第13课时 二次函数的图象与性质(中考复习第一轮)

合集下载

【中考一轮复习】二次函数的图象与性质课件(1)

【中考一轮复习】二次函数的图象与性质课件(1)

当堂训练---二次函数的图象的变换
1.如图,在平面直角坐标系中,抛物线y=0.5x2经过平移得到抛物
线y=0.5x2-2x,其对称轴与两段抛物线弧所围成的阴影部分的面
积为( B )
A.2
B.4
C.8
D.16
2.将抛物线y=0.5x2-6x+21向左平移2个
单位后,得到抛物线的解析式为( D )
A.y=0.5(x-8)2+5 B.y=0.5(x-4)2+5
人教版中考数学第一轮总复习
第三单元 函数及其图象
•§3.6 二次函数图象与性质(2)
目录
01 二次函数的图象的变换
02 二次函数与一元二次方程
03 二次函数图象的最值问题
考点聚焦---二次函数的图象的变换
二次函数图 平 移 ①先求出原抛物线的顶点;
象的平移


②后求出变换后的抛物线的顶点; ③写出变换的抛物线的解析式。
【例1】将抛物线y=x2+2x-3,化成顶点式为_y_=_(_x_+_1_)_2_-_4__; (1)该抛物线是由y=x2_向__左__1_个__单__位__,_再__向__下__4_个___单__位__平移得到的;
(2)写出该抛物线关于x轴,y轴,原点和(1,1)对称的抛物线解析式: 关于 x 轴对称:_y_=_-_x_2_-_2_x_+_3___;_y_=_-_(_x_+_1_)_2_+_4___。 关于 y 轴对称:_y_=__x_2_-_2_x_-_3___;_y_=__(_x_-_1_)_2_-_4___。 关于 x=2 对称:_y_=_x_2_-_1_0_x_+_2_1__;_y_=_(_x_-_5_)_2_-_4____。 关于原 点对称:_y_=_-_x_2_+_2_x_+_3___;_y_=_-_(_x_-_1_)_2_+_4___。 关于(1,1)对称:_y_=_-_x_2_+_6_x_-_9___;_y_=_-_(_x_-_3_)_2_+_6___。

2020年中考数学一轮专项复习13 二次函数图象及性质1(含解析)

2020年中考数学一轮专项复习13 二次函数图象及性质1(含解析)

