初二动态几何问题

初二动态几何问题
初二动态几何问题

初二动态几何问题

一、动态几何问题涉及的几种情况

动态几何问题就其运动对象而言,有:

1、点动(有单动点型、多动点型).

2、线动(主要有线平移型、旋转型)。线动实质就是点动,即点动带动线动,进而还会产生形动,因而线动型几何问题可以通过转化成点动型问题来求解.

3、形动(就其运动形式而言,有平移、旋转、翻折、滚动)

二、解决动态几何问题的基本思考策略与分析方法:

动态型问题综合了代数、几何中较多的知识点,解答时要特别注意以下七点:

1、把握运动变化的形式及过程;

2、思考运动初始状态时几何元素的关系,以及可求出的几何量;

3、动中取静:(最重要的一点)

要善于在“动”中取“静”(让图形和各个几何量都“静”下来),抓住变化中的“不变量”和不变关系为“向导”,求出相关的常量或者以含有变量的代数式表示相关的几何量;

4、找等量关系:利用面积关系、相似三角形的性质、勾股定理、特殊图形等的几何性质及相互关系,找出基本的等量关系式;

5、列方程:将相关的常量和含有变量的代数式代入等量关系建立方程或函数模型;

(某些几何元素的变化会带来其它几何量的变化,所以在求变量之间的关系时,通常建立函数模型或不等式模型求解。在解决有关特殊点、特殊值、特殊位置关系问题时常结合图形建立方程模型求解)

6、是否以及怎么分类讨论:

将变化的几何元素按题目指定的运动路径运动一遍,从动态的角度去分析观察可能出现的情况,看图形的形状是否改变,或图形的有关几何量的计算方法是否改变,以明确是否需要根据运动过程中的特殊位置分类讨论解决,

7、确定变化分界点:

若需分类讨论,要以运动到达的特殊点为分界点,画出与之对应情况相吻合的图形,找到情况发生改变的时刻,确定变化的围分类求解。

例:如图,有一边长为5cm的正方形ABCD和等腰三角形△RQR,PQ=PR=5cm,QR=8cm,点B、C、Q、R在同一条直线ι上,当C、Q两点重合时开始,t秒后正方形ABCD与等腰△PQR重合部分的面积为Scm2.

.解答下列问题:(1)当t=3秒时,求S的值;

(2)当t=5秒时,求S的值;

(3)当5秒≤t≤8秒时,求S与t的函数关系式,并求出S的最大值.

实验操作

【要点导航】

通过实验操作——观察猜想——科学论证,使我们体验和学到了发现、获得知识的过程和方法. 实验操作探索——理解题意、实验操作是基本保证,观察猜想、探索结论是关键,论证猜想的结论是落实.

【典例精析】

例1取一矩形纸片进行折叠,具体操作过程如下:

第一步:先把矩形ABCD对折,折痕为MN,如图1;第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B',得R t△AB'E,如图2;第三步:沿EB'线折叠得折痕EF,使A点落在EC的延长线上,如图3.利用展开图4探究:

(1)△AEF是什么三角形?证明你的结论;

(2)对于任一矩形,按照上述方法能否折出这种三角形?请说明你的理由.

ι

A

B Q

C R

P

D

例2 已知:在△ABC 中,∠BAC =90°,M 为BC 中点.操作:将三角板的90°角的顶点与点M 重合,并绕着点M 旋转,角的两边分别与边AB 、AC 相交于点E 、F .

(1)探究1:线段BE 、EF 、FC 是否能构成三角形?如果可以构成三角形,那么是什么形状的三角形?请证明你的猜想.

(2)探究2:若改变为:“角的两边分别与边AB 、直线AC 相交于点E 、F .”其它条件都不变的情况下,那么结论是否还存在?请画出对应的图形并请证明你的猜想.

【训练】

1. ★★★如图,在正方形ABCD 中,点E 在边AB 上(点E 与点A 、B 不重合),过点E 作FG ⊥DE ,FG 与边BC 相交于点F ,与边DA 的延长线相交于点G .

(1)操作:由几个不同的位置,分别测量BF 、AG 、AE 的长,从中你能发现BF 、AG 、

AE 的数量之间具有怎样的关系?并证明你所得到的结论;

(2)连结DF ,如果正方形的边长为2,设AE=x ,△DFG 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域;

(3)如果正方形的边长为2,FG 的长为2

5

,求点C 到直线DE 的距离.

2. ★★★操作:将一把三角尺放在边长为1的正方形ABCD 上,并使

它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B ,另一边与射线DC 相交于点Q .

探究:设A 、P 两点间的距离为x .

(1)当点Q 在边CD 上时,线段PQ 与线段PB 之间有怎样的大小关系?试证明你观察得到结论;

(2)当点Q 在边CD 上时,设四边形PBCQ 的面积为y ,求y 与x 之间的函数解析式,

M

F D A

C

B

D A

C

B

供试验操作用

并写出函数的定义域;

(3)当点P 在线段AC 上滑动时,△PCQ 是否可能成为等腰三角形?如果可能,指出所有能使△PCQ 成为等腰三角形的点Q 的位置,并求出相应的x 的值;如果不可能,试说明理由.(图5、图6、图7的形状大小相同,图5供操作、实验用,图6和图7备用)

3. ★★★在△ABC 中,AB =AC ,CG ⊥BA 交BA 的延长线于点G .一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F ,一条直角边与AC 边在一条直线上,另一条直角边恰好经过点B .

(1)在图1中请你通过观察、测量BF 与CG 的长度,猜想并写出BF 与CG 满足的数量关系,然后证明你的猜想;

(2)当三角尺沿AC 方向平移到图2所示的位置时,一条直角边仍与AC 边在同一直线上,另一条直角边交BC 边于点D ,过点D 作DE ⊥BA 于点E .此时请你通过观察、测量DE 、DF 与CG 的长度,猜想并写出DE +DF 与CG 之间满足的数量关系,然后证明你的猜想;

(3)当三角尺在(2)的基础上沿AC 方向继续平移到图3所示的位置(点F 在线段AC 上,且点F 与点C 不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)

4. ★★如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线. 实验与探究:

(1)由图观察易知A (0,2)关于直线l 的对称点A '的坐标为(2,0),请在图中分别标明B (5,3) 、C (-2,5) 关于直线l 的对称点B '、C '的位置,并写出他们的坐标:

D

A

C

B

5

D

A

C

B

6

D

A

C

B

7

图3

图1

归纳与发现:

(2)结合图形观察以上三组点的坐标,你会发现:坐

标平面任一点P(a,b)关于第一、三象限的角平分线l的对

称点P'的坐标为(不必证明);

运用与拓广:

(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确

定一点Q,使点Q到D、E两点的距离之和最小,并求出Q

点坐标.

