《勾股定理》练习题及答案
勾股定理练习题及标准答案(共6套)

勾股定理课时练(1)1.在直角三角形 ABC 中,斜边 AB=1 ,则 AB 2BC 2AC 2的值是()A.2B.4C.6D.82.如图 18-2- 4 所示 ,有一个形状为直角梯形的零件ABCD ,AD ∥ BC,斜腰 DC 的长为10 cm,∠ D=120°,则该零件另一腰 AB 的长是 ______ cm(结果不取近似值) .3.直角三角形两直角边长分别为 5 和 12,则它斜边上的高为 _______.4.一根旗杆于离地面12 m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16 m,旗杆在断裂之前高多少m ?5. 如图,如下图,今年的冰雪灾害中,一棵大树在离地面 3 米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米 .3m“路”4m第5题图第2题图6. 飞机在空中水平飞行, 某一时刻刚好飞到一个男孩子头顶正上方4000 米处 , 过了 20 秒, 飞机距离这个男孩头顶 5000 米, 求飞机每小时飞行多少千米 ?7.如图所示,无盖玻璃容器,高 18 cm,底面周长为 60 cm,在外侧距下底 1 cm的点 C 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口 1 cm的 F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度 .8.一个零件的形状如图所示,已知AC=3cm, AB=4cm,BD=12cm。
求 CD的长 .9.如图,在四边形 ABCD中,∠ A=60°,∠ B=∠ D=90°, BC=2,CD=3,求 AB 的长 .10. 如图,一个牧童在小河的南4km 的 A 处牧马,而他正位于他的小屋B 第的西7 8km题图北 7km处,第 8题图. 他要完成这件事情所走的最短路程是多少?他想把他的马牵到小河边去饮水,然后回家11 如图,某会展中心在会展期间准备将高5m, 长 13m,宽2m 的楼道上铺地毯 , 已知地毯平方米 18 元,请你帮助计算一下,铺完这个楼第9题图道至少需要多少元钱 ?12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻13m5m 找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为 15 千米.早晨 8:00甲先出发,他以 6 千米 / 时的第 11题速度向东行走, 1 小时后乙出发,他以 5 千米 / 时的速度向北行进,上午10:00,甲、乙二人相距多远?还第一课时答案:1.A ,提示:根据勾股定理得BC2AC21,所以 AB2BC 2AC 2=1+1=2 ;2.4 ,提示:由勾股定理可得斜边的长为 5 m ,而 3+4-5=2 m ,所以他们少走了4 步.3.60 ,提示:设斜边的高为 x ,根据勾股定理求斜边为12252169 13 ,再利13用面积法得,15 12 1 13 x, x60 ; 2 2134. 解:依题意, AB=16 m , AC=12 m ,在直角三角形 ABC 中 ,由勾股定理 ,BC 2 AB 2AC 2162 122202,所以 BC=20 m ,20+12=32( m ), 故旗杆在断裂之前有 32 m 高.5.86. 解: 如图 , 由题意得 ,AC=4000 米 , ∠C=90° ,AB=5000 米 , 由勾股定理得BC=50002 400023000 ( 米 ),3所以飞机飞行的速度为540( 千米 / 小时 )2036007. 解:将曲线沿 AB 展开,如图所示,过点 C 作 CE ⊥ AB 于 E.在Rt CEF , CEF 90 , EF=18-1-1=16 ( cm ),1CE= 30(cm) ,2. 60CE2EF230 2 16 234( )由勾股定理,得 CF=8. 解:在直角三角形 ABC 中,根据勾股定理,得22222在直角三角形 CBD 中,根据勾股定理,得 2222CD=BC+BD=25+12 =169,所以 CD=13.9. 解:延长 BC 、AD 交于点 E. (如图所示)∵∠ B=90°,∠ A=60°,∴∠ E=30°又∵ CD=3,∴ CE=6,∴ BE=8, 设 AB=x ,则 AE=2x ,由勾股定理。
《勾股定理》单元测试卷(含答案)

《勾股定理》综合测试卷(考试时间:90分钟 满分:100分)一、选择题(每题3分,共24分)1.有六根细木棒,它们的长度分别是2,4,6,8,10,12(单位:cm).若从中取出三根,首尾顺次连接搭成一个直角三角形,则这三根木棒的长度分别为( ) A. 2,4,8 B. 4,8,10 C. 6,8,10 D. 8,10,122.若等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) A. 56 B. 48 C. 40 D. 323.在ABC ∆中,已知17,10AB AC ==.若边BC 上的高8AD =,则边BC 的长为( ) A. 21 B. 15 C. 6或9 D. 9或214.如图,每个小正方形的边长为1,若,,A B C 是小正方形的顶点,则ABC ∠的度数为( ) A. 90º B. 60º C. 45º D. 30º5.如图,一架云梯长25 m,斜靠在一面墙上,梯子底端离墙7m.如果梯子的顶端下滑4 m ,那么梯子的底部在水平方向上滑动了( )A. 4 mB. 6mC. 8 mD. 10 m6.如图,在ABC ∆中,AC BC =,90ACB ∠=︒,点D 在BC 上,3BD =,1DC =,P 是AB 上的动点,则PC PD +的最小值为( )A. 4B. 5C.6D.77.如图,在长方形ABCD 中,4,6,AB BC E ==为BC 的中点,将ABE ∆沿AE 折叠,使点B 落在长方形内点F 处,连接CF ,则CF 的长为( )8.如图①,分别以直角三角形三边为边向外作等边三角形,面积分别为123,,S S S ;如图②,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为456,,S S S .其中125616,45,11,14S S S S ====,则34S S +为( )A. 86B. 64C. 54D. 48 二、填空题(每题2分,共20分)9. 如果三角形三边长分别为3,4,5,那么最长边上的中线长为 .10.已知两条线段的长分别为15 cm 和8 cm ,则当第三条线段的长取整数 cm 时,这三条线段能组成一个直角三角形.11.若一个三角形的三边长之比为5:12:13,且周长为60 cm ,则它的面积为 cm 2. 12.如图,长为12 cm 的弹性皮筋拉直放置在一轴上,固定两端A 和B ,然后把中点C 向上拉升8 cm 至点D ,则弹性皮筋被拉长了 m.13.如图,在四边形ABCD 中,:::2:2:3:1AB BC CD DA =.若90ABC ∠=︒,则DAB ∠= .14.如图,在ABC ∆中,5,3AB AC ==.若中线2AD =,则ABC ∆的面积为 .15.如图,在四边形ABCD 中,30ABC ∠=︒,将DCB ∆绕点C 顺时针旋转60º后,点D 的对应点恰好与点A 重合,得到ACE ∆,若3,4AB BC ==,则BD = . 16.在四边形ABCD 中,90ABC ∠=︒,4,2,6AB BC CD AD ====,则BCD ∠= .17.如图是一个三级台阶,它的每一级的长、宽、高分别为20 dm ,3 dm ,2 dm , A 和B 是这个台阶两个相对的端点,点A 处有一点蚂蚁,想到点B 去吃可口的食物,则蚂蚁沿着台阶面爬到点B 的最短路程是 .18.如图,一个圆柱形容器的高为1.2 m ,底面周长为1m.在容器内壁离容器底部0.3 m 的点B 处有一只蚊子,此时一只壁虎正好在容器外壁离容器上沿0. 3 m 与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为 m(容器厚度忽略不计). 三、解答题(共56分)19. (6分)如图,在ABC ∆中,90C ∠=︒,,AC BC D <为边BC 上一点,且到,A B 两点 的距离相等.(1)利用尺规,作出点D 的位置(不写作法,保留作图痕迹); (2)连接AD ,若5,3AB AC ==,求CD 的长.20. ( 6分)如图,在Rt ACB ∆中,90ACB ∠=︒,D 是AB 的中点,E 是CD 的中点,过点C 作//CF AB 交AE 的延长线于点F . (1)求证: ADE FCE ∆≅∆;(2)若120DCF ∠=︒,2DE =,求BC 的长.21. (6分)如图,等腰三角形ABC 的底边20BC =cm ,D 是腰AB 上一点,且16CD =cm ,12BD =cm ,求ABC ∆的周长.22. ( 6分)如图,在直角三角形纸片ABC 中,90C ∠=︒,6,8AC BC ==,折叠ABC ∆的一角,使点B 与点A 重合,展开得折痕DE ,求BD 的长.23. ( 8分)如图,90ABC ∠=︒,6AB =cm ,24AD =cm ,34BC CD += cm ,C 是直线l 上一动点,请你探索:当点C 离点B 多远时,ACD ∆是一个以CD 为斜边的直角三角形?24. (8分)如图,在一棵树CD 离地10 m 的B 处有两只猴子,其中一只猴子爬下树走到离树20 m 处的池塘A 处,另一只爬到树顶D 后直接跃到A 处.距离以直线计算,如果两只猴子所经过的距离相等,请问:这棵树有多高?25. ( 8分)如图,将Rt ABC ∆ (其中,,AB c AC b BC a ===)绕其锐角顶点A 逆时针旋转90º得到Rt ADE ∆,连接BE ,延长,DE BC 相交于点F ,则有90BFE ∠=︒,且四边形ACFD 是一个正方形.(1)判断ABE ∆的形状,并证明你的结论;(2)用含b 的代数式表示四边形ABFE 的面积;(3)求证: 222a b c +=.26. ( 8分)如图,长方体的长为15 cm,宽为10 cm,高为20 cm,点B到点C的距离是5 cm,自点A至点B的长方体表面的连线距离最短是多少?参考答案1-8 CBDCCBDC 9.5210. 17 11. 120 12. 8 13. 135° 14. 6 15. 5 16. 135° 17. 25dm 18. 1.319.(1)作线段AB 的垂直平分线,交BC 于点D ,即为所求;(2)7820.(1)BAF AFC ∠=∠ (2) 4BC =21.三角形的周长为1603cm.22. 25423. 8cm24.树高15m25.(1) 等腰直角三角形; (2) 面积为2b ; (3) 四边形面积为2211()()22c b a b a b +-+=,即222a b c += 26.最短是25cm 。