2020年中考数学一轮专项复习——二次函数图象及性质课时1 二次函数图象与基本性质基础过关1. (2019衢州)二次函数y =(x -1)2+3图象的顶点坐标是( ) A. (1,3) B. (1,-3) C. (-1,3)D. (-1,-3)2. (2019重庆B 卷)抛物线y =-3x 2+6x +2的对称轴是( ) A. 直线x =2 B. 直线x =-2 C. 直线x =1D. 直线x =-13. (2019兰州)已知点A (1,y 1),B (2,y 2)在抛物线y =-(x +1)2+2上,则下列结论正确的是( ) A. 2>y 1>y 2 B. 2>y 2>y 1 C. y 1>y 2>2D. y 2>y 1>24. (2019咸宁)已知点A (-1,m ),B (1,m ),C (2,m -n )(n >0)在同一个函数的图象上,这个函数可能是( )A. y =xB. y =-2xC. y =x 2D. y =-x 25. (2019河南)已知抛物线y =-x 2+bx +4经过(-2,n )和(4,n )两点,则n 的值为( ) A. -2B. -4C. 2D. 46. (2018岳阳)在同一直角坐标系中,二次函数y =x 2与反比例函数y =1x (x >0)的图象如图所示,若两个函数图象上有三个不同....的点A (x 1,m ),B (x 2,m ),C (x 3,m ),其中m 为常数,令ω=x 1+x 2+x 3,则ω的值为( )A. 1B. mC. m 2D. 1m第6题图7. (2019株洲)若二次函数y =ax 2+bx 的图象开口向下,则a ________0(填“=”、“>”或“<”). 8. (2019眉山模拟)如果点A (-4,y 1)、B (-3,y 2)是二次函数y =2x 2+k (k 是常数)图象上的两点,那么y 1________y 2.(填“>”、“<”或“=”)9. (2019甘肃省卷)将二次函数y =x 2-4x +5化成y =a (x -h )2+k 的形式为__________. 10. 已知二次函数y =x 2-2x +3,当自变量x 满足-1≤x ≤2时,函数y 的最大值是________.满分冲关1. 已知二次函数y =ax 2+bx +c (a ≠0)图象的顶点在第一象限,且图象经过点(-1,0),若a +b 为整数,则ab 的值为( )A. -2B. 1C. -34D. -142. (2018呼和浩特)若满足12<x ≤1的任意实数x ,都能使不等式2x 3-x 2-mx >2成立,则实数m 的取值范围是( )A. m <-1B. m ≥-5C. m <-4D. m ≤-43. (2020原创)在平面直角坐标系xOy 中,已知抛物线y =x 2-2mx +m 2-1. (1)求抛物线的对称轴(用含m 的式子去表示);(2)若点(m -2,y 1),(m ,y 2),(m +3,y 3)都在抛物线y =x 2-2mx +m 2-1上,求y 1,y 2,y 3的大小关系.课时2 二次函数图象与系数a 、b 、c 的关系及解析式的确定(建议时间:25分钟)基础过关1. (2019呼和浩特)二次函数y =ax 2与一次函数y =ax +a 在同一坐标系中的大致图象可能是( )2. (2019青岛)已知反比例函数y =abx 的图象如图所示,则二次函数y =ax 2-2x 和一次函数y =bx +a 在同一平面直角坐标系中的图象可能是( )第2题图3. (2019济宁)将抛物线y =x 2-6x +5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( )A. y =(x -4)2-6B. y =(x -1)2-3C. y =(x -2)2-2D. y =(x -4)2-24. (2019宜宾模拟)如图,关于二次函数y =ax 2+bx +c (a ≠0)的结论正确的是( )①2a +b =0; ②当-1≤x ≤3时,y <0; ③若(x 1,y 1),(x 2,y 2)在函数图象上,当x 1<x 2时,y 1<y 2; ④3a +c =0.A. ①②④B. ①④C. ①②③D. ③④第4题图5. (人教九上P 35例3改编)怎样移动抛物线y =-12x 2就可以得到抛物线y =-12(x +1)2-1( )A. 向左平移1个单位,再向上平移1个单位B. 向左平移1个单位,再向下平移1个单位C. 向右平移1个单位,再向上平移1个单位D. 向右平移1个单位,再向下平移1个单位6. 已知二次函数的图象经过(-1,0),(2,0),(0,2) 三点,则该函数解析式为( ) A. y =-x 2-x +2 B. y =x 2+x -2 C. y =x 2+3x +2D. y =-x 2+x +27. (2019娄底改编)二次函数y =ax 2+bx +c 的图象如图所示,下列结论中正确的有( ) ① 4a +c >-2b ② b 2-4ac <0 ③ 2a >b ④ (a +c )2<b 2 A. 1个B. 2个C. 3个D. 4个第7题图8. (人教九上P 40练习第2题改编)一个二次函数的图象经过(0,0)、(-1,-1)、(1,9)三点,这个二次函数的解析式是________.9. (2019天水)二次函数y =ax 2+bx +c 的图象如图所示,若M =4a +2b ,N =a -b .则M 、N 的大小关系为M ________N .(填“>”、“=”或“<”)第9题图能力提升如图,抛物线y 1=a (x +2)2-3与y 2=12(x -3)2+1交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于B 、C ,则以下结论:①无论x 取何值,y 2的值总是正数;②a =1;③2AB =3AC . 其中正确结论是( ) A. ①② B. ①③ C. ②③ D. 