易工板桩码头CAD软件YGBZV2.0等六款水运工程计算

易工板桩码头CAD软件YGBZV2.0等六款水运工程计算
易工板桩码头CAD软件YGBZV2.0等六款水运工程计算

《易工板桩码头CAD软件》(YG-BZ)V2.0等六款水运工程计算机软件

测评结果

高桩码头排架计算报告书

高桩码头排架计算报告书

排架计算报告书 工程编号: 计算: 校核: 审定:

工程条件 1.基本说明 1.1 设计采用的技术规范 a.《高桩码头设计与施工规范》(JTS167-1-2010) b.《港口工程荷载规范》 c.《水运工程抗震设计规范》 d.《海港水文规范》 e.《港口工程混凝土结构设计规范》 f.《港口工程桩基规范》 g.《港口工程灌注桩设计与施工规程》 h.《港口工程预应力混凝土大直径管桩设计与施工规程》 i.《港口工程嵌岩桩设计与施工规程》 1.2 参数坐标说明 a.坐标系约定 X方向为沿横梁方向,X零点为码头前沿。 Y方向为沿码头前沿方向,Y零点为横梁轴线。 Z方向为竖向方向, Z零点为高程零点,Z的值代表高程。 b.作用效应值的正负号说明: 轴力:受拉为负、受压为正。 弯矩:弯矩图画在受拉一侧,横梁上部受拉为负,下部受拉为正。 应力:受拉为负、受压为正。 c.参数采用的量纲: 长度单位采用m,力采用kN,其它衍生的量纲以此为标准(特殊说明的除外)。 1.3 计算方法说明 a.荷载计算 1、施工期永久荷载包含:上横梁自重 + 纵梁自重 + 面板自重 + 靠船构件自重 2、门机自动在轨道上滚动一遍得到支座的反力,然后将支座的反力最大值作为集中 力反加到横梁上。

3、面板上均载按照面板的长宽比自动按照单向板或双向板方式进行传递到横梁和纵 梁,集中力按照简支梁传递 4、由于船舶力产生的横梁端部弯矩、竖向力传递到横梁时将被乘以分配系数 6、程序不考虑超出横梁右侧的竖向荷载 7、双向板上的集中力荷载先传递到纵梁 8、计算时桩单元顶点取与横梁底部或桩帽底部的交点 b.结构内力计算 计算中将结构简化为平面刚架,采用杆系有限单元法进行求解;桩顶与横梁形心采用刚性连接 9、计算中对横梁桩帽附近的包络值不进行削峰 c.效应组合作用 d.效应组合计算 承载能力极限状态持久状况作用效应的持久组合采用下列公式计算: 承载能力极限状态短暂组合采用下列公式计算: 注:rQj 是第j个可变最用分项系数,按照分项系数表中所列值减小0.1; 承载能力极限状态偶然组合采用下列公式计算: 注:偶然作用的分项系数取1.0,与偶然作用同时出现的可变作用取标准值;

高桩码头毕业设计

本科毕业设计高桩码头结构

第1章设计依据及条件 1.1 设计依据 《港口工程地基规范》JTS 147-1-2010 《港口工程制图标准》JTJ 206-96 《高桩码头设计与施工规范》JTS 167-1-2010 《河港总体设计规范》JTJ 212-2006 《水运工程混凝土结构设计规范》JTS 151-2011 1.2 吞吐量与设计船型 1.2.1 吞吐量 根据港区功能、分货类吞吐量预测结果,到2020年本工程的设计吞吐量为460万吨,其中出口为285万吨,进口为175万吨。吞吐量见表1-6。 表1.1 吞吐量安排表 1.2.2 设计船型 设计代表船型的选择,首先必须考虑货物的货种、流量、流向及船舶的现有情况,其次要考虑航道、水文、波浪、进出港航道条件,同时还要考虑船舶的营运经济性等因素。根据本项目所涉及的货种,本工程的设计船型为杂货船、散货船。 根据对枣庄港滕州港区以及京杭运河枣庄段现有通行船舶情况的调查,船型标准主要按交通运输部《京杭运河运输船舶标准船型主尺度系列》有关规定,综合考虑货种、货物批量、货源稳定性、运距及航道的通达性等方面的因素,规划采用多种混合设计船型。

表1.2 设计船型尺度表 1.3 自然条件 1.3.1 地理位置 枣庄市位于山东省南部,泰沂山区的西南边缘,地跨东经116°48′30″至117°49′24″,北纬34°27′48″至35°19′12″之间。东与临沂市的苍山县接壤。南与江苏省的铜山县、邳州市为邻,西濒独山湖、昭阳湖、微山湖,北与济宁市的邹城毗连。 本工程位于枣庄市滕州市西岗镇,距离柴里矿区及其铁路专用线较近,可利用专用铁路线与柴里矿区铁路专用线相连接,交通便利。 1.3.2 气象 (1)气温 多年平均气温13.2 ℃~14.2℃ 年最高气温41.4℃ 年最低气温-21.8℃ 最热月平均温度26.9℃ 最冷月平均温度-1.8℃ (2)降水

