高考物理一轮复习演练题(7)新人教版

合集下载

高考物理大一轮复习 第七章 静电场 能力课 带电粒子在电场中运动的综合问题课时达标练 新人教版

高考物理大一轮复习 第七章 静电场 能力课 带电粒子在电场中运动的综合问题课时达标练 新人教版

能力课带电粒子在电场中运动的综合问题一、选择题(1~3题为单项选择题,4~5题为多项选择题)1.如图1所示,实线是电场线,一带电粒子只在电场力的作用下沿虚线由A运动到B的过程中,其速度-时间图象是选项中的( )图1解析电场力的方向指向轨迹的凹侧且沿与电场线相切的方向,因此粒子从A运动到B 的过程中电场力方向与速度方向的夹角大于90°,粒子做减速运动,电场力越来越小,加速度越来越小,故B项正确。

答案 B2.两带电荷量分别为q和-q的点电荷放在x轴上,相距为L,能正确反映两电荷连线上场强大小E与x关系的图是( )解析 越靠近两电荷的地方场强越大,两等量异种点电荷连线的中点处场强最小,但不是零,B 、D 错误;两电荷的电荷量大小相等,场强大小关于中点对称分布,A 正确,C 错误。

答案 A3.将如图2所示的交变电压加在平行板电容器A 、B 两板上,开始B 板电势比A 板电势高,这时有一个原来静止的电子正处在两板的中间,它在电场力作用下开始运动,设A 、B 两极板间的距离足够大,下列说法正确的是( )图2A .电子一直向着A 板运动B .电子一直向着B 板运动C .电子先向A 板运动,然后返回向B 板运动,之后在A 、B 两板间做周期性往复运动D .电子先向B 板运动,然后返回向A 板运动,之后在A 、B 两板间做周期性往复运动 解析 根据交变电压的变化规律,作出电子的加速度a 、速度v 随时间变化的图线,如图甲、乙。

从图中可知,电子在第一个T 4内做匀加速运动,第二个T4内做匀减速运动,在这半周期内,因初始B 板电势比A 板电势高,所以电子向B 板运动,加速度大小为eUmd。

在第三个T 4内电子做匀加速运动,第四个T4内做匀减速运动,但在这半周期内运动方向与前半周期相反,向A 板运动,加速度大小为eU md 。

所以电子在交变电场中将以t =T4时刻所在位置为平衡位置做周期性往复运动,综上分析选项D 正确。

2022高考物理一轮复习第七章静电场阶段检测含解析新人教版

2022高考物理一轮复习第七章静电场阶段检测含解析新人教版

阶段滚动检测(七)(第七章)(45分钟100分)一、选择题(此题共8小题,每道题6分,共48分。

1~5小题为单项选择,6~8小题为多项选择)1.A、B是一条电场线上的两个点 , 一带负电的微粒仅在静电力作用下以一定的初速度从A 点沿电场线运动到B点 , 其速度v与时间t的关系图象如下列图。

那么此电场的电场线分布可能是( )【解析】选A。

从v­t图象可以看出微粒的速度逐渐减小 , 图线的斜率逐渐增大 , v­t图线中图线的斜率表示微粒的加速度大小 , 故微粒做加速度逐渐增大的减速运动 , 所以带负电的微粒顺着电场线运动 , 电场力做负功 , 速度逐渐减小 , 且电场线沿微粒运动方向逐渐密集 , 应选项A正确 , 选项B、C、D错误。

2.如下列图甲所示 , 在光滑绝缘的水平面上固定两个等量的正点电荷。

M、O、N为两点电荷连线上的点。

其中O为连线中点 , 且MO=ON。

在M点由静止释放一个电荷量为q的正试探电荷 , 结果该试探电荷在MN间做来回往复运动 , 在一个周期内的v­t图象如下列图乙所示 , 那么以下说法正确的选项是 ( )A.M和N两点的电场强度和电势完全相同B.试探电荷在O点所受电场力最大 , 运动的速度也最大C.试探电荷在t2时刻到达O点 , t4时刻到达N点D.试探电荷从M经O到N的过程中 , 电势能先减小后增大【解析】选D 。

根据等量的正点电荷的电场的特点可知 , M 和N 两点的电场强度大小相等 , 方向相反 , 而电势是相同的 , 选项A 错误 ; 根据等量的正点电荷的电场的特点可知 , O 点的电势最低 , 电场强度为0 , 所以试探电荷在O 点所受电场力最小 , 但运动的速度最大 , 选项B 错误 ; 试探电荷在t 2时刻的速度再次等于0 , 所以在t 2时刻到达N 点 , 选项C 错误 ; 由题图可知 , 试探电荷从M 经O 到N 的过程中 , 速度先增大后减小 , 那么动能先增大后减小 , 所以电势能先减小后增大 , 选项D 正确。

高考物理一轮复习 第7章 静电场 第1讲 电场力的性质习题 新人教版

高考物理一轮复习 第7章 静电场 第1讲 电场力的性质习题 新人教版

第七章 第1讲 电场力的性质1.(2016·浙江理综)(多选)如图所示,把A 、B 两个相同的导电小球分别用长为0.10m 的绝缘细线悬挂于O A 和O B 两点。

用丝绸摩擦过的玻璃棒与A 球接触,棒移开后将悬点O B 移到O A 点固定。

两球接触后分开,平衡时距离为0.12m 。

已测得每个小球质量是8.0×10-4kg ,带电小球可视为点电荷,重力加速度g =10m/s 2,静电力常量k =9.0×109N·m 2/C 2,则导学号 21992465( ACD )A .两球所带电荷量相等B .A 球所受的静电力为1.0×10-2N C .B 球所带的电荷量为46×10-8C D .A 、B 两球连线中点处的电场强度为0[解析] 因A 、B 两球相同,故接触后两球所带的电荷量相同,故A 项正确;由题意知平衡时A 、B 两球离悬点的高度为h =0.102-0.062m =0.08m ,设细线与竖直方向夹角为θ,则tan θ=0.060.08=34,由tan θ=F mg,知A 球所受的静电力F =mg tan θ=6×10-3N ,B 项错误;由库仑定律F =k Q 2r 2,得B 球所带的电荷量Q =rFk =0.12×6×10-39.0×109C =46×10-8C ,则C 项正确;A 、B 两球带同种电荷,则A 、B 两球连线中点处的电场强度为0,故D 项正确。

2.(2016·全国卷Ⅱ)如图,P 是固定的点电荷,虚线是以P 为圆心的两个圆。

带电粒子Q 在P 的电场中运动。

运动轨迹与两圆在同一平面内,a 、b 、c 为轨迹上的三个点。

若Q 仅受P 的电场力作用,其在a 、b 、c 点的加速度大小分别为a a 、a b 、a c ,速度大小分别为v a 、v b 、v c ,则导学号 21992466( D )A .a a >a b >a c ,v a >v c >v bB .a a >a b >a c ,v b >v c >v aC .a b >a c >a a ,v b >v c >v aD .a b >a c >a a ,v a >v c >v b[解析] 由点电荷电场强度公式E =k qr2可知,离场源点电荷P 越近,电场强度越大,Q 受到的电场力越大,由牛顿第二定律可知,加速度越大,由此可知,a b >a c >a a ,故A 、B 选项错误;由力与运动的关系可知,Q 受到的库仑力指向运动轨迹凹的一侧,因此Q 与P 带同种电荷,Q 从c 到b 的过程中,电场力做负功,动能减少,从b 到a 的过程中电场力做正功,动能增加,因此Q 在b 点的速度最小,由于c 、b 两点的电势差的绝对值小于a 、b 两点的电势差的绝对值,因此Q 从c 到b 的过程中,动能的减少量小于从b 到a 的过程中动能的增加量,Q 在c 点的动能小于在a 点的动能,即有v a >v c >v b ,故D 选项正确。

2020届高三高考_人教版_物理一轮复习__静电场课时3 课后练习 (7)

2020届高三高考_人教版_物理一轮复习__静电场课时3 课后练习 (7)

电场的力的性质知识排查点电荷、电荷守恒定律1.点电荷有一定的电荷量,忽略形状和大小的一种理想化模型。

2.元电荷:e =1.60×10-19 C ,所有带电体的电荷量都是元电荷的整数倍。

3.电荷守恒定律(1)内容:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变。

(2)起电方式:摩擦起电、接触起电、感应起电。

(3)带电实质:物体带电的实质是得失电子。

库仑定律1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们距离的二次方成反比。

作用力的方向在它们的连线上。

2.表达式:F =k q 1q 2r 2,式中k =9.0×109 N·m 2/C 2,叫静电力常量。

3.适用条件:(1)真空中;(2)点电荷。

电场强度、点电荷的场强1.定义:放入电场中某点的电荷受到的电场力F 与它的电荷量q 的比值。

2.定义式:E =Fq ,单位:N/C 或V/m 。

3.点电荷的电场强度:真空中点电荷形成的电场中某点的电场强度E =k Qr 2。

4.方向:规定正电荷在电场中某点所受电场力的方向为该点的电场强度方向。

5.电场强度的叠加:电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和,遵从平行四边形定则。

电场线1.定义:为了形象地描述电场中各点电场强度的强弱及方向,在电场中画出一些有方向的曲线,曲线上每一点的切线方向都跟该点的电场强度方向一致,曲线的疏密表示电场的强弱。

2.电场线的特点小题速练1.思考判断(1)点电荷和电场线都是客观存在的。

( ) (2)根据F =kq 1q 2r 2,当r →0时,F →∞。

( ) (3)电场中某点的电场强度方向即为正电荷在该点所受的电场力的方向( ) (4)英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。