探索性问题

探索性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的题型.探索性问题一般有三种类型:(1)条件探索型问题;(2)结论探索型问题;(3)探索存在型问题.条件探索型问题是指所给问题中结论明确,需要完备条件的题目;结论探索型问题是指题目中结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论;探索存在型问题是指在一定的前提下,需探索发现某种数学关系是否存在的题目.

条件探索

【要点导航】

“探索”是人类认识客观世界过程中最生动、最活跃的思维活动,探索性问题存在于一切学科领域之中,数学中的“条件探索”题型,是指命题中缺少一定的题设,需经过推断、补充并加以证明的命题,因而必须利用题设大胆猜想、分析、比较、归纳、推理,由结论去探索未给予的条件。由于题型新颖、综合性强、结构独特,此类问题的一般解题思路并无固定模式或套路,因而具体操作时要更注重数学思想方法的综合应用.

【典例精析】

<),连结例1如图,在线段AE的同侧作正方形ABCD和正方形BEFG(BE AB

⊥,垂足为N,MN交BD于点P.设正方EG并延长交DC于点M,过M作MN AB

形ABCD的边长为1.

(1)证明△CMG≌△NBP;

(2)设BE =x ,四边形MGBN 的面积为y ,求y 关于x 的函数解析式,并写出定义域. (3)如果按照题设方法作出的四边形BGMP 是菱形,求BE 的长. (4)联结PG ,若BPG ?能否成为直角三角形?如果能,求BE 的长; 如果不能,请说明理由.

(5)联结AC 、AF 、CF ,求证△ACF 的面积为定值.

〖思路分析〗

1.第(3)小题把四边形BGMP 是菱形作为条件探索BE 的长.

2.BPG ?中∠PBG 始终是45°,而∠BPG 和∠PGB 有可能为

90°,要分情况讨论. 3.第(5)小题即可用割补法求也可用利用AC ∥BF 将△ACF 的面积转化为△ABC 的面积. 例2

在等边△ABC 的两边AB 、AC 所在直线上分别有两点M 、N .D 为△ABC 外一点,且∠MDN

=60°,∠BDC =120°,BD =DC . 探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、

MN 之间的数量关系及△AMN 的周长Q 与等边△ABC 的周长L 的关系.

(1)如图1所示,当点M 、N 在边AB 、AC 上,且DM =DN 时,BM 、NC 、MN 之间的数量

关系是; 此时

=L

Q

;(不必证明) (2)如图2所示,点M 、N 在边AB 、AC 上,且当DM ≠DN 时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;

(3) 如图3所示,当M 、N 分别在边AB 、CA 的延长线上时,若AN =2,则Q =(用含有L 的式子表示).

【训练】

1. ★★★如图1所示,直线AB 交x 轴于点A (A ,0),交y 轴于点B (0,B ),且A 、

B 2(4)0a -=.

A B E

F

G

C

M D

P

C

图1

C

图2

C

图3

(1)如图1,若C 的坐标为(-1,0),且AH ⊥BC 于点H ,AH 交OB 于点P ,试求点P 的坐标;

(2)如图2,连接OH ,求证:∠OHP =45°;

(3)如图3,若点D 为AB 的中点,点M 为y 轴正半轴上一动点,连接MD ,过D 作DN ⊥DM 交x 轴于N 点,当M 点在y 轴正半轴上运动的过程中,式子S △BDM -S △ADN 的值是否发生改变,如发生改变,求出该式子的值的变化围;若不改变,求该式子的值.

2. ★★★已知BD 、CE 分别是ABC △的AC 边、AB 边上的高,M 是BC 边的中点,分别联结MD 、ME 、DE .

(1)当?<∠90BAC 时,垂足D 、E 分别落在边AC 、AB 上,如图1.求证:EM DM =. (2) 当?>∠90BAC 时,垂足D 、E 分别落在边AC 、AB 所在的直线上,如图2,问(1)中的结论是否依然成立?无需说明理由,直接写出答案即可;若?=∠135BAC ,试判断

DEM △的形状,简写解答过程.

(3)设BAC ∠的度数为x ,DME ∠的度数为y ,求y 与x 之间的函数关系式.

3. ★★★如图1,已知∠ABC =90°,△ABE 是等边三角形,点P 为射线BC 上任意一点(点P 与点B 不重合),连结AP ,将线段AP 绕点A 逆时针旋转60°得到线段AQ ,连结QE

A

B

O

y x

N M

D

图3

A B

C

H

P

O

y

x

图2

x

y

O

P

H

C

B

A

图1

A

B C

(备用图)

A

B

C D

M E

图2

A

B

C

D

E

图1

并延长交射线BC 于点F .

(1)如图2,当BP =BA 时,∠EBF =°,猜想∠QFC =°;

(2)如图1,当点P 为射线BC 上任意一点时,猜想∠QFC 的度数,并加以证明;

(3)已知线段AB =32,设BP =x ,点Q 到射线BC 的距离为y ,求y 关于x 的函数关系式.

结论探索 【要点导航】

探索性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的题型.探索性问题一般有三种类型:(1)条件探索型问题;(2)结论探索型问题;(3)探索存在型问题.条件探索型问题是指所给问题中结论明确,需要完备条件的题目;结论探索型问题是指题目中结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论;探索存在型问题是指在一定的前提下,需探索发现某种数学关系是否存在的题目.

探索型问题具有较强的综合性,因而解决此类问题用到了所学过的整个初中数学知识.经常用到的知识是:一元一次方程、平面直角坐标系、正、反比例和一次函数的求法(图象及其性质)、直角三角形的性质、四边形(特殊)的性质、等.其中用几何图形的某些特殊性质:勾股定理、相似三角形对应线段成比例等来构造方程是解决问题的主要手段和途径.因此复习中既要重视基础知识的复习,又要加强变式训练和数学思想方法的研究,切实提高分析问题、解决问题的能力.