浅谈港口码头设计中的基本方法

CONSTRUCTION 建筑设计 浅谈港口码头设计中的基本方法 夏建旺 重庆市交通规划勘察设计院 重庆 401121 摘 要:随着我国国民经济的高速发展,全球经济一体化的形成,各种货物的跨地区流通和国际贸易的蓬勃发展,作为综合交通运输体系中的枢纽,港口在区域经济和地方经济中的龙头带动作用日益突出。港口工程具有投资额较大、专业性相对比较强、质量要求高等特点,这些特点对工程的整体施工设计以及管理提出了很高的要求。基于此,本文就将对港口码头设计要点进行分析探讨。 关键词:港口码头;设计;措施 中图分类号:TU2 文献标识码:A 1、概述 我国是一个水系发达、幅员辽阔、海岸线比较长的大国,我国的水运经历了一个漫长的发展历程,形成了一个曲折向上的发展轨迹。港口是水路交通的枢纽和集结点,工农业产品和外贸进出口物资的集散地,也是船舶停泊、装卸货物、接待国际旅客的场所;而码头则是海边、江河边专供乘客上下、货物卸载的建筑物。港口码头是现代社会发展的需要,也是经济一体化的必然选择,在社会主义现代化建设中发挥着非常重要的作用。港口码头的建设,有利于推动集装箱干线枢纽港的建设和发展;有利于加强港口与腹地的联系,带动沿线经济的发展;有利于完善港口及港口城市的信息服务功能,为社会主义现代化提供强有力支撑。因此必须得到重视发展 2、港口码头设计要点分析 2.1设计资料的准备 要想扩建或者新建港口需要有港口的有关资料,包括港口的现状,港口所在地的地形地质条件、水文气象条件、设计船型、施工队的施工能力、主要投资项目单价。其中主要的投资项目单价包括挖泥单价、填土单价、征地动迁、港内铁路、港外道路、生活办公设施、水电供应等等。这些将成为最后港口投资的主要内容。 2.2港口建设规模确定 首先,先用时间序列法预测港口的吞吐量,再根据设计船型的平均装卸量、泊位的日装卸效率来算出船流密度。然后由M/M/S排队模型算出各类码头的最优泊位数作为港口的设计泊位。M/M/S排队模型精髓为:其中Ns为船舶在港船数,Cs为船舶在港日均费用,Cb为泊位日平均营运费;第二步,我们用海港总平面布置规范中的公式计算港口库场、堆场面积;第三步我们得先计算防波堤长度,计算中我们用到水文学知识用波浪绕射原理对其进行估算;计算公式为 H1=Ho*Kd 其中,Kd为绕射系数。防波堤是一个港口能否安全运行的重要屏障,不容忽视。 2.3总平面设计 2.3.1港口码头的水域设计 水域具体有泊位水深、泊位宽度、泊位长度、码头高顶程、港池底高程、航道底高程、航道宽度、港池宽度、防波堤口门宽度和回旋水域等参数。这些数据的计算方法在《港口规划与布置》一书中有详细的说明。 2.3.2港口码头的路域设计 陆域具体有码头集疏运布置、码头前沿线、堆场的具体布置形式、以及码头上运输机械的种类与数量、生产生活辅助区等地区的布置。其中集疏运布置根据后方交通条件以及港口性质进行布置;码头前沿线根据泊位数量按规范进行平均分配;至于运输机械则根据港口规模来确定。最后生产生活辅助区则按照《海港总平面设计规范》进行设计。 3、优化港口码头设计的措施 3.1科学、合理的确定港口码头的设计使用年限 对于码头工程结构来说,科学、合理的确定设计使用年限对于结构设计十分重要。国务院颁布实施的《建设工程质量管理条例》中指出:“设计文件应当符合国家规定的设计深度要求,注明工程合理使用年限。”国家建设部针对国内有的行业没有对设计使用年限做出具体的规定的情况,建设部指出:“须由建设单位与设计单位签订合同时予以明确,并由设计单位在设计文件中注明。”在设计使用年限内结构应当满足耐久性、适用性、安全性的要求。对于港口工程结构来说,由于所处的环境复杂、腐蚀性物质较多,因而需要特别注重结构的耐久性要求。港口工程大多位于海岸线上,工程施工投入较大,结构建好后正常使用的年限较长;此外,港口码头工程使用期间所承受的荷载作用有着不可预见性和可变性,以降低设计年限来达到降低工程投入的目的是不切实际的,所以,应当科学合理的确定结构的安全等级和设计使用年限。国家规定的结构设计标准,对于安全等级为一级的结构,若出现损坏环境影响、社会损失、经济损失较大,而且会对人的生命安全造成威胁的,可以定50年为结构的设计使用年限;而梁板式码头需要依据结构的使用要求和资金投入情况,确定设计使用年限,若大于30年时应当采用必要的措施以提升结构的耐久性。 3.2保证设计的可靠性 在工作中,使用可靠度来衡量工程结构的可靠性,它是指结构在设计使用年限内,在正常条件下,完成预定功能的概率。在可靠度的定义中,结构的正常条件和设计使用年限,是依据工程结构设计来对未来预期使用情况作的规定,使其能够提高可靠度的正确性,以便可以与实际的环境条件和使用条件相符。设计上,使用结构的极限状态来表征结构的规定功能。《规范》中对极限状态的定义为:“整个结构或者结构的一部分超过某一特定状态下就不能满足设计指定的某一功能的要求。”它包括正常使用极限状态和承载能力极限状态,后者是因结构变形过大或者达到最大承载能力而不能继续承受荷载的状态。在结构施工期间和正常施工期间,能够安全承受外部荷载作用;满足结构正常使用功能的要求;在码头结构正常使用情况下,应当具有足够的耐久性;当出现突发性事故时,结构应当可以维持整体性,即不出现坍塌事故。 3.3抗震设计 3.3.1对于高烈度区的重力式码头而言,可以将抛石棱体填充在墙后,这样可以将动土的压力大幅度地降低;如果处于地震多发区域,其里面布置和平面布置都应该简单,并且应该尽可能将重心位置和建筑物的自重降低,这样才可以将地震的荷载减少,也有利于结构本身的稳定性的增加。在重力式码头结构抗震设计当中,除开验算码头的抗滑移和抗倾覆之外,同时,还应该对结构的竖向沉降变形和水平残余变形加以密切地关注。另外,还应该加强结构的整体性。比如,方块重力墩和重力式方块码头,就应该将其整体性提高,就可以采取以下几种措施:第一,将方块的层数尽量减少,在方块之间可以预留出竖向空洞和槽,插入型钢或者是钢筋笼,并且将水泥混凝土灌注进入;第二,胸墙最好是采取现场浇筑的方式,这样才可以并联成为一块。为了防止沉降,将地基的承载力增强,还可以利用真空预压、抢夯法、桩基等加固的方式,做好相应的处理。而板桩码头以及高桩码头在处理地基的时候,其方式同重力式码头是基本一致的。 3.3.2在高烈度区域,最好是采取叉桩锚碗,从而将上部的水平荷载力转移到较为深的稳定上层,这样也可以将所承受的拉力能力提升,并且还可以将上部的帽梁适当地增强;叉桩应该尽可能地不知在排架当中自重反力相对较大的位置,这样可以承受较大的竖向压力,并且还应该做到尽可能地对称布置,这样可以避免水平力后桩太出现扭转的情况;另外,在结构设计上还应该考虑到整体的结构,并且还应该保证在同一段板桩码头上的锚碗结构形式能够保持一致。 3.3.3应该考虑到相对于横纵轴均对称布置方式的基桩以及码头纵向的刚度设计;对处于地震区域的高桩码头,应该使用应力混凝土桩。码头结构的平面布置应该尽可能平整、简单;如果平面较为复杂,还应该使用分缝的方式,比如在设置抗震缝的时候,应该将码头平面分成为若干个独立的单元。上部结构应该采用强度高、质量轻以及具备整体性好的结构与构件,这样可以将结构自重和地震惯性力减少,同时,也可以为其提供较好的刚度。在码头的前后状态间还可以设置出隔震缓冲材料,这样可以减轻以及缓和喷桩产生的影响。 总言之,港口码头的优化设计以及施工管理有着重要的发展意义,必须得到我们充分的重视发展。 参考文献: [1]王雪婷.中日美高桩码头抗震设计方法对比研究[D].大连理工大学,2010. [2]张娟.中美日板桩码头设计方法对比分析[D].大连理工大学,2011. [3]吴月勇,张典典,俞博威,曹如意,杨燚.浅谈港口码头设计中的基本方法[J].科技视界,2014,22:302. [4]贡金鑫.港口结构抗震设计方法的发展(1)[J].水运工程,2012,06:92-96. [5]李峰.货运港口景观绿化设计研究[D].华南理工大学,2012. 第5卷 第5期 2015年2月 文章被我刊收录,以上为全文。 此文章编码:2015F 4444

