2022年高考数学(文科)二轮复习 名师导学案:专题五 第1讲 直线与圆 Word版含答案

合集下载

高考数学第二轮专题复习直线与圆的方程教案

高考数学第二轮专题复习直线与圆的方程教案

高考数学第二轮专题复习直线与圆的方程教案一、重点知识结构本章以直线和圆为载体,揭示了解析几何的基本概念和方法。

直线的倾斜角、斜率的概念及公式、直线方程的五种形式是本章的重点之一,而点斜式又是其它形式的基础;两条直线平行和垂直的充要条件、直线l1到l2的角以及两直线的夹角、点到直线的距离公式也是重点内容;用不等式(组)表示平面区域和线性规划作为新增内容,需要引起一定的注意;曲线与方程的关系体现了坐标法的基本思想,是解决解析几何两个基本问题的依据;圆的方程、直线(圆)与圆的位置关系、圆的切线问题和弦长问题等,因其易与平面几何知识结合,题目解法灵活,因而是一个不可忽视的要点。

二、高考要求1、掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系;3、会用二元一次不等式表示平面区域;4、了解简单的线性规划问题,了解线性规划的意义,并会简单的应用;5、了解解析几何的基本思想,了解用坐标法研究几何问题的方法;6、掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念。

三、热点分析在近几年的高考试题中,两点间的距离公式,中点坐标公式,直线方程的点斜式、斜率公式及两条直线的位置关系是考查的热点。

但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,在高考中极有可能涉及,但难度不会大。

四、复习建议本章的复习首先要注重基础,对基本知识、基本题型要掌握好;求直线的方程主要用待定系数法,复习时应注意直线方程各种形式的适用条件;研究两条直线的位置关系时,应特别注意斜率存在和不存在的两种情形;曲线与方程的关系体现了坐标法的基本思想,随着高考对知识形成过程的考查逐步加强,对坐标法的要求也进一步加强,因此必须透彻理解。

既要掌握求曲线方程的常用方法和基本步骤,又能根据方程讨论曲线的性质;圆的方程、直线与圆的位置关系,圆的切线问题与弦长问题都是高考中的热点问题;求圆的方程或找圆心坐标和半径的常用方法是待定系数法及配方法,应熟练掌握,还应注意恰当运用平面几何知识以简化计算。

文科数学专题直线与圆(教学案)高考二轮复习资料含答案

文科数学专题直线与圆(教学案)高考二轮复习资料含答案

(1)以客观题形式考查两条直线平行与垂直的关系判断,常常是求参数值或取值范围,有时也与命题、充要条件结合,属常考点之一.(2)与三角函数、数列等其他知识结合,考查直线的斜率、倾斜角、直线与圆的位置关系等,以客观题形式考查.(3)本部分内容主要以客观题形式考查,若在大题中考查,较少单独命制试题,常常与圆锥曲线相结合,把直线与圆的位置关系的判断或应用作为题目条件的一部分或一个小题出现,只要掌握最基本的位置关系,一般都不难获解.1.直线方程(1)直线的倾斜角与斜率的关系倾斜角α的取值范围:0°≤α<180°.倾斜角为α(α≠90°)的直线的斜率k=tanα,倾斜角为90°的直线斜率不存在.当0°<α<90°时,k>0且k随倾斜角α的增大而增大.当90°<α<180°时,k<0且k随倾斜角α的增大而增大.(2)直线方程(3)两直线的位置关系(4)距离公式①两点P 1(x 1,y 1),P (x 2,y 2)间的距离 |P 1P 2|= x 1-x 2 2+ y 1-y 2 2.②点P (x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.2.圆的方程 (1)圆的方程①标准方程:(x -a )2+(y -b )2=r 2,圆心坐标为(a ,b ),半径为r .②一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心坐标为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径r =D 2+E 2-4F 2.(2)点与圆的位置关系①几何法:利用点到圆心的距离d 与半径r 的关系判断:d >r ⇔点在圆外,d =r ⇔点在圆上;d <r ⇔点在圆内.②代数法:将点的坐标代入圆的标准(或一般)方程的左边,将所得值与r 2(或0)作比较,大于r 2(或0)时,点在圆外;等于r 2(或0)时,点在圆上;小于r 2(或0)时,点在圆内.(3)直线与圆的位置关系直线l :Ax +By +C =0(A 2+B 2≠0)与圆:(x -a )2+(y -b )2=r 2(r >0)的位置关系如下表. (4)圆与圆的位置关系【误区警示】1.应用点斜式或斜截式求直线方程时,注意斜率不存在情形的讨论,应用截距式求直线方程时,注意过原点的情形.2.判断两直线平行与垂直时,不要忘记斜率不存在的情形.考点一 直线及其方程例1. 【2017江苏,13】在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆2250O x y +=:上,若20,PA PB ⋅≤则点P 的横坐标的取值范围是 ▲ .【答案】[-【解析】设(,)P x y ,由20PA PB ⋅≤ ,易得250x y -+≤,由2225050x y x y -+=⎧⎨+=⎩,可得5:5x A y =-⎧⎨=-⎩或1:7x B y =⎧⎨=⎩,由250x y -+≤得P 点在圆左边弧 AB 上,结合限制条件x -≤≤,可得点P 横坐标的取值范围为[-.【变式探究】【2016高考新课标3文数】已知直线l :30mx y m ++=错误!未找到引用源。