【典例精析】

例1 如图1,在△ABC 中,∠ACB = 90°,AC = BC ,AB = 8,CD ⊥AB ,垂足为点D .M 为边AB 上任意一点,点N 在射线CB 上(点N 与点C 不重合),且MC = MN ,NE ⊥AB ,垂足为点E .当点M 在边AB 上移动时,试探索线段ME 的长是否会改变?说明你的理由.

图1

A

B

E

Q

F P 图2

A

B

E Q P

F A

B

C

D

N

M E

〖思路分析〗

射线CB 包括线段CB 和线段CB 的延长线两部分,点N 在射线CB 上运动时,可证明△CMD 和△MEN 全等,所以线段ME 的长始终和线段CD 相等,所以不会改变长度.

例2如图,已知在正方形ABCD 中,AB = 2,P 是边BC 上的任意一点,E 是边BC 延长线上一点,联结AP .过点P 作PF ⊥AP ,与∠DCE 的平分线CF 相交于点F .联结AF ,与边CD 相交于点G ,联结PG . (1)求证:AP = FP ;

(2)探索线段BP 、DG 、PG 之间的数量关系,并给出证明过程; (3)当BP 取何值时,PG // CF .

〖思路分析〗

1.过点F 作FH ⊥BC ,结合所给条件无法证明△ABP 和△PHF 全等.在边AB 上截取线段

AH ,使AH = PC ,便可证明△AHP ≌△PCF .

2.由第(1)小题的结论得△APF 是等腰直角三角形,所以∠PAF =45°,将△ADG 绕点

A 顺时针旋转90°后,BP 与DG 联结成一条线段,通过全等三角形可证BP 与DG 的和等于PG .

3.当PG // CF 时,△PCG 是等腰直角三角形,由第(2)小题结论得PG =DG +BP ,在R t △PCG 中,由勾股定理可求得BP 的长.

【训练】

第 天 ,年 月 日

1. ★★已知:在△ABC 中,AB =AC ,点P 在直线BC 上,PD ⊥AB 于点D ,PE ⊥AC 于点E ,

BH 是△ABC 的高.

(1)当点P 在边BC 上时,求证:PD +PE =BH

(2)当点P 在边BC 的延长线上时,试探索PD 、PE 和BH 之间的数量关系.

2. ★★★已知等边△ABC 和点P ,设点P 到△ABC 三边AB 、AC 、BC 的距离分别为H 1,

H 2,H 3,△ABC 的高为H .“若点P 在一边BC 上如图(1),此时H 3=0可得结论:H 1+H 2+H 3

=H .”请直接应用上述信息解决下列问题:当点P 在△ABC 如图(2),以及点P 在△ABC 外

B

A

C

D E

P

F

G

如图(3)这两种情况时,上述结论是否成立?若成立,请予以证明;若不成立,H 1,H 2,H 3与H 之间又有怎样的关系,请写出你的猜想,不需要证明.

3. ★★★已知在正△ABC 中,AB =4,点M 是射线AB 上的任意一点(点M 与点A 、B 不重合),点N 在边BC 的延长线上,且AM = CN .联结MN ,交直线AC 于点D .设AM = x ,CD = y .

(1)如图,当点M 在边AB 上时,求y 关于x 的函数解析式,并写出自变量x 的取值围.

(2)当点M 在边AB 上,且四边形BCDM 的面积等于△DCN 面积的4倍时,求x 的值.

(3)过点M 作ME ⊥AC ,垂足为点E .当点M 在射线AB 上移动时,线段DE 的长是否会改变?请证明你的结论.

4. ★★★在R t △ABC 中,∠C =900

,∠A =300

,AB =4,将一个300

角的顶点P 放在AB 边上滑动,保持300

角的一边平行于BC ,且交边AC 于点E ,

300

角的另一边交射线..BC 于点D ,联结ED .

(1)如图1,当四边形PBDE 为等腰梯形时,求AP 的长;

(2)四边形PBDE 有可能为平行四边形吗?若可能,求出PBDE 为平行四边形时AP 的长;若不可能,说明理由;

(3)若D 在BC 边上(不与B 、C 重合),试写出线段AP 取值围。

5. ★★★在梯形ABCD 中,AD //BC ,AB=CD=AD =5cm ,BC =11cm ,点P 从点D 出发沿DA 边以每秒1cm 的速度移动,点Q 从点B 出发,沿BC 边以每秒2cm 的速度移动(当点P 到达

A

B

C M

N

D

A

B

C

P

E

300

(图1)

图1 图2 图3

点A 时,点P 与点Q 同时停止移动),假设点P 移动的时间为x (秒),四边形ABQP 的面积为y (平方厘米)。

(1)求y 关于x 的函数解析式,并写出它的定义域; (2)在移动的过程中,求四边形ABQP 的面积与四边形QCDP 的面积相等时x 的值;

(3)在移动的过程中,是否存在x 使得PQ =AB ,若存在求出所有的x 的值,若不存在请说明理由

6. ★★★★如图,平面直角坐标系中,O 是坐标原点,正比例

函数kx y =(x 为自变量)的图像与双曲线x

y 2

-=交于点A ,且点

A 的横坐标为2-.

(1)求k 的值;

(2)将直线kx y =(x 为自变量)向上平移4个单位得到直线BC ,直线BC 分别交x 轴、y 轴于B 、C ,如点D 在直线BC 上,在平面直角坐标系中求一点P ,使以O 、B 、D 、P 为顶点的四边形是菱形.

7. ★★★★如图1,直线122+-=x y 分别与x 轴、y 轴交于点A 、B ,点

C 是线段AB 的中点,点

D 在线段OC 上,点D 的纵坐标为4.

(1)求点C 的坐标和直线AD 的解析式;

(2)P 是直线AD 上的点,请你找一点Q ,使以O 、A 、P 、Q 这四个点为顶点的四边形是菱形,写出所有满足条件的点Q 的坐标.