板桩施工方案

一、工程概况 1、工程名称: 2、工程地点: 3、建设单位: 4、设计单位: 5、施工单位: 6、项目经理: 7、桩型、数量及工程量 8、工程地质简介(详见地质报告) 二、施工组织设计编写依据 (1)工程地质勘察报告 (2)制桩标准图、桩位平面图、建筑总平面图等施工图纸;(3)场地具体情况 (4)场地具体情况 (5)《港口工程荷载规范》 JTJ 215-98 (6)《港口工程地基规范》 JTJ 250-98 (7)《港口工程桩基规范》 JTJ 254-98 (8)《港口工混泥土结构设计规范》 JTJ 267-98 (9)《板桩码头设计与施工规范》JTJ292-98 (10)《港口工程钢结构设计规范》JTJ283-99 (11)《码头附属设施技术规范》JTJ297-2001

三、打桩施工方案 1、施工准备 (1)施工前甲方应作好“三通一平”,确保设备安全进场。 (2)施工用电量要满足120KW,作业区域配足照明设施,以便夜间施工。 (3)施工前应清除地下,空间障碍物,如河底块石、场地内原有地下管线等。施工场地周围应排水畅通。 (4)边桩与周围建筑物(包括临时设施)的距离应大于4.5米,打桩区域内的场地边桩轴线外扩5米范围内用压机压实。 (5)主要机械设备调试正常,安全进场。见表1 表1 (6) (1)预制板桩由预制厂生产,进入现场的成品桩,在施工前应由甲方、监理方、总包方、施工单位共同验收。验收依据:桩的结构图,规范中有关预制砼板桩外观检查条款,见表3,同时应提供以下资料:桩的结构图,材料检验试验报告,隐蔽工程

