知、是同圆的两段弧,且=2,则弦AB 与CD 之间的关系为( )A.AB=2CDB.AB<2CDC.AB>2CDD.不能确定4. 如图,AB 是 ⊙O 的直径,C ,D 是»BE上的三等分点,∠AOE=60°,则∠COE 是( ) A . 40° B. 60° C. 80° D. 120 °OED C B A5、如图,半圆O 的直径AB=10cm ,弦AC=6cm ,AD 平分∠BAC ,则AD 的长为( )A . cmB . cmC . cmD . 4cmA.4B.82C.24D.16 二、填空题 1.已知圆O 的半径为5,弦AB 的长为5,则弦AB 所对的圆心角∠AOB = .2. 如图,AB 是 ⊙O 的直径,BC⌒ =BD ⌒ ,∠A=25°, 则∠BOD= . OD CBA3.在⊙O 中,弦AB 所对的劣弧为圆周的41,圆的半径等于12,则圆心角∠AOB = ;弦AB 的长为 . 4.如图,在⊙O 中,»»AB AC ,∠B =70°,则∠A 等于 .CB AO5.如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=___ _____.O BACE D6. 等腰△ABC 的顶角∠A =120°,腰AB =AC =10,△ABC 的外接圆半径等于 .CO BA三、解答题1、如图,在⊙O 中 ,AB =AC ,∠ACB=60°,求证∠AOB =∠BOC =∠AOC .2、如图,在⊙O中,AB、CD是两条弦,OE⊥AB,OF⊥CD,垂足分别为EF.(1)如果∠AOB=∠COD,那么OE与OF的大小有什么关系?为什么?(2)如果OE=OF,那么»AB与»CD的大小有什么关系?AB与CD的大小有什么关系?为什么?∠AOB与∠COD呢?D3.如图,在⊙O中,C、D是直径AB上两点,且AC=BD,MC⊥AB,ND⊥AB,M、N•在⊙O上.(1)求证:¼AM=»BN;(2)若C、D分别为OA、OB中点,则¼¼»AM MN NB==成立吗?BA4.如图,∠AOB=90°,C、D是AB三等分点,AB分别交OC、OD于点E、F,求证:AE=BF=CD.OFE DC5、如图,以⊙O的直径BC为一边作等边△ABC,AB、AC交⊙O于D、E,求证:BD=DE=EC24.1 圆(第三课时 )--------- 弧、弦、圆心角知识点1.圆心2.相等 相等一、选择题1.D2.C 下列语句中不正确的有( )①相等的圆心角所对的弧相等 ②平分弦的直径垂直于弦 ③圆是轴对称图形,任何一条直径所在直线都是它的对称轴 ④长度相等的两条弧是等弧A.3个B.2个C.1个D.以上都不对3.B 已知、是同圆的两段弧,且=2,则弦AB 与CD 之间的关系为( )A.AB=2CDB.AB<2CDC.AB>2CDD.不能确定4. C 如图,AB 是 ⊙O 的直径,C ,D 是»BE上的三等分点,∠AOE=60°,则∠COE 是( ) A . 40° B. 60° C. 80° D. 120 °O E D C B A5、A6.B 二、填空题1. 60°2.50°3.90°, 122 .4. 40° .5.36. 10三、解答题1∠︒∴∴∴∠∠∠Q V 、证明:AB=AC,ACB=60ABC 是等边三角形AB=AC=BCAOB=AOC=BOC2、D解:(1)如果∠AOB=∠COD ,那么OE=OF理由是:∵∠AOB=∠COD∴AB=CD∵OE ⊥AB ,OF ⊥CD∴AE=12AB ,CF=12CD ∴AE=CF又∵OA=OC∴Rt △OAE ≌Rt △OCF∴OE=OF(2)如果OE=OF ,那么AB=CD ,»AB =»CD ,∠AOB=∠COD 理由是:∵OA=OC ,OE=OF∴Rt △OAE ≌Rt △OCF∴AE=CF又∵OE ⊥AB ,OF ⊥CD∴AE=12AB ,CF=12CD ∴AB=2AE ,CD=2CF∴AB=CD∴»AB =»CD ,∠AOB=∠COD3.(1)连结OM 、ON ,在Rt △OCM 和Rt △ODN 中OM=ON ,OA=OB ,∵AC=DB ,∴OC=OD ,∴Rt △OCM ≌Rt △ODN ,∴∠AOM=∠BON ,∴¼»AM NB =(2)¼¼»AM MN NB ==BA4.AOFE DC连结AC 、BD ,∵C 、D 是»AB 三等分点, ∴AC=CD=DB ,且∠AOC=13×90°=30°, ∵OA=OC ,∴∠OAC=∠OCA=75°,又∠AEC=∠OAE+∠AOE=45°+30°=75°, ∴AE=AC ,同理可证BF=BD ,∴AE=BF=CD5,OEC ∴∠∠︒∴∴∠︒∠︒∴∠︒∠∠︒∴∠∠∠∴Q V Q V V 、证明:连接OD 、OEABC 是等边三角形B=C=60OB=OD,OE=OCOBD 是等边三角形是等边三角形BOD=60,EOC=60DOE=180-BOD-EOC=60BOD=DOE=EOCBD=DE=EC。