( )(5)美国物理学家密立根通过油滴实验精确测定了元电荷e 的电荷量,获得诺贝尔奖。

高考物理一轮复习第七章静电场第1讲电场力的性质练习(含解析)新人教版

高考物理一轮复习第七章静电场第1讲电场力的性质练习(含解析)新人教版

第1讲 电场力的性质一、选择题(本题共12小题,1~8题为单选,9~12题为多选)1.(2020·浙江浙南名校联盟期末)如图所示,光滑绝缘水平桌面上有A 、B 两个带电小球(可以看成点电荷),A 球带电荷量为+2q ,B 球带电荷量为-q ,由静止开始释放后A 球加速度大小为B 球的2倍。

下列说法正确的是( D )A .A 球受到的静电力是B 球受到静电力的2倍B .靠近过程中A 球的动能总是等于B 球的动能C .A 球受到的静电力与B 球受到的静电力是一对平衡力D .现把A 球与带电荷量为+4q 的C 球接触后放回原位置,再静止释放A 、B 两球,A 球加速度大小仍为B 球的2倍[解析] 本题考查电场力作用下的加速和平衡问题。

A 、B 球受到的静电力是一对作用力与反作用力,总是大小相等、方向相反,故A 、C 错误;根据动能定理可得F 电L =E k -0,两球都是做加速度增大的加速运动,A 球加速度大小始终为B 球的2倍,则A 球的位移大小始终大于B 球的位移大小,而F 电相同,靠近过程中A 球的动能总是始终大于B 球的动能,故B 错误;因A 球加速度大小为B 球的2倍,根据a =F m 可知A 的质量为B 的一半,无论A 和B 的电荷量大小如何,二者的电场力总是等大反向,A 球加速度大小仍为B 球的2倍,故D 正确。

2.(2021·山东济南莱芜区模拟)电荷量分别为q 1、q 2的两个点电荷,相距r 时,相互作用力为F ,下列说法错误的是( A )A .如果q 1、q 2恒定,当距离变为r 2时,作用力将变为2F B .如果其中一个电荷的电荷量不变,而另一个电荷的电荷量和它们间的距离都减半时,作用力变为2FC .如果它们的电荷量和距离都加倍,作用力不变D .如果它们的电荷量都加倍,距离变为2r ,作用力将变为2F[解析] 本题考查对库仑定律的理解。

如果q 1、q 2恒定,当距离变为r 2时,由库仑定律可知作用力将变为4F ,选项A 错误;如果其中一个电荷的电荷量不变,而另一个电荷的电荷量和它们间的距离都减半时,作用力变为2F ,选项B 正确;根据库仑定律,如果它们的电荷量和距离都加倍,作用力不变,选项C 正确;根据库仑定律,如果它们的电荷量都加倍,距离变为2r ,作用力将变为2F ,选项D 正确。

2020高考物理一轮基础系列题7含解析新人教版-精装版

2020高考物理一轮基础系列题7含解析新人教版-精装版

教学资料范本2020高考物理一轮基础系列题7含解析新人教版-精装版编辑:__________________时间:__________________【精选】20xx最新高考物理一轮基础系列题7含解析新人教版李仕才一、选择题1、如图7(a)所示,两段等长细绳将质量分别为2m、m的小球A、B悬挂在O点,小球A受到水平向右的恒力F1的作用、小球B受到水平向左的恒力F2的作用,当系统处于静止状态时,出现了如图(b)所示的状态,小球B刚好位于O点正下方.则F1与F2的大小关系正确的是( )图7B.F1=3F2A.F1=4F2D.F1=F2C.F1=2F2答案A2、甲、乙两车在同一条直道上行驶,它们运动的位移x随时间t变化的关系如图所示,已知乙车做匀变速直线运动,其图线与t轴相切于10 s处,则下列说法正确的是( )A.甲车的初速度为零B.乙车的初位置在x0=60 m处C.乙车的加速度大小为1.6 m/s2D.5 s时两车相遇,此时甲车速度较大3、如图7所示,在正方形abcd内充满方向垂直纸面向里、磁感应强度为B的匀强磁场.a处有比荷相等的甲、乙两种粒子,甲粒子以速度v1沿ab方向垂直射入磁场,经时间t1从d点射出磁场,乙粒子沿与ab成30°角的方向以速度v2垂直射入磁场,经时间t2垂直cd射出磁场,不计粒子重力和粒子间的相互作用力,则下列说法中正确的是( )图7A.v1∶v2=1∶2 B.v1∶v2=∶4C.t1∶t2=2∶1 D.t1∶t2=3∶1答案BD4、马航客机失联后,西安卫星测控中心紧急调动海洋、风云、高分、遥感4个型号近10颗卫星,为地面搜救提供技术支持.特别是“高分一号”突破了空间分辨率、多光谱与大覆盖面积相结合的大量关键技术.如图为“高分一号”与北斗导航系统两颗卫星在空中某一面内运动的示意图.“北斗”系统中两颗卫星“G1”和“G3”以及“高分一号”均可认为绕地心O做匀速圆周运动.卫星“G1”和“G3”的轨道半径为r,某时刻两颗工作卫星分别位于轨道上的A、B两位置,“高分一号”在C位置.若卫星均顺时针运行,地球表面处的重力加速度为g,地球半径为R,不计卫星间的相互作用力.则下列说法正确的是( )A.卫星“G1”和“G3”的加速度大小相等且为gB.如果调动“高分一号”卫星快速到达B位置的下方,必须对其加速C.卫星“G1”由位置A运动到位置B所需的时间为πr3R r gD.若“高分一号”所在高度处有稀薄气体,则运行一段时间后,机械能会增大【答案】C5、如图1,质量为m的小猴子在荡秋千,大猴子用水平力F缓慢将秋千拉到图示位置后由静止释放,此时藤条与竖直方向夹角为θ,小猴子到藤条悬点的长度为L,忽略藤条的质量.在此过程中正确的是( )图1A.缓慢上拉过程中拉力F做的功WF=FLsin θB.缓慢上拉过程中小猴子重力势能增加mgLcos θC.小猴子再次回到最低点时重力的功率为零D.由静止释放到最低点小猴子重力的功率逐渐增大解析缓慢上拉过程中拉力F是变力,由动能定理,F做的功等于克服重力做的功,即WF=mgL(1-cos θ),重力势能增加mgL(1-cos θ),选顼A、B错误;小猴子由静止释放时速度为零,重力的功率为零,再次回到最低点时重力与速度方向垂直,其功率也为零,则小猴子下降过程中重力的功率先增大后减小,选项C正确、D错误.答案C6、(多选)太空中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行.设这三个星体的质量均为M,并设两种系统的运动周期相同,则( )A.直线三星系统运动的线速度大小v=GMRB.两三星系统的运动周期T=4πR R5GMC.三角形三星系统中星体间的距离L=RD.三角形三星系统的线速度大小v=125GM R7、如图所示,梯形abdc位于某匀强电场所在平面内,两底角分别为60°、30°,cd=2ab=4 cm,已知a、b两点的电势分别为4 V、0,将电荷量q=1.6×10-3 C的正电荷由a点移动到c点,克服电场力做功6.4×10-3 J,则下列关于电场强度的说法中正确的是( )A.垂直ab向上,大小为400 V/mB.垂直bd斜向上,大小为400 V/mC.平行ca斜向上,大小为200 V/mD.平行bd斜向上,大小为200 V/m解析:选B 由W=qU知Uac== V=-4 V,而φa=4 V,所以φc=8 V,过b点作be∥ac交cd于e,因在匀强电场中,任意两条平行线上距离相等的两点间电势差相等,所以Uab=Uce,即φe=4 V,又因cd=2ab,所以Ucd=2Uab,即φd=0,所以bd为一条等势线,又由几何关系知eb⊥bd,由电场线与等势线的关系知电场强度必垂直bd斜向上,大小为E== V/m=400 V/m,B项正确.8、[多选]如图,S为一离子源,MN为长荧光屏,S到MN的距离为L,整个装置处在范围足够大的匀强磁场中,磁场方向垂直纸面向里,磁感应强度大小为B.某时刻离子源S一次性沿平行纸面的各个方向均匀地射出大量的正离子,各离子的质量m,电荷量q,速率v 均相同,不计离子的重力及离子间的相互作用力,则( ) A.当v<时所有离子都打不到荧光屏上B.当v<时所有离子都打不到荧光屏上C.当v=时,打到荧光屏MN的离子数与发射的离子总数比值为512D.当v=时,打到荧光屏MN的离子数与发射的离子总数比值为12解析:选AC 根据半径公式R=,当v<时,R<,直径2R<L,所有离子都打不到荧光屏上,选项A正确;根据半径公式R=,当v<时,R<L,当半径非常小时,即R<时肯定所有离子都打不到荧光屏上;当≤R<L,有离子打到荧光屏上,选项B错误;当v=时,根据半径公式R==L,离子运动轨迹如图所示,离子能打到荧光屏的范围是N′M′,由几何知识得:PN′=r=L,PM′=r=L,打到N′点的离子离开S时的初速度方向和打到M′的离子离开S时的初速度方向夹角θ=π,能打到荧光屏上的离子数与发射的离子总数之比k===,选项C正确,D错误.二、非选择题如图所示,在竖直平面内固定一光滑圆弧轨道AB,轨道半径为R=0.4 m,轨道最高点A与圆心O等高.有一倾角θ=30°的斜面,斜面底端C点在圆弧轨道B点正下方、距B点H=1.5 m.圆弧轨道和斜面均处于场强E=100 N/C、竖直向下的匀强电场中.现将一个质量为m=0.02 kg、带电荷量为q=+2×1 0-3C的带电小球从A点静止释放,小球通过B点离开圆弧轨道沿水平方向飞出,当小球运动到斜面上D点时速度方向恰与斜面垂直,并刚好与一个不带电的以一定初速度从斜面底端上滑的物块相遇.若物块与斜面间动摩擦因数μ=,空气阻力不计,g取10 m/s2,小球和物块都可视为质点.求:(1)小球经过B点时对轨道的压力FNB;(2)B、D两点间的电势差UBD;(3)物块上滑初速度v0满足的条件.解析(1)设小球到达B点的速度为vB,轨道对小球的支持力为FNB′,由动能定理和牛顿第二定律有:mgR+qER=mv-0①FNB′-(mg+qE)=m,R)②由牛顿第三定律FNB′=FNB③联立①②③得:FNB=1.2 N,方向竖直向下.④(2)设小球由B点到D点的运动时间为t,加速度为a,下落高度为h有:=tan θ⑤Eq+mg=ma⑥h=at2⑦UBD=Eh⑧。