验收记录,砼强度试验报告、养护方法等。 (2)预制桩应达到设计强度的100%方可起吊,桩在起吊和搬用时,必须做到平衡并不得损坏,水平调运时,吊点距桩端0.207L(L为桩长),单点起吊时,吊点距桩端0.293L。 (3)桩的堆放场地应平整坚实,不得产生不均匀沉陷,堆放层数不得超过两层,不同规格的桩应分别堆放。 3、施工放样 (1)施放建筑物主轴线,据此及桩位平面图测放桩位,经监理验收合格后方可打桩。 (2)为了便于在施工过程中或验收时核对轴线及桩位,应在主轴线的延长线上距边桩20米以外设控制桩或投设于围墙上。 (3)打桩机到位后应对样桩进行复核,无误后再对中打桩。 (4)为了便于控制桩顶标高,应在打桩范围60m外引测两个以上水准控制点,经过监理的复核,验收合格后才能使用,并在施工过程中加以保护。 (5)打桩施工前应先开挖基槽,开挖深度为设计桩顶标高以下50CM 4、工艺流程 工艺流程:平整场地、桩基范围障碍物探摸与清除→预制钢筋砼板桩→施打板桩→锚碇墙及拉杆基槽开挖→现浇钢筋砼导梁、胸腔及锚碇墙→回填锚碇墙钱块石、施打拉杆支撑木桩→拉杆安装→墙后回填土→安装橡胶护舷及系船柱→驳岸前疏浚挖泥→竣工验收 5、打桩质量控制 (1)提锤吊桩 桩机就位后应平稳垂直,桩中心线与打桩方向一致并检查桩位是否正确,然后将桩锤和桩帽吊起,使锤底高于桩顶,以

高桩码头下横梁底模计算书及附图

q=37.59KN/m2 三丘田码头工程下横梁底模计算书 一、模板计算主要参数 1、允许挠度: [f/l]=1/400(见JTS202-2011,page27) 2、A3钢材允许抗弯和抗拉强度:[σ]=1.7×105KN/m 2, A3钢材弹性模量:E=2.1×108KN/m 2(见JTJ025-86,page3、page4) 3、杉木允许抗弯和抗拉强度:[σ]=11×103KN/m 2 杉木允许抗弯和抗拉强度:E=9×106KN/m 2(见JTJ025-86,page50) 4、九合板允许抗弯和抗拉强度:[σ]=90×103KN/m 2 九合板弹性模量:E=6.0×106 KN/m 2 二、荷载组合(参照JTS202-2011) 1、模板和支架自重 木材按5KN/m 3计;25b 工字钢重度为0.42KN/m 2; 2、新浇混凝土及钢筋的重力 钢筋混凝土按25KN/m 3计 3、施工人员和设备的重力 (1)计算模板和直接支撑模板的楞木时,取均布荷载 2.5KN/m 2,并以集中荷载 2.5KN 进行验算; (2)计算支撑小楞的梁和楞木构件时,取均布荷载1.5KN/m 2; (3)计算支架立柱及支撑架构件时,取均布荷载1.0KN/m 2。 三、模板和支架验算 1、九合板验算 取1m 宽九合板计算,方木间距为0.3m,取5跨连续梁计算: (1)、施工人员和设备的荷载按均布荷载时 施工人员和设备的荷载q1=2.5KN/m 2 ×1m=2.5 KN/m 九合板自重荷载q2=5KN/m 3 ×1m ×0.018m=0.09 KN/m 钢筋混凝土荷载q3=25KN/m 3×1m ×1.4m=35 KN/m 总荷载q=q1+q2+q3=0.09 KN/m +2.5 KN/m+35 KN/m =37.59 KN/m 由结构力学求解器计算得,M max =ql 2/8=37.59×0.32/8=0.36 KN.m W=bh 2/6=1×0.0182/6=5.4×10-5m 3

板桩码头CAD使用手册

上海易工工程技术服务有限公司 https://www.360docs.net/doc/ce18918887.html, 板桩码头CAD软件 用户使用手册

上海易工工程技术服务有限公司板桩码头CAD软件使用手册 目 次 一、 功能简介 (1) 基本功能 (1) (2) 运行环境 (1) (3) 计算依据 (1) (4) 参数输入约定 (1) (5) 计算原理 (2) 二、 使用说明 (1) 结构类型选择 (4) (2) 基本参数输入 (4) (3) 土层物理参数输入 (5) (4) 板桩前后各土层高程 (6) (5) 板桩参数 (6) (6) 锚碇板参数输入 (8) (7) 锚碇墙参数输入 (9) (8) 叉桩参数输入 (9) (9) 锚杆参数输入 (10) (10) 前板桩+后桩结构参数输入 (11) (11) 荷载定义 (14) (12) 波浪参数输入 (15) (13) 地面均布荷载输入 (16) (14) 系船力输入 (17) (15) 附加荷载输入 (17) (16) 组合参数输入 (17) 三、 结果输出 (1) 荷载计算结果 (20) (2) 踢脚稳定验算结果 (20) (3) 锚碇验算结果 (22) (4) 作用效应标准值计算结果 (23) (5) 作用效应组合值计算结果 (24) (6) 作用效应包络值计算结果 (26) (7) 计算汇总 (28) (8) 辅助功能 (30) 四、 计算原理 (1) 土压力计算 (34) (2) 波吸力 (35) (3) 剩余水压力计算 (37) (4) 结构构件验算 (37) 五、 附录 (1) 辅助功能 (39) (2) 设置 (40)