猜想证明

【要点导航】

此类问题通常由一个特殊图形到一般情况,引出一系列探究的问题.经历对一些命题和结论的猜想、证明、推广的过程,体会知识之间的在联系,感受特殊到一般、数形结合等数学思想,对学生的想象、思维、归纳、分析都有较高的要求.此类题目变式多,证明方式也不尽相同,可以说是精彩纷呈.借题发挥,拓宽视野,这样做不仅有助于学生综合而灵活的运用知识,而且能不断提高学生独立探究问题解决的能力,更有助于培养学生思维的深刻性与批判性。

【典例精析】

例1如图1,已知点D 在AC 上,△ABC 和△ADE 都是等腰直角三角形,点

M 为EC 的中点.

(1)求证:△BMD 为等腰直角三角形.

(2)将△ADE 绕点A 逆时针旋转?45,如图2,(1)中的“△BMD 为等腰直角三角形”是否仍然成立?请说明理由.

(3)将ADE ?绕点A 逆时针旋转?135,如图3,(1)中的“BMD ?为等腰直角三角形”成立吗?(不用说明理由).

(4)我们是否可以猜想,将ADE ?绕点A 任意旋转一定的角度,如图4,(1)中的“BMD ?为等腰直角三角形”均成立? 〖思路分析〗

1. 利用直角三角形斜边中线性质和

三角形的外角和定理不难证明DM 与BM 垂直且相等.

2. 将△ADE 绕点A 转过?45或?135时,加倍延长DM ,可构造出全等三角形,再利用等腰三角形三线合一的性质可证明BMD ?为等腰直角三角形.

3. 将△ADE 绕点A 任意旋转一定的角度时,可以D 、M 、B 为顶点构造正方形再证明

BMD ?为等腰直角三角形.

例2点A 、B 、C 在同一直线上,在直线AC 的同侧作ABE ?和BCF ?,连接AF ,CE .取

AF 、CE 的中点M 、N ,连接BM ,BN , MN .

A

B

C

D

E M

图1 A

B

C

D E

M

图2 A

B

C

D E M

图3

A

B

C

D E

M

图4

(1)若ABE ?和FBC ?是等腰直角三角形,且0

90=∠=∠FBC ABE (如图1),则

MBN ?是

三角形.

(2)在ABE ?和BCF ?中,若BA =BE ,BC =BF ,且α=∠=∠FBC ABE ,(如图2),则MBN ?是三角形,且=∠MBN .

(3)若将(2)中的ABE ?绕点B 旋转一定角度,(如图3),其他条件不变,那么(2)中的结论是否成立? 若成立,给出你的证明;若不成立,写出正确的结论并给出证明.

〖思路分析〗

1.△ABF 和△EBC 可看作绕点B 旋转90°后可重合的两个三角形,BM 和BN 是对应斜边上的中线,夹角为90°,所以MBN ?是等腰直角三角形.

2.∠MBN 可看作是两个全等三角形△ABF 和△EBC 对应边上的中线,它们的夹角∠MBN 和对应边的夹角∠ABE 和∠FBC 相等.

3.要证明∠MBN 和∠FBC 相等,只要证明∠FBM 和∠CBN 相等,所以要证明△MFB 和△

NCB 全等.

〔训练】

1. ★★★如图1,四边形ABCD ,将顶点为A 的角绕着顶点A 顺时针旋转,若角的一条边与

DC 的延长线交于点F ,角的另一条边与CB 的延长线交于点E ,连接EF .

(1)若四边形ABCD 为正方形,当∠EAF =45°时,有EF =DF -BE .请你思考如何证明这个结论(只思考,不必写出证明过程);

(2)如图2,如果在四边形ABCD 中,AB =AD ,∠ABC =∠ADC =90°,当∠EAF =

2

1

∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出它们之间的关系式(只需写出结论);

A B C

E

F

M

N

图1 A B

C

E

F

M

N

图2

A

B C

E

F

M

N

图3

(3)如图3,如果四边形ABCD 中,AB =AD ,∠ABC 与∠ADC 互补,当∠EAF =

2

1

∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出它们之间的关系式并给予证明.

(4)在(3)中,若BC =4,DC =7,CF =2,求△CEF 的周长(直接写出结果即可).

2. ★★★在正方形ABCD 的边AB 上任取一点E ,作EF ⊥AB 交BD 于点F ,取FD 的中点G ,

连接EG 、CG ,如图1,易证EG =CG 且EG ⊥CG .

(1)将△BEF

绕点B 逆时针旋转90°,如图2,则线段EG 和CG 有怎样的数量关系和位置关系?请直接写出你的猜想.

(2)将△BEF 绕点B 逆时针旋转180°,如图3,则线段EG 和CG 又有怎样的数量关系

和位置关系?请写出你的猜想,并加以证明.

3. ★★★已知正方形ABCD 中,E 为对角线

BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接

DF ,G 为DF 中点,连接EG ,CG .

(1)直接写出线段EG 与CG 的数量关系;

(2)将图1中△BEF 绕B 点逆时针旋转45o,如图2所示,取DF 中点G ,连接EG ,CG . 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.

E A

B

C

D

E

F

图2

A

B

C

D

E

F

图3

D

图1

D

图2

D

(3)将图1中△BEF 绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)

4. ★★★如图, 已知等边三角形ABC 中,点D 、E 、F 分别为边AB 、AC 、BC 的中点,M 为

直线BC 上一动点,△DMN 为等边三角形(点M 的位置改变时,△DMN 也随之整体移动). (1)如图1,当点M 在点B 左侧时,请你连结EN ,并判断EN 与MF 有怎样的数量关系?点F 是否在直线NE 上?请写出结论,并说明理由;

(2)如图2,当点M 在BC 上时,其它条件不变,(1)的结论中EN 与MF 的数量关系是否仍然成立? 若成立,请利用图2证明;若不成立,请说明理由;

(3)如图3,若点M 在点C 右侧时,请你判断(1)的结论中EN 与MF 的数量关系是否仍然成立? 若成立,请直接写出结论;若不成立,请说明理由. (图1) (图2

( 图3)

M

D 图1

D 图2

F

B A

C

E

图3

D

初二动态几何问题.