2021年高考物理一轮总复习 第七章 第1讲 电流 电阻 电功及电功率课时提能演练 新人教版

2021年高考物理一轮总复习第七章第1讲电流电阻电功及电功率课时提能演练新人教版一、选择题(本大题共10小题,每小题7分,共70分。

每小题只有一个选项正确)1.(xx·莆田模拟)一只白炽灯泡,正常发光时的电阻为121Ω,当这只灯泡停止发光一段时间后的电阻应是( )A.大于121ΩB.小于121ΩC.等于121ΩD.无法判断【解析】选B。

灯泡停止发光一段时间后温度降低,电阻减小,故选B。

2.下列说法中错误的是( )A.由R=可知,电阻与电压、电流都有关系B.由R=ρ可知,电阻与导体的长度和横截面积都有关系C.金属的电阻率随温度的升高而增大D.所谓超导体,当其温度降低到接近绝对零度的某个临界温度时,它的电阻率突然变为零【解析】选A。

R=是电阻的定义式,R与电压和电流无关,故A错误;R=ρ是电阻的决定式,横截面积一定,电阻与导体的长度成正比,长度一定,电阻与导体的横截面积成反比,故B正确;金属的电阻率随温度的升高而增大,故C正确;当温度降低到接近绝对零度的某个临界温度时,导体的电阻率突然变为零的现象叫超导现象,此时的导体叫超导体,故D正确。

故选A。

3.(xx·黄山模拟)铜的摩尔质量为m,密度为ρ,每摩尔铜原子中有n个自由电子,今有一根横截面积为S 的铜导线,当通过的电流为I时,电子平均定向移动的速率为( )A.光速cB.C. D.【解题指南】解答该题应注意:(1)电子定向移动的速率不是电流的传导速率,也不等于光速c。

(2)根据电流的微观表达式I=nqSv求解,但要注意n为单位体积内的自由电子数。

【解析】选D。

每摩尔铜的体积为,单位体积内铜原子个数为n′==,由电流的微观表达式I=n′eSv得:v=,故选项D正确。

4.有甲、乙两个由同种金属材料制成的导体,甲的横截面积是乙的两倍,而单位时间内通过导体横截面的电荷量乙是甲的两倍,以下说法中正确的是( )A.甲、乙两导体的电流相同B.乙导体的电流是甲导体的两倍C.乙导体中自由电荷定向移动的速率是甲导体的两倍D.甲、乙两导体中自由电荷定向移动的速率大小相等【解析】选B。