一、功能简介 1.1.基本功能: 板桩码头CAD软件主要依据港《板桩码头设计与施工规范》(JTS167-3-2009)开发的工程辅助设计软件,该系统包含荷载前处理(土压力、剩余水压力、波浪力等自动计算)、作用效应计算(作用效应标准值、作用效应组合值和作用效应包络值计算)、踢脚稳定、锚碇稳定、截面验算,结构配筋,此外该系统提供直观的3D视图方式显示码头实体模型、荷载、作用效应等,并且为用户提供完整的Word格式报告书。 1.2.运行环境: 项 目 最 低 推 荐 处理器 Pentium II 350 Pentium III450以上 内 存 128MB 256MB以上 可用硬盘 50MB 100MB以上 显示分辨率 800*600 1024*768 打印机 Windows支持的图形打 印机 激光打印机 操作系统 Windows 98 Windows 2000/XP 1.3、计算依据 使用规范 《板桩码头设计与施工规范》 《港口工程荷载规范》 《海港水文规范》 《港口工程混凝土结构设计规范》 《水运工程抗震设计规范》 1.4、参数输入约定 1.4.1、坐标系约定 X方向为垂直于板桩方向,X零点为码头前沿。

港口航道与海岸工程开题报告

毕业设计(论文)开题报告 课题名称:黄田港新建两万吨煤炭泊位工程--高桩方案学院:船舶与建筑工程学院 专业:港口航道与海岸工程 年级: A09港航 指导教师:霍忠 学生姓名:蔡浩 学号: 09030413 起迄日期: 2012.12——2013.01 2013年1月5

毕业论文(设计)开题报告 一.课题研究的目的 本工程为黄田港新建两万吨煤炭泊位工程,黄田港地处江苏省江阴市。江阴地处江尾海头,境内35公里长江深水岸线被专家称为黄金水道。随着江阴市的经济发展,黄田港,需要扩大规模,新建两万吨煤炭泊位。 二.课题依据 此设计的依据: (1)所学教材:港口水工建筑物,画法几何,钢筋混凝土结构设计,材料力学,结构力学,土力学,地基处理等; (2)国家现行有关规范和标准:混凝土结构设计规范。 三.意义 通过实际工程项目进行研究设计,理论联系实际,通过对项目的设计研究,进一步运用和理解学习到的知识,更熟练的掌握所学的知识。为以后在实际工作中积累相应的知识和经验。 四.国内外研究现状、水平和发展趋势: 1、高桩码头的发展概况 高桩码头经历了承台式、桁架式、无梁板式和梁板式四个阶段。 承台式结构是一种较古老的高桩结构型式,码头桩台为现浇混凝土或钢筋馄凝土结构,这种结构具有良好的整体性和耐久性,但现浇混凝土工作量大,要求的施工水位低。桩多而密,桩基施工较为麻烦,造价较高,并只在岸坡地质条件好、水位差较大、地面荷载较集中的情况下才考虑这种结构型式。 桁架式高桩码头整体性好;刚度大。但由于上部结构高度过大,当水位较大时需要多层系缆,目前主要适用于水位差较大的需多层系缆的内河港口。 无梁板式高桩码头上部结构简单,施工迅速,造价也低。但由于面板为双向受力构件位置要求高,给靠船构件的设计增加了困难,仅适用于水位差不大,集中荷载较小的中小型码头。 梁板式结构主要由面板、纵梁、横梁、桩帽和靠船构件组成。比较节省材料;装配程度高,结构高度比桁架式小,施工速度快;横梁位置低,靠船构件的悬臂长度比无梁板式

xxx码头毕业设计开题报告

xxxxxxx 2014届毕业生毕业设计(论文)题目:xx港5万吨级高桩码头设计 院(系)别土木工程学院 专业港航专业 班级港口 学号 xxxxxxxxxxx 姓名 xxxxxx 指导教师 xxxxxxx 二○一四年六月

xxxxxxxxx 2014届毕业生毕业设计(论文) 任务书 题目:xxxxxxxxxx5万吨级高桩码头设计 专业:港口航道与海岸工程 班级:xxxxxxxxx 学号:xxxxxxxxx 姓名:xxxxxxx 指导教师:xxxxxxx 完成日期:2014年xx 月xxxxx 日

设计任务书 设计任务与内容 1、根据设计的原则标准,对港口的进行总体布置,包括码头的选址,航道设计及码头整体尺寸的确定等; 2、根据地址情况、水文条件、使用要求、确定码头的结构形式; 3、进行码头结构方案比选。选择高桩板梁式码头,进行结构内力计算。包括完成码头的结构的布置(确定桩数、桩长、桩径、配筋并进行相关计算),完成结构配筋及必要的验算,完成计算书; 4、进行码头相关图纸的绘制。 设计完成后要提交的材料 1、计算说明部分: 1)设计资料、自然条件 2)黄骅港一期5万吨级高桩码头平面布置 3)码头结构方案设计 4)码头结构基本力学计算 5)码头结构的桩基设计 6)码头结构的桩基施工工艺要点 2、图纸部分: 1)黄骅港一期5万吨级高桩码头总平面布置图 2)黄骅港一期5万吨级高桩码头结构立面图 3)黄骅港一期5万吨级高桩码头结构断面图 4)黄骅港一期5万吨级高桩码头纵梁配筋详图 5)黄骅港一期5万吨级高桩码头横梁配筋详图 6)黄骅港一期5万吨级高桩码头结构桩基配筋详图 专业负责人签章: 年月日 发题时间:2014年月日完成时间:2014年月日