初二动态几何问题 一、动态几何问题涉及的几种情况 动态几何问题就其运动对象而言,有: 1、点动(有单动点型、多动点型). 2、线动(主要有线平移型、旋转型)。线动实质就是点动,即点动带动线动,进而还会产生形动,因而线动型几何问题可以通过转化成点动型问题来求解. 3、形动(就其运动形式而言,有平移、旋转、翻折、滚动) 二、解决动态几何问题的基本思考策略与分析方法: 动态型问题综合了代数、几何中较多的知识点,解答时要特别注意以下七点: 1、把握运动变化的形式及过程; 2、思考运动初始状态时几何元素的关系,以及可求出的几何量; 3、动中取静:(最重要的一点) 要善于在“动”中取“静”(让图形和各个几何量都“静”下来),抓住变化中的“不变量”和不变关系为“向导”,求出相关的常量或者以含有变量的代数式表示相关的几何量; 4、找等量关系:利用面积关系、相似三角形的性质、勾股定理、特殊图形等的几何性质及相互关系,找出基本的等量关系式; 5、列方程:将相关的常量和含有变量的代数式代入等量关系建立方程或函数模型; (某些几何元素的变化会带来其它几何量的变化,所以在求变量之间的关系时,通常建立函数模型或不等式模型求解。在解决有关特殊点、特殊值、特殊位置关系问题时常结合图形建立方程模型求解) 6、是否以及怎么分类讨论: 将变化的几何元素按题目指定的运动路径运动一遍,从动态的角度去分析观察可能出现的情况,看图形的形状是否改变,或图形的有关几何量的计算方法是否改变,以明确是否需要根据运动过程中的特殊位置分类讨论解决, 7、确定变化分界点: 若需分类讨论,要以运动到达的特殊点为分界点,画出与之对应情况相吻合的图形,找到情况发生改变的时刻,确定变化的范围分类求解。

初中数学动态几何问题

[导读] 点动、线动、形动构成的问题称之为动态几何问题。它主要以几何图形为载体,运动变化为主线 摘要:本文结合笔者的教学实践对初中数学教学中的动态几何问题进行了探讨。 关键词:二次函数;动点;动线;动态 作者简介:郭兴淑,任教于云南腾冲一中。 点动、线动、形动构成的问题称之为动态几何问题。它主要以几何图形为载体,运动变化为主线,函数为背景,集多个知识点为一体,集多种解题思想于一题。这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.本类问题主要有动点、动线、动面三个方面的问题。其中动点问题有单动点和双动点两种类型,无论是动点、动线、单动点还是双动点,我们都要注意到如何在动中求静,在静中求解,找到相应的关系式,把想知道的量用常量或含自变量的关系式表示出来。下面就以二次函数为背景的动态问题和单纯几何图形变化的动态问题采撷几例加以分类浅析,供读者参考。 动态问题在中考中占有相当大的比重,主要由综合性问题构成,就运动而言,可以分为三类:动点、动线、动形;就题型而言,包括计算题、证明题和应用题等。它的题型特点和考查功能决定了审题思考的复杂性和解题设计的多样性。一般的,解题设计要因题定法。无论是整体考虑还是局部联想,确定方法都必须遵循的原则是:熟悉化原则、具体化原则;简单化原则、和谐化原则等。 动态问题一直是近几年数学中考的一个热点,随着编者的不断刨新,动态问题又有升温,比如双动问题就是中考中的最新风景区,他可以培养同学们在运动变化中发展空间想象能力.这类问题只要我们掌握“动中有静,静观其变,动静结合”的基本解题策略,我们就能以不变碰多变.以下列举近几年数学中考的两类双动问题供读者参考交流. 随着新课程改革的进行,全国各地的中考试卷异彩纷呈,尤其是解答题中的动态问题,集数与代数、空间与图形两大内容于一体,题型新颖,阅读量大,考查面广.为体现中考试

最新初二数学上册几何知识点总结

初二数学上册几何知识点总结 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等

初二动态几何问题之令狐文艳创作

初二动态几何问题 令狐文艳 一、动态几何问题涉及的几种情况 动态几何问题就其运动对象而言,有: 1、点动(有单动点型、多动点型). 2、线动(主要有线平移型、旋转型)。线动实质就是点动,即点动带动线动,进而还会产生形动,因而线动型几何问题可以通过转化成点动型问题来求解. 3、形动(就其运动形式而言,有平移、旋转、翻折、滚动) 二、解决动态几何问题的基本思考策略与分析方法: 动态型问题综合了代数、几何中较多的知识点,解答时要特别注意以下七点: 1、把握运动变化的形式及过程; 2、思考运动初始状态时几何元素的关系,以及可求出的几何量; 3、动中取静:(最重要的一点) 要善于在“动”中取“静”(让图形和各个几何量都“静”下来),抓住变化中的“不变量”和不变关系为“向导”,求出相关的常量或者以含有变量的代数式表示相关的几何量;

4、找等量关系:利用面积关系、相似三角形的性质、勾股定理、特殊图形等的几何性质及相互关系,找出基本的等量关系式; 5、列方程:将相关的常量和含有变量的代数式代入等量关系建立方程或函数模型; (某些几何元素的变化会带来其它几何量的变化,所以在求变量之间的关系时,通常建立函数模型或不等式模型求解。在解决有关特殊点、特殊值、特殊位置关系问题时常结合图形建立方程模型求解) 6、是否以及怎么分类讨论: 将变化的几何元素按题目指定的运动路径运动一遍,从动态的角度去分析观察可能出现的情况,看图形的形状是否改变,或图形的有关几何量的计算方法是否改变,以明确是否需要根据运动过程中的特殊位置分类讨论解决,7、确定变化分界点: 若需分类讨论,要以运动到达的特殊点为分界点,画出与之对应情况相吻合的图形,找到情况发生改变的时刻,确定变化的范围分类求解。 例:如图,有一边长为5cm的正方形ABCD和等腰三角形△RQR,PQ=PR=5cm,QR=8cm,点B、C、Q、R在同一条直线ι上,当C、Q两点重合时开始,t秒后正方形ABCD与等腰△PQR重合部分的面积为Scm2. .解答下列问题:(1)当t=3秒时,求S的值;

最新初中数学动态几何探究题汇总大全

最新初中数学动态几何探究题汇总大全 【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角 函数等知识的综合运用. 【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解 决几何计算问题.还要灵活运用其他的数学思想方法等. 【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、 覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含 的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决. 【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综 合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势. 为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题. 类型1 操作探究题 1.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连接BD,过点D 作DF⊥AC于点F. (1)如图1,若点F与点A重合,求证:AC=BC; (2)若∠DAF=∠DBA. ①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由; ②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.