(山东专用)2020版高考物理一轮复习 第七章 静电场综合检测(含解析)新人教版

静电场综合检测(时间:90分钟满分:100分)一、选择题(本题共14小题,每小题4分,共56分.在每小题给出的四个选项中,第1~8小题只有一个选项正确,第9~14小题有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不选的得 0分)1.下列关于匀强电场中电场强度和电势差的关系,正确的说法是( C )A.在相同距离上的两点,电势差大的其电场强度也必定大B.电场强度在数值上等于每单位距离上的电势降落C.沿着电场线方向,任何相同距离上的电势降落必定相同D.电势降落的方向必定是电场强度方向解析:由U AB=Ed及d为沿电场线方向的距离知选项C正确,A错误;由E=知电场强度在数值上等于沿电场线方向单位距离上的电势降落,电势降落最快的方向才是电场强度的方向,选项B,D错误.2. 如图a,b,c,d四个点在一条直线上,a和b,b和c,c和d间的距离均为R,在a点处固定有一电荷量为Q的点电荷,在d点处固定有另一个电荷量未知的点电荷,除此之外无其他电荷,已知b点处的电场强度为零,则c点处电场强度的大小为(式中k为静电力常量)( B )A.0B.C.D.解析:根据b点电场强度为零知=,得Q′=4Q,c点的电场强度大小为E=-=,选项B正确.3.如图(甲)所示,两段等长绝缘轻质细绳将质量分别为m,3m的带电小球A,B(均可视为点电荷)悬挂在O点,系统处于静止状态,然后在水平方向施加一匀强电场,当系统再次达到静止状态时,如图(乙)所示,小球B刚好位于O点正下方(细绳始终处于伸长状态).则两个点电荷带电荷量Q A与Q B的大小关系正确的是( A )A.7∶3B.3∶1C.3∶7D.5∶3解析:在图(乙)中,对A,B整体受力分析,由平衡条件可得F TOA cos θ=4mg,Q B E+F TOA sin θ=Q A E;对B受力分析,由平衡条件可得F TAB cos θ+Fcos θ=3mg,F TAB sin θ+Fsin θ=Q B E,由以上各式解得=,故A 正确.4.真空中相距为3a的两个点电荷A和B,分别固定于x轴上x1=0和x2=3a的两点,在二者连线上各点电场强度随x变化关系如图所示,以下说法正确的是( D )A.二者一定是异种电荷B.x=a处的电势一定为零C.x=2a处的电势一定大于零D.A,B的电荷量之比为1∶4解析:电场强度先负方向减少到零又反方向增加,必为同种电荷,故A错误;电场强度为零的地方电势不一定为零,故B错误;由于没有确定零电势点,无法比较x=2a处的电势与零电势的高低,故C错误;x=a处合场强为0,由E=知,=,所以A,B所带电荷量的绝对值之比为1∶4,故D正确.5.某区域的电场线分布如图所示,其中间一根电场线是直线,一带正电的粒子从直线上的O 点由静止开始在电场力作用下运动到A点.取O点为坐标原点,沿直线向右为x轴正方向,粒子的重力忽略不计.在O点到A点的运动过程中,下列关于粒子运动速度和加速度a随时间t 的变化、粒子的动能E k和运动径迹上的电势 随位移x的变化图线可能正确的是( B )解析:由图可知,从O到A点,电场线由密到疏再到密,电场强度先减小后增大,方向不变,因此电荷受到的电场力先减小后增大,则加速度先减小后增大,v t图像的斜率表示加速度的大小,故A错误,B正确;沿着电场线方向电势降低,而电势与位移的图像的斜率表示电场强度,故C错误;电荷在电场力作用下做正功,导致电势能减小,则动能增加,由动能定理可得动能与位移关系图线的斜率表示电场力的大小,因为电场力先减小,后增大,故D错误.6.在匀强电场中建立一直角坐标系,如图所示.从坐标原点沿+y轴前进0.2 m 到A点,电势降低了10 V,从坐标原点沿+x轴前进0.2 m到B点,电势升高了10 V,则匀强电场的电场强度大小和方向为( C )A.50 V/m,方向B→AB.50 V/m,方向A→BC.100 V/m,方向B→AD.100 V/m,方向垂直AB斜向下解析:连接AB,由题意可知,AB中点C点电势应与坐标原点O相等,连接OC即为等势线,与等势线OC垂直的方向为电场的方向,故电场方向由B→A,其大小为E==V/m=100 V/m,选项C正确.7.如图所示,带电荷量相等、质量不同的带电粒子a和b从带电平行板M的边缘沿平行于极板的方向进入M,N两极板间的匀强电场中,都恰好能从N板的右边缘飞出,不计重力作用,则( C )A.两粒子进入电场时的动能一定不相等B.两粒子进入电场时的初速度的大小一定相等C.两粒子飞出电场时的动能一定相等D.两粒子飞出电场时的速度大小一定相等解析:设极板的长度是L,板间距离是d,设粒子的初速度为v0,带电粒子在极板间做类平抛运动.在水平方向有L=v0t;竖直方向有d=at2=;则粒子的初动能E k0=m=,由于q,E,L,d相同,所以两粒子的初动能相等,选项A错误;由于两粒子进入电场时的初动能相等而粒子质量不相等,则粒子的初速度大小一定不相等,选项B错误;两粒子电荷量相等,进入与离开电场时的位置相同,则电场力做功相同,粒子的初动能相同,由动能定理可得,粒子离开电场时的动能相等,选项C正确;粒子离开电场时的动能相等,粒子质量不同,则粒子离开电场时的速度不等,选项D错误.8.如图所示,O点是两个点电荷+6Q和-Q连线的中点,M,N是+6Q和-Q连线中垂线上关于O点对称的两点.取无穷远处为零电势点,下列说法正确的是( C )A.O点的电场强度不为零,电势为零B.M,N两点的电势不为零,电场强度方向水平向右C.将一正的试探电荷由M点移到O点,该试探电荷的电势能变大D.将一负的试探电荷由O点移到N点,电场力对试探电荷做正功解析:两点电荷在O点的电场强度都向右,不为零;由于两电荷电荷量不相等,将一正点电荷从无穷远处移到O点,6Q的正电荷做的负功与-Q的负电荷做的正功不相等,电场力做的总功不为零,故O点电势不为零,故A错误;M,N两点的电势不为零;由电场强度E=可知,6Q的正电荷在M,N点的电场强度大于-Q的负电荷的电场强度,根据矢量合成法则,M点的电场强度方向向右上方,N点的电场强度方向向右下方,故B错误;将一正的试探电荷由M点移到O 点,6Q的正电荷做的负功大于-Q的负电荷做的正功,该试探电荷的电势能变大,故C正确;将一负的试探电荷由O点移到N点,6Q的正电荷做的负功大于-Q的负电荷做的正功,电场力对试探电荷做负功,故D错误.9.如图所示,在正方形ABCD区域内有平行于AB边的匀强电场,E,F,G,H是各边中点,其连线构成正方形,其中P点是EH的中点.一个带正电的粒子(不计重力)从F点沿FH方向射入电场后恰好从D点射出.以下说法正确的是( BD )A.粒子的运动轨迹一定经过P点B.粒子的运动轨迹一定经过PE之间某点C.若将粒子的初速度变为原来的一半,粒子会由ED之间某点从AD边射出D.若将粒子的初速度变为原来的一半,粒子恰好由E点从AD边射出解析:粒子从F点沿FH方向射入电场后恰好从D点射出,其轨迹是抛物线,则过D点作速度的反向延长线一定与水平位移交于FH的中点,而延长线又经过P点,所以粒子轨迹一定经过PE 之间某点,选项A错误,B正确;由平抛知识可知,当竖直位移一定时,水平速度变为原来的一半,由于y方向的位移、加速度均不变,则运动时间不变,因此水平位移也变为原来的一半,粒子恰好由E点从AD边射出,选项C错误,D正确.10.在同一直线上的M,N两点正好是某电场中一条电场线上的两点,若在M点释放一个初速度为零的电子,电子仅受电场力作用,并沿电场线由M点运动到N点,其电势能随位移变化的关系如图所示,则下列说法正确的是( BD )A.该电场有可能是匀强电场B.该电场可能是负的点电荷产生的C.N点的电势比M点电势低D.该电子运动的加速度越来越小解析:由E p=-qEx可知,图像的斜率反映电场强度大小,由E p x图像可知,斜率越来越小,则电场强度逐渐减小,则选项A错误;电子由M到N的过程中,电场力做正功,电势能减小,因此电场线的方向由N到M,所以选项B正确,C错误;电子从M运动到N过程中,电场力越来越小,则加速度越来越小,选项D正确.11.如图所示,在水平放置的已经充电的平行板电容器之间,有一带负电的油滴处于静止状态.若某时刻油滴的电荷量开始减小(质量不变),为维持该油滴原来的静止状态应( AD )A.给平行板电容器继续充电,补充电荷量B.让平行板电容器放电,减少电荷量C.使两极板相互靠近些D.将上极板水平右移一些解析:给平行板电容器继续充电,电荷量增大,电容不变,根据U=知电势差增大,根据E=,知电场强度增大,则油滴受到的电场力增大,能再次平衡,故A正确;让电容器放电,电荷量减小,电容不变,根据U=,知电势差减小,根据E=,知电场强度减小,则油滴受到的电场力减小,电荷不能平衡,故B错误;因为U=,C=,所以电场强度E===,与电容器两极板间的距离无关,所以电容器两极板靠近和远离时,电场强度不变,则油滴受到的电场力减小,电荷不能平衡,故C错误;因为电场强度E=,当将上极板水平右移一些即面积减小,电场强度增大,则油滴受到的电场力增大,能再次平衡,故选项D正确.12.在静电场中,有一带电粒子仅在电场力作用下做变加速直线运动,先后经过A,B,C点运动到D点.在粒子通过A点时开始计时,此过程的“速度—时间”图像如图所示.