人教版 九年级数学上册 24.1 圆的有关性质 同步训练(含答案)

人教版 九年级数学上册 24.1 圆的有关性质同步训练一、选择题 1. 2019·葫芦岛 如图,在⊙O 中,∠BAC =15°,∠ADC =20°,则∠ABO 的度数为( )A .70°B .55°C .45°D .35°2. 如图,四边形ABCD 内接于⊙O ,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC ,若∠ABC =105°,∠BAC =25°,则∠E 的度数为( )A . 45°B . 50°C . 55°D . 60°3. 与圆心的距离不大于半径的所有点组成的图形是()A .圆的外部(包括边界)B .圆的内部(不包括边界)C .圆D .圆的内部(包括边界)4. (2019•贵港)如图,AD 是O 的直径,AB CD =,若40AOB ∠=︒,则圆周角BPC ∠的度数是A .40︒B .50︒C .60︒D .70︒5. 如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( )A. 5 B .2 5 C .3 D .2 36. 2019·聊城如图,BC 是半圆O 的直径,D ,E 是BC ︵上的两点,连接BD ,CE并延长交于点A ,连接OD ,OE .如果∠A =70°,那么∠DOE 的度数为( )A .35°B .38°C .40°D .42°7. 如图,从A 地到B 地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A 地到B 地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是( )A .猫先到达B 地 B .老鼠先到达B 地C .猫和老鼠同时到达B 地D .无法确定8. 如图,已知⊙O 的半径为5,弦AB ,CD 所对的圆心角分别是∠AOB ,∠COD ,若∠AOB与∠COD 互补,弦CD =6,则弦AB 的长为( )A .6B .8C .5 2D .5 3二、填空题9. 如图,一下水管道横截面为圆形,直径为100 cm ,下雨前水面宽为60 cm ,一场大雨过后,水面宽为80 cm ,则水位上升了 cm .10. 2018·毕节如图,AB 是⊙O 的直径,C ,D 为半圆的三等分点,CE ⊥AB 于点E ,则∠ACE 的度数为________.11. 如图,已知等腰三角形ABC 中,∠ACB =120°且AC =BC =4,在平面内任作∠APB =60°,则BP 的最大值为________.12. (2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.13. 如图,以△ABC 的边BC 为直径的⊙O 分别交AB ,AC 于点D ,E ,连接OD ,OE .若∠A =65°,则∠DOE =________°.14. 如图,AB ,CD是半径为5的⊙O 的两条弦,AB =8,CD =6,MN 是⊙O 的直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则PA +PC 的最小值为________.15. 如图所示,在半圆O 中,AB为直径,P 为AB ︵的中点,分别在AP ︵和PB ︵上取其中点A 1和B 1,再在P A ︵1和PB ︵1上分别取其中点A 2和B 2.若一直这样取下去,则∠A n OB n =________°.16. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C ,D 与点A ,B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P.若CD =3,AB =8,PM =l ,则l 的最大值是________.三、解答题17. 如图,AB 是⊙O 的直径,AC 是弦,将劣弧AC 沿弦AC 翻折与AB 的交点恰好是圆心O ,作OD ⊥AC ,垂足为E ,交⊙O 于点D ,连接BC ,CD .求证:四边形BCDO 是菱形.18. 如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC 的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑); (2)探究OE 与AC 的位置及数量关系,并证明你的结论.19. 如图,在⊙O 中,M ,N分别是半径OA ,OB 的中点,且CM ⊥OA 交⊙O 于点C ,DN ⊥OB 交⊙O 于点D .求证:AC ︵=BD ︵.20. 