初二常见的几何题

1.如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E. (1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE; (2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为___; (3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长。 2.如图,已知B(?1,0),C(1,0),A为y轴正半轴上一点,点D为第二象限一动点,E在BD 的延长线上,CD交AB于F,且∠BDC=∠BAC. (1)求证:∠ABD=∠ACD; (2)求证:AD平分∠CDE; (3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中, ∠BAC的度数是否变化?如果变化,请说明理由;如果不变, 请求出∠BAC的度数? 3.如图,在△ABC中,AB=AC,点D在△ABC内,BD=BC,∠DBC=60°,点E在△ABC 外,∠BCE=150°,∠ABE=60°. (1)求∠ADB的度数; (2)判断△ABE的形状并加以证明; (3)连接DE,若DE⊥BD,DE=8,求AD的长。

4.在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1) (1)求证:∠BAD=∠EDC; (2)点E关于直线BC的对称点为M,连接DM,AM. ①依题意将图2补全; ②小姚通过观察,实验提出猜想:在点D运动的过程中,始终有DA=AM,小姚把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法: 想法1:要证明DA=AM,只需证△ADM是等边三 角形; 想法2:连接CM,只需证明△ABD≌△ACM即可。 请你参考上面的想法,帮助小姚证明DA=AM(一 种方法即可) 5.如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动). (1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由; (2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由; (3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF 的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由。

初中数学动态几何问题的求解策略

考数学试题中动态几何问题的求解策略 近年来,随着九年义务教育课程标准的深入实施,动态几何已悄悄进入到中考数学试题中,而且要求越来越高,越来越突出探究能力的考查。编制好的动态几何的题已成为中考命题者努力追求的目标之一。下面谈谈中考数学中动态几何的一些解题策略。 例1:已知⊙O 的弦AB 的长等于⊙O 的半径,点C 在⊙O 上变化(不与A 、B )重合,求∠ACB 的大小 . 分析:点C 的变化是否影响∠ACB 的大小的变化呢?我们不妨将点C 改变一下,如何变化呢?可能在优弧AB 上,也可能在劣弧AB 上变化,显然这两者的结果不一样。那么,当点C 在优弧AB 上变化时,∠ACB 所对的弧是劣弧AB ,它的大小为劣弧AB 的一半,因此很自然地想到它的圆心角,连结AO 、BO ,则由于AB=OA=OB ,即三角形ABC 为等边三角形,则∠AOB=600,则由同弧所对的圆心角与圆周角的关系得出:∠ACB= 2 1 ∠AOB=300, 当点C 在劣弧AB 上变化时,∠ACB 所对的弧是优弧AB ,它的大小为优弧AB 的一半,由∠AOB=600 得,优弧AB 的度数为3600-600=3000,则由同弧所对的圆心角与圆周角的关系得出:∠ACB=1500, 因此,本题的答案有两个,分别为300或1500. 反思:本题通过点C 在圆上运动的不确定性而引起结果的不唯一性。从而需要分类讨论。这样由点C 的运动变化性而引起的分类讨论在解题中经常出现。 变式1:已知△ABC 是半径为2的圆内接三角形,若32=AB ,求∠C 的大小. 本题与例1的区别只是AB 与圆的半径的关系发生了一些变化,其解题方法与上面一致,在三角形AOB 中, 2 321 21sin = =∠OB AB AOB ,则06021=∠AOB ,即0 120=∠AOB , 从而当点C 在优弧AB 上变化时,∠C 所对的弧是劣弧AB ,它的大小为劣弧AB 的一半,即0 60=∠C ,

初二几何动点问题专题

初二几何动点问题专题 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

1. 梯形ABCD 中,AD∥BC ,∠B=90°,AD=24cm ,AB=8cm ,BC=26cm ,动点P 从点A 开始,沿AD 边,以1厘米/秒的速度向点D 运动;动点Q 从点C 开始,沿CB 边,以3厘米/秒的速度向B 点运动。已知P 、Q 两点分别从A 、C 同时出发,,当其中一点到达端点时,另一点也随之停止运动。假设运动时间为t 秒,问: (1)t 为何值时,四边形PQCD 是平行四边形 (2)t 为何值时,四边形PQCD 是直角梯形 (3)在某个时刻,四边形PQCD 可能是菱形吗为什么 (4)t 为何值时,四边形PQCD 是等腰梯形 2. 如右图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点P 从A 开始沿折线A —B —C —D 以4cm/s 的速度运动,点Q 从C 开始沿CD 边1cm/s 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达点D 时,另一点也随之停止运动,设运动时间为t(s),t 为何值时,四边形APQD 也为矩形 3:如图,在等腰直角三角形ABC 中,斜边BC=4,OA ⊥BC 于O,点E 和点F 分别在边AB 、AC 上滑动并保持AE=CF,但点F 不与A 、C 重合,点E 不与B 、A 重合。 (1)判断?OEF 的形状,并加以证明。 (2)判断四边形AEOF 的面积是否随点E 、F 的变化而变化,若变化,求其变化范围,若不变化,求它的值. (3)设AE=x ,?AEF 的面积为y ,求的y 与x 的关系式。 4:在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点, (1)写出点O 到△ABC 的三个顶点 A 、B 、C 距离的大小关系。 (2)如果点M 、N 分别在线段AB 、AC 上移动,移动中保持AN =BM , 请判断△ A B C D P Q F E O C B A