下列说法正确的是( AC )A.A点的电场强度最大B.A点的电势小于B点的电势C.粒子在A点的电势能大于在B点的电势能D.A,C两点的电势差U AC与C,D两点的电势差U CD相等解析:由运动的速度—时间图像可看出:在A点时斜率最大,故加速度最大,故电场强度最大,故A正确.粒子电性不确定,无法比较电势高低,故B错误.因只有电场力做功,粒子的动能与电势能的总量不变,由图可知粒子在B点的速度最大,所以在B点的动能最大,电势能最小,所以粒子在A点的电势能大于在B点的电势能,故C正确.A,D两点的速度相等,故粒子的动能相同,A,D两点的电势能相等,电势相等,故U AC=U DC=-U CD,故D错误.13.两个完全相同的平行板电容器C1,C2水平放置,如图所示.开关S闭合时,两电容器中间各有一油滴A,B刚好处于静止状态.现将S断开,将C2下极板向上移动少许,然后再次闭合S,则下列说法正确的是( BCD )A.两油滴的质量相等,电性相反B.断开开关,移动C2下极板过程中,B所在位置的电势不变C.再次闭合S瞬间,通过开关的电流可能从上向下D.再次闭合开关后,A向下运动,B向上运动解析:当S闭合时,左边电容器的上极板和右边电容器的下极板相连,即两个极板的电势相等,又因为其他两个极板都接地,电势相等,故两极板间的电势差的绝对值相等,根据mg=q,由于不知道两油滴的电荷量,故两个油滴的质量不一定相等,若C1上极板带正电,则C1电场方向竖直向下,A液滴应受到竖直向上的电场力,故带负电,C2下极板带正电,则C2电场方向竖直向上,B滴液应受到竖直向上的电场力,所以带正电,电性相反;若C1上极板带负电,则C1电场方向竖直向上,A液滴应受到竖直向上的电场力,故带正电,C2下极板带负电,则C2电场方向竖直向下,B滴液应受到竖直向上的电场力,所以带负电,电性相反,总之两油滴的电性相反,A错误;断开开关,移动C2下极板过程中,两极板所带电荷量相等,根据C=,C=,E=联立可得E=,两极板间的电场强度大小和两极板间的距离无关,故电场强度恒定,所以B的受力不变,故仍处于静止状态,与上极板(零电势)的距离不变,根据U=Ed可知B点的电势不变,B正确;S断开,将C2下极板向上移动少许,根据C=可知C2增大,根据C=可知U减小,即C2下极板电势降低,再次闭合S瞬间,C1上极板的电势大于C2下极板的电势,通过开关的电流可能从上向下,稳定后,根据E=可知C1电容器两极板间的电势差减小,电场强度减小,A向下运动,C2两极板间的电势差增大,电场强度增大,B向上运动,C,D正确.14.水平放置的光滑绝缘环上套有三个带电小球,小球可在环上自由移动.如图所示是小球平衡后的可能位置图.(甲)图中三个小球构成一个钝角三角形,A点是钝角三角形的顶点.(乙)图中小球构成一个锐角三角形,其中三角形边长DE>DF>EF.可以判断正确的是( AC )A.(甲)图中A,B两小球一定带异种电荷B.(甲)图中三个小球一定带等量电荷C.(乙)图中三个小球一定带同种电荷D.(乙)图中三个小球带电荷量的大小为Q D>Q F>Q E解析:对C球进行受力分析,根据平衡条件得C球一定要受一个排斥力和一个吸引力,则A,B 球一定带不同电荷,选项A正确;如果(甲)图中小球是带等量电荷,那么小球应该均匀地分布在环上,选项B错误;对D球分析,D球不可能受到一个斥力和一个引力,所以E,F球带同种电荷,分析E球根据平衡条件可得D,F球带同种电荷,所以(乙)图中三个球带同种电荷,选项C 正确;D球受到两斥力,设圆心为O,DE大于DF,同时∠ODE小于∠ODF,可得受E球斥力更大,又离E球远可得E球电荷量大于F球,选项D错误.二、非选择题(共44分)15.(8分)如图所示,长度为d的绝缘轻杆一端套在光滑水平转轴O上,另一端固定一质量为m、电荷量为q的带负电小球.小球可以在竖直平面内做圆周运动,AC和BD分别为圆的竖直和水平直径.等量异种点电荷+Q,-Q分别固定在以C为中点、间距为2d的水平线上的E,F两点.让小球从最高点A由静止开始运动,经过B点时小球的速度大小为v,不考虑q对+Q,-Q 所产生电场的影响.求:(1)小球经过C点时球对杆的拉力的大小;(2)小球经过D点时速度的大小.解析:(1)设U BA=U,根据对称性可知,U BA=U AD=U,U AC=0小球从A到C过程,根据动能定理有mg·2d=m(2分)沿竖直方向有F T-mg=m(1分)整理得F T=5mg(1分)根据牛顿第三定律可知,球对杆的拉力大小为5mg.(1分)(2)从A到B和从A到D的过程中,根据动能定理得mgd+qU=mv2(1分)mgd-qU=m(1分)整理得v D=.(1分)答案:(1)5mg (2)16.(10分)如图所示,两块平行金属板MN间的距离为d,两板间电压u随时间t变化的规律如图所示,电压的绝对值为U0.t=0时刻M板的电势比N板低.在t=0时刻有一个电子从M板处无初速度释放,经过 1.5个周期刚好到达N板.电子的电荷量为e,质量为m.求:(1)该电子到达N板时的速率v.(2)在1.25个周期末该电子和N板间的距离s.解析:(1)由题意知,电子在第一、第三个T内向右做初速度为零的匀加速运动,第二个T内向右做末速度为零的匀减速运动.由x=at2知,这三段时间内电子的位移是相同的.在第三个T内对电子用动能定理eU=mv2,(3分)其中U=U0,得v=.(2分)(2)在第三个T内,电子做初速度为零的匀加速运动,总位移是d,前一半时间内的位移是该位移的,为x′=d,(3分)因此这时离N板的距离s=d-d= d.(2分)答案:(1)(2) d17.(12分)如图所示,在竖直面内有一矩形区ABCD,水平边AB=L,竖直边BC=L,O为矩形对角线的交点.将一质量为m的小球以一定的初动能自O点水平向右抛出,小球经过BC边时的速度方向与BC夹角为60°.使此小球带电,电荷量为q(q>0),同时加一平行于矩形ABCD的匀强电场.现从O点以同样的初动能沿各个方向抛出此带电小球,小球从矩形边界的不同位置射出,其中经过C点的小球的动能为初动能的,经过E点(DC中点)的小球的动能为初动能的,重力加速度为g,求:(1)小球的初动能;(2)取电场中O点的电势为零,求C,E两点的电势;(3)带电小球经过矩形边界的哪个位置动能最大?最大动能是多少? 解析:(1)没加电场时,由平抛运动知识水平方向L=v0t(1分)竖直方向v y=gt(1分)v y=v0tan 30°联立解得小球的初动能E k0=m=mgL.(1分)(2)加电场后,根据能量守恒定律由O到C:qϕC=mgL+E k0-E k0=mgL(1分)由O到E:qϕE=mgL+E k0-E k0=mgL(1分)则ϕC=,ϕE=.(1分)(3)如图,取OC中点F,则EF为等势线,电场线与等势线EF垂直由U OE=ELcos 30°(1分)得qE=mg(1分)用正交分解法求出电场力和重力的合力F x=qEsin 30°=mg(1分)F y=qEcos 30°=mg(1分)合力F==mg,方向沿OD合力对小球做功越多,小球动能越大,则从D点射出的带电小球动能最大,根据动能定理F·=E km-E k0(1分)解得最大初动能E km=mgL.(1分)答案:(1)mgL (2)(3)见解析18.(14分)如图所示,在方向竖直向上、大小为E=1×106 V/m的匀强电场中,固定一个穿有A,B两个小球(均视为质点)的光滑绝缘圆环,圆环在竖直平面内,圆心为O、半径为R=0.2 m.A,B用一根绝缘轻杆相连,A带的电荷量为q=+7×10-7 C,B不带电,质量分别为m A= 0.01 kg,m B=0.08 kg.将两小球从圆环上的图示位置(A与圆心O等高,B在圆心O的正下方)由静止释放,两小球开始沿逆时针方向转动.取g =10 m/s2.(1)通过计算判断,小球A能否到达圆环的最高点C;(2)求小球A的最大速度值;(可保留根号)(3)求小球A从图示位置逆时针转动的过程中,其电势能变化的最大值.解析:(1)设A,B在转动过程中,轻杆对A,B做的功分别为W T,W T′,则W T+W T′=0(1分)设A,B到达圆环最高点的动能分别为E kA,E kB对A由动能定理qER-m A gR+W T1=E kA(1分)对B由动能定理W T1′-m B gR=E kB(1分)联立解得E kA+E kB=-0.04 J(1分)上式表明,A在圆环最高点时,系统动能为负值.故A不能到达圆环最高点.(1分)(2)设B转过α角时,A,B的速度大小分别为v A,v B,因A,B做圆周运动的半径和角速度均相同,故v A=v B(1分)对A由动能定理qERsin α-m A gRsin α+W T2=m A(1分)对B由动能定理W T2′-m B gR(1-cos α)=m B(1分)联立解得=×(3sin α+4cos α-4)(1分)解得当tan α=时,A,B的最大速度均为v max= m/s.(1分)(3)A,B从图示位置逆时针转动过程中,当两球速度为0时,电场力做功最多,电势能减少最多,故得3sin α+4cos α-4=0(1分)解得sin α=(sin α=0舍去)故A的电势能减少量|ΔE p|=qERsin α(2分)代入数值得|ΔE p|= J=0.134 4 J.(1分)(其他解法合理均可)答案:(1)不能,理由见解析(2) m/s (3)0.134 4 J。

