讲座1-3 离散频谱校正技术(DOC)

合集下载

离散线性系统的分析与校正资料

离散线性系统的分析与校正资料

ROC : z 0
常用单边序列的z变换
1) Z{[k]} 1, z 0
2)
Z{
k u[k ]}
1
1
z 1
za
3)
Z{e
j 0 k
u[k
]}
1
e
1
j 0
z
1
1 cos 0 z 1 j sin 0 z 1 1 2z 1 cos 0 z 2
cos( 0 k )u[k ] 1
1 cos 0 z 1 2z 1 cos 0
z max(Rx1, Rx2 )
21
3、单边z变换的主要性质
2. 位移特性
➢ 因果序列的位移
x[k n] u[k n] znX(z) |z|> Rx ➢ 非因果序列的位移
n 1
Z x[k n]u[k ] z n[ X ( z) x[k ]z k ] k 0 1
Z x[k n]u[k ] z n[ X (z) x[k ]z k ] k n
4、单边z反变换
➢ 部分分式法
X (z)
B( z) A( z )
b0 b1z 1 bm z m 1 a1z 1 an z n
1. m<n,分母多项式无重根
n
X (z) i 1
各部分分式的系数为
ri 1 pi z 1
ri (1 pi z 1 ) X ( z) z pi
4、单边z反变换
X
(z)
1
(1
2 2z 1 )21
4z 1
G(z)
G(z)
A (1 2z 1 )2
1
B 2z
1
1
C 4z
1
A (1 2z 1)2 G(z)

第二章 离散信号频谱的窗谱校正方法

第二章 离散信号频谱的窗谱校正方法

A/2
t
X (f )
A/2
f
T0
-f 0
0
f0
时域波形
傅里叶变换模函数
(c)单频率谐波的时域波形和频谱模函数
xT ( t ) A
Y yK
yK−1
0
T
t
n 0 k-2 k-1 f0 k k+1 k+2
时域波形
离散频谱模函数
(d)单频率谐波离散频谱模函数 图2-2 单频率谐波离散频谱的误差产生原因
12
华 中 理 工 大 学 博 士 学 位 论 文
根据傅氏变换的奇偶性质,当 w( t ) 是实偶函数时,W ( f ) 此时也为实偶函数。又由 傅氏变换的时移特性可知(如图2-2b),
F [ wT ( t )] = W ( f ) e − jπ⋅ f ⋅T ........................................................................................(2.4) 设有一周期信号 x ( t ) = ACos ( 2 π ⋅ f 0 ⋅ t + ϕ ) ,则其傅氏变换结果为(如图2-2c):

F [ x ( t ) ⋅ wT ( t )] =
−∞
∫ x( t ) ⋅ w
T
( t )e − j 2π ⋅ f ⋅t dt .............................................................(2.1)
其中, wT ( t ) 由对称窗 w( t ) 在时间上平移 T / 2 得到,即
函数,其 G ( v ) 是不同的。如果在同样的采样频率和同样的信号分析样本长度的情况下, 对加窗信号的频域抽样位置也就确定下来了,由于信号频率 f 0 的位置固定,即信号频域 峰值位置固定,则可得不管信号加了何种窗,所产生的频率误差都是一样的。 (2) 幅值校正 设窗函数的频谱模函数为W ( f ) ,则图2-4中主瓣函数为∶

离散系统的数字校正

离散系统的数字校正

1) 1)3
T
2 z 1 (1 z 1 2(1 z 1 )3
)
3
A(z) 1 Tz1
T 2z 1(1 z 1 ) 2
设计条件:G(z)中无单位圆上或外的
零 极
点,若有,需在
(z) e (z)
的零点中包含
设计原则:选择(z) ,使系统经最少拍后能在采样点上准确跟踪典型输
入, 由此确定满足条件的GD(z)
(3) 离散系统的稳定判据 z域中的朱利 (Jurry) 稳定判据
z域中的根轨迹法
一般方法
(4) 离散系统的稳态误差 静态误差系数法
5 离散系统的动态性能分析
例题
则调节时间 ts kT
依最少拍系统设计原则,应有 e(kiT) 0 (ki k, k 1,L ,)
E(z)
e(z)
R(z)
(1
A( z ) z1 )m
e(z)
e(T )
lim(1
z1
z1 )
A( z ) (1 z 1 )m
e(z)
0
为0的条件:应包含此因子
要求:
e
(z)
(1
z
1
)m
F
(z)
根据:U
(z)
Gd
(z)
E(z)
Gd
(z)
e
( z) R( z)
(z) G(z)
R(z)
应使:Gd (z) e (z) 为z-1的有限多项式。
条件为:(z) 的零点应抵消G(z)的全部零点,令 G(z) P(z)
Q(z)
即: (z) P(z)M(z)
M(z)为待定 z-1多项式。
综上: (1) (z)除满足最少拍要求外,附加条件是还必须包含G(z) 的全部零点,