动态几何问题的解题技巧

动态几何问题的解题技巧 解这类问题的基本策略是: 1.动中觅静:这里的“静”就是问题中的不变量、不变关系 ........,动中觅静就是在运动变化中探索问题中的 不变性 .... 2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使 一般情形转化为特殊问题 ...........,从而找到“动”与“静”的关系. 3.以动制动:以动制动就是建立图形中两个变量的函数关系 .........,通过研究运动函数,用联系发展的观点来研究变动元素的关系. 总之,解决动态几何问题的关键是要善于运用运动与变化的眼光去观察和研究图形,把握图形运动与变化 的全过程,抓住变化中的不变,以不变应万变 .............。 这类问题与函数相结合时,注意使用分类讨论的思想,运用方程的思想、数形结合思想、转化的思想等。 1、在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC、CB与点D、点E,图①,②,③是旋转得到的三种图形。 (1)观察线段PD和PE之间的有怎样的大小关系,并以图②为例,加以说明; (2)△PBE是否构成等腰三角形?若能,指出所有的情况(即求出△PBE为等腰三角形时CE的长,直接写出结果);若不能请说明理由。

2、如图,等腰Rt △ABC(∠ACB =90°)的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一直线上,开始时点C 与点D 重合,让△ABC 沿这条直线向右平移,直到点A 与点E 重合为止.设CD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y , (1)求y 与x 之间的函数关系式; (2)当△ABC 与正方形DEFG 重合部分的面积为3 2 时,求CD 的长. 3、在平面直角坐标系中,直线1l 过点A(2,0)且与轴y 平行,直线2l 过点B(0,1)且与轴x 平行,直线1l 与 2l 相交于点P 。点E 为直线2l 上一点,反比例函数 0,0(>>= k x x k y 且k ≠2)的图象过点E 且与直线1l 相交于点F. (1)写出点E 、点F 的坐标(用k 的代数式 表示); (2)求 PF PE 的值; (3)连接OE 、OF 、EF , 若△OEF 为直角三角形,求k 的值。 备用图

初二数学几何图形题(供参考)

1文档来源为:从网络收集整理.word 版本可编辑. G H F E D C B A 几何图形题 常见辅助线的作法有以下几种: 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、以等边三角形为基础 1.已知:如图1,点C 为线段AB 上一点,△ACM ,△CBN 都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F . (1)求证:AN=BM ; (2)求证:△CEF 为等边三角形; (3)将△ACM 绕点C 按逆时针方向旋转90 O ,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2) 两小题的结论是否仍然成立(不要求证明). 2.如图,△ABC 为等边三角形,AB=6cm ,O 为AB 上的任意一点(与B 点不重合),OD ⊥BC 于D ;DE ⊥AC 于E ;EP ⊥AB 于P 。问:当OB 的长等于多少时,点P 与点O 重合? 二、以等腰直角三角形为基础 3.如图1图2图3,△AOB ,△COD 均是等腰直角三角形,∠AOB =∠COD =90o, (1)在图1中,AC 与BD 相等吗,有怎样的位置关系?请说明理由。 (2)若△COD 绕点O 顺时针旋转一定角度后,到达图2的位置,请问AC 与BD 还相等吗,还具有那种位置关系吗?为什么? (3)若△COD 绕点O 顺时针旋转一定角度后,到达图3的位置,请问AC 与BD 还相等吗?还具有上问中的位置关系吗?为什么? 4.如图,两个全等的含30°、60°角的三角板ADE 和三角板ABC 放置在一起,∠DEA=∠ACB=90°,∠DAE=∠ABC=30°,E 、A 、C 三点在一条直线上,连接BD ,取BD 中点M ,连接ME 、MC ,试判断△EMC 的形状,并说明理由. 5.已知:在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的左侧作等腰直角△ADE ,解答下列各题:如果AB=AC ,∠BAC=90°. (i )当点D 在线段BC 上时(与点B 不重合),如图甲,线段BD ,CE 之间的关系为______________ (ii )当点D 在线段BC 的延长线上时,如图乙,i )中的结论是否还成立?为什么? 6.如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取 CG=AB ,连结AD 、AG 。 求证:(1)AD=AG , (2)AD 与AG 的位置关系如何? 7.在Rt △ABC 中,AB=AC ,∠BAC=90°,O 为BC 的中点.写出点O 到△ABC 的三个顶点A 、B 、C 的距离的大小关系, 并说明理由. (1)若点M 、N 分别是AB 、AC 上的点,且BM=AN ,试判断△OMN 形状,并证明你的结论. (2)S ?AMN 、s ?OMN 、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.

九年级数学复习专题动态几何问题

中考数学专题 动态几何问题 第一部分 真题精讲 【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒). C M B (1)当MN AB ∥时,求t 的值; (2)试探究:t 为何值时,MNC △为等腰三角形. 【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。所以当题中设定MN//AB 时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自然得出结果。 【解析】 解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形. A B M C N E D ∵AB DE ∥,AB MN ∥. ∴DE MN ∥. (根据第一讲我们说梯形辅助线的常用做法,成功将MN 放在三角形,将动态问题转化成平行时候的静态问题) ∴MC NC EC CD =. (这个比例关系就是将静态与动态联系起来的关键)

∴ 1021035 t t -=-.解得50 17t =. 【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解 【解析】 (2)分三种情况讨论: ① 当MN NC =时,如图②作NF BC ⊥交BC 于F ,则有2MC FC =即.(利用等腰三角形底边高也是底边中线的性质) ∵4 sin 5DF C CD ∠==, ∴3 cos 5C ∠=, ∴310225t t -=?, 解得25 8 t =. A B M C N F D ② 当MN MC =时,如图③,过M 作MH CD ⊥于H . 则2CN CH =, ∴()3 21025 t t =-?. ∴6017 t =. A B M C N H D ③ 当MC CN =时, 则102t t -=. 10 3t =. 综上所述,当258t = 、6017或103 时,MNC △为等腰三角形.