2022届高考物理一轮复习 专题7 碰撞与动量守恒(含解析)新人教版

专题七碰撞与动量守恒考点1 动量、冲量、动量定理1.如果没有空气阻力,天上的云变成雨之后落到地面,在经过一路的加速后,到达地面时的速度会达到300 m/s,这样的速度基本相当于子弹速度的一半,是非常可怕的.由于空气阻力的作用,雨滴经过变加速运动,最终做匀速运动,一般而言,暴雨级别的雨滴落地时的速度为8~9 m/s.某次下暴雨时李明同学恰巧撑着半径为0.5 m的雨伞(假设伞面水平,雨水的平均密度为0.5 kg/m3),由于下雨使李明增加撑雨伞的力最小约为()A.0.25 NB.2.5 NC.25 ND.250 N2.如图所示为某飞船与空间站对接时的示意图.已知空间站的质量为9.8×104 kg,飞船受到推进器的推力F为500 N,飞船与空间站对接后,推进器工作20 s,飞船和空间站的速度增加0.1 m/s,则()A.对接前后,飞船和空间站的动量守恒B.推进过程中,飞船对空间站的冲量与空间站对飞船的冲量相同C.飞船的质量为1.0×103 kgD.推进过程中,飞船对空间站的推力为490 N3.有一宇宙飞船,它的正面有效面积S=2 m2,以v=3×103 m/s的相对速度飞入一宇宙微粒区.此微粒区1 m3空间中有一个微粒,每一个微粒的平均质量为m=2×10-7 kg,设微粒与飞船外壳碰撞后附着于飞船上,要使飞船速度不变,飞船的牵引力应增加() A.3.6×103 N B.3.6 N C.1.2×103 N D.1.2 N4.[多选]第二届进博会于2019年11月在上海举办,会上展出了一种乒乓球陪练机器人,该机器人能够根据发球人的身体动作和来球信息,及时调整球拍将球击回,若机器人将乒乓球以原速率斜向上击回,球在空中运动一段时间后落到对方的台面上,忽略空气阻力和乒乓球的旋转,下列说法正确的是()A.击球过程合外力对乒乓球做功为零B.击球过程合外力对乒乓球的冲量为零C.在上升过程中,乒乓球处于失重状态D.在下落过程中,乒乓球处于超重状态5.有一种灌浆机可以持续将某种涂料以速度v喷在墙壁上,其喷射出的涂料产生的压强为p,若涂料打在墙壁上后便完全附着在墙壁上,涂料的密度为ρ,则墙壁上涂料厚度增加的速度u为()A.u=B.u=C.u=D.u=6.拍皮球是大家都喜欢的体育活动,能强身健体.已知皮球质量为m=0.4 kg,为保证皮球每次与地面碰撞后自然跳起的最大高度均为h=1.25 m,小明需每次在球到达最高点时拍球,每次拍球作用的距离为s=0.25 m,使球在离手时获得一个竖直向下、大小为4 m/s 的初速度v.若不计空气阻力及球的形变,g取10 m/s2,则每次拍球()A.手给球的冲量为1.6 kg· m/sB.手给球的冲量为2.0 kg· m/sC.人对球做的功为3.2 JD.人对球做的功为2.2 J7.如图所示,质量m=2 kg的木块静置在水平面上,受到一水平飞行的子弹打击,木块被子弹瞬间击穿后(击穿前后木块质量不变),在水平面上滑行了x=8 m距离后静止.已知木块与水平面间的动摩擦因数μ=0.4,重力加速度g=10 m/s2.求:(1)木块被击穿后获得的速度大小;(2)子弹对木块的打击力冲量的大小.考点2 动量守恒定律1. A、B两小球在光滑水平面上发生正碰,小球A的质量为m1=0.2 kg,碰撞前、后两球位置与时间的关系如图所示,由此可以判断()A.小球B的质量为m2=0.6 kgB.小球B的质量为m2=0.2 kgC.碰后小球A和B运动方向相同D.碰前小球A做加速运动,小球B做匀速运动2.[多选]如图所示,光滑水平面上有一质量为2M、半径为R(R足够大)的圆弧曲面C,质量为M的小球B置于其底端,另一个小球A质量为,小球A以v0=6 m/s的速度向B运动,并与B发生弹性碰撞,不计一切摩擦,小球均视为质点,则()A.B的最大速率为4 m/sB.B运动到最高点时的速率为 m/sC.B能与A再次发生碰撞D.B不能与A再次发生碰撞3.[多选]质量为M、左右内壁间距为L的箱子静止于光滑的水平面上,箱子中间有一质量为m的小物块(可视为质点),小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v,小物块与箱壁碰撞N次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,不计空气阻力,则整个过程中,小物块与箱子组成的系统损失的动能为()A.mv2B.·v2C.NμmgLD.NμmgL4.如图所示,光滑水平面上停放一个木箱和小车,木箱质量为m,小车和人总质量为M,M:m=4:1,人以速率v沿水平方向将木箱推出,木箱被挡板以原速率反弹回来以后,人接住木箱再以同样大小的速率v第二次推出木箱,木箱又被原速反弹……,则人最多能推木箱的次数为 ()A.2B.3C.4D.15.如图所示,光滑半圆轨道竖直固定在光滑水平面上,直径MN竖直.刚开始时,小物块P 和Q静止,二者间有一被压缩后锁定的轻弹簧(与物块未拴接),弹簧锁定时的弹性势能为9 J.解除锁定(时间极短)后,P、Q将与弹簧分离.已知P、Q的质量均为0.25 kg,半圆轨道的半径R=0.4 m,重力加速度g取10 m/s2,不计一切阻力.(1)解除锁定后,求P、Q与弹簧分离时的速度大小;(2)判断Q能否通过半圆轨道的最高点,并说明理由.考点3 实验:验证动量守恒定律1.[6分]某实验小组利用如图甲所示的实验装置验证动量守恒定律.实验的主要步骤如下:①用游标卡尺测量小球A、B的直径d,如图乙所示,用天平测量小球A、B的质量分别为m1、m2;②用两条细线分别将球A、B悬挂于同一水平高度,且自然下垂时两球恰好相切,球心位于同一水平线上;③将球A向左拉起至其悬线与竖直方向的夹角为α时由静止释放,与球B碰撞后,测得球A向左摆到最高点时其悬线与竖直方向的夹角为θ1,球B向右摆到最高点时其悬线与竖直方向的夹角为θ2.(1)小球的直径d=cm.(2)若两球碰撞前后的动量守恒,则其表达式可表示为(用①、③中测量的量表示).(3)完成实验后,实验小组进一步探究.用质量相同的A、B两球重复实验步骤②、③,发现A球与B球碰撞后,A球静止,B球向右摆到最高点时其悬线与竖直方向的夹角略小于α,由此他们判断A、B两球的碰撞是(填“弹性碰撞”“非弹性碰撞”或“完全非弹性碰撞”).2.[7分]某同学用图甲所示装置通过M、N两弹性小球的碰撞来验证动量守恒定律,图甲中A是斜槽导轨,固定在水平桌面上,斜面BF顶端B点与斜槽导轨的水平末端平滑相接.实验时先使M球从斜槽上某一固定位置静止释放,落到斜面上的记录纸上留下痕迹,重复上述操作10次,得到M球的10个落点痕迹,如图乙所示,刻度尺贴近斜面且零刻度线与B点对齐.再把N球放在斜槽导轨水平末端,让M球仍从原位置静止释放,和N球碰撞后两球分别在斜面记录纸上留下各自的落点痕迹,重复这种操作10次.(不考虑小球对斜面的二次碰撞)(1)为了更精确地做好该实验,对两个碰撞小球的要求是M球的半径N球的半径,M球的质量N球的质量.(填“小于”“等于”或“大于”)(2)由图乙可得M球不与N球碰撞时在斜面上的平均落点位置到B点的距离为cm.(3)若已知斜面BF的倾角为θ,利用天平测出M球的质量m1,N球的质量m2,利用刻度尺测量平均落点位置C、D、E到B的距离分别为L C、L D、L E,,由上述测量的实验数据,验证动量守恒定律的表达式是.(用所给物理量的字母表示)3.2019年9月,我国成功完成了76 km/h高速列车实车对撞试验,标志着我国高速列车安全技术达到了世界领先水平.某学习小组受此启发,设计了如下的碰撞实验,探究其中的能量损耗问题,实验装置如图甲所示.该小组准备了质量分别为0.20 kg、0.20 kg、0.40 kg的滑块A、B、C,滑块A右侧带有自动锁扣,左侧与穿过打点计时器(图中未画出)的纸带相连,滑块B、C左侧均带有自动锁扣,打点计时器所接电源的频率f=50 Hz.调整好实验装置后,在水平气垫导轨上放置A、B两个滑块,启动打点计时器,使滑块A以某一速度与静止的滑块B相碰并粘合在一起运动,纸带记录的数据如图乙所示;用滑块C替代滑块B,重复上述实验过程,纸带数据如图丙所示.(1)根据纸带记录的数据,滑块A与B碰撞过程中系统损失的动能为 J,滑块A 与C碰撞过程中系统损失的动能为 J.(计算结果均保留2位有效数字)(2)根据实验结果可知,被碰物体质量增大,系统损失的动能(填“增大”“减小”或“不变”).一、选择题(共9小题,54分)1.质量为m的篮球以水平速度大小v撞击竖直篮板后,以水平速度大小v'被弹回,已知v'<v,篮球与篮板撞击时间极短.下列说法正确的是 ()A.撞击时篮球受到的冲量大小为m(v'-v)B.撞击时篮板受到的冲量为零C.撞击过程中篮球和篮板组成的系统动量不守恒D.撞击过程中篮球和篮板组成的系统机械能守恒2.某研究小组的同学们用如图所示的装置做探究物体的加速度与力、质量的关系实验之后,对此实验又做了进一步的分析:在实验前通过垫块已经平衡了阻力,且砂和砂桶的总质量远小于小车和车上砝码的总质量,若将小车(含车上砝码)和砂桶(含砂)当成一个系统,由静止释放小车后,下列说法正确的是()A.系统动量守恒,机械能守恒B.系统动量不守恒,机械能守恒C.系统动量守恒,机械能不守恒D.系统动量不守恒,机械能不守恒3.甲、乙两物体在同一直线上运动,它们在0~0.4 s时间内的v-t图像如图所示.若两物体仅存在相互作用,则下列说法正确的是()A.0~0.4 s时间内甲对乙的冲量大小大于乙对甲的冲量大小B.0~t1时间内甲、乙位移之比为1∶3C.甲、乙质量之比为3∶1D.t1=0.28 s4.某质量为3 kg的木块在喷泉作用下,静止在距某喷口上方1 m的位置,喷口的圆形内径约为2 cm,若喷出的水全部撞击木块且冲击后水的速度变为零,则驱动该喷口喷水的水泵功率最接近(不计空气阻力,π取3,重力加速度g取10 m/s2) ()A.100 WB.200 WC.300 WD.400 W5.“引力弹弓效应”是指在太空运动的探测器,借助行星的引力来改变自己的速度.为了分析这个过程,可以提出以下两种模型:探测器分别从行星运动的反方向或同方向接近行星,分别因相互作用改变了速度.如图甲、乙所示,以太阳为参考系,设行星运动的速度大小为u,探测器的初速度大小为v0,在图示的两种情况下,探测器在远离行星后速度大小分别为v1和v2.探测器和行星虽然没有发生直接的碰撞,但是在行星的运动方向上,其运动规律可以与两个质量不同的钢球在同一条直线上发生的弹性碰撞规律类比.那么下列判断中正确的是()A.v1>v0B.v1=v0C.v2>v0D.v2=v06.如图所示,弹簧的一端固定在竖直墙上,质量为m的光滑弧形槽静置在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽高h处开始自由下滑,则()A.在以后的运动过程中,小球和槽的动量始终守恒B.在下滑过程中,小球和槽之间的相互作用力始终不做功C.被弹簧反弹后,小球和槽都做速率不变的直线运动D.被弹簧反弹后,小球和槽的机械能守恒,小球能回到槽高h处7.[多选]如图所示,光滑水平面上有质量均为m的A、B两个相同物块,物块A以速度v 向右运动,与静止不动、左端有一轻弹簧的物块B发生对心碰撞,碰撞后物块A与弹簧不粘连,在物块A与弹簧接触以后的过程中,下列说法正确的是()A.弹簧被压缩过程中两物块总动量小于mvB.弹簧被压缩到最短时两物块总动能为mv2C.弹簧恢复原长时,物块A的动量为零D.弹簧恢复原长时,物块B的动能为mv28.[多选]研究平抛运动的装置如图所示.图中PQ是圆弧轨道,轨道末端的切线水平,QEF 是斜劈的横截面,H是QE的中点,曲线QMNE是某次质量为m的小球做平抛运动的轨迹,M 在H的正上方,N在H的左侧且与H在同一水平线上.不计空气阻力,下列说法正确的是()A.小球在M点的速度方向与QE平行B.从Q到M与从M到N,小球重力做的功相等C.从Q到M与从M到N,小球的动量变化量之比为(+1)∶1D.从Q到M与从M到E,小球的速度变化量之比为1∶29.[多选]如图所示,小球A、B、C质量分别为2m、m、m,A与B、C间通过铰链用轻杆连接,杆长为l,B、C置于水平地面上.现让两轻杆并拢,以此时小球A在水平地面上的竖直投影为坐标原点,A由静止释放到下降到最低点的过程中,A、B、C在同一竖直平面内运动,忽略一切摩擦,重力加速度为g,则球A与地面接触时(小球直径远小于杆长)()A.球C速度大小为B.球B、C的动量之和为零C.球A落点在原点左侧D.A与地面接触时的速度大小为二、非选择题(共6小题,70分)10.[4分]某物理兴趣小组利用如图甲所示的装置进行验证动量守恒定律的实验.光滑的水平平台上的A点放置一个光电门.实验步骤如下:A.在小滑块a上固定一个宽度为d的窄挡光片;B.用天平分别测得小滑块a(含挡光片)和小球b的质量为m1、m2;C.将a和b用细线连接,中间夹一被压缩了的水平轻短弹簧,静止放置在平台上;D.烧断细线后,a、b被弹开,向相反方向运动;E.记录滑块a离开弹簧后通过光电门时挡光片的遮光时间t;F.小球b离开弹簧后从平台边缘飞出,落在水平地面上的B点,测出平台距水平地面的高度h及B点与平台边缘重垂线之间的水平距离x0;G.改变弹簧压缩量,进行多次实验.(1)用螺旋测微器测量挡光片的宽度,如图乙所示,则挡光片的宽度为mm.(2)若在误差允许范围内,满足m1=,则a、b与弹簧作用过程中系统动量守恒.