高桩码头计算说明

第6章水工建筑物 6.1 建设内容 本工程拟建5万t级通用泊位2个。水工建筑物包括码头平台、固定引桥与护岸。结构安全等级均为二级。 6.2 设计条件 6.2.1 设计船型 5万t级散货船:船长×船宽×型深×满载吃水=223×32.3×17.9×12.8m 6.2.2 风况 基本风压 0.70Kpa 按九级风设计,风速为22m/s,超过九级风时,船舶离港去锚地避风。 6.2.3 水文 (1)设计水位(85国家高程) 设计高水位: 2.77m 极端高水位: 4.18m 设计低水位: -2.89m 极端低水位: -3.96m (2)水流 水流设计流速 V=1.2m/s 流向:与船舶纵轴线平行。 (3)设计波浪: 波浪重现期为50年,设计高水位下H1%=1.81m; H4%=1.52m;H13%=1.22m; T mean=3.8s,L=22.96m。

6.2.4 地质条件 码头平台与固定引桥区在勘察控制深度范围内地基土层为海陆交互相沉积、陆相冲洪积成因类型和凝灰岩风化岩层,从上而下分别为淤泥、块石、残积粘性土、强风化凝灰岩与中风化凝灰岩。其中淤泥层厚为20.95m ~51.15m ;块石厚度分布不均;残积粘性土厚度3.5~9.69m ;强风化凝灰岩厚度分布不均;中风化凝灰岩最大揭露厚度为5.70m ,未揭穿。其物理力学性质指标见表3-2。 护岸与陆域部分在勘察控制深度范围内地基土层自上而下分别为耕土、淤泥、粘土、角砾混粉质粘土、粘土、含角砾粉质粘土、强风化基岩与中等风化基岩等。其中,淤泥厚15.50~37.00m ;粘土层厚0.7~26.00m ;角砾混粉质粘土厚0.8~16.00m ;含角砾粉质粘土厚4.5~32.80m ;强风化基岩厚0.2~3.70m ;中等风化基岩最大揭露深度为6.90m ,未揭穿。其物理力学性质指标见表3-3。 6.2.5 设计荷载 6.2.5.1 船舶荷载 (1)系缆力 [ ]sin cos cos cos y x F F K N n αβαβ = +∑∑ 式中:∑x F ,∑y F ——分别为可能同时出现的风和水流对船舶作用产生的横向分力总和及纵向分力总和(kN); K ——系船柱受力分布不均匀系数,K 取1.3; n ——计算船舶同时受力的系船柱数目,取n=5; α——系船缆的水平投影与码头前沿线所成的夹角 (°),取α=30°; β——系船缆与水平面之间的夹角(°),取β=15°。 情况一:风向与船舶纵轴线垂直时,22/x V m s =;0y V =。

高桩梁板式集装箱码头结构设计

高桩梁板式集装箱码头 结构设计

摘要 港口码头毕业设计主要以码头主要尺度确定、平面布置、结构选型、码头主要结构和构件的设计计算和码头整体稳定性验算为主要内容。通过查阅相关设计手册、书籍、系列规范和参考已经修建工程设计资料进行结构选型、码头型式确定。工程依据资料选取了高桩码头为设计方向。高桩码头不仅符合本次设计的工程条件,而且是常见的码头结构型式,在长江流域多采用这种形式。同时,高桩码头对以后码头向深海方向发展研究有很多帮助。确定主要方向之后便进行工程设计,包括船舶作用力、面板计算、纵梁设计、横梁设计、桩基验算、靠船构件计算和码头整体稳定性计算等内容,其中部分内容运用相关软件如易工软件进行计算或验算。通过对码头主要构件的选型以及计算,以熟悉高桩码头结构设计和高桩码头优缺点,为以后工作、学习做扎实铺垫。此次设计顺利完成了设计任务,最后绘制了码头平面布置图、码头主要结构施工图、指定构件的配筋图。 关键字:高桩码头;纵梁;横向排架;大直径管桩

Abstract The engineering design of the No.5 dock of port mainly determines the major scale, layout, structure, selection, the design calculations of the main structure and components of port and the overall stability calculation . Through accessing to relevant design manuals, books, family norms and reference datas that has been constructed for structural engineering design , we can work out the proper type for the terminal. Projects were selected based on data for the design direction of high-pile wharf. High-pile pier is not only proper for the conditions of this design project, and is a common terminal structure type, in the Yangtze River area. Meanwhile, the high-pile pier can render a service in the filed of deep sea terminal in the future. After having determined the main direction of project design, we can calculate most parts including the ship force, panel calculation, longitudinal beam design, beam design, pile foundation checking, calculation and the terminal by ship components and the overall stability. Part of the calculation of content, we can make use of the work-related software such as Easy software for calculation or checking calculation. Through the selection and calculation of the main components of the terminal, we can become familiar with high-pile wharf and with high-pile wharf’ advan tages and disadvantages, as to make a foundation for future work and study.We succeed in finishing the design task, and finally draw the terminal floor plan, the main structure of terminal construction plans, specifying components of reinforcement plan. Keywords: High-pile pier; longeron; transverse; large diameter pile