勾股定理典型练习题(含答案)

勾股定理典型练习题(含答案)1.勾股定理典型练题勾股定理是几何中的一个重要定理。
在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载。
如图1所示,由边长相等的小正方形和直角三角形构成,可以用其面积关系验证勾股定理。
图2是由图1放入矩形内,已知AC = 4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为多少?已知AB = 3,得到∠BAC = 90°。
根据勾股定理,BC = 5.所以矩形KLMJ的面积为 4 × 5 + 3 × 4 = 32.因此,答案为C。
2.勾股定理典型练题XXX所示,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。
若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是多少?根据图中所示,正方形E的边长为2,所以面积为2 × 2 = 4.因此,答案为C。
3.勾股定理典型练题如图所示,在边长为4的等边三角形ABC中,AD是BC边上的高,点E,F是AD上的两点。
则图中阴影部分的面积是多少?首先,根据勾股定理,AC = 4,BC = 4,AB = 4√2.因此,三角形ABC的面积为4√2 × 4 / 2 = 8√2.由于三角形ADE和三角形ABF相似,所以ADE的面积是ABF的面积的一半。
同理,三角形BDF和三角形BCE相似,所以BDF的面积是BCE的面积的一半。
因此,阴影部分的面积为8√2 - 2 × 2 - 2 ×1 = 8√2 - 6.因此,答案为C。
4.勾股定理典型练题如图所示,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为多少?根据图中所示,正方形a和正方形c的边长分别为√5和√11.因此,正方形b的边长为√11 - √5,所以面积为(√11 - √5)² = 6.因此,答案为C。
5.勾股定理典型练题如图所示,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则S1和S2的大小关系是什么?首先,根据勾股定理,AB = √(BC² + AC²) = 2√2.因此,半圆的面积为π × (2√2 / 2)² = 2π。
中考数学复习《勾股定理》专项练习题-附带有答案

中考数学复习《勾股定理》专项练习题-附带有答案一、单选题1.线段a、b、c组成的三角形不是直角三角形的是()A.a=7,b=24,c=25 B.Ba= √41,b=4,c=5C.a= 34,b=1,c= 54D.a=40,b=50,c=602.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.65B.95C.125D.1653.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为7和9,则b的面积为()A.16 B.2 C.32 D.1304.如图,在5×5的正方形网格中,每个小正方形的边长为1,在图中找出格点C,使得△ABC是腰长为无理数的等腰三角形,点C的个数为()A.3 B.4 C.5 D.75.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中S A=10,S B=8,S C=9,S D=4则下列判断不正确的是()A.S E=18B.S F=13C.S M=31D.S M−S E=176.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.1B.√5C.2√2D.2√37.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么(a+b)2的值为().A.49 B.25 C.13 D.18.如图,在△ABC中∠C=60°,AC=4,BC=3 .分别以点A,B为圆心,大于12AB的长为半径作弧,两弧交于M、N两点,作直线MN交AC于点D,则CD的长为()A.1 B.75C.32D.3二、填空题9.如图,△ABC中AB=AC=10,BC=16,△ABC的面积是.10.如图,在Rt△ABC中,∠C=90°,AC=3,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,且OC=4 √2,则BC=.11.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是12.某小区两面直立的墙壁之间为安全通道,一架梯子斜靠在左墙DE时,梯子底端A到左墙的距离AE为0.7m,梯子顶端D到地面的距离DE为2.4m,若梯子底端A保持不动,将梯子斜靠在右墙BC上,梯子顶端C到地面的距离CB为2m,则这两面直立墙壁之间的安全通道的宽BE为m.13.活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等.如已知△ABC中∠A=30°,AC=3,∠A所对的边为√3,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为三、解答题14.如图,点C在∠DAB内部,CD⊥AD于点D,CB⊥AB于点B,CD=CB,若AD=5,求AB的长.15.如图,在△ABC中,CD⊥AB,垂足为D.AD=1,BD=4,CD=2.求证:∠ACB=90°.16.如图,一只小鸟旋停在空中A点,A点到地面的高度AB=20米,A点到地面C点(B、C两点处于同一水平面)的距离AC=25米.若小鸟竖直下降12米到达D点(D点在线段AB上),求此时小鸟到地面C 点的距离.17.如图,在△ABC中,∠ACB的平分线CD交AB于点D,E为AC边上一点,且满足∠AED=2∠DCB.(1)求证:DE∥BC;(2)若∠B=90°,AD=6,AE=9,求CE的长.18.如图,在正△ABC的AC,BC上各取一点D,E,使AD=CE,AE,BD相交于点M(1)如图1,求∠BME的度数;(2)如图2,过点B作直线AE的垂线BH,垂足为H①求证:2MH+DM=AE;②若BE=2EC=2,求BH的长.答案1.D2.C3.A4.C5.D6.B7.A8.B9.4810.511.1.512.2.213.2√3或√314.解:解法一:连结AC∵CD⊥AD于点D,CB⊥AB于点B∴∠CDA=∠CBA=90°在Rt△ABC与Rt△ADC中有AC=AC,CD=CB∴Rt△ABC≌Rt△ADC(HL)∴AB=AD=5解法二:连结AC∵CD⊥AD于点D,CB⊥AB于点B∴∠CDA=∠CBA=90°∵CD=CB∴由勾股定理得:AB= √AC2−BC2 = √AC2−CD2 =AD=515.证明:∵CD是△ABC的高∴∠ADC=∠BDC=90°.∵AD=1,BD=4,CD=2∴AC2=AD2+CD2=12+22=5,BC2=BD2+CD2=42+22=20,AB2=(1+4)2=25.∴AC2+BC2=AB2.∴△ABC是直角三角形∴∠ACB=90°.16.解:由勾股定理得;BC2=AC2−AB2=252−202=225∴BC=15(米)∵BD=AB−AD=20−12=8(米)∴在Rt△BCD中,由勾股定理得CD=√DB2+BC2=√82+152=17∴此时小鸟到地面C点的距离17米.答;此时小鸟到地面C点的距离为17米.17.(1)证明:∵CD平分∠ACB∴∠ACD=∠DCB即∠ACB=2∠DCB又∵∠AED=2∠DCB∴∠ACB=∠AED∴DE//BC;(2)解:∵DE//BC∴∠EDC=∠BCD,∠B=∠ADE=90°∵∠BCD=∠ECD∴∠EDC=∠ECD∴ED=CE∵AD=6,AE=9∴DE=√AE2−AD2=√92−62=3√5∴CE=3√5.18.(1)解:∵△ABC是等边三角形∴AB=AC,∠BAC=∠C=60°又∵AD=CE ∴△ABD≌△CAE(SAS)∴∠BME=∠ABD+∠BAE=∠CAE+∠BAE=∠BAC=60°(2)解:①∵BH⊥AE ∠BME=60°∴∠HBM=30°∴BM=2MH∵△ABD≌△CAE ∴AE=BD=BM+MD=2MH+MD②过点E作EG⊥AB于点GBE=2EC=2 ∴AB=BC=3∴使用ABC=60°∴BG=1,AG=2,由勾股定理可得,GE= √3,AE= √7设HE=x,则AH= √7 -x由勾股定理得32-(√7 -x)2=22-x2解得x= √77再由勾般定理可得:BH= 3√21.7。
人教版初中八年级数学下册第十七章《勾股定理》经典练习题(含答案解析)