高考数学(理)二轮 二轮课时专题专题五 解析几何 第1讲 直线与圆 Word版含答案

高考数学(理)二轮 二轮课时专题专题五 解析几何 第1讲 直线与圆 Word版含答案

第1讲直线与圆【课前热身】第1讲直线与圆(本讲对应学生用书第42~44页)1.(必修2 P83练习4改编)已知一条直线经过点P(1,2),且斜率与直线y=-2x+3 的斜率相等,则该直线的方程为.【答案】y=-2x+4【解析】设直线方程为y=-2x+b,代入点P(1,2),得b=4,所以所求直线的方程为y=-2x+4.2.(必修2 P111练习8改编)在平面直角坐标系xOy中,若曲线C:x2+y2+2ax-4ay+5a2-4=0上所有的点均在第四象限内,则实数a的取值范围为.【答案】(-∞,-2)【解析】曲线C:x2+y2+2ax-4ay+5a2-4=0可以变形为(x+a)2+(y-2a)2=4,它表示以(-a,2a)为圆心、2为半径的圆,该圆在第四象限的条件是-020|-|2|2|2aaaa>⎧⎪<⎪⎨>⎪⎪>⎩,,,,解得a<-2.3.(必修2 P114练习2改编)自点A(-1,4)作圆(x-2)2+(y-3)2=1 的切线l,则切线l的方程为.【答案】y=4或3x+4y-13=0【解析】当直线l垂直于x轴时,直线l:x=-1与圆相离,不满足条件.当直线l不垂直于x轴时,设直线l的方程为y-4=k(x+1),由于直线与圆相切,所以21 k+=1,解得k=0,k=-34,因此,所求的方程为y=4或3x+4y-13=0.4.(必修2 P117习题10改编)圆x2+y2=9与圆x2+y2-4x+2y-3=0的公共弦的长为.【答案】125 5【解析】两圆的圆心分别为(0,0),(2,-1),公共弦的方程为2x-y-3=0,原点到公共弦的距离d=35,所以公共弦长为2239-5⎛⎫⎪⎝⎭=1255.5.(必修2 P117习题8改编)已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0),若圆上有点P,使得∠APB=90°,则m的最小值为.【答案】4【解析】显然AB=2m,因为∠APB=90°,所以OP=12AB=m,所以要求m的最小值,即求圆C上的点P到原点O的最小距离.因为OC=5,所以OP min=OC-r=4,即m 的最小值为4.【课堂导学】直线、圆的方程例1如图,在Rt△ABC中,∠A为直角,AB边所在直线的方程为x-3y-6=0,点T(-1,1)在直线AC上,斜边中点为M(2,0).(1)求BC边所在直线的方程;(2)若动圆P过点N(-2,0),且与Rt△ABC的外接圆相交所得公共弦长为4,求动圆P中半径最小的圆的方程.(例1)【解答】(1)因为AB边所在直线的方程为x-3y-6=0,AC与AB垂直,所以直线AC的斜率为-3.故AC边所在直线的方程为y-1=-3(x+1),即3x+y+2=0.设C为(x0,-3x0-2),因为M为BC中点,所以B(4-x0,3x0+2).将点B代入x-3y-6=0,解得x0=-4 5,所以C42 -55⎛⎫ ⎪⎝⎭,.所以BC边所在直线方程为x+7y-2=0.(2)因为Rt△ABC斜边中点为M(2,0),所以M为Rt△ABC外接圆的圆心.又CM=2,从而Rt△ABC外接圆的方程为(x-2)2+y2=8.设P(a,b),因为动圆P过点N,所以该圆的半径22(2)a b++,圆P的方程为(x-a)2+(y-b)2=r2.由于圆P与圆M相交,则公共弦所在直线的方程m为(4-2a)x-2by+a2+b2-r2+4=0.因为公共弦长为4,r=22,所以M (2,0)到直线m 的距离d=2,即22222|2(4-2)-4|(4-2)(2)a a b r a b ++++=2,化简得b 2=3a 2-4a , 所以r=22(2)a b ++=244a +. 当a=0时,r 取最小值为2,此时b=0,圆的方程为x 2+y 2=4.【点评】对于直线和圆的方程的求解问题,一般都采用待定系数法,即根据所给条件特征恰当地选择方程,将几何性质转化为代数的方程,解方程即可.变式 已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且CD=410.(1)求直线CD 的方程; (2)求圆P 的方程.【解答】(1)因为直线AB 的斜率k=1,AB 的中点坐标为(1,2). 所以直线CD 的方程为y-2=-(x-1),即x+y-3=0. (2)设圆心P (a ,b ),则由点P 在CD 上得 a+b-3=0. ① 又因为直径CD=410,所以PA=210.所以(a+1)2+b 2=40. ②由①②解得-36a b =⎧⎨=⎩,或5-2.a b =⎧⎨=⎩,所以圆心P (-3,6)或P (5,-2),所以圆P 的方程为(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40.直线与圆、圆与圆的位置关系例2 (2015·曲塘中学)已知圆心为C 的圆满足下列条件:圆心C 位于x 轴正半轴上,与直线3x-4y+7=0相切,且被y 轴截得的弦长为23,圆C 的面积小于13.(1)求圆C 的标准方程.(2)设过点M (0,3)的直线l 与圆C 交于不同的两点A ,B ,以OA ,OB 为邻边作平行四边形OADB.是否存在这样的直线l ,使得直线OD 与MC 恰好平行?若存在,试求出直线l 的方程;若不存在,请说明理由.【点拨】存在性问题,先假设存在.【分析】(1)根据圆心C 位于x 轴正半轴上,可设出圆的标准方程,然后利用直线与圆的位置关系列出方程组求解;(2)假设存在这样的直线方程,则斜率必须满足相应的条件,根据平行四边形法则,可得出D 点坐标与A ,B 两点坐标之间的关系,从而通过OD 与MC 平行建立起关于斜率k 的方程,从而求出斜率k 的值.【解答】(1)设圆C :(x-a )2+y 2=r 2(a>0),由题意知222343r a r =++=,,解得a=1或a=138,又因为S=πr 2<13,所以a=1. 所以圆C 的标准方程为(x-1)2+y 2=4.(2)当斜率不存在时,直线l 为x=0,不满足题意.当斜率存在时,设直线l :y=kx+3,A (x 1,y 1),B (x 2,y 2),又因为l 与圆C 相交于不同的两点,联立223(-1)4y kx x y =+⎧⎨+=⎩,,消去y ,得(1+k 2)x 2+(6k-2)x+6=0, 所以Δ=(6k-2)2-24(1+k 2)=12k 2-24k-20>0,解得k<1-26或k>1+26,且x 1+x 2=-26-21k k +,y 1+y 2=k (x 1+x 2)+6=2261k k ++,又OD u u u r=OA u u u r +OB u u u r =(x 1+x 2,y 1+y 2),MC u u u u r=(1,-3),假设OD u u u r ∥MC u u u u r,则-3(x 1+x 2)=y 1+y 2,解得k=34,因为34∉26-1-⎛⎫∞ ⎪ ⎪⎝⎭,∪261++⎛⎫∞ ⎪ ⎪⎝⎭,, 所以假设不成立, 所以不存在这样的直线l.【点评】判断直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.能用几何法,尽量不用代数法.变式 (2015·天一中学)已知A (-2,0),B (2,0),C (m ,n ). (1)若m=1,n=3,求△ABC 的外接圆的方程;(2)若以线段AB 为直径的圆O 过点C (异于点A ,B ),直线x=2交直线AC 于点R ,线段BR 的中点为D ,试判断直线CD 与圆O 的位置关系,并证明你的结论.【分析】第(1)问已知三点在圆上,可设一般式利用待定系数法来求外接圆的方程;第(2)问要判断直线与圆的位置关系,可通过圆心到直线的距离和半径的关系进行判断.【解答】(1)设所求圆的方程为x 2+y 2+Dx+Ey+F=0,由题意可得4-204201330D F D F D E F ⎧+=⎪++=⎨⎪+++=⎩,,,解得D=E=0,F=-4,所以△ABC 的外接圆方程为x 2+y 2-4=0,即x 2+y 2=4.(2)由题意可知以线段AB 为直径的圆的方程为x 2+y 2=4,设点R 的坐标为(2,t ),因为A ,C ,R 三点共线,所以AC u u u r∥AR u u u r.而AC u u u r=(m+2,n ),AR u u u r =(4,t ),则4n=t (m+2),所以t=42nm +,所以点R 的坐标为422n m ⎛⎫ ⎪+⎝⎭,,点D 的坐标为222n m ⎛⎫ ⎪+⎝⎭,,所以直线CD 的斜率为k=2-2-2nn m m +=2(2)-2-4m n nm +=2-4mn m .而m 2+n 2=4,所以m 2-4=-n 2,所以k=2-mn n =-mn ,所以直线CD 的方程为y-n=-mn (x-m ),化简得mx+ny-4=0,所以圆心O 到直线CD 的距离d=224m n +=44=2=r ,所以直线CD 与圆O 相切.与圆有关的定点问题例3 (2016·淮阴中学)已知圆M :x 2+(y-4)2=4,点P 是直线l :x-2y=0上的一动点,过点P 作圆M 的切线PA ,PB ,切点为A ,B.(1)当切线PA 的长度为23时,求点P 的坐标.(2)若△PAM 的外接圆为圆N ,试问:当P 运动时,圆N 是否过定点?若存在,求出所有的定点的坐标;若不存在,请说明理由.(3)求线段AB 长度的最小值.【点拨】曲线过定点问题,往往转化为等式恒成立问题. 【解答】(1)由题可知,圆M 的半径r=2,设P (2b ,b ), 因为PA 是圆M 的一条切线,所以∠MAP=90°, 所以22(0-2)(4-)b b +22AM AP +4,解得b=0或b=85,所以P (0,0)或P 16855⎛⎫ ⎪⎝⎭,.(2)设P (2b ,b ),因为∠MAP=90°,所以经过A ,P ,M 三点的圆N 以MP 为直径,其方程为(x-b )2+24-2b y +⎛⎫ ⎪⎝⎭=224(-4)4b b +,即(2x+y-4)b-(x 2+y 2-4y )=0,它对于任意的实数b 均成立,故222-40-40x y x y y +=⎧⎨+=⎩,, 解得04x y =⎧⎨=⎩,或8545x y ⎧=⎪⎪⎨⎪=⎪⎩,, 所以圆过定点(0,4),8455⎛⎫ ⎪⎝⎭,.(3)因为圆N 方程为(x-b )2+24-2b y +⎛⎫ ⎪⎝⎭=224(-4)4b b +,即x 2+y 2-2bx-(b+4)y+4b=0, ①圆M :x 2+(y-4)2=4,即x 2+y 2-8y+12=0, ②②-①得圆M 与圆N 的相交弦AB 所在的直线方程为2bx+(b-4)y+12-4b=0,点M 到直线AB 的距离d=25-816b b +, 相交弦长即AB=224-d =4241-5-816b b +=4241-4645-55b ⎛⎫+⎪⎝⎭,当b=45时,AB 有最小值11.【点评】在解有关圆的问题时,要注意平面几何中有关定理的应用,比如切线长定理、垂径定理等.变式 (2016·南师附中)已知直线l 1:y=x+1,圆O :x 2+y 2=32,直线l 1被圆截得的弦长与椭圆C :22x a +22y b =1(a>b>0)的短轴长相等,椭圆的离心率e=2.(1)求椭圆C 的方程.(2)过点M 10-3⎛⎫ ⎪⎝⎭,的动直线l 交椭圆C 于A ,B 两点,试问:在坐标平面上是否存在一个定点T ,使得无论l 如何转动,以AB 为直径的圆恒过定点T ?若存在,求出点T 的坐标;若不存在,请说明理由.【解答】(1)因为圆心O 到直线l 1的距离d=,所以由题设知=1,又e=,所以a=,椭圆C 的标准方程是22x +y 2=1.(2)方法一:假设存在点T (u ,v ),若直线l 的斜率存在,设其方程为y=kx-13,将它代入椭圆方程,并整理,得(18k 2+9)x 2-12kx-16=0. 设点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2),则x 1,2=,x 1+x 2=212189k k +,x 1x 2=2-16189k +.因为TA u u r =(x 1-u ,y 1-v ),TB u u r=(x 2-u ,y 2-v )及y 1=kx 1-13,y 2=kx 2-13,所以TA u u r ·TB u u r =(x 1-u )(x 2-u )+(y 1-v )(y 2-v ) =(k 2+1)x 1x 2-13u k kv ⎛⎫++ ⎪⎝⎭(x 1+x 2)+u 2+v 2+23v +19 =222222(66-6)-4(332-5)63u v k ku u v v k +++++当且仅当TA u u r ·TB u u r=0恒成立时,以AB 为直径的圆恒过定点T , 所以222266-600332-50u v u u v v ⎧+=⎪=⎨⎪++=⎩,,,解得u=0,v=1.此时以AB 为直径的圆恒过定点T (0,1).当直线l 的斜率不存在时,l 与y 轴重合, 以AB 为直径的圆为x 2+y 2=1,也过点T (0,1).综上可知,在坐标平面上存在一个定点T (0,1),满足条件. 方法二:若直线l 与y 轴重合,则以AB 为直径的圆是x 2+y 2=1.若直线l 垂直于y 轴,则以AB 为直径的圆是x 2+213y ⎛⎫+ ⎪⎝⎭=169. 由2222111639x y x y ⎧+=⎪⎨⎛⎫++=⎪ ⎪⎝⎭⎩,,解得01.x y =⎧⎨=⎩,由此可知所求点T 如果存在,只能是(0,1). 事实上点T (0,1)就是所求点,证明如下: 当直线l 的斜率不存在,即直线l 与y 轴重合时, 以AB 为直径的圆为x 2+y 2=1,过点T (0,1),当直线l 的斜率存在,设直线方程为y=kx-13,代入椭圆方程,并整理得(18k 2+9)x 2-12kx-16=0. 设点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2),则12212212189-16.189k x x k x x k ⎧+=⎪⎪+⎨⎪=⎪+⎩,因为TA u u r =(x 1,y 1-1),TB u u r=(x 2,y 2-1)及y 1=kx 1-13,y 2=kx 2-13,所以TA u u r ·TB u u r=x 1x 2+(y 1-1)(y 2-1) =(k 2+1)x 1x 2-43k (x 1+x 2)+169=22-16(1)189k k ++-43k·212189kk ++169=0, 所以以AB 为直径的圆恒过定点T (0,1).即证明了点T (0,1)就是所求以AB 为直径的圆恒过的定点.与圆有关的定值问题例4(2016·新海中学)在平面直角坐标系xOy中,已知圆O:x2+y2=25,圆O1的圆心为(m,0),且与圆O交于点P(3,4).过点P且斜率为k(k≠0)的直线l分别交圆O,圆O1于点A,B.(1)若k=1,且BP=2,求圆O1的方程.(2)过点P作垂直于直线l的直线l1分别交圆O,圆O1于点C,D.当m为常数时,试问:AB2+CD2是否是定值?若是定值,求出这个值;若不是定值,请说明理由.【分析】弦长的一半、弦心距、半径构成直角三角形,可利用勾股定理列出等式;第二问中直线与圆相交,可利用求根公式、韦达定理等求出交点坐标,进而代数论证.【解答】(1)当k=1时,直线l:y-4=x-3,即x-y+1=0,由题意得22+272⎝⎭=(m-3)2+42,整理得m2-14m=0,解得m=14或m=0(舍去),所以圆O1的方程为(x-14)2+y2=137.(2)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4). 