5线性定常系统的综合 (2)

合集下载

第五章李雅普诺夫稳定性分析

第五章李雅普诺夫稳定性分析
即 x e = f (xe , t) = 0 。
从定义可知,平衡状态的各分量相对于时间不再发生变化。
线性定常系统:x = Ax
A非奇异:Axe = 0 xe = 0 是唯一零解 A奇异:Axe = 0 xe 有无穷多个解
非线性系统:x = f (x,t)
x = f (xe , t) = 0 xe 可能有一个也可能有多个平衡状态
5-2 李雅普诺夫稳定性的基本概念
一、 平衡状态
系统x = f (x,t) ,X为n 维状态向量,且显含时间变量t,x = f (x,t)为线性或
非线性、定常或时变的n
维向量函数,假定方程的解为
x(t;
x
0
,
t 0
)
,式中
x
0
和 t0 分别为初始状态和初始时刻。
定义:系统 x = f (x,t) 的平衡状态是使x = 0的那一类状态,并用 xe 表示,
1 2
Mx22

若用标量函数 V (x) 表示系统的能量。则
V
(x)
=
1 2
Kx12
+
1 2
Mx22
V (x) = Kx1x1 + Mx2x2
=
Kx1x2
+ Mx2 (−
K M
x1

f M
x2 )
= − fx22 0
结论:坐标原点处的平衡状态是渐近稳定的。
一、标量函数及其定号性
1.标量函数 V (x) 的符号和性质
+ ... +
a1
+
a0
=
0
如何判断系统的渐近稳定性?
5-4 李雅普诺夫第二方法
李雅普诺夫第二方法,建立在用能量观点分析稳定性的基础上: 若系统的某个平衡状态是渐近稳定的,则系统储存的能量将随时

课件-现代控制理论-刘豹第三版-第5章

课件-现代控制理论-刘豹第三版-第5章

能控性与能观性的判别方法
能观性判别方法
能控性判别方法
表示系统是否可以通过输入控制实现任意状态转移。若系统完全能控,则可以通过设计合适的控制器实现任意状态轨迹的跟踪或镇定;若部分能控或不能控,则存在状态无法被有效控制的风险。
能控性的物理意义
表示系统状态是否可以通过输出完全反映出来。若系统完全能观,则可以通过观测输出信号来准确估计系统状态;若部分能观或不能观,则存在状态无法被准确观测的风险,进而影响控制性能的实现。
控制系统稳定性分析是控制理论的核心内容之一,对于确保控制系统的正常运行具有重要意义。
章节内容结构
稳定性概念及定义
介绍稳定性的基本概念和定义,包括Lyapunov稳定性和BIBO稳定性等。
线性系统稳定性判据
详细阐述线性系统稳定性的判据,如Routh-Hurwitz判据、Nyquist判据和Bode图等。
图解法
状态转移矩阵的计算方法
1
2
3
状态转移矩阵反映了系统在时间间隔内从初始状态到最终状态的动态变化过程。
描述系统状态的动态变化过程
若系统稳定,则状态转移矩阵将逐渐趋于零,表示系统状态将逐渐趋于稳定。
反映系统稳定性
状态转移矩阵是进行系统分析和设计的重要工具,可用于研究系统的稳定性、能控性、能观性等性质。
非线性系统稳定性分析
介绍非线性系统稳定性分析方法,如相平面法、Lyapunov直接法等。
熟练掌握线性系统稳定性的判据和分析方法,能够应用所学知识分析和设计线性控制系统。
了解非线性系统稳定性分析方法的基本原理和应用范围,能够运用所学知识分析和设计简单的非线性控制系统。
掌握稳定性的基本概念和定义,理解不同稳定性定义之间的联系与区别。

线性控制理论 第2章 状态空间表达式的求解

线性控制理论 第2章 状态空间表达式的求解
Φ(t1 t2 ) e A(t1 t2 ) 1 2 1 k 2 I A(t1 t2 ) A (t1 t2 ) A (t1 t2 ) k 2! k! 1 2 2 1 2 2 ( I At1 A t1 )(I At2 A t2 ) 2! 2! Φ(t1 )Φ(t2 )
12t 2 0 2 2 2 t 1 2! 0 2 2 n t
1 2 2 1 t t 0 1 1 2! 1 2 2 1 2 t 2 t 2! 1 2 2 0 1 n t n t 2!
1
1 2 1 m 1 t t 2! (m 1)! t (2-21) 1 2 1 t 2! t 1 mm
证明 因
12 1 1 0 1 2 ,A A 0 1 1 1 mm 21
x(t ) Φ(t ) x(0),t 0
上式表明齐次状态方程的解,在初始状 态确定情况下,由状态转移矩阵惟一确定,
即状态转移矩阵包含了系统自由运动的全部
信息,完全表征了系统的动态特性。
定义2.1
线性定常系统状态转移矩阵 Φ(t t0 ) 是
满足矩阵微分方程和初始条件
(t t ) AΦ (t t ), t t Φ 0 0 0 Φ (t0 t0 ) I
(2-3)
(t ) b1 2b2t kbk t x
( k 1)