一、选择题1.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或3 2.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒 3.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4 4.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB 的边OA ,OB 上分别取OM =ON ,移动直角尺,使直角尺两边相同的刻度分别与M ,N 重合(即CM =CN ).此时过直角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是( )A .HLB .SASC .SSSD .ASA 5.如图,AP 平分∠BAF ,PD ⊥AB 于点D ,PE ⊥AF 于点E ,则△APD 与△APE 全等的理由是( )A .SSSB .SASC .SSAD .AAS6.如图,在Rt △ABC 中,∠ACB =90°,BC =5cm ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC ,连接CF ,使CF =AB ,若EF =12cm ,则下列结论不正确的是( )A .∠F =∠BCFB .AE =7cmC .EF 平分ABD .AB ⊥CF 7.下列各命题中,假命题是( )A .有两边及其中一边上的中线对应相等的两个三角形全等B .有两边及第三边上高对应相等的两个三角形全等C .有两角及其中一角的平分线对应相等的两三角形全等D .有两边及第三边上的中线对应相等的两三角形全等8.如图,已知AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A .BD +ED =BCB .∠B =2∠DAC C .AD 平分∠EDC D .ED +AC >AD9.如图,在Rt ABC 中,C 90∠=,AD 是BAC ∠的平分线,若AC 3=,BC 4=,则ABD ACD S :S 为( )A .5:4B .5:3C .4:3D .3:410.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是( )A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD 11.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A .6B .8C .10D .1212.如图,在OAB 和OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM ,下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的为( )A .①②③B .①②④C .②③④D .①②③④ 13.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠ 14.已知,如图,OC 是∠AOB 内部的一条射线,P 是射线OC 上任意点,PD ⊥OA ,PE ⊥OB ,下列条件中:①∠AOC =∠BOC ,②PD =PE ,③OD =OE ,④∠DPO =∠EPO ,能判定OC 是∠AOB 的角平分线的有( )A .1个B .2个C .3个D .4个15.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条件,其中能使ABC AED ≌△△的条件有( )A .2个B .3个C .4个D .5个二、填空题16.如图,AOP BOP ∠=∠,PD OA ⊥,C 是OB 上的动点,连接PC ,若4PD =,则PC 的最小值为_________.17.如图,ABC 中,D 是AB 上的一点,DF 交AC 于点E ,AE CE =,//CF AB ,若四边形DBCF 的面积是26cm ,则ABC 的面积为______2cm .18.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),则当△ACP 与△BPQ 全等时,点Q 的运动速度为__cm/s .19.如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ .20.如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且5PD =,点M 是射线OC 上一动点,则PM 的最小值为__.21.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第____块去,这利用了三角形全等中的____原理.22.如图,AB ,CD 交于点O ,AD ∥BC .请你添加一个条件_____,使得△AOD ≌△BOC .23.如图,在ABC 中,点D 是BC 上的一点,已知30DAC ∠=︒,75DAB ∠=︒,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠=________度.24.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,垂足为A ,B ,S △AOM =8cm 2,OA=4cm ,则MB=___.25.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F .若28ABC S =,4DE =,8AB =,则AC =_________.26.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.三、解答题27.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在边BC 上(不与点B ,C 重合),过点C 作CE ⊥AD ,垂足为点E ,交AB 于点F ,连接DF .(1)请直接写出∠CAD 与∠BCF 的数量关系;(2)若点D 是BC 中点,在图2中画出图形,猜想线段AD ,CF ,FD 之间的数量关系,并证明你的猜想.28.如图,AB AD =,AC AE =,CAE BAD ∠=∠.求证:B D ∠=∠.29.如图,在△ABC中,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,D是BC的中点,证明:∠B=∠C.30.如图,一条河流MN旁边有两个村庄A,B,AD⊥MN于D.由于有山峰阻挡,村庄B 到河边MN的距离不能直接测量,河边恰好有一个地点C能到达A,B两个村庄,与A,B 的连接夹角为90°,且与A,B的距离也相等,测量C,D的距离为150m,请求出村庄B到河边的距离.。
八年级数学下册《勾股定理》练习题及答案(人教版)

八年级数学下册《勾股定理》练习题及答案(人教版)班级姓名考号A.3条B.2条C.1条D.0条A.嘉嘉对,淇淇错B.嘉嘉错,淇淇对C.两人都对D.两人都错1131-A .12mB .13mC .15mD .24m若ACDA .12B .15C .24D .30A .2B .5C .223+D .256+11.如图,在ABC 中1AB AC ==,若45B ∠=︒,则线段BC 的长为__.12.如图所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、G 在小正方形的顶点上,则表示ABC 重心的点是__________;13.如图,小华将升旗的绳子拉倒竖直旗杆的底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗14.如图,在Rt ABC △中90C ∠=︒,∠B=60°,按以下步骤作图:△以点A 为圆心,以任意长为半径作弧,15.如图,在△ABC 中,△C =90°,BA =15,AC =12,以直角边BC 为直径作半圆,则这个半圆的面积是三、解答题.如图,ABC中,∠的平分线,交BC于点D.(1)请利用直尺和圆规作BACAD=,求10,620.定义:三边长和面积都是整数的三角形称为“整数三角形”.数学学习小组的同学从32根等长的火柴棒(每根长度记为1个单位)中取出若干根,首尾依次相接组成三角形,进行探究活动.小亮用12根火柴棒,摆成如图所示的“整数三角形”;小颖分别用24根和30根火柴棒摆出直角“整数三角形”;小辉受到小亮、小颖的启发,分别摆出三个不同的等腰“整数三角形”.(1)请你画出小颖和小辉摆出的“整数三角形”的示意图;(2)你能否也从中取出若干根摆出等边“整数三角形”,如果能,请画出示意图;如果不能,请说明理由.参考答案1.C2.C3.B4.A5.D6.C7.D8.B9.B17.(1)解:如图,AD即为所求;∠(2)解:△AB=AC,AD平分BAC .解:如图,在AB ED=,即60AB=.10△又在Rt ABC2AB=-BC的长度是1122ABC S AC AB AB CD ∆== 238230525AC BC CD AB ⨯∴=== 20.(1)小颖摆出如图1所示的“整数三角形小辉摆出如图2所示三个不同的等腰“整数三角形”:(2)不能摆出等边“整数三角形”.。
八年级数学下册《第十七章 勾股定理的应用》练习题-附答案(人教版)
八年级数学下册《第十七章勾股定理的应用》练习题-附答案(人教版)一、选择题1.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A.4米B.5米C.6米D.7米2.某工程的测量人员在规划一块如图所示的三角形土地时,在BC上有一处古建筑D,使得BC 的长不能直接测出,工作人员测得AB=130米,AD=120米,BD=50米,在测出AC=150米后,测量工具坏了,使得DC的长无法测出,请你想办法求出BC的长度为( )A.90米B.120米C.140米D.150米3.《九章算术》第九章有如下题目,原文:今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?译文是:今有墙高1丈,倚木杆于墙.使木杆之上端与墙平齐.牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.间木杆长是多少?(1丈=10尺,1尺=10寸)( )A.5尺5寸B.1丈1尺C.5丈5寸D.5丈5尺4.如图,长方形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A.2.5B.2 2C. 3D. 55.如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是( )A.90米B.100米C.120米D.150米6.如图,有一个由传感器控制的灯A装在门上方离地高4.5 m的墙上,任何东西只要移至距该灯5 m及5 m以内时,灯就会自动发光,请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )A.4 mB.3 mC.5 mD.7 m7.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水深是( )尺A.3.5B.4C.4.5D.58.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)( )A.12 mB.13 mC.16 mD.17 m9.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是( )A. 3B. 5C. 6D.710.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为( )A.32B.43C.53D.8511.