桩基负摩阻力产生的原因及其计算

浅析桩基负摩阻力产生的原因及其计算 【摘要】桩周土体由于某种原因发生下沉时对桩身产生相对向下的位移,这就使桩身承受向下作用的摩擦力,这种摩擦力就是桩基的负摩擦阻力。本文针对桩基负摩擦阻力产生的机理及原因,并通过实例计算分析桩基负摩擦阻力。 【关键词】桩基;负摩擦阻力;机理及原因;实例计算 rough discuss the reason and count of pile foundation force of negative friction wang zhigang1 liang guankao2 (1.fifth geological mineral exploration and development institute of inner mongolia, baotou 014010, p.r.china;2.inner mongolia geology engineering co.,ltd, hohhot.010010,p.r.china) 【abstract】owing to some reasons ,the soil around pile foundation occur subside will produce displacement downward to pile foundation,so pile foundation will bear downward friction force,this friction force is negative friction force。this paper point at the reason of pile foundation negative friction force and analysis pile foundation negative friction force by living example。 【key words】pile foundation; negative friction force;the mechanisation and reason;living example account

3 《板桩码头设计与施工规范》 (JTJ 292——98)

3 《板桩码头设计与施工规范》(JTJ 292——98) 2.1.6* 当板桩墙后回填细颗粒土料或为原土层时,钢筋混凝土板桩之间的接缝,应采取防漏土措施。2.1.10* 钢板桩应根据环境条件、使用年限和墙体的不同部位采取合适的防腐蚀措施。 2.1.13* 地下墙各施工单元段之间的接头应防止漏土。 2.1.14* 现浇地下墙的混凝土和钢筋的设计应符合以下规定: (2)主筋保护层采用70—100mm。 2.2.1* 钢拉杆应采用焊接质量有保证和延伸率不小于18%的钢材。 2.2.6* 钢拉杆及其附件,应除锈防腐。 2.4.8* 钢导梁及其附件应采取防锈蚀措施。 2.4.9* 帽梁和导梁或胸墙的变形缝间距,应根据当地气温变化情况,板桩墙的结构型式和地基情况等因素确定。在结构形式和水深变化处、地基土质差别较大处及新旧结构的衔接处,必须设置变形缝。2.6.3* 板桩墙后的陆上回填,不得采用具有腐蚀性的矿渣和炉渣。 3.1.3 板桩墙的“踢脚”稳定性、锚碇结构的稳定性、板桩码头的整体稳定性、桩的承载力和构件强度等应按承载能力极限状态设计。 3.1.4* 板桩码头中钢筋混凝土构件的裂缝宽度和抗裂应按正常使用极限状态设计。 3.1.5* 板桩码头承载能力极限状态设计时,所取水位应按下列规定采用。 3.1.5.1* 持久组合,计算水位应分别采用设计高水位、设计低水位和极端低水位。 3.1.5.2* 短暂组合,计算水位应相应采用设计高水位、设计低水位或施工水位。 3.1.5.3* 偶然组合,计算水位应按现行行业标准《水运工程抗震设计规范》(JTJ225)中规定采用。3.3.1 板桩墙应计算以下内容: (1)板桩墙的人土深度; (2)板桩墙弯矩; (3)拉杆拉力。 3.3.8* 考虑各拉杆受力不均匀,不论采用何种计算方法,均应取计算的拉杆力乘不均匀系数ξR作为设计拉杆力的标准值。 3.4.15* 锚碇叉桩的位置应遵守以下规定。 3.4.15.1* 叉桩必须位于板桩墙后土体主动破裂面以外。 3.4.15.2* 压桩桩尖距板桩墙的距离不得小于1.0m。

上海港高桩梁板式集装箱码头结构设计与施工组织设计

上海港2号码头工程设计 The Engineering design of the No.2 dock of Shanghai port

摘要 上海港2号码头毕业设计主要以码头主要尺度确定、平面布置、结构选型、码头主要结构和构件的设计计算和码头整体稳定性验算为主要内容。通过查阅相关设计手册、书籍、系列规范和参考已经修建工程设计资料进行结构选型、码头型式确定。工程依据资料选取了高桩码头为设计方向。高桩码头不仅符合本次设计的工程条件,而且是常见的码头结构型式,在长江流域多采用这种形式。同时,高桩码头对以后码头向深海方向发展研究有很多帮助。确定主要方向之后便进行工程设计,包括船舶作用力、面板计算、纵梁设计、横梁设计、桩基验算、靠船构件计算和码头整体稳定性计算等内容,其中部分内容运用相关软件如易工软件进行计算或验算。通过对码头主要构件的选型以及计算,以熟悉高桩码头结构设计和高桩码头优缺点,为以后工作、学习做扎实铺垫。此次设计顺利完成了设计任务,最后绘制了码头平面布置图、码头主要结构施工图、指定构件的配筋图。 关键字:高桩码头;纵梁;横向排架;大直径管桩