初二数学上册几何知识点

1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形

初二动态几何教案

动态几何问题 一、动态几何问题涉及的几种情况 动态几何问题就其运动对象而言,有: 1、点动(有单动点型、多动点型). 2、线动(主要有线平移型、旋转型)。线动实质就是点动,即点动带动线动,进而还会产生形动,因而线动型几何问题可以通过转化成点动型问题来求解. 3、形动(就其运动形式而言,有平移、旋转、翻折、滚动) 二、解决动态几何问题的基本思考策略与分析方法: 动态型问题综合了代数、几何中较多的知识点,解答时要特别注意以下七点: 1、把握运动变化的形式及过程; 2、思考运动初始状态时几何元素的关系,以及可求出的几何量; 3、动中取静:(最重要的一点) 要善于在“动”中取“静”(让图形和各个几何量都“静”下来),抓住变化中的“不变量”和不变关系为“向导”,求出相关的常量或者以含有变量的代数式表示相关的几何量; 4、找等量关系:利用面积关系、相似三角形的性质、勾股定理、特殊图形等的几何性质及相互关系,找出基本的等量关系式; 5、列方程:将相关的常量和含有变量的代数式代入等量关系建立方程或函数模型; (某些几何元素的变化会带来其它几何量的变化,所以在求变量之间的关系时,通常建立函数模型或不等式模型求解。在解决有关特殊点、特殊值、特殊位置关系问题时常结合图形建立方程模型求解) 6、是否分类讨论: 将变化的几何元素按题目指定的运动路径运动一遍,从动态的角度去分析观察可能出现的情况,看图形的形状是否改变,或图形的有关几何量的计算方法是否改变,以明确是否需要根据运动过程中的特殊位置分类讨论解决, 7、确定变化分界点: 若需分类讨论,要以运动到达的特殊点为分界点,画出与之对应情况相吻合的图形,找到情况发生改变的时刻,确定变化的范围分类求解。

八年级数学 几何动点问题专题

八年级数学几何动点问题专题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。 例题1.梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D运动;动点Q从点C开始,沿CB边,以3厘米/秒的速度向B点运动。已知P、Q两点分别从A、C同时出发,,当其中一点到达端点时,另一点也随之停止运动。假设运动时间为t秒,问: (2)t为何值时,四边形PQCD是直角梯形? (3)在某个时刻,四边形PQCD可能是菱形吗?为什么? (4)t为何值时,四边形PQCD是等腰梯形?

练习1. 如右图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A—B—C —D以4cm/s的速度运动,点Q从C开始沿CD边1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达点D时,另一点也随之停止运动,设运动时间为t(s),t 为何值时,四边形APQD也为矩形? 例2:如图,在等腰直角三角形ABC中,斜边BC=4,OA⊥BC于O,点E和点F分别在边AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与B、A重合。 (1)判断?OEF的形状,并加以证明。 (2)判断四边形AEOF的面积是否随点E、F的变化而变化,若变化,求其变化范围,若不变化,求它的值. (3)设AE=x,?AEF的面积为y,求的y与x的关系式。 F E O C B A

八年级数学动态几何综合探究题训练大全

八年级数学动态几何综合探究题训练大全 1.如图1,在正方形ABCD 中,点E ,F 分别是边BC ,AB 上的点,且CE=BF .连接DE ,过点E 作EG ⊥DE ,使EG=DE ,连接FG ,FC . (1)请判断:FG 与CE 的数量关系是________,位置关系是________;(2)如图2,若点E ,F 分别是边CB ,BA 延长线上的点,其它条件不变,(1)中结论是否 仍然成立?请作出判断并给予证明; (3)如图3,若点E ,F 分别是边BC ,AB 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断. 2.如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交 ∠BCA 的角平分线于点E ,交∠BCA 的外角平分线于点 F . (1)求证:EO=FO ; (2)当点O 运动到何处时,四边形 AECF 是矩形?并证明你的结论. A B C E F M N O (第19题图) B C

3.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α. (1)如图①,若α=90°,求AA′的长; (2)如图②,若α=120°,求点O′的坐标; 取得最小值时,(3)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′ 求点P′的坐标(直接写出结果即可) 4.正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE ⊥MN于点E,过点B作BF⊥MN于点F. (1)如图1,当O、B两点均在直线MN上方时,求证:AF+BF=2OE; (2)当正方形ABCD绕点A顺时针旋转至图2时.线段AF,BF与OE具有什么数量关系?并说明理由. (3)当运动到图3的位置时,线段AF、BF、OE之间又有怎样的数量关系?请直接写出你 的猜想.

《初二数学动点问题》专题分析

《初二数学动点问题》专题分析

初二数学“动点问题”分析 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查。 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。 在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等. 一、建立动点问题的函数解析式 函数揭示了运动变化过程中量与量之间的变化规律,

是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢? 1.应用勾股定理建立函数解析式。 2.应用比例式建立函数解析式。 3.应用求图形面积的方法建立函数关系式。 二、动态几何型压轴题 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。 (一)以动态几何为主线的压轴题。 1.点动问题。 2.线动问题。 3.面动问题。 (二)解决动态几何问题的常见方法有: 1.特殊探路,一般推证。 2.动手实践,操作确认。 3.建立联系,计算说明。 (三)本大类习题的共性: 1.代数、几何的高度综合(数形结合);着力于数学本质及核心内容的考查;四大数学思想:数学结合、分类讨论、方程、函数. 2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。

初二数学上册几何知识点总结

初二数学上册几何知识点 总结 The latest revision on November 22, 2020

初二数学上册几何知识点总结 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

初二几何动点问题专题

初二几何动点问题专题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

几何动点问题专题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。 例题1.梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D 始,沿CB边,以3厘米/秒的速度向B点运动。已知 t秒,问: (1)t为何值时,四边形PQCD是平行四边形? (2)t为何值时,四边形PQCD是直角梯形? (3)在某个时刻,四边形PQCD可能是菱形吗为什么 (4)t为何值时,四边形PQCD是等腰梯形

练习1. 如右图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A—B—C—D以4cm/s的速度运动,点Q从C开始沿CD边1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达点D时,另一点也随之停止运动,设运动时间为t(s),t为何值时,四边形APQD也为矩形? 例2:如图,在等腰直角三角形ABC中,斜边BC=4,OA⊥BC于O,点E和点F分别在边AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与B、A重合。 (1)判断?OEF的形状,并加以证明。 (2)判断四边形AEOF的面积是否随点E、F的变化 而变化,若变化,求其变化范围,若不变化,求它 的值. (3)设AE=x,?AEF的面积为y,求的y与x的关系式。 F E O C B A

初中几何难题(初二超难几何)

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、 DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延 长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

F 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB

相关文档
最新文档