直线l:y-4=k(x-3),即y=kx-(3k-4),由22-(3-4)25y kx kx y=⎧⎨+=⎩,,消去y,得(k2+1)x2+(8k-6k2)x+9k2-24k-9=0,由韦达定理得3·x1=229-24-91k kk+,得x1=223-8-31k kk+.由2222-(3-4)(-)(-3)4y kx kx m y m=⎧⎨+=+⎩,,消去y,得(k2+1)x2+(8k-6k2-2m)x+9k2-24k-9+6m=0,由韦达定理得3·x2=229-24-961k k mk++,得x2=223-8-321k k mk++.所以x1-x2=223-8-31 k k k+-223-8-321k k mk++=2-21mk+,AB2=(x1-x2)2+(y1-y2)2=(k2+1)(x1-x2)2=(k2+1)22-21mk⎛⎫⎪+⎝⎭=2241mk+.同理可得CD2=2241-1mk⎛⎫+⎪⎝⎭=22241m kk+,所以AB2+CD2=2241mk++22241m kk+=4m2为定值.【点评】本题第二问运算过程中字母比较多,在求有关点的坐标时,用到了韦达定理,本题求点的坐标也可直接解方程;在计算AB2+CD2时,要注意化简的合理性和整体思想的运用.变式(2016·泰州中学)如图,已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点,直线l与l1相交于点P.(1)求圆A的方程.(2)当MN=219时,求直线l的方程.(3)BQu u u r·BPu u u r是否为定值?如果是,求出其定值;如果不是,请说明理由.(变式)【解答】(1)设圆A的半径为R.因为圆A与直线l1:x+2y+7=0相切,所以525.所以圆A 的方程为(x+1)2+(y-2)2=20.(2)当直线l 与x 轴垂直时,易知x=-2符合题意;当直线l 与x 轴不垂直时,设直线l 的方程为y=k (x+2),即kx-y+2k=0.连接AQ ,则AQ ⊥MN.因为MN=219,所以AQ=20-19=1.由AQ=2|-2|1k k +=1,得k=34.所以直线l 的方程为3x-4y+6=0.所以所求直线l 的方程为x=-2或3x-4y+6=0.(3)因为AQ ⊥BP ,所以AQ u u u r·BP u u u r =0, 所以BQ u u u r·BP u u u r =(BA u u u r +AQ u u u r )·BP u u u r =BA u u u r ·BP u u u r +AQ u u u r ·BP u u u r =BA u u u r ·BP u u u r . 当直线l 与x 轴垂直时,得P -2,-52.则BP u u u r =50-2⎛⎫ ⎪⎝⎭,,又BA u u u r =(1,2),所以BQ u u u r ·BP u u u r =BA u u u r ·BP u u u r =-5. 当直线l 的斜率存在时,设直线l 的方程为y=k (x+2).由(2)270y k x x y =+⎧⎨++=⎩,,解得P-4-7-51212k k k k ⎛⎫⎪++⎝⎭,. 所以BP u u u r =-5-51212k k k ⎛⎫ ⎪++⎝⎭,. 所以BQ u u u r ·BP u u u r =BA u u u r ·BP u u u r =-512k +-1012kk +=-5. 综上所述,BQ u u u r ·BP u u u r 是定值,且BQ u u u r·BP u u u r =-5.【课堂评价】1.(2016·泰州期末)已知直线y=kx(k>0)与圆C:(x-2)2+y2=1相交于A,B两点,若AB=25,则k=.【答案】1 2【解析】依题意,圆心到直线的距离251-5⎛⎫⎪⎪⎝⎭=25,21k+=25,解得k=±12.又k>0,所以k=12.2.(2016·武汉质检)若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2经过定点.【答案】(0,2)【解析】直线l1:y=k(x-4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l1:y=k(x-4)与直线l2关于点(2,1)对称,故直线l2经过定点(0,2).3.(2016·南通二模)在平面直角坐标系xOy中,过点P(-2,0)的直线与圆x2+y2=1相切于点T,与圆(x-a)2+(y-3)2=3相交于点R,S,且PT=RS,则正数a的值为.【答案】4【解析】因为PT与圆x2+y2=1相切于点T,所以在Rt△OPT中,OT=1,OP=2,∠OTP=π2,从而∠OPT=π6,PT=3,故直线PT的方程为x±3y+2=0.因为直线PT截圆(x-a)2+(y-3)2=3得弦长RS=3,设圆心到直线的距离为d,则d=|32|2a ±+,又=2,即d=32,即|a±3+2|=3,解得a=-8,-2,4.因为a>0,所以a=4.4.(2016·南京三模)在平面直角坐标系xOy 中,圆M :(x-a )2+(y+a-3)2=1(a>0),点N 为圆M 上任意一点.若以N 为圆心,ON 为半径的圆与圆M 至多有一个公共点,则a 的最小值为 . 【答案】3【解析】由题意得两圆相切或相离,即1≤|r-1|或1≥r+1.因为r>0,所以r ≥2.由N 的任意性得r min =|OM-1|≥2,即OM ≥3.所以a 2+(3-a )2≥9,即a (a-3)≥0.因为a>0,所以a ≥3.故a 的最小值为3.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第21~22页.【检测与评估】专题五 解析几何第1讲 直线与圆一、 填空题1.(2016·沈阳检测)若直线l :x a +y b =1(a>0,b>0)经过点(1,2),则直线l 在x 轴和y轴的截距之和的最小值是 .2.(2016·连云港四校联考)已知圆C 的圆心C 在直线x-2y-1=0上,且圆C 经过A (0,4),B (2,2)两点,则圆C 的方程为 .3.(2016·徐州、连云港、宿迁三模)若点P ,Q 分别是曲线y=4x x +与直线4x+y=0上的动点,则线段PQ 长的最小值为 .4.(2016·苏锡常镇一模)在平面直角坐标系xOy 中,过原点O 的动直线l 与圆C :x 2+y 2-6x+5=0相交于不同的两点A ,B ,若点A 恰为线段OB 的中点,则圆心C 到直线l 的距离为 .5.(2016·苏州期末)若直线l 1:y=x+a 和直线l 2:y=x+b 将圆(x-1)2+(y-2)2=8分成长度相等的四段弧,则a 2+b 2= .6.(2016·南京、盐城二模)已知圆O :x 2+y 2=1,圆M :(x-a )2+(y-a+4)2=1.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得∠APB=60°,则实数a 的取值范围为 .7.(2015·南通、扬州、泰州三调)在平面直角坐标系xOy 中,过点P (-5,a )作圆x 2+y 2-2ax+2y-1=0的两条切线,切点分别为M (x 1,y 1),N (x 2,y 2),且2121--y y x x +1212-2x x y y ++=0,则实数a 的值为 .8.(2016·江苏高考预测题)在平面直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:x 2+y 2=16,点M (1,0),动点P ,Q 分别在圆C 1和圆C 2上,满足MP ⊥MQ ,则线段PQ 的取值范围是 .二、 解答题9.在平面直角坐标系xOy 中,圆C 经过二次函数f (x )x 2+2x-3)与两坐标轴的三个交点.(1)求圆C 的标准方程.(2)设点A (-2,0),B (2,0),试探究圆C 上是否存在点P 满足PB ?若存在,求出点P 的坐标;若不存在,请说明理由.10.(2016·通州中学)已知定圆C 1:x 2+y 2=a 2(a>0)和定圆C 2:x 2+y 2=b 2(b>0),P 为圆C 2上一点,过点P 作圆C 1的两条切线,切点分别为A ,B.(1)若a=2,点P 的坐标为,-),求四边形OAPB 的面积.(2)当点P 在圆C 2上运动时,是否存在定圆恒与直线AB 相切?若存在,求出定圆的方程;若不存在,请说明理由.11.(2016·天一中学)已知圆M 的圆心为M (-1,2),直线y=x+4被圆M 截得的弦长为P 在l :y=x-1上.(1)求圆M 的标准方程;(2)设点Q 在圆M 上,且满足MP u u u r=4QM u u u u r ,求点P 的坐标;(3)设半径为5的圆N 与圆M 相离,过点P 分别作圆M 与圆N 的切线,切点分别为A ,B ,若对任意的点P ,都有PA=PB 成立,求圆心N 的坐标.【检测与评估答案】专题五 解析几何第1讲 直线与圆一、 填空题1. 3+2【解析】由题意可得1a+2b=1,故a+b=(a+b )1a ⎛ ⎝+2b ⎫⎪⎭=3+b a +2a b ≥3+2,所以直线l 在x 轴和y 轴的截距之和的最小值是3+.2. (x+5)2+(y+3)2=74 【解析】因为圆心在直线x-2y-1=0上,所以设圆心C (2a+1,a ),则由AC=BC,解得a=-3,所以圆心为(-5,-3),半径,故所求圆的方程为(x+5)2+(y+3)2=74.3.【解析】方法一:设与直线4x+y=0平行的直线l 与曲线y=4x x +切于点(x 0,y 0),因为y'=-24x ,所以y'0 x x ==-204x =-4,所以x 0=±1,结合曲线y=4x x +与直线4x+y=0的位置关系可得切点(-1,-3)到直线4x+y=0的距离就是所求的线段PQ.方法二:设曲线y=4xx+上的点P4xxx+⎛⎫⎪⎝⎭,到直线4x+y=0的距离为d,则PQ≥因为1xx+=|x|+1||x≥2,所以当x+1x=-2,即x=-1时,PQ取得最小值为.4.【解析】由题意得C(3,0),设A(a,b),由点A恰为线段OB的中点,得B(2a,2b).因为点A,B均在圆C上,所以2222-65044-1250a b aa b a⎧++=⎨++=⎩,,解得A54⎛⎝⎭,,所以直线ly=0,圆心C到直线l的距离=.5. 18【解析】由题意知四段圆弧所对的圆心角均为90°,圆心C(1,2)到直线l1,l2的距离均为r=2.2,得|a-1|=,同理|b-1|=,所以a2+b2=18.6.2⎡⎢⎣⎦【解析】由题意得圆心M(a,a-4)在直线x-y-4=0上运动,所以动圆M是圆心在直线x-y-4=0上,半径为1的圆.又因为圆M上存在点P,使经过点P作圆O的两条切线,切点为A,B,使∠APB=60°,所以OP=2,即点P也在x2+y2=4上,于是2-≤2+1,即≤3,解得实数a的取值范围是2⎡+⎢⎣⎦.7. 3或-2 【解析】方法一:由2121--y y x x +1212-2x x y y ++=0,得2121--y y x x ·12122-12y y x x++=-1,所以点(1,0)在直线PC 上,其中C 是圆心,所以2-2a+2×51aa ++=0,可解得a=3或-2.经检验:当a=3或-2时,点P 在圆外,符合条件.方法二:由221111222222-22-10-22-10x y ax y x y ax y ⎧++=⎨++=⎩,,两式相减,得(x 1-x 2)(x 1+x 2)+(y 1-y 2)(y 1+y 2)-2a (x 1-x 2)+2(y 1-y 2)=0,x 1+x 2+1212--y y x x (y 1+y 2)-2a+2×1212--y y x x =0.由2121--y y x x +1212-2x x y y ++=0,得2121--y y x x (y 1+y 2)=-(x 1+x 2-2),代入上式得2-2a+2×1212--y y x x =0.又1212--y y x x =51a a ++,代入上式,得2-2a+2×51aa ++=0,可解得a=3或-2.经检验:当a=3或-2时,点P 在圆外,符合条件.8. 19-1191⎡⎤+⎣⎦, 【解析】设P (x 1,y 1),Q (x 2,y 2),则22112222416.x y x y ⎧+=⎨+=⎩,设PQ 的中点N (x ,y ),即N 121222x x y y ++,,则x 2+y 2=222211221212()()2()4x y x y x x y y +++++=5+12(x 1x 2+y 1y 2).由MP ⊥MQ ,得x 1x 2+y 1y 2=x 1+x 2-1=2x-1,所以x 2+y 2=5+x-12,即21-2x ⎛⎫⎪⎝⎭+y 2=194.因为PQ=2MN ,MN ∈19-1191⎡+⎢⎣⎦,,所以PQ ∈19-1191⎤+⎦,.二、解答题9. (1) 设所求圆的一般方程为x2+y2+Dx+Ey+F=0,令y=0,得x2+Dx+F=0,这与x2+2x-3=0是同一个方程,故D=2,F=-3.令x=0,得y2+Ey+F=0,此方程有一个根为-3,代入得E=0,所以圆C的标准方程为(x+1)2+y2=4.(2) 假设存在点P(x,y)满足题意,则PA2=2PB2,于是(x+2)2+y2=2(x-2)2+2y2,化简得(x-6)2+y2=32.①又因为点P在圆C上,故满足(x+1)2+y2=4.②联立①②,解得点P的坐标为1717-2222⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,.所以存在点P满足题意,其坐标为1717-22⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,.10. (1) 依题意,OA⊥AP,OB⊥BP,且OA=OB=2,PA=PB=224-2=23,所以S△OAP =S△OBP=12×2×23=23,所以四边形OAPB的面积为43.(第10题) (2) 设P(m,n),则m2+n2=b2.当点P在圆C2上运动时,恒有22-b a.所以点A,B在以P 22-b a.该圆方程为(x-m )2+(y-n )2=b 2-a 2.又点A ,B 在圆C 1:x 2+y 2=a 2上.联立两圆方程,消二次项,得mx+ny-a 2=0. 所以直线AB 的方程为mx+ny-a 2=0.因为原点O 到直线AB 的距离d=2=2a b 为定值,所以圆x 2+y 2=42a b 恒与直线AB 相切.所以存在定圆恒与直线AB 相切,且定圆方程为x 2+y 2=42a b .11. (1) 因为圆心M (-1,2)到直线y=x+4的距离=,又直线y=x+4被圆M截得的弦长为,所以圆M 的半径为=1, 所以圆M 的标准方程为(x+1)2+(y-2)2=1. (2)由MP u u u r=4QMuuuu r,得|MP u u u r|=4|QMuuuu r|=4,所以点P 在圆(x+1)2+(y-2)2=16上.又点P 在直线y=x-1上,由22(1)(-2)16-1x y y x ⎧++=⎨=⎩,,解得-1-2x y =⎧⎨=⎩,或32x y =⎧⎨=⎩,,即点P 的坐标为(-1,-2)或(3,2).(3) 设P (t ,t-1),N (a ,b ),则圆N 的标准方程为(x-a )2+(y-b )2=25, PA 2=PM 2-12=(t+1)2+(t-1-2)2-1=2t 2-4t+9,PB 2=PN 2-52=(t-a )2+(t-1-b )2-25=2t 2-(2a+2b+2)t+a 2+(b+1)2-25. 因为PA=PB ,所以2t 2-4t+9=2t 2-(2a+2b+2)t+a 2+(b+1)2-25,即(2a+2b-2)t-a2-(b+1)2+34=0(*). 因为对任意的点P都有PA=PB,所以(*)式对任意实数t恒成立,得2222-20(1)-340a ba b+=⎧⎨++=⎩,,解得5-4ab=⎧⎨=⎩,或-34.ab=⎧⎨=⎩,又因为圆N与圆M相离,所以MN>1+5=6,>6,所以圆心N的坐标为(5,-4).。