都正确题图满分冲关抛物线y =ax 2+bx +c (a 、b 、c 为常数)的顶点为P ,且抛物线经过点A (-1,0),B (m ,0),C (-2,n )(1<m <3,n <0).下列结论:①abc >0;②3a +c <0;③a (m -1)+2b >0;④a =-1时,存在点P 使△P AB 为直角三角形.其中正确结论的序号为________.课时3二次函数与方程、不等式的关系(建议时间:25分钟)基础过关1.二次函数y=ax2+bx+c的部分图象如图所示,由图象可知不等式ax2+bx+c<0的解集为()第1题图A. x<-1或x>5B. x>5C. -1<x<5D. 无法确定2. (2019荆门)抛物线y=-x2+4x-4与坐标轴的交点个数为()A. 0B. 1C. 2D. 33. (2019梧州)已知m>0,关于x的一元二次方程(x+1)(x-2)-m=0的解为x1,x2(x1<x2),则下列结论正确的是()A. x1<-1<2<x2B. -1<x1<2<x2C. -1<x1<x2<2D. x1<-1<x2<24. (2019绵阳模拟)若抛物线y=x2-6x+m与x轴没有交点,则m的取值范围是()A. m>9B. m≥9C. m<-9D. m≤-95. (2019潍坊)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3-t=0(t 为实数)在-1<x<4的范围内有实数根,则t的取值范围是()A .2≤t <11B .t ≥2C .6<t <11D .2≤t <66. 二次函数y =ax 2+bx +c (a ≠0)和正比例函数y =23x 的图象如图所示,则方程ax 2+(b -23)x +c =0(a ≠0)的两根之和( )A. 大于0B. 等于0C. 小于0D. 不能确定第6题图7. 如图,二次函数y =ax 2+c 的图象与反比例函数y =c x 的图象相交于A (-32,1),则关于x 的不等式ax 2+c >cx的解集为( )A. x <-32B. x >-32C. x <-32或x >0D. -32<x <1第7题图8. 一次函数y =-2x +6的图象与二次函数y =-2x 2+4x +6的图象的交点坐标为________. 9. (2019镇江)已知抛物线y =ax 2+4ax +4a +1(a ≠0)过点A (m ,3),B (n ,3)两点,若线段AB 的长不大于4,则代数式a 2+a +1的最小值是________.能力提升1. (2019绵阳模拟)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(-2,-9a),下列结论:①a-3b+2c>0;②3a-2b-c=0;③若方程a(x+5)(x-1)=-1有两个根x1和x2,且x1<x2,则-5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为-8.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个第1题图2. (2019安徽)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x-a+1和y=x2-2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是________.3. (2019武汉)抛物线y=ax2+bx+c经过点A(-3,0),B(4,0)两点,则关于x的一元二次方程a(x-1)2+c=b-bx的解是________.满分冲关1. (2019杭州)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. M=N-1或M=N+1B. M=N-1或M=N+2C. M=N或M=N+1D. M=N或M=N-12. (2019济宁)如图,抛物线y=ax2+c与直线y=mx+n交于A(-1,p),B(3,q)两点,则不等式ax2+mx+c>n的解集是________.参考答案课时1 二次函数图象与基本性质基础过关1. A 【解析】由二次函数y =a (x -h )2+k 的顶点坐标为(h ,k ),可得二次函数y =(x -1)2+3的顶点坐标为(1,3).2. C 【解析】∵抛物线y =-3x 2+6x +2=-3(x -1)2+5,∴抛物线的对称轴为直线x =1.3. A 【解析】把x 1=1,x 2=2分别代入y =-(x +1)2+2,求得y 1=-2,y 2=-7,∴2>y 1>y 2.4. D 【解析】∵A (-1,m ),B (1,m ),∴点A 与点B 关于y 轴对称.∵函数y =x 和y =-2x 的图象关于原点对称,因此选项A 、B 错误;∵n >0,∴m -n <m ;由B (1,m ),C (2,m -n )可知,在对称轴的右侧,y 随x 的增大而减小,对于二次函数只有a <0时,在对称轴的右侧,y 随x 的增大而减小,∴D 选项正确.5. B 【解析】已知抛物线y =-x 2+bx +4经过(-2,n )和(4,n )两点,∵两点的纵坐标相同,∴两点关于抛物线的对称轴对称,∴对称轴是直线x =-2+42=1,∴-b 2×(-1)=1,解得b =2,∴抛物线的解析式是y =-x 2+2x +4,当x =-2时,y =-4,∴n =-4.6. D 【解析】根据图象信息,可以发现,A 、B 、C 三点的横坐标中,抛物线上的两点横坐标互为相反数,∴ω的值即为反比例函数上的点的横坐标,依题意,当y =m 时,有x =1m ,则ω=1m.7. <8. > 【解析】∵该二次函数图象的对称轴为y 轴, ∴当x <0时,y 随x 的增大而减小, ∴y 1>y 2. 9. y =(x -2)2+1 【解析】配方可得y =x 2-4x +5=(x -2)2+1.10. 