2019·十堰改编如图,四边形ABCD 内接于⊙O ,AE ⊥CB 交CB 的延长线于点E .若BA 平分∠DBE ,AD =5,CE =13,求AE 的长度.21. 如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D 为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E.射线AO与射线EB交于点F,与⊙O交于点G.设∠GAB=α,∠ACB=β,∠EAG+∠EBA=γ.(1)点点同学通过画图和测量得到以下近似数据α30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于α(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.人教版 九年级数学上册 24.1 圆的有关性质同步训练-答案一、选择题 1. 【答案】B2. 【答案】B 【解析】∵四边形ABCD 是圆内接四边形,∠ABC =105°,∴∠ADC=75°,∵=,∴∠BAC =∠DCF =25°,∴∠E =∠ADC -∠DCF =50°.3. 【答案】D4. 【答案】B【解析】∵AB CD =,40AOB ∠=︒,∴40COD AOB ∠=∠=︒, ∵180AOB BOC COD ∠+∠+∠=︒,∴100BOC ∠=︒,∴1502BPC BOC ∠=∠=︒,故选B .5. 【答案】D[解析] 如图,过点O 作OD ⊥AB 于点D ,连接OA .根据题意,得OD =12OA =1.再根据勾股定理,得AD = 3.根据垂径定理,得AB =2 3.6. 【答案】C7. 【答案】C8. 【答案】B [解析] 如图,延长AO 交⊙O 于点E ,连接BE ,则∠AOB +∠BOE =180°. 又∵∠AOB +∠COD =180°, ∴∠BOE =∠COD , ∴BE =CD =6.∵AE 为⊙O 的直径,∴∠ABE =90°, ∴AB =AE 2-BE 2=8.二、填空题9. 【答案】10或70 [解析]作OD ⊥AB 于C ,OD 交☉O 于点D ,连接OB.由垂径定理得:BC=AB=30 cm . 在Rt △OBC 中,OC==40(cm).当水位上升到圆心以下且水面宽80 cm 时, 圆心到水面距离==30(cm),水面上升的高度为:40-30=10(cm).当水位上升到圆心以上且水面宽80 cm 时,水面上升的高度为:40+30=70(cm). 综上可得,水面上升的高度为10 cm 或70 cm . 故答案为10或70.10. 【答案】30°[解析] 如图,连接OC .∵AB 是⊙O 的直径,AC ︵=CD ︵=BD ︵,∴∠AOC =∠COD =∠DOB =60°. ∵OA =OC ,∴△AOC 是等边三角形, ∴∠A =60°.∵CE ⊥OA ,∴∠AEC =90°, ∴∠ACE =90°-60°=30°.11. 【答案】8[解析] 由题意可得A ,P ,B ,C 在同一个圆上,所以当BP 为圆的直径时,BP 最大,此时∠P AB =90°.过点C 作CD ⊥AB 于点D ,可求得AB=4 3,进而可求得BP 的最大值为8.12. 【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1.13. 【答案】50[解析] 由三角形的内角和定理,得∠B +∠C =180°-∠A .再由OB =OD =OC =OE ,得到∠BDO =∠B ,∠CEO =∠C .在等腰三角形BOD 和等腰三角形COE 中,∠DOB +∠EOC =180°-2∠B +180°-2∠C =360°-2(∠B +∠C )=360°-2(180°-∠A )=2∠A ,所以∠DOE =180°-2∠A =50°.14. 【答案】72 [解析] 如图,连接OB ,OC ,BC ,则BC 的长即为P A +PC的最小值.过点C 作CH ⊥AB 于点H ,则四边形EFCH 为矩形, ∴CH =EF ,EH =CF .根据垂径定理,得BE =12AB =4,CF =12CD =3, ∴OE =OB 2-BE 2=52-42=3,OF =OC 2-CF 2=52-32=4, ∴CH =EF =OE +OF =3+4=7,BH =BE +EH =BE +CF =4+3=7. 在Rt △BCH 中,由勾股定理,得BC =7 2,则P A +PC 的最小值为7 2.15. 【答案】(902n -1)[解析] 当n =1时,∠A 1OB 1=90°;当n =2时,∠A 2OB 2=90°2=45……所以∠A n OB n =(902n -1)°.16. 