2023高考数学二轮专题复习与测试第一部分专题五微专题1直线与圆课件

2023高考数学二轮专题复习与测试第一部分专题五微专题1直线与圆课件

专题五 解析几何
因为|OC|=r1+r2,所以两圆外切,由图可知,与两圆都相切的直线有三条. 因为 kOC=43,所以 l1 的斜率为-34,设直线 l1: y=-34x+b,即 3x+4y-4b=0, 由|-54b|=1,解得 b=54(负值舍去),则 l1: 3x+4y-5=0; 由图可知,l2:x=-1;l2 与 l3 关于直线 y=43x 对称,
专题五 解析几何
所以与圆 x2+y2=1 和(x-3)2+(y-4)2=16 都相切的一条直线的方程为: x=-1(或 3x+4y-5=0 或 7x-24y-25=0). 答案:x=-1(或 3x+4y-5=0 或 7x-24y-25=0)
专题五 解析几何
5.(2022·全国甲卷)若双曲线 y2-mx22=1(m>0)的渐近线与圆 x2+y2-4y+ 3=0 相切,则 m=________. 解析:双曲线 y2-mx22=1(m>0)的渐近线:x=±my, 圆 x2+y2-4y+3=0 的圆心(0,2)与半径 1, 双曲线 y2-mx22=1(m>0)的渐近线与圆 x2+y2-4y+3=0 相切,
专题五 解析几何
由韦达定理可得,x1+x2=-183c,x1x2=-3123c2, |DE|= k2+1|x1-x2|= (x1+x2)2-4x1x2= 13+1·
(-183c)2+12183c2=4183c=6,解得 c=183, 由椭圆的定义可得,△ADE 的周长等价于|DE|+|DF2|+|EF2|=4a=8c= 8×183=13.
(a-3)2+(1-2a-0)2= (a-0)2+(1-2a-1)2, 求得 a=1,可得半径为 5,圆心 M(1,-1), 故⊙M 的方程为(x-1)2+(y+1)2=5. 答案:(x-1)2+(y+1)2=5

2022高考数学二轮复习专题五解析几何第1讲直线与圆课时

2022高考数学二轮复习专题五解析几何第1讲直线与圆课时

第1讲 直线与圆一、选择题1.(2021·日照二模)已知命题p : “m =-1”,命题q :“直线x -y =0与直线x +m 2y =0互相垂直”,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要解析:“直线x -y =0与直线x +m 2y =0互相垂直”的充要条件是1×1+(-1)·m 2=0⇔m =±1.所以命题p 是命题q 的充分不必要条件. 答案:A2.(2021·大连质检)已知直线y =mx 与圆x 2+y 2-4x +2=0相切,则m 值为( )(导学号 55410123)A .± 3B .±33C .±32D .±1解析:将y =mx 代入x 2+y 2-4x +2=0,得(1+m 2)x 2-4x +2=0,所以Δ=(-4)2-4(1+m 2)×2=8(1-m 2)=0,解得m =±1.答案:D3.(2021·全国卷Ⅱ)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A.53 B.213C.253D.43解析:设圆的一般方程为x 2+y 2+Dx +Ey +F =0,所以⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,所以⎩⎪⎨⎪⎧D =-2,E =-433,F =1,所以△ABC 外接圆的圆心为⎝⎛⎭⎪⎫1,233,因此圆心到原点的距离d =12+⎝ ⎛⎭⎪⎫2332=213.答案:B4.(2021·济南调研)若直线x -y +m =0被圆(x -1)2+y 2=5截得的弦长为23,则m 的值为( )(导学号 55410124)A .1B .-3C .1或-3D .2解析:因为圆(x -1)2+y 2=5的圆心C (1,0),半径r = 5.又直线x -y +m =0被圆截得的弦长为2 3.所以圆心C 到直线的距离d =r 2-(3)2=2, 因此|1-0+m |12+(-1)2=2,所以m =1或m =-3. 答案:C5.(2021·河北衡水中学模拟)已知圆C :(x -1)2+y 2=25,则过点P (2,-1)的圆C 的所有弦中,以最长弦和最短弦为对角线的四边形的面积是( )A .1031B .921C .1023D .911解析:易知最长弦为圆的直径10,又最短弦所在直线与最长弦垂直,且|PC |=2, 所以最短弦的长为2r 2-|PC |2=225-2=223, 故所求四边形的面积S =12×10×223=1023.答案:C 二、填空题6.(2021·菏泽二模)已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线y =a (x -3)被圆C 截得的弦最短时,直线方程为________.解析:圆C 的标准方程为(x -4)2+(y -1)2=9, 所以圆C 的圆心C (4,1),半径r =3. 又直线y =a (x -3)过定点P (3,0),则当直线y =a (x -3)与直线CP 垂直时,被圆C 截得的弦长最短. 因此a ·k CP =a ·1-04-3=-1,所以a =-1.故所求直线的方程为y =-(x -3),即x +y -3=0. 答案:x +y -3=07.(2021·北京卷)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.解析:法一 由题意知,AO →=(2,0),令P (cos α,sin α),则AP →=(cos α+2,sinα),AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6,故AO →·AP →的最大值为6. 法二 由题意知,AO →=(2,0),令P (x ,y ),-1≤x ≤1,则AO →·AP →=(2,0)·(x +2,y )=2x +4≤6,故AO →·AP →的最大值为6. 答案:68.(2021·淄博调研)过点(1,1)的直线l 与圆(x -2)2+(y -3)2=9相交于A ,B 两点,当|AB |=4时,直线l 的方程为________.解析:易知点(1,1)在圆内,且直线l 的斜率k 存在,则直线l 的方程为y -1=k (x -1),即kx -y +1-k =0.又|AB |=4,r =3,所以圆心(2,3)到l 的距离d =32-22= 5. 因此|k -2|k 2+(-1)2=5,解得k =-12.所以直线l 的方程为x +2y -3=0. 答案:x +2y -3=0 三、解答题9.已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5). (导学号 55410125)(1)求过点A 的圆的切线方程;(2)O 点是坐标原点,连接OA ,OC ,求△AOC 的面积S . 解:(1)由圆C :x 2+y 2-4x -6y +12=0,配方, 得(x -2)2+(y -3)2=1,圆心C (2,3). 当斜率存在时,设过点A 的圆的切线方程为y -5=k (x -3),即kx -y +5-3k =0.由d =|2k -3+5-3k |k 2+1=1,得k =34.又斜率不存在时直线x =3也与圆相切, 故所求切线方程为x =3或3x -4y +11=0. (2)直线OA 的方程为y =53x ,即5x -3y =0,点C 到直线OA 的距离为d =|5×2-3×3|52+32=134, 又|OA |=32+52=34, 所以S =12|OA |d =12.10.(2021·天津南开中学模拟)在平面直角坐标系xOy 中,圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切.(导学号 55410126)(1)求圆C 的方程;(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,且|MN |=23,求直线MN 的方程. 解:(1)将圆C :x 2+y 2+4x -2y +m =0化为(x +2)2+(y -1)2=5-m , 因为圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切, 所以圆心(-2,1)到直线x -3y +3-2=0的距离d =41+3=2=r , 所以圆C 的方程为(x +2)2+(y -1)2=4.(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,则可设直线MN 的方程为2x -y +c =0,因为|MN |=23,半径r =2,所以圆心(-2,1)到直线MN 的距离为22-(3)2=1. 则|-4-1+c |5=1,所以c =5±5, 所以直线MN 的方程为2x -y +5± 5=0.11.(2021·全国卷Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |. 解:(1)由题设,可知直线l 的方程为y =kx +1.因为直线l 与圆C 交于两点,所以|2k -3+1|1+k 2<1, 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入方程(x -2)2+(y -3)2=1, 整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2.OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8. 由题设可得4k (1+k )1+k 2+8=12,解得k =1, 所以直线l 的方程为y =x +1, 故圆心C 在直线l 上,所以|MN |=2.。

高考数学二轮复习专题五直线与圆

高考数学二轮复习专题五直线与圆

[解题方略] 求圆的方程的2种方法 通过研究圆的性质、直线和圆、圆与
几何法 圆的位置关系,从而求得圆的基本量 和方程
代数法
用待定系数法先设出圆的方程,再由 条件求得各系数,从而求得圆的方程
[跟踪训练]
1.已知圆C1:(x+2)2+(y-3)2=5与圆C2相交于A(0,2),B(-1,1)
两点,且四边形C1AC2B为平行四边形,则圆C2的方程为( )
5 ,∴三角形
ABC外接圆的方程为(x+3)2+y2=5.
(2)设圆心M为(x,-4x),kMP=2x--43x,
kl=-1,所以kMP·kl=-1,所以x=1,所以M(1,-4),所
以r=|MP|= (1-3)2+(-4+2)2=2 2所以所求圆的方程为
(x-1)2+(y+4)2=8.
[答案] (1)D (2)(x-1)2+(y+4)2=8
又|PQ|=2× 4-d2,|MN|=2× 4-d21, 所以S=12|PQ|·|MN|,即S=12×2× 4-d2×2× 4-d21 =2 16-4(d21+d2)+d21d2
=2 12+d21d2≤2
12+d21+2 d22=2
当且仅当d1=d时,等号成立,
12+14=7,
所以四边形PMQN面积的最大值为7.
2),B(-4,a),C(2a+2,2),则三角形ABC外接圆的方程是 ()
A.x2+(y-3)2=5 B.x2+(y+3)2=5 C.(x-3)2+y2=5 D.(x+3)2+y2=5 (2)圆心在直线y=-4x上,并且与直线l:x+y-1=0相切于 点P(3,-2)的圆的方程为________________.
直线 l2 过定点
()
A.(3,1)