(用上述实验所涉及物理量的字母表示,重力加速度为g)11.[6分]在“验证动量守恒定律”的实验中,一般采用如图所示的装置.其中P点为碰前入射小球落点的平均位置,M点为碰后入射小球落点的平均位置,N点为碰后被碰小球落点的平均位置.(1)若入射小球质量为m1,半径为r1;被碰小球的质量为m2,半径为r2,则.A.m1>m2,r1>r2B.m1>m2,r1<r2C.m1>m2,r1=r2D.m1<m2,r1=r2(2)以下所提供的测量工具中需要的是.A.刻度尺B.游标卡尺C.天平D.弹簧测力计E.秒表(3)在做实验时,对实验要求,以下说法正确的是.A.斜槽轨道必须是光滑的B.斜槽轨道末端的切线是水平的C.入射球每次都要从同一高度由静止滚下D.释放点应适当高点(4)设入射小球的质量为m1,被碰小球的质量为m2,用如图所示装置进行实验,则“验证动量守恒定律”的表达式为.(用装置图中的字母表示)12.如图所示,一个足够长的圆筒竖直固定,筒内有一质量为M的滑块锁定在距圆筒顶端h1=5 m处.现将一个直径小于圆筒内径、质量为m的小球, 从圆筒顶端沿圆筒中轴线由静止释放,小球与滑块刚要碰撞时解除滑块的锁定,小球与滑块发生弹性碰撞后最高能上升到距圆筒顶端h2=3.2 m处.不计空气阻力,已知滑块与圆筒间的滑动摩擦力为f=7.2 N,重力加速度g取10 m/s2.(1)求小球与滑块的质量之比.(2)若滑块质量为0.9 kg,求小球从与滑块第一次碰撞到与滑块第二次碰撞的时间间隔t.13.[2021湖北荆州中学月考,14分]两质量均为2m的劈A和B紧挨着放置,两劈内侧均为半径为R的圆形光滑曲面,放在光滑水平面上,如图所示.一质量为m的物块(可视为质点)从劈A的最高点由静止滑下,然后又滑上劈B.重力加速度为g.求:(1)物块第一次离开劈A时,劈A后退的距离;(2)物块在劈B上能够达到的最大高度.14.如图所示,在光滑的水平面上有一长为L的木板B,上表面粗糙,在其左端有一光滑的圆弧槽C,与木板接触但不相连,圆弧槽的下端与木板上表面齐平,B、C静止在水平面上.现有滑块A以初速度v0从右端滑上B,并以v0的速度滑离B,之后恰好能到达C的最高点.A、B、C的质量均为m,重力加速度为g,求:(1)滑块A与木板B上表面间的动摩擦因数μ;(2)圆弧槽C的半径R;(3)当A滑离C时,C的速度.15.如图所示,一质量m=1 kg的滑块(可视为质点)从距斜面底端高度h0=8 m的位置由静止释放.已知斜面倾角θ=45°,滑块与斜面间的动摩擦因数μ=0.6,滑块滑至斜面底端时与挡板相碰,碰撞过程中无机械能损失,重力加速度为g=10 m/s2.求:(1)滑块第一次碰撞挡板前的瞬时速度大小;(2)第一次碰撞过程中,挡板对滑块的冲量大小;(3)所有碰撞过程中,挡板对滑块总的冲量大小.答案专题七碰撞与动量守恒考点1 动量、冲量、动量定理1.C设t时间内,落到雨伞上雨水的质量为m,根据动量定理,有Ft=mv,又m=vtπr2ρ,所以F=v2πr2ρ,代入数据解得F=25 N,所以选项C正确.2.D对接过程中,飞船受到推进器的推力作用,飞船和空间站整体动量不守恒,选项A 错误;推进过程中,飞船对空间站的推力大小等于空间站对飞船的推力大小,但二力方向相反,故飞船对空间站的冲量与空间站对飞船的冲量不相同,选项B错误;设飞船的质量为m,飞船与空间站对接后,推进器工作20 s的过程中,有(9.8×104 kg+m)×0.1 m/s=500 N×20 s,可得m=2.0×103 kg,选项C错误;飞船与空间站对接后,推进器工作20 s,飞船和空间站的速度增加0.1 m/s,加速度为0.005 m/s2,则飞船对空间站的推力为9.8×104 kg×0.005 m/s2=490 N,选项D正确.3.B在t时间内与飞船碰撞并附着于飞船上的微粒总质量为M=vtSm,设飞船对微粒的作用力为F,由动量定理得Ft=Mv,联立解得F=v2Sm,代入数据得F=3.6 N,根据牛顿第三定律,可知微粒对飞船的作用力为3.6 N,要使飞船速度不变,根据平衡条件,可知飞船的牵引力应增加3.6 N,选项B正确.4.AC 球拍将乒乓球原速率击回,合外力对乒乓球的冲量不为零,可知乒乓球的动能不变,动量方向发生改变,合外力对乒乓球做功为零,A正确,B错误;在乒乓球的运动过程中,加速度方向向下,乒乓球处于失重状态,C正确,D错误.5B在涂料持续被喷向墙壁并不断附着在墙壁上的过程中,涂料小颗粒的速度从v变为0.以Δt时间内喷在面积为ΔS上的质量为Δm的涂料为研究对象,设墙壁对它的作用力为F,它对墙壁的作用力为F',涂料增加的厚度为h.由动量定理可知F·Δt=Δm·v,其中Δm=ρ·ΔSh,则墙壁受到的压强p===.又因涂料厚度增加的速度为u=,联立解得u=,选项B正确.6.D为使皮球在离手时获得一个竖直向下、大小为4 m/s的初速度v,根据动量定理可知,合外力要给皮球的冲量为I=mv=0.4×4 kg· m/s=1.6 kg· m/s,手给球的冲量与重力给球的冲量之和等于合外力的冲量,故手给球的冲量小于1.6 kg· m/s,选项A、B错误;设人对球做的功为W,由动能定理知,W+mgs=mv2,解得W=2.2 J,选项D正确,C错误.7.(1)8 m/s(2)16 kg·m/s解析:(1)木块被击穿后在水平面上运动,对木块有μmg=ma(2分)得木块做匀减速直线运动的加速度大小a=μg=4 m/s2(1分)由匀变速直线运动规律有v2=2ax(1分)得木块被击穿后获得的速度大小v=8 m/s(1分).(2)对木块被击穿的过程,由动量定理有I=mv-0(2分)得子弹对木块打击力的冲量的大小I=16 kg·m/s(1分).考点2 动量守恒定律1.A由题图可知,碰前小球A的速度为v1=2 m/s,碰前小球B的速度为零,碰后小球A 的速度为v'1=-1 m/s,碰后小球B的速度为v'2=1 m/s,对小球A、B碰撞的过程,由动量守恒定律得m1v1=m1v'1+m2v'2,代入数据解得m2=0.6 kg,A正确,B错误;由以上分析可知,碰后A被反弹,则两球的运动方向相反,C错误;碰前小球A匀速运动,小球B静止,D错误.2.AD A与B发生弹性碰撞,设碰撞后瞬间A、B的速度分别为v A、v B,取水平向右为正方向,根据动量守恒定律和机械能守恒定律得v0=v A+Mv B,·=·+M,解得v A=-2 m/s,v B=4 m/s,故B的最大速率为4 m/s,选项A正确;B冲上C并运动到最高点时,B与C 共速,此过程由动量守恒定律有Mv B=(M+2M)v,解得B运动到最高点时的速率为v= m/s,选项B错误;B冲上C然后又滑下的过程,设B、C分离时速度分别为v'B、v'C,由水平方向动量守恒有Mv B=Mv'B+2Mv'C,由机械能守恒有M=Mv'+·2Mv',解得v'B=- m/s,由于|v'B|<|v A|,所以A、B不会再次发生碰撞,选项C错误,D正确.3.BD小物块与箱子作用过程中二者组成的系统满足动量守恒,小物块最后恰好又回到箱子正中间,二者相对静止,即二者共速,设速度为v1,则mv=(m+M)v1,系统损失动能ΔE k=mv2-(M+m)=·,A项错误,B项正确;由于碰撞为弹性碰撞,故碰撞时不损失能量,系统损失的动能等于系统产生的热量,即ΔE k=Q=NμmgL,C项错误,D项正确.4.B选木箱、人和小车组成的系统为研究对象,取向右为正方向,设第n(n为整数)次推出木箱后人与小车的速度为v n,第n次接住木箱后速度为v'n,由动量守恒定律第一次推出后有0=Mv1-mv,则v1=第一次接住后有Mv1+mv=(M+m)v'1第二次推出后有(M+m)v'1=Mv2-mv,则v2=第二次接住后有Mv2+mv=(M+m)v'2︙︙第n-1次接住后有Mv n-1+mv=(M+m)v'n-1第n次推出后有(M+m)v'n-1=Mv n-mv即v n=mv设最多能推n次,推出后有即≥v,且<v所以(+1)≤n<(+1)+1将=4代入,可得2.5≤n<3.5因为n取整数,故n=3.5.(1)6 m/s 6 m/s(2)能理由见解析解析:(1)设P、Q与弹簧分离时的速度大小分别为v1、v2,弹簧锁定时的弹性势能为E p,由动量守恒定律和机械能守恒定律得mv1=mv2(2分)E p=m+m(2分)联立解得v1=v2=6 m/s(1分).(2)假设Q能通过半圆轨道的最高点M,且在最高点的速度为v.根据机械能守恒定律可得m=mg·2R+mv2(2分)解得v=2 m/s另一方面,若Q恰能通过M点,在M点根据牛顿第二定律及向心力公式有mg=m(2分)解得v M=2 m/s<v故假设成立,Q能通过最高点(1分).考点3 实验:验证动量守恒定律1.(1)2.20(2分)(2)m1=-m1+m2(2分)(3)弹性碰撞(2分)解析: (1)小球A、B的直径d=22 mm+0.1×0 mm=22.0 mm=2.20 cm.(2)小球A下摆过程只有重力做功,机械能守恒,由机械能守恒定律得m1=m1gl(1-cos α),碰撞后,对A、B两球分别根据机械能守恒定律得m1v=m1gl(1-cos θ1)、m2v=m2gl(1-cos θ2),若两球碰撞前后的动量守恒,则满足m1v1=-m1v'1+m2v'2,联立以上四式得m1=m2-m1.(3)用质量相同的两个小球完成实验,且碰后A球静止,则说明两球发生的碰撞为弹性碰撞.2.(1)等于(1分)大于(1分)(2)54.2(53.5~54.5范围内均可)(2分)(3)m1=m1+m2(3分)解析:(1)为了验证水平方向上动量守恒并确保N球被碰后做平抛运动,应使两小球对心碰撞,需两小球半径相等;同时为确保M球碰撞后速度方向不变,M球的质量必须大于N 球的质量.(2)将图乙中的10个落点用圆规画出最小的圆圈住,圆心即为落点的平均位置,可知圆心到B点的距离为54.2 cm,允许有一定的误差,取值在53.5~54.5 cm范围内都算正确.(3)小球离开导轨后做平抛运动,有L cos θ=v0t及L sin θ=gt2,联立可得v0=,对照图甲和实验条件可知,D点为M球未与N球碰撞时单独做平抛运动的平均落点位置,有v1=,E点为N球被碰后做平抛运动的平均落点位置,对应有v2=,C点为M球与N球碰撞后做平抛运动的平均落点位置,对应有v'1=,将v1、v'1和v2代入公式m1v1=m1v'1+m2v2得m1=m1+m2.3.(1)0.45(2分) 0.60(2分)(2)增大(2分)解析:(1)打点计时器所接电源的频率f=50 Hz,周期T==0.02 s,由题图乙可知,碰撞前滑块A的速度为v A=×10-2 m/s=3.0 m/s,A与B碰撞并粘合在一起后速度为v AB=×10-2 m/s=1.5 m/s.碰撞前滑块A的动能E k A=m A=×0.20×3.02 J=0.90 J,碰撞后滑块A、B的总动能E k AB=(m A+m B)=×(0.20+0.20)×1.52 J=0.45 J,A与B碰撞过程中系统损失的动能为ΔE k1= E k A-E k AB=0.90 J-0.45 J=0.45 J.由题图丙可知,A与C碰撞并粘合在一起后速度为v AC=×10-2 m/s=1.0 m/s.碰撞前滑块A的动能E k A=m A=×0.20×3.02 J=0.90 J,碰撞后滑块A、C的总动能E k AC=(m A+m C)=×(0.20+0.40)×1.02 J=0.30 J,A与C碰撞过程中系统损失的动能为ΔE k2= E k A-E k AC=0.90 J-0.30 J=0.60 J.(2)根据实验结果可知,被碰物体质量增大,系统损失的动能增大.1.C撞击时篮球受到的冲量等于其动量的变化,即I=mv'-m(-v)=m(v'+v),选项A错误;碰撞时,篮球与篮板相互作用,相互作用力等大反向,作用时间相等,则篮板受到的冲量大小不为零,选项B错误;撞击时间极短,重力的冲量忽略不计,撞击前后篮板均保持静止,篮球速度反向,所以篮球和篮板组成的系统动量不守恒,选项C正确;由于v'<v,系统机械能有损失,不守恒,选项D错误.2.D把砂桶(含砂)与小车(含车上砝码)看成一个整体,这个整体在向下运动时受到摩擦力作用,除了摩擦力外还有重力、斜面的支持力,摩擦力做负功,支持力不做功,故系统的机械能不守恒,选项A、B错误;在砂桶向下运动的过程中,系统受到了合外力(砂桶重力)的作用,它们的动量越来越大,动量不守恒,选项C错误,D正确.3.C甲、乙两物体仅存在相互作用,则甲、乙两物体组成的系统动量守恒,故0~0.4 s 时间内甲对乙的冲量大小等于乙对甲的冲量大小,A错误;在v-t图像中,图线与坐标轴围成图形的面积表示位移,则0~t1时间内甲、乙位移之比为1∶5,B错误;由图线可知,甲、乙两物体加速度大小之比为1∶3,则甲、乙质量之比为3∶1,C正确;由图线可知a10 m/s2,则t1=0.3 s,D错误.乙的大小为4.B喷口的内径约2 cm,则半径约为r=0.01 m,木块静止在距喷口h=1 m的位置,即木块受到水的冲击力等于木块的重力,由动量定理得0-mv=-m木gt,在一段极短时间t内喷到木块上的水柱的质量为m=ρ水vtS,S=πr2,设水在刚喷出喷口时的速度为v喷,由机械能守恒定律可知mgh+mv2=m,设驱动该喷口喷水的水泵功率为P,在接近管口很短一段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