Abstract The engineering design of the No.2 dock of shanghai port mainly determines the major scale, layout, structure, selection, the design calculations of the main structure and components of port and the overall stability calculation . Through accessing to relevant design manuals, books, family norms and reference datas that has been constructed for structural engineering design , we can work out the proper type for the terminal. Projects were selected based on data for the design direction of high-pile wharf. High-pile pier is not only proper for the conditions of this design project, and is a common terminal structure type, in the Yangtze River area. Meanwhile, the high-pile pier can render a service in the filed of deep sea terminal in the future. After having determined the main direction of project design, we can calculate most parts including the ship force, panel calculation, longitudinal beam design, beam design, pile foundation checking, calculation and the terminal by ship components and the overall stability. Part of the calculation of content, we can make use of the work-related software such as Easy software for calculation or checking calculation. Through the selection and calculation of the main components of the terminal, we can become familiar with high-pile wharf and with high-pile wharf’ advantages and disadvantages, as to make a foundation for future work and study.We succeed in finishing the design task, and finally draw the terminal floor plan, the main structure of terminal construction plans, specifying components of reinforcement plan. Keywords: High-pile pier; longeron; transverse; large diameter pile

板桩码头施工组织设计_secret

板桩码头施工组织设计

1.0 总体概述 1.1 编制依据 本施工组织设计依据以下文件编制: 3、有关技术规范和标准: a、交通部《重力式码头设计与施工规范》JTJ290-98 b、交通部《板桩码头设计与施工规范》JTJ292-98 c、交通部《港口工程桩基规范》JTJ254-98 d、交通部《水运工程混凝土质量控制标准》JTJ269-96 e、交通部《水运工程混凝土施工规范》JTJ268-96 f、交通部《港口工程质量检验评定标准》JTJ211-98 g、交通部《疏浚工程技术规范JTJ319-99》 h、国家和行业其他有关技术规范、规定和标准。 1.2 工程概况 略 5、主要工程量 主要工程建设项目一览表

港区道路

1.4 施工总体部署 1.4.1 总体施工顺序 本工程总体施工顺序如下图所示: 码头主体结构 施工 总体施工顺序说明:首先进行预制场地的布置,构件预制时,先进行混凝土板桩的预制,再进行其它构件的预制;先进行老码头拆除、土方开挖及施工围堰施工,形成作业平台后,首先对码头主体工程进

行分段不同工作面同时进行施工;护岸采用水上施工,在完成土方开挖后,不影响码头施工的前提下择时进行施工,注意与码头施工之间的协调,以免互相干扰;在完成码头及护岸后方回填后,再进行码头上部结构施工、附属设施的安装,最后再进行拆除施工围堰、港池开挖;综合管理区办公用房及附属设施的施工与其它工序互不干扰,在安排好码头护岸施工后便可进行施工;最后进行港区道路及其它配套设施的施工。 施工过程对施工节点及关键线路的控制,是本工程进度控制的重点。本计划将详细分析各节点的影响因素、施工条件及采取的控制措施、人机计划安排等。 1.4.2进度计划 略 1.5 施工总平面布置 1.5.1 施工总平面布置图 利用码头附近空地作为项目部驻地,同时建设构件预制场,主要预制混凝土板桩、垫块等构件。项目部及预制场布置如下图:略

山东交通学院各种毕业设计基本要求(自己整理)

毕业设计基本要求: 港口航道与海岸工程专业的毕业设计,要求学生在教师的指导下,完成一个实际工程的全部或部分设计任务,在工程设计的总平面设计、结构选型与方案比选、施工图设计等阶段都得到锻炼。通过毕业设计,进一步提高和训练学生的工程制图、理论分析、结构设计、计算机应用、文献检索和外语阅读等方面的能力。 成果要求:每位学生应提交设计计算说明书和有关图纸,要求计算理论、方法和结果正确,数据可靠,对要求电算的部分,要附有计算机源程序和电算结果;图纸至少要完成总平面布置图、结构图和构件配筋图三张图纸,有一张图纸要求手绘。 具体设计内容包括以下部分 重力式码头设计(参照《重力式码头设计与施工规范》) 一、设计基本资料 主要设计资料如下: 1、营运任务 2、船型尺度 3、自然条件:地质资料、水文资料、气象资料、地震烈度 4、施工条件 5、码头面荷载 二、平面布置与工艺设计 1、码头主要尺度确定 (1)泊位长度

(2)码头前沿停泊水域宽度 (3)码头顶高程 (4)码头前沿水底高程 2、装卸工艺设计 (1)件杂货装卸工艺 (2)集装箱装卸工艺 3、库场面积确定 (1)件杂货库场面积 (2)集装箱堆场面积 4、平面布置(平面布置图) (1)码头前沿作业地带 (2)货物堆存及输运区 (3)集装箱拆装箱库 三、码头结构方案设计 (一)结构型式的选定(块体结构、沉箱结构、扶壁结构、大直径圆筒结构等) (二)结构方案设计(以沉箱为例) 1、断面尺寸拟定 (1)沉箱外形尺寸 (2)箱内隔墙设置 (3)沉箱构件尺寸 (4)胸墙尺寸

(5)基床尺寸 2、作用分类及标准值计算 (1)结构自重(永久作用) (2)土压力 (3)船舶作用力(可变作用) (4)波浪力(可变作用) (5)贮仓压力(永久作用) (6)码头墙身顶部堆货荷载(可变作用) 码头所有荷载标准值列表汇总 3、码头稳定性验算 (1)作用效应组合 (2)稳定验算 4、整体稳定性验算(可选) (三)方案比选(这一步可以略略带过) 四、码头结构施工图设计 (一)结构内力计算 1、计算图式 2、计算程序(手算则无这一步) 3、作用效应组合 4、内力计算 (二)构件承载力计算 (三)构件裂缝宽度验算

相关文档
最新文档