2022江苏高考数学二轮复习教学案(祥解)--直线与圆的方程及应用

2022江苏高考数学二轮复习教学案(祥解)--直线与圆的方程及应用解析几何是江苏高考必考题之一,它包含两个C级考点,正常情形下,考一小(填空)一大(解答).小题常涉及直线方程及应用,圆锥曲线方程及其性质,有一定的运算量;大题往往与圆有关,涉及到方程,位置关系、定点、定值、定线等.圆与圆锥曲线的综合考查,对数学思想方法要求比较高,能灵活使用待定系数法、定义法等求方程,能用配方法、换元法等,结合图形将问题进行转化,通过函数、方程、不等式等思想来解决问题.1. 明白得直线的斜率和倾斜角的概念;把握过两点的直线斜率的运算公式;了解直线的倾斜角的范畴;明白得直线的斜率和倾斜角之间的关系,能依照直线的倾斜角求出直线的斜率.2. 把握直线方程的几种形式(点斜式、斜截式、两点式、截距式、一样式)的特点与适用范畴;能依照问题的具体条件选择恰当的形式求直线的方程;了解直线方程的斜截式与一次函数的关系.3. 能依照斜率判定两条直线平行或垂直.4. 了解二元一次方程组的解与两直线的交点坐标之间的关系,体会数形结合思想;能用解方程组的方法求两直线的交点坐标.5. 把握两点间的距离公式和点到直线的距离公式及其简单应用;会求两条平行直线间的距离.6. 把握圆的标准方程与一样方程,能依照问题的条件选择恰当的形式求圆的方程;明白得圆的标准方程与一样方程之间的关系,会进行互化.7. 能依照直线与圆的方程判定其位置关系(相交、相切、相离);能依照圆的方程判定圆与圆的位置关系(外离、外切、相交、内切、内含).能用直线和圆的方程解决一些简单的问题.1. 与直线x+3y-1=0垂直的直线的倾斜角为________.2.过点(2,1)且在两坐标轴截距相等的直线方程是________________.3.直线3x-y+m=0与圆x2+y2-2x-2=0相切,则实数m=________.4.在平面直角坐标系xOy中,已知圆x2+y2=4上有且仅有四个点到直线12x-5y+c =0的距离为1,则实数c的取值范畴是________.【例1】 已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :y =x -1被圆C 所截得的弦长为22,求过圆心且与直线l 垂直的直线的方程.【例2】 如图,平面直角坐标系xOy 中,△AOB 和△COD 为两等腰直角三角形,A(-2,0),C(a,0)(a>0).△AOB 和△COD 的外接圆圆心分别为M ,N.(1) 若⊙M 与直线CD 相切,求直线CD 的方程;(2) 若直线AB 截⊙N 所得弦长为4,求⊙N 的标准方程;(3) 是否存在如此的⊙N ,使得⊙N 上有且只有三个点到直线AB 的距离为2,若存在,求现在⊙N 的标准方程;若不存在,说明理由.【例3】 已知圆C :x 2+(y -3)2=4,一动直线l 过点A(-1,0)与圆C 相交于P 、Q 两点,M 是PQ 的中点,l 与直线m :x +3y +6=0相交于点N.(1) 求证:当l 与m 垂直时,l 必过圆心C ;(2) 当PQ =23时,求直线l 的方程;(3) 探究AM →·AN →的值是否与直线l 的倾斜角有关,若无关,要求出其值;若有关,请说明理由.【例4】 已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为22,且过点P(2,2),设椭圆E 的右准线l 与x 轴的交点为A ,椭圆的上顶点为B ,直线AB 被以原点为圆心的圆O 所截得的弦长为455.(1) 求椭圆E 的方程及圆O 的方程;(2) 若M 是准线l 上纵坐标为t 的点,求证:存在一个异于M 的点Q ,关于圆O 上的任意一点N ,有MNNQ 为定值;且当M 在直线l 上运动时,点Q 在一个定圆上.1. (2011·安徽)若直线3x +y +a =0过圆x 2+y 2+2x -4y =0的圆心,则a 的值为________.2.(2011·重庆)在圆x 2+y 2-2x -6y =0内,过点E(0,1)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为________.3.(2011·湖北)过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,则直线l 的斜率为________.4.(2010·江西)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN|≥23,则实数k 的取值范畴是________.5.(2011·福建理) 已知直线l :y =x +m ,m ∈R .(1) 若以点M(2,0)为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,求该圆的方程; (2) 若直线l 关于x 轴对称的直线为l ′,问直线l ′与抛物线C :x 2=4y 是否相切?说明理由.6.(2011·陕西)如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上投影,M 为PD 上一点,且|MD|=45|PD|.(1) 当P 在圆上运动时,求点M 的轨迹C 的方程; (2) 求过点(3,0)且斜率为45的直线被C 所截线段的长度.(2011·南京三模)(本小题满分16分)在平面直角坐标系xOy 中,已知定点A(-4,0)、B(4,0),动点P 与A 、B 两点连线的斜率之积为-14.(1) 求点P 的轨迹方程;(2) 设点P 的轨迹与y 轴负半轴交于点C.半径为r 的圆M 的圆心M 在线段AC 的垂直平分线上,且在y 轴右侧,圆M 被y 轴截得的弦长为3r.① 求⊙M 的方程;② 当r 变化时,是否存在定直线l 与动圆M 均相切?假如存在,求出定直线l 的方程;假如不存在,说明理由.解:(1) 设P(x ,y),则直线PA 、PB 的斜率分别为k 1=y x +4、k 2=yx -4.(2分)由题意知y x +4·y x -4=-14,即x 216+y 24=1(x ≠±4). 因此动点P 的轨迹方程是x 216+y 24=1(x ≠±4).(4分) (说明:没有范畴扣1分)(2) ①由题意知C(0,-2),A(-4,0),因此线段AC 的垂直平分线方程为y =2x +3.(6分)设M(a,2a +3)(a >0),则⊙M 的方程为(x -a)2+(y -2a -3)2=r 2. 圆心M 到y 轴的距离d =a ,由r 2=d 2+⎝⎛⎭⎫3r 22,得a =r 2.因此⊙M 的方程为⎝⎛⎭⎫x -r 22+(y -r -3)2=r 2.(10分)② 假设存在定直线l 与动圆M 均相切. 当定直线的斜率不存在时,不合题意. 当斜率存在时,设直线l :y =kx +b ,则⎪⎪⎪⎪k ×r 2-r -3+b 1+k 2=r 对任意r >0恒成立.(12分)由⎪⎪⎪⎪⎝⎛⎭⎫k 2-1r +(b -3)=r 1+k 2,得⎝⎛⎭⎫k 2-12r 2+(k -2)(b -3)r +(b -3)2=(1+k 2)r 2.因此⎩⎪⎨⎪⎧⎝⎛⎭⎫k 2-12=1+k 2,(k -2)(b -3)=0,(b -3)2=0.解得⎩⎪⎨⎪⎧k =0,b =3或⎩⎪⎨⎪⎧k =-43,b =3.因此存在两条直线y =3和4x +3y -9=0与动圆M 均相切.(16分)第12讲 直线与圆的方程及应用1. 已知实数x ,y 满足2x +y +5=0,那么x 2+y 2的最小值为________. 【答案】 52. 圆x 2+y 2=1与直线kx +y -k =0(k ∈R 为常数)的位置关系是________. 【答案】 相交3. 若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范畴是________. 【答案】 [1-22,3] 解析:本题考查数形结合思想. 曲线方程可化简为(x -2)2+(y -3)2=4(1≤y ≤3),即表示圆心为(2,3)半径为2的半圆,依据数形结合,当直线y =x +b 与此半圆相切时须满足圆心(2,3)到直线y =x +b 距离等于2,解得b =1+22或1-22,因为是下半圆故可得b ≠1+22,当直线过(0,3)时,解得b =3,故1-22≤b ≤3.4. 已知圆M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点.(1) 假如|AB|=423,求直线MQ 的方程; (2) 求动弦|AB|的最小值. 解: (1)设Q(q,0),因为M(0,2),因此|MQ|=q 2+22=q 2+4,而|MA|=r =1,从而在Rt △AMQ 中,|AQ|=|MQ|2-|MA|2=q 2+4-1=q 2+3. 又由题意和对称性可得,Rt △AMQ 斜边MQ 边上的高为h =12|AB|=223. 由等面积法得223·q 2+4=q 2+3,解得q =±5,因此Q(±5,0),将M ,Q 的坐标代入直线的两点式方程整理得到直线MQ 的方程为2x±5y 25=0.(2) 由(1)知,利用等面积法得12|AB|·q 2+4=q 2+312|AB|=q 2+3q 2+4=1-1q 2+4,从而当q =0时,动弦|AB|取到最小值 3.5. (2011·盐城二模)如图,在平面直角坐标系xOy 中,已知曲线C 由圆弧C 1和圆弧C 2相接而成,两相接点M 、N 均在直线x =5上.圆弧C 1的圆心是坐标原点O ,半径为13;圆弧C 2过点A(29,0).(1) 求圆弧C 2的方程; (2) 曲线C 上是否存在点P ,满足PA =30PO ?若存在,指出有几个如此的点;若不存在,请说明理由;(3) 已知直线l :x -my -14=0与曲线C 交于E 、F 两点,当EF =33时,求坐标原点O 到直线l 的距离.解:(1) 圆弧C 1所在圆的方程为x 2+y 2=169,令x =5,解得M(5,12),N(5,-12). 则线段AM 中垂线的方程为y -6=2(x -17), 令y =0,得圆弧C 2所在圆的圆心为O 2(14,0). 又圆弧C 2所在圆的半径为r 2=29-14=15, 因此圆弧C 2的方程为(x -14)2+y 2=225(x ≥5).(2) 假设存在如此的点P(x ,y),则由PA =30PO ,得x 2+y 2+2x -29=0.由⎩⎪⎨⎪⎧x 2+y 2+2x -29=0,x 2+y 2=169(-13≤x ≤5), 解得x =-70(舍),由⎩⎪⎨⎪⎧x 2+y 2+2x -29=0,(x -14)2+y 2=225(5≤x ≤29),解得x =0(舍), 综上知,如此的点P 不存在.(3) 因为EF >r 2,EF >r 1,因此E 、F 两点分别在两个圆弧上.设点O 到直线l 的距离为d ,因为直线l 恒过圆弧C 2所在圆的圆心(14,0),因此EF =15+132-d 2+142-d 2, 即132-d 2+142-d 2=18,解得d 2=1 61516,因此点O 到直线l 的距离为 1 6154.