如图,已知线段BC,分别以B、C为圆心,大于12BC为半径作弧,两弧相交于E、F两点,连接CE,过点E作射线BA,若∠CEA=60°,CE=4,则△BCE的面积为( )A.4B.4 3C.8D.8 312.如图,圆柱形纸杯高8 cm,底面周长为12 cm,在纸杯内壁离杯底2 cm的点C处有一滴蜂蜜,一只蚂蚁正好在纸杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )3 B.6 2 C.10 D.以上答案都不对二、填空题13.上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得∠BAC=60°,点C在点B的正西方向,海岛B与灯塔C之间的距离是海里.14.在平面直角坐标系中,点P(﹣5,2)到原点的距离是.15.如图,要做一个两条直角边的长分别是7 cm和4 cm的三角尺,斜边长应为 cm.16.如图,A,B,C,D为四个养有珍稀动物的小岛,连线代表连接各个小岛的晃桥(各岛之间也可以通过乘船到达),四边形ABCD为长方形,如果黄芳同学想从A岛到C岛,则至少要经过________米.17.某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是.18.如图,在平面直角坐标系中,已知点P(2,1),点A是x轴上的一个动点,当△PAO是等腰三角形时,点A的坐标为.三、解答题19.如图所示,一棵36米高的树被风刮断了,树顶落在离树根24米处,求折断处的高度AB.20.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?21.如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了5003m 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?22.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?23.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=6,BD=8,求ED的长.24.如图,在△ABC中,AD是BC边的中线,∠BAD=90°,AB=2,AC=11,求BC的长.25.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?参考答案1.D2.C3.C4.D5.B.6.A.7.C8.D.9.B.10.A11.B.12.C.13.答案为:30 3.14.答案为:3.15.答案为:65.16.答案为:370.17.答案为:(23,0).18.答案为:A(4,0),(5,0),(﹣5,0).19.解:设AB=x米,则AC=(36﹣x)米∵AB⊥BC∴AB2+BC2=AC2∴x2+242=(36﹣x)2.∴x=10∴折断处的高度AB是10米.20.解:如图,在Rt△ABC中,根据勾股定理可知BC=3000(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.21.解:(1)过B点作BE∥AD如图,∴∠DAB=∠ABE=60°.∵30°+∠CBA+∠ABE=180°∴∠CBA=90°.即△ABC为直角三角形.由已知可得:BC=500 m,AB=500 3 m由勾股定理可得:AC2=BC2+AB2所以AC=1 000(m);(2)在Rt△ABC中,∵BC=500 m,AC=1 000 m∴∠CAB=30°∵∠DAB=60°∴∠DAC=30°.即点C在点A的北偏东30°的方向.22.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等即BC=CA设AC为x,则OC=45﹣x由勾股定理可知OB2+OC2=BC2又∵OA=45,OB=15把它代入关系式152+(45﹣x)2=x2解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是25cm.23.(1)证明:∵△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°∴AC=BC,EC=DC,∠B=∠CAB=45°,∠ACE=∠BCD=90°﹣∠ACD在△ACE和△BCD中∴△ACE ≌△BCD(SAS);(2)解:∵△ACE ≌△BCD∴∠CAE =∠B ,AE =BD =8∵∠CAB =∠B =45°∴∠EAD =45°+45°=90°在Rt △EAD 中,由勾股定理得:ED =10.24.解:延长AD 至点E ,使AD =ED ,连结CE.∵D 是BC 的中点,∴BD =CD.在△ABD 和△ECD 中∵⎩⎨⎧AD =ED ,∠ADB =∠EDC ,BD =CD ,∴△ABD ≌△ECD(SAS)∴EC =AB = 2∴∠CED =∠BAD =90°.在Rt △AEC 中,∵AE 2=AC 2﹣EC 2∴AE =(11)2-(2)2=3∴AD =12AE =32. 在Rt △ABD 中,∵BD 2=AB 2+AD 2∴BD =172∴BC =2BD =17.25.解:作AB⊥MN,垂足为B在 RtΔABP中,∵∠ABP=90°,∠APB=30°, AP=160∴ AB=12AP=80∵点 A到直线MN的距离小于100m∴这所中学会受到噪声的影响.如图,假设拖拉机在公路MN上沿PN方向行驶到点C处学校开始受到影响那么AC=100(m)由勾股定理得: BC2=1002﹣802=3600∴ BC=60.同理,拖拉机行驶到点D处学校开始脱离影响那么AD=100(m),BD=60(m)∴CD=120(m).拖拉机行驶的速度为:18km/h=5m/s,t=120m÷5m/s=24s.答:拖拉机在公路 MN上沿PN方向行驶时,学校会受到噪声影响,学校受影响的时间为24秒.。
勾股定理单元测试题(含答案)
勾股定理单元测试题(含答案)第一段:勾股定理是初中数学中的重要概念,也是许多数学问题的基础。
以下是一些勾股定理的选择题和填空题。
1.选择题:1)哪组数可以构成直角三角形?A。
4.5.6B。
1.1.2C。
6.8.11D。
5.12.232)在Rt△ABC中,∠C=90°,a=12,b=16,则c的长度是多少?A。
26B。
18C。
20D。
213)在平面直角坐标系中,已知点P的坐标是(3,4),则OP 的长度是多少?A。
3B。
4C。
5D。
74)在Rt△ABC中,∠C=90°,∠B=45°,c=10,则a 的长度是多少?A。
5B。
10C。
5√2D。
525)等边三角形的边长为2,则该三角形的面积是多少?A。
√3B。
3C。
2√3D。
3√36)若等腰三角形的腰长为10,底边长为12,则底边上的高为多少?A。
6B。
7C。
8D。
97)在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积是多少?A。
3cmB。
4cmC。
6cmD。
12cm8)在△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长度是多少?A。
14B。
4C。
14或4D。
以上都不对2.填空题:1)若一个三角形的三边满足c-a=b,则这个三角形是()。
2)木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面()。
3)直角三角形两直角边长分别为3和4,则它斜边上的高为()。
4)如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A。
B。
C。
D的面积的和为()。
5)如右图将矩形ABCD沿直线AE折叠,极点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=()。
第二段:勾股定理是初中数学中的重要概念之一,它是许多数学问题的基础。
本文提供了一些勾股定理的选择题和填空题。
人教版八年级下学期《勾股定理》解答题专项练习(含答案)
《勾股定理》解答题专项练习1.已知:如图,有一块凹四边形土地ABCD,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC =12m,求这块四边形土地的面积.2.(1)(操作发现)如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C 的对应点为C′,连接BB′,则∠AB′B=.(2)(问题解决)如图2,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC的度数和等边三角形ABC的边长;(3)(灵活运用)如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1,求∠BPC的度数.3.如图,在四边形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.(1)求∠DAB的度数.(2)求四边形ABCD的面积.4.把15只空油桶(每只油桶底面直径均为50cm)如图所示堆在一起,求这堆油桶的最高点距地面的高度.5.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形气旋风暴,有极强的破坏力,此时某台风中心在海域B处,在沿海城市A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿BC方向移动.已知AD⊥BC且AD=AB,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)A城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?6.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.7.如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B离地面0.6m,荡秋千到AB的位置时,下端B距静止位置的水平距离EB等于2.4m,距地面1.4m,求秋千AB的长.8.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=,求BD的长.9.已知:如图,Rt △ABC 中,∠C =90°,AC =6,AB =10.