演练题(7)
1、关于质点的运动,下列说法中正确的是( )
A.质点运动的加速度为零,则速度为零,速度变化也为零
B.质点速度变化率越大,则加速度越大
C.质点某时刻的加速度不为零,则该时刻的速度也不为零
D.质点运动的加速度变大,则速度一定变大
【答案】B
【解析】加速度为零,速度变化也为零,但速度不一定为零,加速度不为零,速度可能为零,
故A、C错误;质点速度变化率越大,则加速度越大,B正确;当速度与加速度反向时,加
速度增大,速度反而会减小,并且减小得越来越快,D错误.

2、(2018·广东湛江模拟)如图1所示,一骑行者所骑自行车前后轮轴的距离为L,在

水平道路上匀速运动,当看到道路前方有一条减速带时,立刻刹车使自行车做匀减速直线
运动,自行车垂直经过该减速带时,对前、后轮造成的两次颠簸的时间间隔为t.利用以上
数据,可以求出前、后轮经过减速带这段时间内自行车的( )

图1
A.初速度 B.末速度
C.平均速度 D.加速度
【答案】C

3、假设某无人机靶机以300 m/s的速度匀速向某个目标飞来,在无人机离目标尚有一
段距离时从地面发射导弹,导弹以80 m/s2的加速度做匀加速直线运动,以1 200 m/s的速
度在目标位置击中该无人机,则导弹发射后击中无人机所需的时间为( )
A.3.75 s B.15 s C.30 s D.45 s
【答案】B
【解析】导弹由静止做匀加速直线运动,即v0=0,a=80 m/s2 ,据公式v=v0+at,有
t

=va=1 20080 s=15 s,即导弹发射后经15 s击中无人机,选项B正确.
4、在竖直放置的平底圆筒内,放置两个半径相同的刚性球a和b,球a质量大于球b.
放置的方式有如图4甲和乙两种.不计圆筒内壁和球面之间的摩擦,对有关接触面的弹力,
下列说法正确的是( )


图4

A.图甲圆筒底受到的压力大于图乙圆筒底受到的压力
B.图甲中球a对圆筒侧面的压力小于图乙中球b对侧面的压力
C.图甲中球a对圆筒侧面的压力大于图乙中球b对侧面的压力
D.图甲中球a对圆筒侧面的压力等于图乙中球b对侧面的压力
【答案】 B
【解析】 以a、b整体为研究对象进行受力分析,筒底对两个球整体支持力等于两球的重力,
故图甲圆筒底受到的压力等于图乙圆筒底受到的压力,选项A错误;以a、b整体为研究对
象进行受力分析,两侧的两个压力是大小相等的,再以上面球为研究对象受力分析,如图所
示,由几何知识可知FN筒=mgtan θ,故侧壁的压力与上面球的重力成正比,由于球a的质
量大于球b的质量,故乙图中球对侧面的压力较大,选项B正确,C、D错误.

5、如图11所示,两滑块放在光滑的水平面上,中间用一细线相连,轻杆OA、OB搁在

滑块上,且可绕铰链O自由转动,两杆长度相等,夹角为θ,当用竖直向下的力F作用在
铰链上,滑块间细线的张力为多大?


【答案】2Ftan 2θ
【解析】把竖直向下的力F沿两杆OA、OB方向分解,如图甲所示,则杆作用于滑块上
的力为
F1=F
2
=2θ

6、三个共点力大小分别是F1、F2、F3,关于它们合力F的大小,下列说法中正确的是( )
A.F大小的取值范围一定是0≤F≤F1+F2+F3
B.F至少比F1、F2、F3中的某一个大
C.若F1∶F2∶F3=3∶6∶8,只要适当调整它们之间的夹角,一定能使合力为零
D.若F1∶F2∶F3=3∶6∶2,只要适当调整它们之间的夹角,一定能使合力为零
【答案】C
【解析】三个大小分别是F1、F2、F3的共点力合成后的最大值一定等于 F1+F2+F3,但最小
值不一定等于零,只有当某一个力的大小在另外两个力的大小的和与差之间时,这三个力的
合力才可能为零,A、B、D错误,C正确.

7、(多选)如图1所示,用细绳把小球悬挂起来,当小球静止时,下列说法中正确的是( )


图1

A.小球受到的重力和细绳对小球的拉力是一对作用力和反作用力
B.细绳对小球的拉力和小球对细绳的拉力是一对作用力和反作用力
C.小球受到的重力和细绳对小球的拉力是一对平衡力
D.小球受到的重力和小球对细绳的拉力是一对平衡力
【答案】BC
8、在儿童蹦极游戏中,拴在腰间左右两侧的是弹性极好的橡皮绳,质量为m的小明如
图1所示静止悬挂时,两橡皮绳的拉力大小均恰为mg.若此时小明左侧橡皮绳断裂,则小明
( )


图1

A.加速度为零,速度为零
B.加速度a=g,沿原断裂橡皮绳的方向斜向下
C.加速度a=g,沿未断裂橡皮绳的方向斜向上
D.加速度a=g,方向竖直向下
【答案】B

9、两个质量分别为m1、m2的物体A和B紧靠在一起放在光滑水平桌面上,如图2所示,
如果它们分别受到水平推力2F和F,则A、B之间弹力的大小为( )


图2

A.m1+m2m2F B.m1+m2m1F C.m1+m2m1+2m2F D.m1+m22m1+m2F
【答案】C
【解析】根据牛顿第二定律对整体有:2F-F=(m1+m2)a,方向水平向右;对物体B有:FN-

F=m2a,联立上述两式得:FN=m1+m2m1+2m2F
,故选项A、B、D均错误,选项C正确.

10、如图7所示,一儿童玩具静止在水平地面上,一名幼儿用沿与水平面成30°角的
恒力拉着它沿水平地面运动,已知拉力F=6.5 N,玩具的质量m=1 kg,经过时间t=2.0
s,玩具移动了距离x=2 m,这时幼儿将手松开,玩具又滑行了一段距离后停下.(g取10 m/s2)
求:


图7
(1)玩具与地面间的动摩擦因数.
(2)松开后玩具还能滑行多远?
(3)当力F与水平方向夹角θ为多少时拉力F最小?

【答案】(1)33 (2)53 m (3)30°
【解析】(1)玩具做初速度为零的匀加速直线运动,由位移公式可得x=21at2,解得
a
= m/s2,

对玩具,由牛顿第二定律得Fcos 30°-μ(mg-Fsin 30°)=ma

解得μ=33.


(3)设拉力与水平方向的夹角为θ,玩具要在水平面上运动,则Fcos θ-Ff>0
Ff=μF
N
在竖直方向上,由平衡条件得FN+Fsin θ=mg
解得F>cos θ+μsin θμmg
因为cos θ+μsin θ=sin(60°+θ)
所以当θ=30°时,拉力最小.
11、a、b两物体同时从同一地点开始做匀变速直线运动,二者运动的v-t图象如图1
所示,下列说法正确的是( )


图1
A.a、b两物体运动方向相反
B.a物体的加速度小于b物体的加速度
C.t=1 s时两物体的间距等于t=3 s时两物体的间距
D.t=3 s时,a、b两物体相遇
【答案】C

相关文档
最新文档