基础训练1. π3 2. x -2y =0或x +y -3=0 3. 3或-3 34. (-13,13) 解析:圆的半径为2,圆心(0,0)到直线12x -5y +c =0的距离小于1,即|c|13<1,c 的取值范畴是(-13,13). 例题选讲例1 解:由题意可设所求的直线方程为x +y +m =0,设圆心坐标为(a,0),则由题意知:⎝ ⎛⎭⎪⎫|a -1|22+2=(a -1)2,解得a =3或-1,又因为圆心在x 轴的正半轴上,因此a =3,故圆心坐标为(3,0),因为圆心(3,0)在所求的直线上,因此有3+0+m =0,即m =-3,故所求的直线方程为x +y -3=0.例2 点拨:直线与圆相交的问题,要利用图形转化为圆心到直线的距离问题. 解: (1) 圆心M(-1.1).∴ 圆M 方程为(x +1)2+(y -1)2=2, ∴ 直线CD 方程为x +y -a =0. ∵ ⊙M 与直线CD 相切,∴ 圆心M 到直线CD 的距离d =|-a|2=2,化简得:a =±2(舍去负值). ∴ 直线CD 的方程为x +y -2=0.(2) 直线AB 方程为:x -y +2=0,圆心N ⎝⎛⎭⎫a 2,a 2.∴ 圆心N 到直线AB 距离为⎪⎪⎪⎪a 2-a 2+22= 2.∵ 直线AB 截⊙N 所得弦长为4,∴ 22+(2)2=a 22.∴ a =±23(舍去负值). ∴ ⊙N 的标准方程为(x -3)2+(y -3)2=6.(3) 存在.由(2)知,圆心N 到直线AB 距离为2(定值),且AB ⊥CD 始终成立,∴ 当且仅当圆N 半径a2=22,即a =4时,⊙N 上有且只有三个点到直线AB 的距离为 2.现在,⊙N 的标准方程为(x -2)2+(y -2)2=8.变式训练 已知m ∈R ,直线l :mx -(m 2+1)y =4m 和圆C :x 2+y 2-8x +4y +16=0. (1) 求直线l 斜率的取值范畴;(2) 直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?什么缘故?点拨:直线与圆相交,用圆心到直线距离. 已知直线将圆分割弧长的比值,转化为所对的圆心角的比值,过圆心作弦的垂线,则垂线段长可求,用圆心到直线的距离即可.解: (1) 直线l 的方程可化为y =m m 2+1x -4mm 2+1, 直线l 的斜率k =mm 2+1, ∵ |m|≤12(m 2+1),∴ |k|=|m|m 2+1≤12,当且仅当|m|=1时等号成立.∴ 斜率k 的取值范畴是⎣⎡⎦⎤-12,12.(2) 不能.由(1)知l 的方程为y =k(x -4),其中|k|≤12.圆C 的圆心C(4,-2),半径r =2.圆心C 到直线l 的距离d =21+k 2.由|k|≤12,得d ≥45>1,即d >r2.从而若l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于2π3.因此l 不能将圆C 分割成弧长的比值为12的两段弧.例3 (1) 证明:因为l 与m 垂直,且k m =-13,则k l =3,故直线l :y =3(x +1),即3x -y +3=0.明显圆心(0,3)在直线l 上,即当l 与m 垂直时,l 必过圆心C.(2) 解:①当直线l 与x 轴垂直时,易知x =-1符合题意. ② 当直线l 与x 轴不垂直时,设直线l 的方程为y =k(x +1),即kx -y +k =0,因为PQ=23,因此CM =4-3=1,则由CM =|-3+k|k 2+1=1,得k =43.因此直线l 的方程为4x -3y +4=0.从而所求直线l 的方程为x =-1或4x -3y +4=0.(3) 解:∵ CM ⊥MN, ∴ AM →·AN →=(AC →+CM →)·AN →=AC →·AN →+CM →·AN →=AC →·AN →. ① 当l 与x 轴垂直时有N ⎝⎛⎭⎫-1,-53,∴ AN →=⎝⎛⎭⎫0,-53, 又AC →=(1,3), ∴ AM →·AN →=AC →·AN →=-5. ② 当l 的斜率存在时,设直线l 的方程为y =k(x +1),则由⎩⎪⎨⎪⎧y =k (x +1),x +3y +6=0,得N ⎝ ⎛⎭⎪⎫-3k +61+3k ,-5k 1+3k ,则AN →=⎝⎛⎭⎫-51+3k,-5k 1+3k . 因此AM →·AN →=AC →·AN →=-5.综上,可知AM →·AN →的值与直线l 的斜率无关,因此与倾斜角也无关,且AM →·AN →=-5. 变式训练 已知直线m 的方程为x +y -1=0,⊙C 的方程为x 2-2x +y 2-2y -3=0,⊙C 关于直线m 的对称的⊙D 与直线l 相交于A 、B 两点,若在⊙D 上存在点P 使得OP →=OA →+OB →=λa ,又知a =(-1,2).(1) 求⊙D 的方程; (2) 求点P 的坐标; (3)求直线l 的方程.解: (1) ⊙C 方程为(x -1)2+(y -1)2=5,设D(a ,b),则⎩⎪⎨⎪⎧a +12+b +12-1=0,b -1a -1=1,∴ a =0,b =0,∴ ⊙D 方程为x 2+y 2=5.(2) 由题意可知P(-λ,2λ),∵ P 在圆D 上, ∴ λ2+4λ2=5,∴ λ=±1. ∴ P(-1,2)或P(1,-2).(3) ∵ OP →=OA →+OB →,P 、A 、B 均在圆上,∴ OP ⊥AB ,∠AOB =120°, ∴ 圆心D 到直线AB 的距离是52.当P 的坐标为(-1,2)时,k l =12,设直线l 的方程是x -2y +c =0,d =|c|5=52, ∴ c =±52,由图形位置可知c =52,现在直线l 的方程是2x -4y +5=0. 同理可知,当P 坐标为(1,-2)时,直线l 的方程是2x -4y -5=0.例4 (1) 解:⎩⎨⎧c a =22,4a 2+2b 2=1,a 2=b 2+c2⎩⎪⎨⎪⎧a 2=8,b 2=4,故椭圆E 的方程为x 28+y 24=1, ∵ A(4,0),B(0,2),∴直线AB 方程为x +2y -4=0,则O 到AB 距离为45, ∴ 圆O 的半径r =⎝⎛⎭⎫452+⎝⎛⎭⎫12×252=2,故圆O 的方程为x 2+y 2=4.(2) 证明:l 的方程为x =4,∴ M 点坐标为M(4,t). 在圆O 上任取一点N(x 0,y 0),定点Q(x ,y). ∵ NM 与NQ 的比值为常数且Q 不同于M , ∴ NQ 2=λNM 2,λ>0且λ≠1,λ为常数, 即(x 0-x)2+(y 0-y)2=λ[(x 0-4)2+(y 0-t)2],∴ x 02+y 02-2xx 0-2yy 0+x 2+y 2=λ(x 02+y 02-8x 0-2y 0t +16+t 2), 将x 02+y 02=4代入上式,则-2xx 0-2yy 0+x 2+y 2+4=-8λx 0-2λy 0t +(20+t 2)λ, 由于N 是圆O 上任意一点,因此⎩⎪⎨⎪⎧x -4λ,①y =4λ,②x 2+y 2+4=(20+t 2)λ,③将①②代入③得(16+t 2)λ2-(20+t 2)λ+4=0∴ (λ-1)[(16+t 2)λ-4]=0,∵ λ≠1,∴ λ=416+t 2,即存在一个定点Q(不同于点M),使得关于圆O 上的任意一点N , 均有MN NQ 为定值,又16+t 2=4λ代入③得x 2+y 2=4λ,因此有x 2+y 2=x ,即⎝⎛⎭⎫x -122+y 2=14,故点Q 在圆心为⎝⎛⎭⎫12,0,半径为12的定圆上.高考回忆1. 1 解析:本题考查直线与圆的位置关系,属容易题.2. 102 解析:由题意AC 为径,设圆心为F ,则FE ⊥BD ,圆的标准方程为(x -1)2+(y -3)2=10,故F(1,3),由此易得:AC =210,又k EF =2,因此BD 的方程为y =-12x+1,F 到BD 的距离为|-12+1-3|52=5,由此得BD =25,因此四边形ABCD 的面积为12AC·BD =12×25×210=10 2.3. 1或1774. ⎣⎡⎦⎤-33,33 解析:因为直线过定点(0,3)且该点在圆上,设此点为M ,圆心(2,3)到此直线距离为d ,因此由4-d 2≥(3)2d ≤1,又d =|2k -3+3|1+k 2≤1,∴ k 2≤13,∴ -33≤k ≤33.5. 点拨:本小题要紧考查直线、圆、抛物线等基础知识,考查运算求解能力,函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想.解:(解法1)(1) 依题意,点P 的坐标为(0,m),因为MP ⊥l ,因此0-m2-0×1=-1, 解得m =2,即点P 的坐标为(0,2),从而圆的半径r =|MP|=(2-0)2+(0-2)2=22, 故所求圆的方程为(x -2)2+y 2=8.(2) 因为直线l 的方程为y =x +m 因此直线l ′的方程为y =-x -m.由⎩⎪⎨⎪⎧y =-x -m ,x 2=4y ,得x 2+4x +4m =0,Δ=42-4×4m =16(1-m). ① 当m =1,即Δ=0时,直线l ′与抛物线C 相切. ② 当m ≠1,即Δ≠0时,直线l ′与抛物线C 不相切.综上,当m =1时,直线l ′与抛物线C 相切;当m ≠1时,直线l ′与抛物线C 不相切.(解法2)(1) 设所求圆的半径为r ,则圆的方程可设为(x -2)2+y 2=r 2, 依题意,所求圆与直线l :x -y +m =0相切于点P(0,m),则⎩⎪⎨⎪⎧4+m 2=r 2,|2-0+m|2=r ,解得⎩⎨⎧m =2,r =2 2.因此所求圆的方程为(x -2)2+y 2=8. (2) 同解法1.6. 点拨: (1)动点M 通过点P 与已知圆相联系,因此把点P 的坐标用点M 的坐标表示,然后代入已知圆的方程即可;(2)直线方程和椭圆方程组成方程组,能够求解,也能够利用根与系数关系;结合两点的距离公式运算.解: (1) 设点M 的坐标是(x ,y),P 的坐标是(x p ,x p ),∵ 点D 是P 在x 轴上投影,M 为PD 上一点,且|MD|=45|PD|, ∴ x p =x ,且y p =54y ,∵ P 在圆x 2+y 2=25上,∴ x 2+⎝⎛⎭⎫54y 2=25,整理得x 225+y 216=1, 即C 的方程是x 225+y 216=1.(2) 过点(3,0)且斜率为45的直线方程是y =45(x -3),设此直线与C 的交点为A(x 1,y 1),B(x 2,y 2),将直线方程y =45(x -3)代入C 的方程x 225+y 216=1得:x 225+(x -3)225=1,化简得x 2-3x -8=0,∴ x 1=3-412,x 2=3+412,∴ |AB|=(x 1-x 2)2+(y 1-y 2)2=⎝⎛⎭⎫1+1625(x 1-x 2)2=4125×41=415,即所截线段的长度是415.。