(1)求BC 的长;(2)有一动点P 从点C 开始沿C →B →A 方向以1cm /s 的速度运动到点A 后停止运动,设运动时间为t 秒;求:①当t 为几秒时,AP 平分∠CAB ;②当t 为几秒时,△ACP 是等腰三角形(直接写答案).10.先阅读下列一段文字,再回答问题:已知平面内两点P 1(x 1,y 1)、P 2(x 2,y 2),这两点间的距离P 1P 2=.同时当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x 2﹣x 1|或|y 2﹣y 1|.(1)已知点A (2,3)、B (4,2),试求A 、B 两点间的距离;(2)已知点A 、B 在平行于x 轴的直线上,点A 的横坐标为7,点B 的横坐标为5,试求A 、B 两点间的距离;(3)已知一个三角形的各顶点坐标为A (﹣2,1)、B (1,4)、C (1﹣a ,5),试用含a 的式子表示△ABC 的面积.11.如图,AM 是△ABC 的中线,∠C =90°,MN ⊥AB 于N ,求证:AN 2﹣BN 2=AC 212.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC 于F,M为EF中点,求AM的最小值.13.以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为(3,4,5),类似地,还可得到下列勾股数组:(8,6,10),(15,8,17),(24,10,26)等.(1)根据上述四组勾股数的规律,写出第六组勾股数;(2)用含n(n≥2且n为整数)的数学等式描述上述勾股数组的规律,并证明.14.如图,某校科技创新兴趣小组用他们设计的机器人,在平坦的操场上进行走展示.输入指令后,机器人从出发点A先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米到达终止点B.求终止点B与原出发点A的距离AB.15.如图,Rt△ABC中,∠B=90°,AB=3,BC=4,CD=12,AD=13,点E是AD的中点,求CE的长.16.如图,在△ABD中,AC⊥BD于C,点E为AC上一点,连结BE、DE,DE的延长线交AB 于F,已知DE=AB,∠CAD=45°.(1)求证:DF⊥AB;(2)利用图中阴影部分面积完成勾股定理的证明,已知:如图,在△ABC中,∠ACB=90°,BC=a,AC=b,AB=c,求证:a2+b2=c2.17.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?18.(1)如图1,在△ABC中,BC=3,AC=4,AB=5.D为AB边上一点,且△ACD与△BCD 的周长相等,则AD=.(2)如图2,在△ABC中,BC=a,AC=b,AB2=BC2+AC2.E为BC边上一点,且△ABE与△ACE的周长相等;F为AC边上一点,且△ABF与△BCF的周长相等,求CE•CF(用含a,b的式子表示).参考答案1.解:连接AC ,∵∠ADC =90°,AD =4m ,CD =3m ,∴AC ==5m .∵BC =12,AB =13,∴AC 2+BC 2=AB 2.∴△ABC 为直角三角形且∠ACB =90°,S△ABC =×5×12=30(m 2),S △ACD =×3×4=6(m 2)∴这块四边形土地的面积30﹣6=24 (m 2).2.解:(1)如图1所示,连接BB ′,将△ABC 绕点A 按顺时针方向旋转90°,∴AB =AB ′,∠B ′AB =90°,∴∠AB ′B =45°,故答案为:45°;(2)∵△ABC 是等边三角形,∴∠ABC =60°,将△BPC 绕点B 顺时针旋转60°得出△ABP ′,如图2,∴AP ′=CP =1,BP ′=BP =,∠PBC =∠P ′BA ,∠AP ′B =∠BPC ,∵∠PBC +∠ABP =∠ABC =60°,∴∠ABP ′+∠ABP =∠ABC =60°,∴△BPP ′是等边三角形,∴PP ′=,∠BP ′P =60°,∵AP ′=1,AP =2,∴AP′2+PP′2=AP2,∴∠AP′P=90°,则△PP′A是直角三角形;∴∠BPC=∠AP′B=90°+60°=150°;过点B作BM⊥AP′,交AP′的延长线于点M,∴∠MP′B=30°,BM=,由勾股定理得:P′M=,∴AM=1+=,由勾股定理得:AB==.(3)如图3,将△BPC绕点B逆时针旋转90°得到△AEB,与(1)类似:可得:AE=PC=1,BE=BP=,∠BPC=∠AEB,∠ABE=∠PBC,∴∠EBP=∠EBA+∠ABP=∠ABC=90°,∴∠BEP=(180°﹣90°)=45°,由勾股定理得:EP=2,∵AE=1,AP=,EP=2,∴AE2+PE2=AP2,∴∠AEP=90°,∴∠BPC=∠AEB=90°+45°=135°;3.解:(1)连结AC,∵∠B=90°,AB=BC=2,∴,∠BAC=45°,∵AD=1,CD=3,∴,CD2=9,∴AD2+AC2=CD2,∴△ADC是直角三角形,∴∠DAC=90°,∴∠DAB=∠DAC+∠BAC=135°.(2)在 Rt△ABC中,,在 Rt△ADC中,.∴.4.解:取三个角处的三个油桶的圆心,连接组成一个等边三角形,它的边长是4×50=200cm,这个等边三角形的高是cm,这堆油桶的最高点距地面的高度是:(100+50)cm.5.解:(1)该城市会受到这次台风的影响.理由是:如图,在Rt△ABD中,∵AD=AB∴∠ABD=30°,AB=240千米,∴AD=AB=120千米,∵城市受到的风力达到或超过四级,则称受台风影响,∴受台风影响范围的半径为25×(12﹣4)=200千米.∵120<200,∴该城市会受到这次台风的影响.(2)如图以A为圆心,200为半径作⊙A交BC于E、F.则AE=AF=200.∴台风影响该市持续的路程为:EF=2DE=2=320.∴台风影响该市的持续时间t=320÷20=16(小时).(3)∵AD距台风中心最近,∴该城市受到这次台风最大风力为:12﹣(120÷25)=7.2(级).6.解:(1)设存在点P,使得P A=PB,此时PA=PB=2t,PC=4﹣2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=,∴当t=时,PA=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,CP=2t,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣4)2+12=(7﹣2t)2,解得:t=,∴当t=时,P在△ABC的角平分线上.7.解:设AB=AB′=x,由题意可得出:B′E=1.4﹣0.6=0.8(m),则AE=AB﹣0.8,在Rt△A EB中,∵AE2+BE2=AB2,∴(x﹣0.8)2+2.42=x2解得:x=4,答:秋千AB的长为4m.8.解:作DM⊥BC,交BC延长线于M,连接AC,如图所示:则∠M=90°,∴∠DCM+∠CDM=90°,∵∠ABC=90°,AB=3,BC=4,∴AC2=AB2+BC2=25,∵CD=10,AD=5,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°,∴∠ACB+∠DCM=90°,∴∠ACB=∠CDM,∵∠ABC=∠M=90°,∴△ABC∽△CMD,∴=,∴CM=2AB=6,DM=2BC=8,∴BM=BC+CM=10,∴BD===2,9.解:(1)∵Rt△ABC中,∠C=90°,AC=6,AB=10,∴BC===8;(2)①如图1所示,过点P作PD⊥AB于点D,∵AP平分∠CAB,∴PD=PC.在Rt△APD与Rt△APC中,,∴Rt△APD≌Rt△APC(HL),∴AD=AC=6,∴BD=10﹣6=4.设PC=x,则PB=8﹣x,在Rt△BPD中,PD2+BD2=PB2,即x2+42=(8﹣x)2,解得x=3,∴当t=3秒时,AP平分∠CAB;②如图2所示,当点P 在BC 上时,∵AC =P 1C =6,∴t =6秒;当点P 在AB 上,AC =AP 2时,∵AC =AP 2=6,∴BC +BP 2=8+4=12,∴t =12秒;当AC =P 3C 时,如图3所示,过点D 作CD ⊥AB 于点D ,则AD =DP 3,∴=,即=,解得AD =3.6,∴AP 3=7.2,∴BC +BP 3=8+(10﹣7.2)=10.8,∴t =10.8秒;当CP 4=AP 4时,如图4所示,过点P 4作P 4E ⊥AC 于点E ,∵CP 4=AP 4,AC =6,∴AE =AC =3,∴=,即=,解得AP 4=5,∴BC +BP 4=8+(10﹣5)=13,∴t =13秒.综上所述,t =6或t =10.8或t =12或t =13秒时,△ACP 是等腰三角形.10.解:(1)AB==.(2)∵已知点A、B在平行于x轴的直线上,点A的横坐标为7,点B的横坐标为5,∴AB=7﹣5=2.(3)由题意,直线AB的解析式为y=x+3,延长AB交直线y=5于N(2,5).①当1﹣a<2,即a>﹣1时,作CM∥y轴交AB于M.则M(1﹣a,4﹣a),∴CM=5﹣(4﹣a)=a+1,=•CM•(B x﹣A x)=•(a+1)•3=a+.∴S△ABC=﹣a﹣.②当1﹣a>2,即a<﹣1时,同法可得S△ABC11.证明:∵MN⊥AB,∴在Rt△AMN和Rt△BMN中,AN2=AM2﹣MN2,NB2=BM2﹣MN2,∴AN2﹣BN2=AM2﹣BM2,在Rt△ACM中,AM2﹣CM2=AC2,∵AM是△ABC的中线,∴CM=BM,∴AN2﹣BN2=AM2﹣BM2=AM2﹣CM2=AC2.12.解:∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.当AP⊥BC时,AP的最小值即为直角三角形ABC斜边上的高,∴AM的最小值是.13.解:(1)上述四组勾股数组的规律是:32+42=52,62+82=102,82+152=172,102+242=262,即(n2﹣1)2+(2n)2=(n2+1)2,所以第六组勾股数为14,48,50.(2)勾股数为n2﹣1,2n,n2+1,证明如下:(n2﹣1)2+(2n)2=n4+2n2+1=(n2+1)2.14.解:如图所示:过点A作AC⊥CB于C,则在Rt△ABC中,AC=40+40=80(米),BC=70﹣20+10=60(米),故终止点与原出发点的距离AB==100(米),答:终止点B与原出发点A的距离AB为100m.15.