离散系统的分析与校正

离散系统的分析与校正

X(-k T 0 ) X[(1 - K)T0 ] X(-T 0) 0
-(k n ) Z[X[(t - KT0 )] X(0)Z-k X(T0 )Z-(k 1) X(n T )Z 0
Z -k [ X(0) X(T0 )Z 1 X(n T0 )Z n ] Z -k X( Z ) 证毕
而脉冲强度则由nT0时刻的连续函数e (nT0 )来确定
2、采样定理(Shannon)
如果采样角频率大于或等于2m ,即s 2m , 则经采样得到的 脉冲序列能无失真地再恢复到原连续信号.
m 连续信号频谱的上限频率 2 对s 2m ,有 2 T 2T
0 m
| e ( j ) |
证明:由Z变换定义
n Z[X(t - k T )] X ( n T k T ) Z 0 0 0 n0 -1 -k -(k 1) X(-k T ) X(T -k T )Z X(0)Z X(T )Z 0 0 0 0 -(k n ) X(n T 0 )Z
K -1
证明:Z[X(t kT0 )] X ( nT0 kT0 ) Z n X (kT0 ) X [(k 1)T0 ]Z 1 X [(k 2)T0 ]Z 2 ....... X ( nT0 kT0 ) Z n ...... Z k [ X (kT0 ) Z k X [(k 1)T0 ]Z ( k 1) ......] Z k { X (0) X (T0 ) Z 1 ...... X [(k 1)T0 ]Z ( k 1) X (kT0 ) Z k X [( K 1)T0 ]Z ( k 1) ...... X (0) X (T0 ) Z 1 ...... X [(k 1)T0 ]Z ( k 1) ]} Z [ X ( Z ) X (nT0 ) Z n ]

通用的离散频谱相位差校正方法

通用的离散频谱相位差校正方法
[!%] 频率和相位 , 这种方法进一步发展成为时移相位差法, 平 [!"] 移的点数是可以选择的 ; 第二种做法是只采样一段时域信
!
(!)
其中, 由对称窗 C( 在时间上平移 B A " 得到, 即 CB( ! &) ! &) ) ( ) (") CB( & Z C & R B A " ! ! 设 C( 的傅立叶变换为: ! &) [ C( ] D Z E( ! &) ! *) (*)
%$ "
上式中, 必须保证 (&&) ,& , & ,! $ !"+ 上面所有推导没有具体利用哪一种窗函数, 所以通用的 相位差校正方法适用于所有的对称窗函数 % 时域平移相位差 法、 改变窗长的相位差法实际上分别是通用相位差当 ,& " ! 和 ,! " + 的特例 %
#
通用相位差法的离散频谱校正实现方法
摘 要: 现有三种离散频谱相位差校正法的基本原理是一致的, 通过时移和加不同的对称窗进行两次 ++, 分 析, 并利用离散频谱对应峰值谱线的相位差以求得频率和相位校正量 - 在此基础上提出了通用离散频谱相位差校正方 法: 时域平移 . 改变窗长 . 改变窗函数, 即第二段时域序列比第一段滞后 / 点, 采用不同窗函数对两段时域分别作 0 点和 1 点的 ++, 分析 - 文献 [!%] 、 文献 [’] 和文献 [!!] 提出的校正方法是此法改变不同参数的三个特例 - 仿真结果表 明, 该方法实现方便, 精度较高, 适合各种对称窗函数, 抗噪声能力强 关键词: 频谱分析;校正;信号处理;相位差 ,0’’!#) 文献标识码: 2 文章编号: %*$"3"!!"("%%*)%!3%!&"3%& 中图分类号:

频谱校正方法

频谱校正方法

频谱校正方法
温馨提示:文档内容仅供参考
频谱校正是指对频谱信号进行校正以消除信号中的误差或非线性响应。

下面介绍几种常见的频谱校正方法:
线性插值法:该方法适用于频谱信号中的离散点不均匀分布的情况。

线性插值法通过在频率域上的两个离散点之间线性插值,获得一条直线,从而对频谱信号进行插值。

多项式拟合法:该方法适用于频谱信号中的误差具有一定的规律性。

多项式拟合法通过将原始信号拟合成一个多项式函数,从而对频谱信号进行校正。

傅里叶变换法:该方法适用于频谱信号中的非线性响应较为明显的情况。

傅里叶变换法通过将原始信号进行傅里叶变换,将频域中的非线性响应转换为时域中的线性响应,从而对频谱信号进行校正。

平滑法:该方法适用于频谱信号中存在噪声的情况。

平滑法通过对频谱信号进行平滑处理,从而减少噪声对频谱信号的影响。

需要根据实际情况选择适当的频谱校正方法进行使用。

线性离散系统的分析与校正 PPT课件

线性离散系统的分析与校正 PPT课件

xiT t iT i0
2. 采样定理 采样定理给出了从离散信号不失真地恢复原来信号所需的 最低采样频率。
(1)采样信号的频谱
冲量为1的理想脉冲序列
Ts t t nTs
n
写成傅立叶级数的复数形式
Ts
1 Ts
e jnst
n
式中, s 2 / Ts ,称为采样角频率。
设: xt 0 t 0
Zx*t X z
注意: Z x*t记为 X z,借用了函数符号 X • ,但是,
X z X s |sz 。
还需指出, X z 是采样脉冲序列 x* t 的 Z 变换。
从定义可以看出,它只考虑了采样时刻的信号值 xnTs 。
对一个连续函数 xt ,由于在采样时刻 xt 的值就是 xnTs
例 试求正弦函数 sin t 的Z变换。
Lsint
s21/2 j
s j
Zsint
1 2j
z z e jTs
1 2j
z z e jTs
z2
z sin Ts
2 cosTs z
1
4 Z变换的基本定理
(1)线性定理
设连续时间函数 x1t及 x2 t的 Z 变换分别为 X1 z和
第七章 线性离散系统的分析与校正
7.1 离散时间控制系统
连续时间系统 离散时间系统
1. 采样控制系统
(1) 工业自动控制系统中,被控对象的惯性非常大, 且具有滞后特性,采用连续控制往往得不到高质 量的控制效果。而利用采样控制技术则可以解决 这类问题。适当选择控制周期,可以得到满意的 控制效果。
(2) 现代工业中,引入了质量测量仪表、成分分析仪 表等,这些质量仪表都含有定时采样器。因此, 含有质量仪表的控制系统就是一种采样控制系统。

离散频谱时移相位差校正法

离散频谱时移相位差校正法

!
收稿日期: &"""#"%#&%;修订日期: &""&#",#&) 基金项目: 国家自然科学基金资助项目 ()""%)",’) ; 国家教育部高等学校骨干教师资助计划项目 (教 技司 [&"""] *) 号) 作者简介: 丁康 (!’)%—) , 男, 浙江天台人, 教授, 硕士 ( D#A35;: E=546F C?GH <=GH B4) H
表 . ? - 分别是当 & 取 ./ 点、 在没有噪声和加噪声情况下校正前后数据 .// 点和 ./*0 点, 对比・ 从图表中可以得出以下结论: 如本例中的 *+:9+12 和 ,:*9:12, 这种相位差法对频率、 幅值 .)对间隔较远的频率成分, 万方数据
图!
两段信号加窗作 谱后相位比较
# "&)’ "&’ # ( ’ )$ # ! ! $ !( "( " . " $ ! - ! $ " ’ )% ! ( ’ - )’ ) # "& , (!)) ! !%# "&’ + ! (!*) )’ $ ! # "& + ! ・ 令# $ ! ( , 由于相位是在 ( %" , ) 之间, 周期为 # , 所以# 可能超过 ( %" , ) ’ & + !) !%# " " " " 这一区间, 所以在实际计算中应取# 除以 # "后的余数: ( ) # # $ ( +,#, " ・ 再作如下调整 ( ) , # / %" ( ) # 0 -" ・ 成立, 必须满足 此时要式 (!*) (!.)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档