高考数学二轮专题复习与测试练习题 专题5 第1课时 直线与圆 文

高考数学二轮专题复习与测试练习题 专题5 第1课时 直线与圆 文(本栏目内容,在学生用书中以独立形式分册装订!)1.已知直线l 1:k 1x +y +1=0与直线l 2:k 2x +y -1=0,那么“k 1=k 2”是“l 1∥l 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: 由k 1=k 2,1≠-1,得l 1∥l 2;由l 1∥l 2知k 1×1-k 2×1=0,所以k 1=k 2.故“k 1=k 2”是“l 1∥l 2”的充要条件,故选C.答案: C2.点A (1,3)关于直线y =kx +b 对称的点是B (-2,1),则直线y =kx +b 在x 轴上的截距是( )A .-32B .54C .-65D .56解析: 由题意知⎩⎪⎨⎪⎧3-11+2·k =-12=k ·⎝ ⎛⎭⎪⎫-12+b ,解得k =-32,b =54,∴直线方程为y =-32x +54,其在x 轴上的截距为56.答案: D3.(2013·福建省质量检查)已知点A (1,2),B (3,2),以线段AB 为直径作圆C ,则直线l :x +y -3=0与圆C 的位置关系是( )A .相交且过圆心B .相交但不过圆心C .相切D .相离解析: 以线段AB 为直径作圆C ,则圆C 的圆心坐标C (2,2),半径r =12|AB |=12×(3-1)=1.点C 到直线l :x +y -3=0的距离为|2+2-3|2=22<1,所以直线与圆相交,并且点C 不在直线l :x +y -3=0上,故应选B.答案: B4.已知圆心(a ,b )(a <0,b <0)在直线y =2x +1上的圆,其圆心到x 轴的距离恰好等于圆的半径,在y 轴上截得的弦长为25,则圆的方程为( )A .(x +2)2+(y +3)2=9B .(x +3)2+(y +5)2=25C .(x +6)2+⎝ ⎛⎭⎪⎫y +732=499D.⎝ ⎛⎭⎪⎫x +232+⎝ ⎛⎭⎪⎫y +732=499解析: 由圆心到x 轴的距离恰好等于圆的半径知,所求圆与x 轴相切,由题意得圆的半径为|b |,则圆的方程为(x -a )2+(y -b )2=b 2.由于圆心在直线y =2x +1上,得b =2a +1 ①,令x =0,得(y -b )2=b 2-a 2,此时在y 轴上截得的弦长为|y 1-y 2|=2b 2-a 2,由已知得,2b2-a 2=25,即b 2-a 2=5 ②,由①②得⎩⎪⎨⎪⎧a =-2b =-3或⎩⎪⎨⎪⎧a =23b =73(舍去).所以,所求圆的方程为(x +2)2+(y +3)2=9.故选A.答案: A5.(2013·重庆卷)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4B .17-1C .6-2 2D .17解析: 设P (x,0),设C 1(2,3)关于x 轴的对称点为C ′1(2,-3),那么|PC 1|+|PC 2|=|PC ′1|+|PC 2|≥|C ′1C 2|=2-32+-3-42=5 2.而|PM |=|PC 1|-1,|PN |=|PC 2|-3, ∴|PM |+|PN |=|PC 1|+|PC 2|-4≥52-4. 答案: A6.(2013·保定调研)若实数x ,y 满足x |x |-y |y |=1,则点(x ,y )到直线y =x 的距离的取值范围是( )A .[1,2)B .(0,2]C .⎝ ⎛⎭⎪⎫12,1D .(0,1]解析: ①当x ≥0且y ≥0时,x |x |-y |y |=x 2-y 2=1;②当x >0且y <0时,x |x |-y |y |=x 2+y 2=1;③当x <0且y >0时,无意义;④当x<0且y<0时,x|x|-y|y|=y2-x2=1.作出图象如图所示,因为直线y=x为两段等轴双曲线的渐近线,四分之一个单位圆上的点到直线y=x的距离的最大值为1,所以选D.答案: D7.(2013·东城区检测)已知圆C:x2+y2-6x+8=0,则圆心C的坐标为________;若直线y=kx与圆C相切,且切点在第四象限,则k=________.解析:圆的方程可化为(x-3)2+y2=1,故圆心坐标为(3,0);由|3k|1+k2=1,解得k=±24,根据切点在第四象限,可得k=-24.答案:-2 48.(2013·武昌区联考)已知x2+y2=4上恰好有3个点到直线l:y=x+b的距离都等于1,则b=________.解析:由题意知原点到直线l的距离d为1,即d=|0-0+b|2=1,∴b=± 2.答案:± 29.(2012·江西卷)过直线x+y-22=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是____________.解析:直线与圆的位置关系如图所示,设P(x,y),则∠APO=30°,且OA=1.在直角三角形APO中,OA=1,∠APO=30°,则OP=2,即x2+y2=4.又x+y-22=0,联立解得x=y=2,即P(2,2).答案:(2,2)10.已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分别满足下列条件的a,b的值.(1)直线l1过点(-3,-1),并且直线l1与l2垂直;(2)直线l1与直线l2平行,并且坐标原点到l1,l2的距离相等.解析:(1)∵l1⊥l2,∴a(a-1)+(-b)·1=0,即a2-a-b=0.①又点(-3,-1)在l1上,∴-3a +b +4=0.② 由①②得,a =2,b =2.(2)∵l 1∥l 2,∴a b =1-a ,∴b =a1-a ,故l 1和l 2的方程可分别表示为 (a -1)x +y +4a -1a =0,(a -1)x +y +a1-a=0, 又原点到l 1与l 2的距离相等, ∴4⎪⎪⎪⎪⎪⎪a -1a =⎪⎪⎪⎪⎪⎪a 1-a ,∴a =2或a =23,∴a =2,b =-2或a =23,b =2.11.如图所示,已知直线l :y =x ,圆C 1的圆心为(3,0),且经过点A (4,1).(1)求圆C 1的方程;(2)若圆C 2与圆C 1关于直线l 对称,点B 、D 分别为圆C 1、C 2上任意一点,求|BD |的最小值.解析: (1)依题意,设圆C 1的方程为(x -3)2+y 2=r 2,因为圆C 1经过点A (4,1),所以r 2=(4-3)2+12=2.所以圆C 1的方程为(x -3)2+y 2=2.(2)由(1),知圆C 1的圆心坐标为(3,0),半径为2,C 1到直线l 的距离d =|3-0|1+1=322,所以圆C 1上的点到直线l 的最短距离为322-2=22.因为圆C 2与圆C 1关于直线l 对称,所以|BD |min =2×22= 2. 12.(2013·江苏卷)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围. 解析: (1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3.由题意,得|3k +1|k 2+1=1,解得k =0或k =-34,故所求切线方程为y =3或3x +4y -12=0. (2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为MA =2MO , 所以x 2+y -32=2 x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点, 则|2-1|≤|CD |≤2+1,即1≤a 2+2a -32≤3.整理,得-8≤5a 2-12a ≤0. 由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.。

(浙江专版)高考数学二轮专题复习 第一部分 专题五 第一讲 直线与圆课件.pptx


解得xy==--11,,
即(1,0),(-1,-1)为 l2 上两点, 可得 l2 的方程为 x-2y-1=0. 答案:B
5
(2)设 m∈R,过定点 A 的动直线 x+my=0 和过定点 B 的动 直线 mx-y-m+3=0 交于点 P(x,y),则|PA|·|PB|的最大值 是________. 解析:易求定点 A(0,0),B(1,3).当 P 与 A 和 B 均不重合时, 因为 P 为直线 x+my=0 与 mx-y-m+3=0 的交点,且两 直线垂直,则 PA⊥PB,所以|PA|2+|PB|2=|AB|2=10,所以 |PA|·|PB|≤|PA|2+2 |PB|2=5(当且仅当|PA|=|PB|= 5时,等号 成立),当 P 与 A 或 B 重合时,|PA|·|PB|=0,故|PA|·|PB|的最 大值是 5. 答案:5
1
二、经典例题领悟好
[例 1] (1)设直线 l1:2x-my-1=0,l2:(m-1)x-y+1=
0.则“m=2”是“l1∥l2”的
()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
(2)过直线 l1:x-2y+3=0 与直线 l2:2x+3y-8=0 的交点, 且到点 P(0,4)距离为 2 的直线方程为_____________________.
6
考点二 圆的方程
一、基础知识要记牢
(1)标准方程:(x-a)2+(y-b)2=r2,圆心坐标为(a,b),半
径为 r.
(2)一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0),圆
心坐标为-D2 ,-E2 ,半径 r=
D2+E2-4F
2
.

2020届数学文高考二轮专题复习与测试第二部分 专题五第1讲 直线与圆 Word版含解析

基础通关A级 一、选择题2220)r=r与圆C:x>+y(∈1.已知直线l:xcos α+ysin α=1(αR)) r的取值范围是( 相交,则1 <.0<r≤1 BA.0<r1 > D.rC.r≥1 1 1,==解析:圆心到直线的距离为d22α+sinαcos1. r>故D 答案:2yx+mx-y=0与直线p:“m=-1”,命题q:“直线已知命题2.) 的( 互相垂直”,则命题p是命题q=0 .必要不充分条件 BA.充分不必要条件 .既不充分也不必要DC.充要条件2的充要条件是互相垂直”my=0直线x-y=0与直线x+解析:“2 1,m=±(-1)·m=0?×11+ q的充分不必要条件.所以命题p是命题A

答案: 22,若直线72=y+(-3):3.(2019·广

东湛江一模)已知圆C(x-3)且经过这条直径的一个三等分点,的一条直径,垂直于圆C-m=0+xy) 则m=(8 或B .4A.2或10 4 或.2D6 C.4或 32C的坐标为(3,3),半的圆心3)y3)x:圆解析:C(-+(-=72 ,26=r径.

的一条直径,且经过这条直径C=0垂直于圆因为直线x+y-m 的一个三等分点, 2所以圆心到直线的距离为2,||6-m10. =m==2或m=22,解得则有d1+1A 答案:22) 0的位置关系是(xy+ -ax+by=4.直线ax-by=0与圆 .相切 BA.相交 .不能确定DC.相离 2222ba+ba+x-y所以圆解析:圆的方程化为标准方程得=.+

22422b+aab,-. 心坐标为r,半径= 22222ba+22 b+a22. ===r-所以圆心到直线axby=0的距离d222ba+ 所以直线与圆相切.B 答案:22x-,5.(2019·安徽十校联考)过点P(21)作直线l与圆C:x+y2) ,a=0交于AB两点,若P为弦AB中点, ( 则直线l的方程4-y+3 x-B.y=-x+3 =2.Ay1 y 2C.y=-x+3 D.=x-22=5-a,知圆心C(1+(y-2),2)1)的标准方程解析:圆C(x-,因为P(2,1)是弦AB的中点,则PC⊥l. 1-2所以k==-1,所以直线l的斜率k=1. CP2-11. -x=y,即2-x=1-y的方程为l故直线