解:在Rt△ABC中,∠B=90°,∵AB=3,BC=4,∴,∵CD=12,AD=13,∵AC2+CD2=52+122=169,AD2=169,∴AC2+CD2=AD2,∴∠C=90°,∴△ACD是直角三角形,∵点E是AD的中点,∴CE=.16.解:(1)∵AC⊥BD,∠CAD=45°,∴AC=DC,∠ACB=∠DCE=90°,在Rt△ABC与Rt△DEC中,,∴Rt△ABC≌Rt△DEC(HL),∴∠BAC=∠EDC,∵∠EDC+∠CED=90°,∠CED=∠AEF,∴∠AEF+∠BAC=90°,∴∠AFE=90°,∴DF⊥AB.(2)∵S△BCE +S△ACD=S△ABD﹣S△ABE,∴a2+b2=•c•DF﹣•c•EF=•c•(DF﹣EF)=•c•DE=c2,∴a2+b2=c2.17.解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD=,BC=2x 在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.18.解:(1)∵△ACD与△BCD的周长相等,∴AC+AD=BC+BD,即4+AD=3+BD,又AD+DB=5,解得:AD=2.(2)设AB=c,则c2=a2+b2,∵△ABE与△ACE的周长相等,∴CE+AC=BE+AB=(AB+BC+AC),设CE=x,∴x+b=(a+b+c),∴x=(a﹣b+c),设CF=y,同理可得y+a=(a+b+c),∴CE•CF=(a﹣b+c)•(b+c﹣a)= [c2﹣(a﹣b)2],∵c2=a2+b2,∴CE•CF=ab.。
第三章《勾股定理》单元基础练习(含答案)
第三章《勾股定理》单元基础练习一.选择题(共10小题)1.已知在ABC ∆中,90ACB ∠=︒,60A ∠=︒,则B ∠的度数是( ) A .30︒B .35︒C .40︒D .502.若直角三角形两直角边长分别为5和12,则斜边的长为( ) A .17B .7C .14D .133.如图,正方形ABCD 的面积是( ) A .5B .25C .7D .1第3题第4题4.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2()21a b +=,大正方形的面积为13,则小正方形的边长为( ) A .3B .2C .5D .65.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是( )A .72B .52C .80D .766.如图所示,将一个含有45︒角的三角板的直角顶点放在直线b 上,已知//a b ,若135∠=︒,那么2∠的度数是( ) A .35︒B .45︒C .55︒D .65︒第6题第9题7.以下列各组数为边长,不能构成直角三角形的是( ) A .1,3,2B .4,5,6C .5,12,13D .1,2,58.下列各组数据中,不是勾股数的是( ) A .3,4,5B .7,24,25C .8,15,17D .5,6,99.已知直线//m n ,将一块含45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则2∠的度数为( ) A .60︒B .65︒C .70︒D .75︒10.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,已知90BAC ∠=︒,6AB =,8AC =,点D 、E 、F 、G 、H 、I 都在矩形KLMJ 的边上,则矩形KLMJ 的周长为( )A .40B .44C .84D .88二.填空题(共10小题)11.如图,在Rt ABC ∆中,90ACB ∠=︒,50A ∠=︒,点D 是AB 延长线上的一点,则CBD ∠的度数是 ︒.第11题第12题12.图中阴影部分是一个正方形,则此正方形的面积为 .13.如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于 .第13题第14题14.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.图中是由弦图变化得到,它是由八个全等的直角三角形拼凑而成的.记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为1S ,2S ,3S ,若12310S S S ++=,则2S 的值是 .15.如图所示的图形由4个等腰直角形组成,其中直角三角形(1)的腰长为1cm ,则直角三角形(4)的斜边长为 .第15题第16题16.如图所示的网格是正方形网格,则PAB PBA ∠+∠= ︒(点A ,B ,P 是网格线交点).17.已知三角形三边长分别是6,8,10,则此三角形的面积为 .18.如图,每个小正方形边长为1,A 、B 、C 是小正方形的顶点,则2AB = ,ABC ∠=︒.第18题第19题第20题19.如图所示,一架梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得AE长为0.9米,则梯子底端点B移动的距离为了米.20.你听说过亡羊补牢的故事吗如图,为了防止羊的再次丢次,小明爸爸要在高0.9m,宽1.2m的栅栏门的相对角顶点间加一个加固木板,这条木板需m长.三.解答题(共6小题)21.如图,90CD=,求AB的长.AD=,12B ACD∠=∠=︒,3BC=,1322.如图所示,已知ABCAC cm=,P、Q是ABC=,20∆的边∆中,90AB cmB∠=︒,16上的两个动点,其中点P从点A开始沿A B→方向运动,且速度为每秒1cm,点Q从点B开始沿B C A→→方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为ts.(1)则BC=cm;(2)当t为何值时,点P在边AC的垂直平分线上?此时CQ=;(3)当点Q在边CA上运动时,直接写出使BCQ∆成为等腰三角形的运动时间.23.如图,已知30MAN ∠=︒,点B 在射线AM 上,且6AB =,点C 在射线AN 上. (1)若ABC ∆是直角三角形,求AC 的长;(2)若ABC ∆是等腰三角形,则满足条件的C 点有 个; (3)设BC x =,当ABC ∆唯一确定时,直接写出x 的取值范围.24.细心观察图形,认真分析各式,然后解答问题.2221(1)2OA =+=,11S =22231(2)3OA =+=,222S =22241(3)4OA =+=,13S =⋯ (1)(直接写出答案)210OA = ,并用含有(n n 是正整数)的等式表示上述变规律:2n OA = ;n S = .(2)若一个三角形的面积是5,计算说明它是第几个三角形?25.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.26.如图所示,已知ABC=,12∆边上=,P、Q是ABCBC cm∆中,90AB cmB∠=︒,16的两个动点,其中点P从点A开始沿A B→方向运动,且速度为每秒1cm,点Q从点B开始沿B C A→→方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为ts.(1)出发3s后,求PQ的长;(2)当点Q在边BC上运动时,出发多久后,PQB∆能形成等腰三角形?(3)当点Q在边CA上运动时,求能使BCQ∆成为等腰三角形的运动时间.参考答案一.选择题(共10小题)1.已知在ABC ∆中,90ACB ∠=︒,60A ∠=︒,则B ∠的度数是( ) A .30︒B .35︒C .40︒D .50【解答】在ABC ∆中,90ACB ∠=︒,60A ∠=︒, 30B ∴∠=︒,故选:A .2.若直角三角形两直角边长分别为5和12,则斜边的长为( ) A .17B .7C .14D .13【解答】由勾股定理可得:斜边2251213=+=, 故选:D .3.如图,正方形ABCD 的面积是( ) A .5B .25C .7D .1【解答】设正方形的边长为c , 由勾股定理可知:22234c =+, 225c ∴=,故选:B .4.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2()21a b +=,大正方形的面积为13,则小正方形的边长为( ) A .3B .2C .5D .6【解答】如图所示:2()21a b +=, 22221a ab b ∴++=,大正方形的面积为13, 221138ab =-=,∴小正方形的面积为1385-=.故小正方形的边长为5, 故选:C .5.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是( )A .72B .52C .80D .76【解答】依题意,设“数学风车”中的四个直角三角形的斜边长为x ,则 222125169x =+=所以13x =所以“数学风车”的周长是:(136)476+⨯=. 故选:D .6.如图所示,将一个含有45︒角的三角板的直角顶点放在直线b 上,已知//a b ,若135∠=︒,那么2∠的度数是( ) A .35︒B .45︒C .55︒D .65︒【解答】490∠=︒,134180∠+∠+∠=︒, 3180359055∴∠=︒-︒-︒=︒,直线//a b , 2355∴∠=∠=︒故选:C .7.以下列各组数为边长,不能构成直角三角形的是( ) A .1,3,2B .4,5,6C .5,12,13D .1,2,5【解答】A 、2221(3)2+=,符合勾股定理的逆定理,故此选项不合题意;B 、222456+≠,不符合勾股定理的逆定理,故此选项符合题意;C 、22251213+=,符合勾股定理的逆定理,故此选项不合题意;D 、22212(5)+=,符合勾股定理的逆定理,故此选项不合题意.故选:B .8.下列各组数据中,不是勾股数的是( ) A .3,4,5B .7,24,25C .8,15,17D .5,6,9【解答】A 、222345+=,是勾股数;B 、22272425+=,是勾股数;C 、22281517+=,是勾股数;D 、222569+≠,不是勾股数.故选:D .9.已知直线//m n ,将一块含45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则2∠的度数为( )A .60︒B .65︒C .70︒D .75︒【解答】设AB 与直线n 交于点E , 则1254570AED B ∠=∠+∠=︒+︒=︒. 又直线//m n , 270AED ∴∠=∠=︒.