k
Ax (t ) A(b0 b1t b2t bk t )
2ቤተ መጻሕፍቲ ባይዱ
比较上式两边t的同次幂可得

线性定常连续系统状

线性定常连续系统状

, q k a k q k 1 a k k !q 0
q0=x(0)
○ 因此, x(t)的解表达式可写为
x(t) 1a ta 2 2 !t2 ...a kk !tk . .x .(0 )eaxt(0 )
1. 上述求解标量微分方程的级数展开法,可推广至求解向量状态
方程的解。
○ 为此,设其解为t的向量幂级数,即 ● x(t)=q0+q1t+q2t2+…+qktk+…
直接求解法 点击此处添加正文,请言简意赅的阐述观点。
拉氏变换法 讨论非齐次状态方程的解,以及
解表达式的意义 点击此处添加正文,请言简意赅的阐述观点。
输出方程的解 点击此处添加正文,请言简意赅的阐述观点。
目 录
一.直接求解法
○ 将状态方程x’=Ax+Bu移项,可得 ○ x’-Ax=Bu
将上式两边左乘以e-At,则有
线性定常连续系统状态方程的解 ❖ 求解状态方程是进行动态系统分析与综合的基础,是进行定量分
析的主要方法。
❖ 本节讲授的状态方程求解理论是建立在状态空间上,以矩阵代数 运算来描述的定系数常微分方程解理论。
❖ 下面基于矩阵代数运算的状态方程解理论中,引入了状态转移矩 阵这一基本概念。
❖ 该概念对我们深刻理解系统的动态特性、状态的变迁(动态演变) 等都是非常有帮助的,对该概念必须准确掌握和深入理解。
四.对于n n阶的d 方e 阵A tA 和A Be ,A 下t 式e A 仅tA 当,AB =( BtA)时 才A 成(t立) (t)A d t ○ e(A+B)t=eAteBt
五.[Φ(t)]n=Φ(nt) 六.Φ(t2-t1)Φ(t1-t0)=Φ(t2-t0)

线性定常系统的计算

线性定常系统的计算
3
3 1 3

2 V ( x) xT Qx x3 0
0 0 K p 1 2 0 p 1 0 1 p
11
12
13
p p p
12
22
23
p p p
13
23
33
p p p
11
12
13
p p p
12
R1x 0 e1t R2 x 0 e2t
Re(i ) 0
i 1,, n
Rn x 0 ent
充分性 当
则x t 中每一项指数将随 t 0 而趋于0,并且对任意 x 0都 成立,系统是渐近稳定的。
现代控制理论
必要性 反证法。设系统渐近稳定,但存在某些i有 Re(i ) 0 , 且 R i 0 ,则在 x 0 0 时,解 x t 中相应项将无限增 长,系统是不稳定的,与假设矛盾,故必有 Re( i ) 0 。 线性定常系统是渐近稳定的,意味着是一致渐近稳定且 是大范围一致渐近稳定的。 2. 线性时变系统(略)
3 2 2 V ( x) x Px x1 x1 x2 x2 0 2
T
2 V ( x) xT I x x12 x2 0
现代控制理论
例4-9 用李雅普诺夫方程确定使图所示系统渐近稳定的
K值范围。
u(s)
-
K x3(s) 1 x2(s) s 1 s2
现代控制理论
GT PG P Q
并且这个系统的李氏函数是
v x(k ) xT k Px(k )
证明 设所选李氏函数是 v x(k ) xT k Px(k )