【答案】34 [解析] 如图,当CD ∥AB 时,PM 的长最大,连接OM ,OC .∵CD∥AB,CP⊥AB,∴CP⊥CD.∵M为CD的中点,OM过点O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC.∵⊙O的直径AB=8,∴半径OC=4,∴PM=4.三、解答题17. 【答案】证明:如图,连接AD,OC.∵OD⊥AC,∴AE=EC.由翻折的性质,得AC是OD的垂直平分线,∴OE=DE,∴四边形OADC是平行四边形,∴OA∥CD,OA=CD.∵OA=OB,∴OB=CD,OB∥CD,∴四边形BCDO是平行四边形.又∵OB=OD,∴四边形BCDO是菱形.18. 【答案】(1)如图所示:(2)OE AC ∥,12OE AC =. 理由如下:∵AD 平分BAC ∠, ∴12BAD BAC ∠=∠, ∵12BAD BOD ∠=∠, ∴BOD BAC ∠=∠,∴OE AC ∥,∵OA OB =,∴OE 为ABC △的中位线,∴OE AC ∥,12OE AC =.19. 【答案】 证明:如图,连接OC ,OD ,则OC =OD .∵M ,N 分别是半径OA ,OB 的中点,∴OM =ON .∵CM ⊥OA ,DN ⊥OB ,∴∠OMC =∠OND =90°.在Rt △OMC 和Rt △OND 中,⎩⎨⎧OC =OD ,OM =ON ,∴Rt △OMC ≌Rt △OND (HL),∴∠MOC =∠NOD ,∴AC ︵=BD ︵.20. 【答案】解:连接AC ,如图.∵BA平分∠DBE,∴∠1=∠2.∵∠1+∠ABC=180°,∠ABC+∠CDA=180°,∴∠1=∠CDA.又∵∠2=∠3,∴∠3=∠CDA,∴AC=AD=5.∵AE⊥CB,∴∠AEC=90°,∴AE=AC2-CE2=52-(13)2=2 3.21. 【答案】【思维教练】(1)观察表格可猜想β=90°+α,γ=180°-α.连接BG,由直径所对的圆周角为90°和圆内接四边形的对角和为180°即可得出β=90°+α;由题干条件易知△EBD≌△EGD,∠EBC=∠ECB,再由三角形的外角和定理和β=90°+α,利用角度之间的转化即可得出结论;(2)由(1)的结论可以得出α=∠BAG=45°,β=∠ACB=135°,∴∠ECB=45°,∠CEB=90°,△ECD、△BEC、△ABG 都是等腰直角三角形,由CD的长,可得出BE和CE的长,再由题干条件△ABE 的面积是△ABC的面积的4倍可得出AC的长,利用勾股定理在△ABE中求出AB的长,再利用勾股定理在△ABG求出AG的长,即可求出半径长.①(1)①β=90°+α,γ=180°-α证明:如解图①,连接BG,∵AG是⊙O的直径,∴∠ABG=90°,∴α+∠BGA=90°,(1分)又∵四边形ACBG内接于⊙O,∴β+∠BGA=180°,∴β-α=90°,即β=90°+α;(3分)②∵D是BC的中点,且DE⊥BC,∴△EBD≌△ECD,∴∠EBC=∠ECB,∵∠EAG+∠EBA=γ,∴∠EAB+α+∠EBC+∠CBA=γ,∵∠EAB+∠CBA=∠ECB,∴2∠ECB+α=γ,(4分)∴2(180°-β )+α=γ,由①β=90°+α代入后化简得,γ=180°-α;(6分)(2)如解图②,连接BG,②∵γ=135°,γ=180°-α,∴α=45°,β=135°,∴∠AGB=∠ECB=45°,(8分)∴△ECD和△ABG都是等腰直角三角形,又∵△ABE的面积是△ABC的面积的4倍,∴AE=4AC,∴EC=3AC,(9分)∵CD=3,∴CE=32,AC=2,∴AE=42,(10分)∵∠BEA=90°,∴由勾股定理得,AB=BE2+AE2=(32)2+(42)2=50=52,(11分)∴AG=2AB=2×52=10,∴r=5.(12分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十四章 圆
24.1 圆(第一课时 )
知识点
1、圆的定义:
⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋
转形成的图形叫做圆,固定的端点叫 ,线段OA叫做 。
⑵描述性定义:圆是到定点的距离等于 的点的集合
【特别注意】:1、在一个圆中,圆心决定圆的 ,半径决定圆的 。
2、直径是圆中 的弦,弦不一定是直径。
2、弦与弧:
弦:连接圆上任意两点的 叫做弦。
弧:圆上任意两点间的 叫做弧,弧可分为 、 、 三类。
3、圆的对称性:
⑴轴对称性:圆是轴对称图形,有 条对称轴, 的直线都是它的
对称轴。
⑵中心对称性:圆是中心对称图形,对称中心是 。