故选:C .10.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,已知90BAC ∠=︒,6AB =,8AC =,点D 、E 、F 、G 、H 、I 都在矩形KLMJ 的边上,则矩形KLMJ 的周长为( )A .40B .44C .84D .88【解答】如图,延长AB 交KF 于点O ,延长AC 交GM 于点P ,∴四边形AOLP 是正方形,边长6814AO AB AC =+=+=,61420KL ∴=+=,81422LM =+=,∴矩形KLMJ 的周长为2(2022)84⨯+=.故选:C .二.填空题(共10小题)11.如图,在Rt ABC ∆中,90ACB ∠=︒,50A ∠=︒,点D 是AB 延长线上的一点,则CBD ∠的度数是 140 ︒.【解答】90ACB ∠=︒,50A ∠=︒, 9050140CBD ∴∠=︒+︒=︒,故答案为:140.12.图中阴影部分是一个正方形,则此正方形的面积为 36 .【解答】正方形的边长为221086-,∴此正方形的面积为2636=,故答案为:36.13.如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于 10 .【解答】设设三角形的两直角边分别为x ,y , 则22252()4x y x y ⎧+=⋯⎨-=⋯⎩①②, 由②得2224x y xy +-=⋯③, ①-③得248xy =则()22225248100x y x y xy +=++=+=, 10010x y +==.故答案是:10.14.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.图中是由弦图变化得到,它是由八个全等的直角三角形拼凑而成的.记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为1S ,2S ,3S ,若12310S S S ++=,则2S 的值是103.【解答】将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=,∴得出18S y x =+,24S y x =+,3S x =,12331210S S S x y ∴++=+=,故31210x y +=,1043x y +=,所以21043S x y =+=, 故答案为:103. 15.如图所示的图形由4个等腰直角形组成,其中直角三角形(1)的腰长为1cm ,则直角三角形(4)的斜边长为 4 .【解答】4个三角形均为等腰直角三角形,∴直角三角形④的斜边长122224=⨯⨯⨯⨯=.故答案为:4.16.如图所示的网格是正方形网格,则PAB PBA ∠+∠= 45 ︒(点A ,B ,P 是网格线交点).【解答】45CPA ∠=︒,CPA PAB PBA ∠=∠+∠, 45PAB PBA ∴∠+∠=︒,故答案为:45.17.已知三角形三边长分别是6,8,10,则此三角形的面积为 24 . 【解答】2226810+=,∴此三角形为直角三角形, ∴此三角形的面积为:168242⨯⨯=. 故答案为:24.18.如图,每个小正方形边长为1,A 、B 、C 是小正方形的顶点,则2AB = 10 ,ABC ∠=︒.【解答】连接AC .根据勾股定理可以得到:2221310AB =+=, 2222125AC BC ==+=,5510+=,即222AC BC AB +=,ABC ∴∆是等腰直角三角形, 45ABC ∴∠=︒.故答案为:10,45.19.如图所示,一架梯子AB 长2.5米,顶端A 靠墙AC 上,这时梯子下端B 与墙角C 距离为0.7米,梯子滑动后停在DE 的位置上,测得AE 长为0.9米,则梯子底端点B 移动的距离为了 1.3 米.【解答】在直角ABC ∆中,已知 2.5AB =米,0.7BC =米,22222507 2.4AC AB BC ∴=-=-=米,在直角CDE ∆中,已知 2.4CE CE EA =+=米, 2.5DE AB ==米,0.9AE =米, 1.5CE AC AE ∴=-=米,222225152CD ED CE ∴=-=-=米,2BD ∴=米0.7-米 1.3=米故答案为:1.3.20.你听说过亡羊补牢的故事吗如图,为了防止羊的再次丢次,小明爸爸要在高0.9m ,宽1.2m 的栅栏门的相对角顶点间加一个加固木板,这条木板需 1.5 m 长.【解答】220.9 1.2 2.25 1.5m +. 三.解答题(共6小题)21.如图,90B ACD ∠=∠=︒,3BC =,13AD =,12CD =,求AB 的长.【解答】在Rt ACD ∆中,90ACD ∠=︒,13AD =,12CD =, 由勾股定理得:2213125AC =-=, 在Rt ABC ∆中,90B ∠=︒,5AC =,3BC =, 由勾股定理得:22534AB =-=. 故AB 的长是4.22.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts . (1)则BC = 12 cm ;(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ = ;(3)当点Q 在边CA 上运动时,直接写出使BCQ ∆成为等腰三角形的运动时间.【解答】(1)90B ∠=︒,16AB cm =,20AC cm = 2222201612()BC AC AB cm ∴=--=.故答案为:12;(2)点P 在边AC 的垂直平分线上, PC PA t ∴==,16PB t =-,在Rt BPC ∆中,222BC BP CP +=,即22212(16)t t +-= 解得:252t =. 此时,点Q 在边AC 上,2521213()2CQ cm =⨯-=; 故答案为:13cm .(3)①当CQ BQ =时,如图1所示, 则C CBQ ∠=∠, 90ABC ∠=︒,90CBQ ABQ ∴∠+∠=︒. 90A C ∠+∠=︒,A ABQ ∴∠=∠, BQ AQ ∴=, 10CQ AQ ∴==, 22BC CQ ∴+=, 22211t ∴=÷=秒.②当CQ BC =时,如图2所示, 则24BC CQ +=, 24212t ∴=÷=秒.③当BC BQ =时,如图3所示, 过B 点作BE AC ⊥于点E ,∴121648205AB BC BE AC ⨯===, ∴22365CE BC BE =-=. 214.4CQ CE ∴==, 26.4BC CQ ∴+=, 26.4213.2t ∴=÷=秒.综上所述:当t 为11秒或12秒或13.2秒时,BCQ ∆为等腰三角形.23.如图,已知30MAN ∠=︒,点B 在射线AM 上,且6AB =,点C 在射线AN 上. (1)若ABC ∆是直角三角形,求AC 的长;(2)若ABC ∆是等腰三角形,则满足条件的C 点有 3 个; (3)设BC x =,当ABC ∆唯一确定时,直接写出x 的取值范围.【解答】(1)当90ABC ∠=︒时,30A ∠=︒, 12BC AC ∴=, ∴设BC x =,则2AC x =,在Rt ABC ∆中,由勾股定理得22364x x +=, 解得23x =,23x =-(舍去). 43AC ∴=,当90ACB ∠=︒时, 30A ∠=︒132BC AB ∴==, 33AC ∴=.(2)如图3,当AC BC =时,满足题意. 如图4,当AC AB =时,满足题意.如图3,当AB BC =时,满足题意. 故答案为:3.(3)当6BC 或3BC =时,ABC ∆唯一确定. 即3x =或6x .24.细心观察图形,认真分析各式,然后解答问题.2221(1)2OA =+=,11S =22231(2)3OA =+=,22S =22241(3)4OA =+=,13S =⋯ (1)(直接写出答案)210OA = 10 ,并用含有(n n 是正整数)的等式表示上述变规律:2n OA = ;n S = .(2)若一个三角形的面积是5,计算说明它是第几个三角形?【解答】(1)2221(1)2OA =+=,22231(2)3OA =+=,22241(3)4OA =+=, 21010OA ∴=,1010OA ∴=,2221(1)2OA =+=,112S =22231(2)3OA =+=,22S =22241(3)4OA =+=,13S =⋯ 2n OA n ∴=,n nS =; 故答案为:10,n ,n ;(2)设它是第m 个三角形, 由题意得,5m=, 解得,20m =答:一个三角形的面积是5,它是第20个三角形.25.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数; (2)在图2中,画一个直角三角形,使它们的三边长都是无理数; (3)在图3中,画一个正方形,使它的面积是10.【解答】(1)三边分别为:3、4、5 (如图1); (2)三边分别为:2、22、10(如图2); (3)画一个边长为10的正方形(如图3).26.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,12BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts .(1)出发3s 后,求PQ 的长;(2)当点Q 在边BC 上运动时,出发多久后,PQB ∆能形成等腰三角形? (3)当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间. 【解答】(1)当3t =时,则3AP =,26BQ t ==, 16AB cm =,16313()BP AB AP cm ∴=-=-=,在Rt BPQ ∆中,2222613205()PQ BQ BP cm =+=+=. (2)由题意可知AP t =,2BQ t =, 16AB =,16BP AB AP t ∴=-=-,当PQB ∆为等腰三角形时,则有BP BQ =, 即162t t -=,解得163t =, ∴出发163秒后PQB ∆能形成等腰三角形; (3)①当CQ BQ =时,如图1所示, 则C CBQ ∠=∠, 90ABC ∠=︒,90CBQ ABQ ∴∠+∠=︒. 90A C ∠+∠=︒,A ABQ ∴∠=∠, BQ AQ ∴=, 10CQ AQ ∴==, 22BC CQ ∴+=, 22211t ∴=÷=秒.②当CQ BC =时,如图2所示, 则24BC CQ +=, 24212t ∴=÷=秒.③当BC BQ =时,如图3所示, 过B 点作BE AC ⊥于点E , 则121648205AB BC BE AC ⨯===, 2222483612()55CE BC BE ∴=-=-=, 214.4CQ CE ∴==, 26.4BC CQ ∴+=, 26.4213.2t ∴=÷=秒.综上所述:当t为11秒或12秒或13.2秒时,BCQ为等腰三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《勾股定理》练习题及答案