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲 直线与圆高考定位 1.直线方程、圆的方程、两直线的平行与垂直、直线与圆的位置关系是本讲高考的重点;2.考查的主要内容包括求直线(圆)的方程、点到直线的距离、直线与圆的位置关系推断、简洁的弦长与切线问题,多为选择题、填空题.真 题 感 悟1.(2022·全国Ⅱ卷)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A.-43B.-34C. 3D.2解析 圆x 2+y 2-2x -8y +13=0化为标准方程为(x -1)2+(y -4)2=4,故圆心为(1,4). 由题意得d =|a +4-1|a 2+1=1,解得a =-43. 答案 A2.(2022·山东卷)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A.内切 B.相交 C.外切D.相离解析 圆M :x 2+y 2-2ay =0(a >0)可化为x 2+(y -a )2=a 2, 由题意,d =a2,所以有a 2=a 22+2,解得a =2.所以圆M :x 2+(y -2)2=22,圆心距为2,半径和为3,半径差为1,所以两圆相交. 答案 B3.(2022·全国Ⅰ卷)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.解析 圆C 的标准方程为x 2+(y -a )2=a 2+2,圆心为C (0,a ),点C 到直线y =x +2a 的距离为d =|0-a +2a |2=|a |2.又由|AB |=23,得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|a |22=a 2+2,解得a 2=2,所以圆C 的面积为π(a 2+2)=4π.答案 4π4.(2021·天津卷)设抛物线y 2=4x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若∠FAC =120°,则圆的方程为________.解析 由题意知该圆的半径为1,设圆心C (-1,a )(a >0),则A (0,a ). 又F (1,0),所以AC → =(-1,0),AF →=(1,-a ).由题意知AC → 与AF → 的夹角为120°,得cos 120°=-11×1+a2=-12,解得a = 3. 所以圆的方程为(x +1)2+(y -3)2=1. 答案 (x +1)2+(y -3)2=1 考 点 整 合1.两条直线平行与垂直的判定若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在. 2.两个距离公式(1)两平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.(2)点(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.3.圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),圆心为(a ,b ),半径为r .(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径为r =D 2+E 2-4F 2.4.直线与圆的位置关系的判定(1)几何法:把圆心到直线的距离d 和半径r 的大小加以比较:d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:将圆的方程和直线的方程联立起来组成方程组,利用判别式Δ来争辩位置关系:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.热点一 直线的方程【例1】 (1)设a ∈R ,则“a =-2”是直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件(2)(2021·山东省试验中学二模)过点P (2,3)的直线l 与x 轴、y 轴正半轴分别交于A ,B 两点,O 为坐标原点,则S △OAB 的最小值为________.解析 (1)当a =-2时,l 1:-2x +2y -1=0,l 2:x -y +4=0,明显l 1∥l 2. 当l 1∥l 2时,由a (a +1)=2且a +1≠-8得a =1或a =-2, 所以a =-2是l 1∥l 2的充分不必要条件.(2)依题意,设直线l 的方程为x a +yb=1(a >0,b >0). ∵点P (2,3)在直线l 上.∴2a +3b=1,则ab =3a +2b ≥26ab ,故ab ≥24,当且仅当3a =2b (即a =4,b =6)时取等号. 因此S △AOB =12ab ≥12,即S △AOB 的最小值为12.答案 (1)A (2)12探究提高 1.求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要留意代入检验,排解两条直线重合的可能性.2.求直线方程时应依据条件选择合适的方程形式利用待定系数法求解,同时要考虑直线斜率不存在的状况是否符合题意.【训练1】 (1)(2021·贵阳质检)已知直线l 1:mx +y +1=0,l 2:(m -3)x +2y -1=0,则“m =1”是“l 1⊥l 2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是________.解析 (1)“l 1⊥l 2”的充要条件是“m (m -3)+1×2=0⇔m =1或m =2”,因此“m =1”是“l 1⊥l 2”的充分不必要条件.(2)当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大. ∵A (1,1),B (0,-1),∴k AB =-1-10-1=2.∴两平行直线的斜率k =-12.∴直线l 1的方程是y -1=-12 (x -1),即x +2y -3=0.答案 (1)A (2)x +2y -3=0 热点二 圆的方程【例2-1】 (1)(2022·天津卷)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________.(2)(2021·全国Ⅰ卷)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.解析 (1)∵圆C 的圆心在x 的正半轴上,设C (a ,0),且a >0. 则圆心C 到直线2x -y =0的距离d =|2a -0|5=455,解得a =2.∴圆C 的半径r =|CM |=(2-0)2+(0-5)2=3,因此圆C 的方程为(x -2)2+y 2=9.(2)由题意知,椭圆顶点的坐标为(0,2),(0,-2),(-4,0),(4,0).由圆心在x 轴的正半轴上知圆过顶点(0,2),(0,-2),(4,0). 设圆的标准方程为(x -m )2+y 2=r 2,则有⎩⎪⎨⎪⎧m 2+4=r 2,(4-m )2=r 2,解得⎩⎪⎨⎪⎧m =32,r 2=254,所以圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.答案 (1)(x -2)2+y 2=9 (2)⎝ ⎛⎭⎪⎫x -322+y 2=254探究提高 1.直接法求圆的方程,依据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.2.待定系数法求圆的方程:(1)若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;(2)若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值. 温馨提示 解答圆的方程问题,应留意数形结合,充分运用圆的几何性质.【训练2】 (1)(2021·河南部分重点中学联考)圆心在直线x =2上的圆与y 轴交于两点A (0,-4),B (0,-2),则该圆的标准方程为________________.(2)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得的弦的长为23,则圆C 的标准方程为________.解析 (1)易知圆心的纵坐标为-4+(-2)2=-3,所以圆心坐标为(2,-3).则半径r =(2-0)2+[(-3)-(-2)]2=5, 故所求圆的标准方程为(x -2)2+(y +3)2=5. (2)设圆心⎝ ⎛⎭⎪⎫a ,a 2(a >0),半径为a .由勾股定理得(3)2+⎝ ⎛⎭⎪⎫a 22=a 2,解得a =2.所以圆心为(2,1),半径为2,所以圆C 的标准方程为(x -2)2+(y -1)2=4.答案 (1)(x -2)2+(y +3)2=5 (2)(x -2)2+(y -1)2=4. 热点三 直线与圆的位置关系 命题角度1 圆的切线问题【例3-1】 (2021·郑州调研)在平面直角坐标系xOy 中,以点A (1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的全部圆中,半径最大的圆的标准方程为________.解析 直线mx -y -2m -1=0恒过定点P (2,-1),当AP 与直线mx -y -2m -1=0垂直,即点P (2,-1)为切点时,圆的半径最大,∴半径最大的圆的半径r =(1-2)2+(0+1)2= 2. 故所求圆的标准方程为(x -1)2+y 2=2. 答案 (x -1)2+y 2=2命题角度2 圆的弦长相关计算【例3-2】 (2021·全国Ⅲ卷)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题: (1)能否消灭AC ⊥BC 的状况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. (1)解 不能消灭AC ⊥BC 的状况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足方程x 2+mx -2=0, 所以x 1x 2=-2. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能消灭AC ⊥BC 的状况.(2)证明 BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22.由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2.联立⎩⎪⎨⎪⎧x =-m2, ①y -12=x 2⎝ ⎛⎭⎪⎫x -x 22, ②又x 22+mx 2-2=0,③由①②③解得x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3, 即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.探究提高 1.争辩直线与圆的位置关系最常用的解题方法为几何法,将代数问题几何化,利用数形结合思想解题.2.与弦长有关的问题常用几何法,即利用圆的半径r ,圆心到直线的距离d ,及半弦长l2,构成直角三角形的三边,利用其关系来处理.【训练3】 (1)(2021·泉州质检)过点P (-3,1),Q (a ,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为______.(2)(2022·全国Ⅲ卷) 已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.解析 (1)点P (-3,1)关于x 轴的对称点为P ′(-3,-1), 所以直线P ′Q 的方程为x -(a +3)y -a =0. 依题意,直线P ′Q 与圆x 2+y 2=1相切. ∴|-a |12+(a +3)2=1,解得a =-53. (2)由圆x 2+y 2=12知圆心O (0,0),半径r =23, ∴圆心(0,0)到直线x -3y +6=0的距离d =61+3=3,|AB |=212-32=2 3.过C 作CE ⊥BD 于E .如图所示,则|CE |=|AB |=2 3. ∵直线l 的方程为x -3y +6=0,∴直线l 的倾斜角∠BPD =30°,从而∠BDP =60°,因此|CD |=|CE |sin 60°=23sin 60°=4.答案 (1)-53(2)41.解决直线方程问题应留意:(1)要留意几种直线方程的局限性.点斜式、两点式、斜截式要求直线不能与x 轴垂直.而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线. (2)求直线方程要考虑直线斜率是否存在.(3)求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要留意代入检验,排解两条直线重合的可能性.2.求圆的方程两种主要方法:(1)直接法:利用圆的性质、直线与圆、圆与圆的位置关系,数形结合直接求出圆心坐标、半径,进而求出圆的方程.(2)待定系数法:先设出圆的方程,再由条件构建系数满足的方程(组)求得各系数,进而求出圆的方程. 3.直线与圆相关问题的两个关键点(1)三个定理:切线的性质定理、切线长定理和垂径定理.(2)两个公式:点到直线的距离公式d =|Ax 0+By 0+C |A 2+B 2,弦长公式|AB |=2r 2-d 2(弦心距d ). 4.直线(圆)与圆的位置关系的解题思路(1)争辩直线与圆及圆与圆的位置关系时,要留意数形结合,充分利用圆的几何性质查找解题途径,削减运算量.争辩直线与圆的位置关系主要通过圆心到直线的距离与半径的比较来实现,两个圆的位置关系的推断依据是两圆心距离与两半径差与和的比较.(2)直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立切线斜率的等式,所以求切线方程时主要选择点斜式,过圆外一点求解切线段长可转化为圆心到圆外点距离,利用勾股定理计算.一、选择题1.(2021·昆明诊断)已知命题p :“m =-1”,命题q :“直线x -y =0与直线x +m 2y =0相互垂直”,则命题p 是命题q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要解析 “直线x -y =0与直线x +m 2y =0相互垂直”的充要条件是1×1+ (-1)·m 2=0⇔m =±1.∴命题p 是命题q 的充分不必要条件. 答案 A2.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A.2x +y -5=0 B.2x +y -7=0 C.x -2y -5=0D.x -2y -7=0解析 依题意知,点(3,1)在圆(x -1)2+y 2=r 2上,且为切点. ∵圆心(1,0)与切点(3,1)连线的斜率为12,所以切线的斜率k =-2.故圆的切线方程为y -1=-2(x -3),即2x +y -7=0. 答案 B3.(2021·济南调研)若直线x -y +m =0被圆(x -1)2+y 2=5截得的弦长为23,则m 的值为( ) A.1 B.-3 C.1或-3D.2解析 ∵圆(x -1)2+y 2=5的圆心C (1,0),半径r = 5. 又直线x -y +m =0被圆截得的弦长为2 3. ∴圆心C 到直线的距离d =r 2-(3)2=2, 因此|1-0+m |12+(-1)2=2,∴m =1或m =-3.答案 C4.(2021·全国Ⅱ卷)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53 B.213C.253D.43解析 设圆的一般方程为x 2+y 2+Dx +Ey +F =0,∴⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,∴⎩⎪⎨⎪⎧D =-2,E =-433,F =1,∴△ABC 外接圆的圆心为⎝⎛⎭⎪⎫1,233,因此圆心到原点的距离d =12+⎝ ⎛⎭⎪⎫2332=213.答案 B5.(2021·衡水中学模拟)已知圆C :(x -1)2+y 2=25,则过点P (2,-1)的圆C 的全部弦中,以最长弦和最短弦为对角线的四边形的面积是( ) A.1031B.921C.1023D.911解析 易知最长弦为圆的直径10,又最短弦所在直线与最长弦垂直,且|PC |=2,∴最短弦的长为2r 2-|PC |2=225-2=223, 故所求四边形的面积S =12×10×223=1023.答案 C 二、填空题6.(2021·广安调研)过点(1,1)的直线l 与圆(x -2)2+(y -3)2=9相交于A ,B 两点,当|AB |=4时,直线l 的方程为________.解析 易知点(1,1)在圆内,且直线l 的斜率k 存在,则直线l 的方程为y -1=k (x -1),即kx -y +1-k =0.又|AB |=4,r =3,∴圆心(2,3)到l 的距离d =32-22= 5. 因此|k -2|k 2+(-1)2=5,解得k =-12.∴直线l 的方程为x +2y -3=0. 答案 x +2y -3=07.(2021·北京卷)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO → ·AP →的最大值为________. 解析 法一 由题意知,AO → =(2,0),令P (cos α,sin α),则AP →=(cos α+2, sin α).AO → ·AP → =(2,0)·(cos α+2,sin α)=2cos α+4≤6,故AO → ·AP →的最大值为6. 法二 由题意知,AO →=(2,0),令P (x ,y ),-1≤x ≤1,则AO → ·AP → =(2,0)·(x +2,y )=2x +4≤6,故AO → ·AP →的最大值为6. 答案 68.(2021·菏泽二模)已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线l :y =a (x -3)被圆C 截得的弦长最短时,直线l 方程为________.解析 圆C 的标准方程为(x -4)2+(y -1)2=9, ∴圆C 的圆心C (4,1),半径r =3. 又直线l :y =a (x -3)过定点P (3,0),则当直线y =a (x -3)与直线CP 垂直时,被圆C 截得的弦长最短. 因此a ·k CP =a ·1-04-3=-1,∴a =-1.故所求直线l 的方程为y =-(x -3),即x +y -3=0.答案 x +y -3=0 三、解答题9.已知点A (3, 3),B (5,2)到直线l 的距离相等,且直线l 经过两直线l 1:3x -y -1=0和l 2:x +y -3=0的交点,求直线l 的方程.解 解方程组⎩⎪⎨⎪⎧3x -y -1=0,x +y -3=0,得交点P (1,2).①若点A ,B 在直线l 的同侧,则l ∥AB . 而k AB =3-23-5=-12,由点斜式得直线l 的方程为y -2=-12(x -1),即x +2y -5=0.②若点A ,B 分别在直线l 的异侧,则直线l 经过线段AB 的中点⎝ ⎛⎭⎪⎫4,52, 由两点式得直线l 的方程为y -2x -1=52-24-1,即x -6y +11=0.综上所述,直线l 的方程为x +2y -5=0或x -6y +11=0.10.(2021·全国Ⅰ卷)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM → ·ON →=12,其中O 为坐标原点,求|MN |. 解 (1)由题设,可知直线l 的方程为y =kx +1, 由于l 与C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1, 整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k2.OM → ·ON →=x 1x 2+y 1y 2 =(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8. 由题设可得4k (1+k )1+k 2+8=12,解得k =1, 所以l 的方程为y =x +1. 故圆心C 在l 上,所以|MN |=2.11.(2022·江苏卷节选)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程. 解 (1)圆M 的标准方程为(x -6)2+(y -7)2=25, 所以圆心M (6,7),半径为5,(1)由圆心N 在直线x =6上,可设N (6,y 0). 由于圆N 与x 轴相切,与圆M 外切, 所以0<y 0<7,圆N 的半径为y 0, 从而7-y 0=5+y 0,解得y 0=1.因此,圆N 的标准方程为(x -6)2+(y -1)2=1.(2)由于直线l ∥OA , 所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m , 即2x -y +m =0, 则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5. 由于|BC |=|OA |=22+42=25,又|MC |2=d 2+⎝ ⎛⎭⎪⎫|BC |22,所以25=(m +5)25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.。

相关文档
最新文档