线性反馈控制系统的基本结构及其特点

线性反馈控制系统的基本结构及其特点
前两个指标可以分别求出:ζ≈0.707,ωn≈9.0;代入带宽公式,可
求得ωb≈9.0;综合考虑响应速度和带宽要求,取ωn=10。于是,
闭环主导极点为s1,2=-7.07±j7.07,取非主导极点为s3=-10ωn=100。
第6章 线性定常系统的综合
(3)确定状态反馈矩阵K。状态反馈系统的特征多项式为
第6章 线性定常系统的综合
定理6.6-受控系统(A,B,C)通过状态反馈实现解耦控制的
环极点任意配置的充要条件是该受控系统状态完全可观。
证 根据对偶原理,如果受控系统Σ0(A,B,C)可观,则对偶系
统Σ0(AT,BT,CT)必然可控,因而可以任意配置(AT-CTHT)的特征
值。而(AT-CTHT)的特征值与(A-HC)的特征值是相同的,故当
且仅当Σ0(A,B,C)可观时,可以任意配置(A-HC)的特征值。
减小ζ,这就会使系统最大超调 Mp 增大。可见只靠调整增益
K 无法同时使ζ和ωn 都取最佳值。这从根轨迹来看,由于可调
参数只有 K,故系统特征根,即闭环极点只能在系统的根轨迹
这条线上,而无法在根轨迹以外的s 平面的其他点上实现。
第6章 线性定常系统的综合
方法二:状态反馈法。
第6章 线性定常系统的综合
图6-9 模拟结构图
第6章 线性定常系统的综合
第6章 线性定常系统的综合
第6章 线性定常系统的综合
图6-10 加入状态反馈后的模拟结构图
第6章 线性定常系统的综合
6.2.2 输出反馈极点配置
输出反馈有两种方式
(1)采用从输出到ሶ 反馈,如图6-3所示。
定理6.4 对受控系统采用从输出到ሶ 的线性反馈实现闭
图6-4 控制系统结构图

自动控制原理-随堂练习

自动控制原理-随堂练习

A. B. C.A. B. C. D.A. B. C. D.A. B. C. D.A. B. C.A. B. C. D.A. B. C.A. B. C.A. B. C.A. B. C.对. 错对. 错A. B. C. D.A. B. C. D.A. B. C. D.A. B. C. D.某系统的传递函数为,该传递函数有(A. B. C. D.某典型环节的传递函数是,则该环节是(已知系统的单位脉冲响应函数是,则系统的传递函数是(A. B. C. D.A. B. C. D.A. B. C. D.某系统的传递函数是,则该可看成由(A. B. C. D.A. B. C. D.A. B. C. D.对. 错对. 错对. 错.闭环极点为的系统.闭环特征方程为的系统.阶跃响应为的系统.脉冲响应为的系统.最大超调量 DA. B. C. D.已知二阶系统的传递函数是,则该系统属于A. B. C. D.A. B. C. D.已知系统的开环传递函数为,则其型别为(A. B. C. D.已知系统的开环传递函数为,则该系统的开环增益为A. B. C. D.若某负反馈控制系统的开环传递函数为,则该系统的闭环特征方程为. B.. DA. B. C. D.某单位反馈系统的开环传递函数为,则该系统要保持稳定的. B. C. D.A. B. C. D.系统在作用下的稳态误差,说明(.系统型别 BA. B. C. D.A. B. C. D.A. B. C. D.A. B. C. D..最大超调量 DA. B. C.A. B. C.特征方程最靠近虚轴的根和虚轴的距离表示系统的稳定裕度,越大则系统的稳定性越低。

对. 错对. 错对. 错对. 错对. 错A. B. C. D.A. B. C. D.系统渐近线与实轴正方向夹角为(A. B. C. D.A. B. C. D.A. B. C. D.A. B. C. D.、 B、、 D、A. B. C.A. B. C.A. B. C.A. B. C.A. B. C.对. 错对. 错对. 错对. 错A. B. C. D.A. B. C. D.已知单位反馈系统的开环传递函数为,则根据频率特性的物理意义,该闭环系统输入信号为时系统的稳态输出为(A. B.C. D.A. B. C. D.A. B.C. D.A. B. C. D.传递函数G(S)为()。

《现代控制理论》课后习题答案

《现代控制理论》课后习题答案

=
3 2
, c2
=
2s + 5 lim s→−3 s + 1
=
1 2

从输入通道直接到输出通道上的放大系数 d = 1,由此可得:
⎡ x1
⎢ ⎣
x 2
⎤ ⎥ ⎦
=
⎡− 1
⎢ ⎣
0
0⎤ − 3⎥⎦
⎡ ⎢ ⎣
x1 x2
⎤ ⎥ ⎦
+
⎡1⎤ ⎢⎣1⎥⎦u
y
=
⎡ ⎢⎣
3 2
1 2
⎤ ⎥⎦
⎡ ⎢ ⎣
x1 x2
u
d
d
b2
dt
dt
d
b1
m
dt
b0
因此,两个环节调换后的系统状态变量图为
u
d
d
b2
dt
dt
d
b1
dt
b0
m
−∫
−∫
y −∫
a0
a1
a2
进一步简化,可得系统状态变量图为 u
b0
b1
b2
− ∫ x1
− ∫ x2
− ∫ x3 y
a0
a1
a2
3
取 y = x3 , y = x2 , y = x1 ,可以得到两个环节调换后的系统的状态空间模型为
a(s)
1 a(s)
=
s3
+
1 a2s2 +
a1s
+
a0
, b(s)
=
b2 s 2
+ b1s
+ b0

2
由于 s−3 y 相当于对 y 作 3 次积分,故 y = 1 可用如下的状态变量图表示: m a(s)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档