测试1 勾股定理(一)
学习要求
掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三
条边长.
课堂学习检测
一、填空题
1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.
2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.
(1)若a=5,b=12,则c=______;
(2)若c=41,a=40,则b=______;
(3)若∠A=30°,a=1,则c=______,b=______;
(4)若∠A=45°,a=1,则b=______,c=______.
3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→
C
所走的路程为______.
4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.
5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.
二、选择题
6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).
(A)8 (B)4 (C)6 (D)无法计算
7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ).
(A)4 (B)6 (C)8 (D)102
8.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和
为( ).(A)150cm2 (B)200cm2 (C)225cm2 (D)无法计算
三、解答题
9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.
(1)若a∶b=3∶4,c=75cm,求a、b; (2)若a∶c=15∶17,b=24,求△ABC的面积;
(3)若c-a=4,b=16,求a、c; (4)若∠A=30°,c=24,求c边上的高hc;
(5)若a、b、c为连续整数,求a+b+c.
综合、运用、诊断
一、选择题
10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).
(A)1个 (B)2个 (C)3 (D)4个
二、填空题
11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.
12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置
的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______.
三、解答题
13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.
拓展、探究、思考
14.如图,△ABC中,∠C=90°.
(1)以直角三角形的三边为边向形外作等边三角形,探究S1+S2与S3的关系;
图①
(2)以直角三角形的三边为斜边向形外作等腰直角三角形,探究S1+S2与S3的关系;
(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S1+S2与S3的关系.
测试2 勾股定理(二)
学习要求
掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题.
课堂学习检测
一、填空题
1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.
2.甲、乙两人同时从同一地点出发,已知甲往东走了4km,乙往南走了3km,此时甲、乙两人相距______km.
3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅
少走了______m路,却踩伤了花草.
4.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树
梢飞到另一棵树的树梢,至少要飞______m.
二、选择题
5.如图,一棵大树被台风刮断,若树在离地面3m处折断,
树顶端落在离树底部4m处,则树折断之前高( ).
(A)5m (B)7m (C)8m (D)10m
6.如图,从台阶的下端点B到上端点A的直线距离为( ).
(A)212 (B)310 (C)56 (D)58
三、解答题
7.在一棵树的10米高B处有两只猴子,一只猴子爬下树走到离树20米处的池塘的
A
处;另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过
的距离相等,则这棵树高多少米?
8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红
莲移动的水平距离为2米,求这里的水深是多少米?
综合、运用、诊断
一、填空题
9.如图,一电线杆AB的高为10米,当太阳光线与地面的夹角为60°时,其影长AC为______米.
10.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱
表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______(取3)
二、解答题:
11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面
升高了______m.
12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,
地毯每平方米30元,那么这块地毯需花多少元?
9 10 11 12
拓展、探究、思考
13.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,
BD
=3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设
水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费
用最省,并求出铺设水管的总费用W.
测试3 勾股定理(三)
学习要求
熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.
课堂学习检测
一、填空题
1.在△ABC中,若∠A+∠B=90°,AC=5,BC=3,则AB=______,AB边上的高CE=______.
2.在△ABC中,若AB=AC=20,BC=24,则BC边上的高AD=______,AC边上的高BE=______.
3.在△ABC中,若AC=BC,∠ACB=90°,AB=10,则AC=______,AB边上的高CD=______.
4.在△ABC中,若AB=BC=CA=a,则△ABC的面积为______.
5.在△ABC中,若∠ACB=120°,AC=BC,AB边上的高CD=3,则AC=______,AB=______,BC边上的
高AE=______.
二、选择题
6.已知直角三角形的周长为62,斜边为2,则该三角形的面积是( ).
(A)41 (B)43 (C)21 (D)1
7.若等腰三角形两边长分别为4和6,则底边上的高等于( ).
(A)7 (B)7或41 (C)24 (D)24或7
三、解答题
8.如图,在Rt△ABC中,∠C=90°,D、E分别为BC和AC的中点,AD=5,BE=102求AB的长.
9.在数轴上画出表示10及13的点.
综合、运用、诊断
10.如图,△ABC中,∠A=90°,AC=20,AB=10,延长AB到D,使CD+DB=AC+AB,求BD的长.
11.如图,将矩形ABCD沿EF折叠,使点D与点B重合,已知AB=3,AD=9,求BE的长.
12.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.
13.已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.
求证:AE2+BF2=EF2.
拓展、探究、思考
14.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且
l1,l2之间的距离为2,l2,l3之间的距离为3,求AC
的长是多少?
15.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方
形AEGH,如此下去,……已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,
S3,…,Sn(n为正整数),那么第8个正方形的面积S8=______,第n个正方形的面积S
n
=______.
测试4 勾股定理的逆定理
学习要求
掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.
课堂学习检测
一、填空题
1.如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是______三角形,我们把这个定理叫做
勾股定理的______.
2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题
设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的
____________.
3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,
其中能构成直角三角形的有____________.(填序号)
4.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,
①若a2+b2>c2,则∠c为____________;