一、选择题
1.下列命题正确的有 ( )
①弦是圆上任意两点之间的部分 ②半径是弦 ③直径是最长的弦 ④弧是半圆,半圆是弧

A.1个B.2个 C.3个D.4个
2.如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为( )
A.38° B.52°C.76°D.104°

3.如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C
的度数是( )
A.25°B.40°C.30°D.50°

4.一个点到圆上的最小距离是4cm,最大距离是9cm,则圆的半径是( ).
A.2.5cm或6.5 cm B.2.5cm C.6.5cm D.5cm或13cm
5.如图,已知在⊙O中,AB、CD为直径,则AD与BC的关系是( ).
A.AD=BC B.AD∥BC C.AD∥BC 且AD=BC D.不能确定

A B
C

D
O
6.如图,已知AB为⊙O的直径,点C在⊙O上,∠C=15°,则∠BOC的度数为( )
A.15° B. 30° C. 45° D.60°

二、填空题
1.⊙O的半径为2cm,则它的弦长dcm的取值范围是 .
2.⊙O中若弦AB等于⊙O的半径,则△AOB的形状是 .
3.如图,已知AB是⊙O的直径,点C在⊙O上,点D是BC的
中点,若AC=10cm,则OD= cm.

4.如图4,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,
∠E=18°,∠C=______,∠AOC=________;

5. P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最长弦长为_______,最短弦长为
________;

三、解答题
1.在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,D为AB的中点,E为AC的中点,以B为圆心,BC为半
径作⊙B,A、C、D、E与⊙B的位置关系如何?

E
D
C

B

A
2、如图, M,N为线段AB上的两个三等分点,点A、B在⊙O上,

B
D
O

C
A

A
B
C
O
求证:∠OMN=∠ONM。

N
M

B
A

O
24.1 圆(第一课时)
知识点

1.(1)圆心 半径
(2)定长 位置 大小 最长
2.线段 部分 优弧 劣弧 半圆
3.(1)无数 经过圆心的直线(2)圆心
一、选择题
1.A ; 2. C ; 3. A ; 4.A ; 5.C ; 6.B 。

二、填空题
1. 0cm<d≤4cm;2.等边三角形;3.5cm.;4.36°,108°;5.10 cm,8 cm ;

三、解答题
1. 解:连接BE,

2222

2222
C90,BC3cm,AC4cmABBCAC345cmDAB15ABcm22EAC1CEAC2cm2BEBCCE3213cmBABC,BEBCBDBC


oQQQeee是的中点BD=
是的中点


点A、E均在B外;点D在B内;点C在B上。

OANOBMOAOBOANOBMOMNONMQQ2、证明:连接OA、OBOA=OBA=BM、N是AB的三等分点AM=MN=NBAN=BM在和中
A=B
AN=BM

相关文档
最新文档