6 【解析】∵二次函数y =x 2-2x +3=(x -1)2+2,∴该二次函数图象的对称轴为直线x =1,且a =1>0,∴当x =1时,函数有最小值2.当x =-1时,二次函数有最大值(-1-1)2+2=6.满分冲关1. D 【解析】依题意知a <0,-b2a >0,a -b +1=0,∴b >0,且b =a +1,a +b =a +(a +1)=2a+1,∴-1<a <0,∴-1<2a +1<1,又a +b 为整数,∴2a +1=0,∴a =-12,b =12,∴ab =-14.2. D 【解析】∵12<x ≤1,∴不等式可化为2x 2-x -m >2x ,∴当 12<x ≤1时,2≤2x <4,∵y =2x 2-x -m=2(x -14)2-18-m ,∴当12<x ≤1时,y 随x 的增大而增大,∴当x =12,y 取得最小值,要使2x 2-x -m >2x 成立,∴y ≥4,即2(12-14)2-18-m ≥4,解得m ≤-4.3. 解:(1)∵抛物线为y =x 2-2mx +m 2-1, ∴抛物线的对称轴为直线x =--2m2×1=m ;(2)∵a =1>0,∴抛物线y =x 2-2mx +m 2-1开口向上,∴在对称轴的右侧y 随x 的增大而增大,在对称轴的左侧y 随x 的增大而减小, ∵对称轴为直线x =m ,m -2<m <m +3,m +3离对称轴的距离更远, ∴可得出y 3>y 1>y 2.课时2 二次函数图象与系数a 、b 、c 的关系及解析式的确定基础过关1. D 【解析】一次函数y =ax +a =0时,x =-1,因此排除A 、B 选项;C 选项中一次函数a >0,二次函数a <0,相互矛盾;D 选项中a >0,二次函数开口向上,一次函数过第一、二、三象限且过点(-1,0).2. C 【解析】∵反比例函数y =ab x的图象在第一、三象限,∴ab >0,即a 与b 同号.当a >0,b >0时,y =ax 2-2x 的开口向上,且经过原点,令y =0,得ax 2-2x =0,解得x 1=0,x 2=2a>0,即它与x 轴有两个交点,一个为原点,另一个在正半轴上,对于y =bx +a ,图象经过第一、二、三象限,∴选项C 正确,B 不正确.当a <0,b <0时,y =ax 2-2x 的开口向下,且经过原点,令y =0,得ax 2-2x =0,解得x 1=0,x 2=2a<0,即它与x 轴有两个交点,一个为原点,另一个在负半轴上,∴选项A 、D 不正确,故选C . 3. D 【解析】∵y =x 2-6x +5=(x -3)2-4,∴将抛物线y =x 2-6x +5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是y =(x -3-1)2-4+2=(x -4)2-2.4. B 【解析】①∵抛物线过点(-1,0)与(3,0),∴抛物线的对称轴为直线x =1,∴-b 2a=1,∴b +2a =0,故①正确;②由图象可知:当-1≤x ≤3时,y ≤0,故②错误;③当x 1<x 2<1时,y 1>y 2,故③错误;④当x =-1时,y =a -b +c =0,∵2a =-b ,∴a +2a +c =0,∴3a +c =0,故④正确.5. B6. D 【解析】∵二次函数的图象经过(-1,0)、(2,0)、(0,2)三点,∴设二次函数的解析式为y =a (x +1)·(x -2),将点(0,2)代入,得2=-2a ,解得a =-1,故函数解析式为y =-1(x +1)(x -2),整理得y =-x 2+x +2.7. A 【解析】由二次函数y =ax 2+bx +c 的图象可知,当x =2时,y =4a +2b +c ,此时y <0,即4a +2b +c <0,∴4a +c <-2b ,故①错误;二次函数的图象与x 轴交于两点,则当ax 2+bx +c =0时,方程有两个不同的实数根,∴b 2-4ac >0,∴②错误. ∵二次函数的图象开口向下,∴a <0,∵对称轴为直线x =-b 2a ,∴-1<-b 2a<0,∴2a <b ,∴③错误;由图象知,当x =-1时,y >0,即a -b +c >0;当x =1时,y <0,即a +b +c <0,∴(a -b +c )(a +b +c )<0,即(a +c )2<b 2,∴④正确.共有1个正确结论.8. y =4x 2+5x 【解析】∵这个二次函数的图象经过(0,0),∴可设这个二次函数的解析式为y =ax 2+bx ,将点(-1,-1)和(1,9)代入得,⎩⎪⎨⎪⎧-1=(-1)2a -b 9=a +b ,解得⎩⎪⎨⎪⎧a =4b =5,∴这个二次函数的解析式为y =4x 2+5x .9. < 【解析】观察图象可知,当x =-1时,y =a -b +c >0,当x =2时,y =4a +2b +c <0.∵M =4a +2b ,N =a -b ,∴M +c <N +c .∴M <N .能力提升B 【解析】抛物线y 2=12(x -3)2+1,当x =3时,y 有最小值为1,∴无论x 取何值,y 2的值总是正数,∴①正确;把A (1,3)代入y 1=a (x +2)2-3得a (1+2)2-3=3,解得a =23,∴②错误;∵抛物线y 1=a (x +2)2-3的对称轴为直线x =-2,则B 点坐标为(-5,3),∴AB =1-(-5)=6,抛物线y 2=12(x -3)2+1的对称轴为直线x =3,则C 点坐标为(5,3),∴AC =5-1=4,∴2AB =3AC ,∴③正确.满分冲关1. ②③ 【解析】∵A (-1,0),B (m ,0),∴抛物线的对称轴x =m -12=-b 2a ,∴-b a=m -1,∵1<m <3,∴m -1>0,∴b a<0,∴ab <0,∵抛物线与x 轴交于点A (-1,0),B (m ,0),且过C (-2,n ),n <0,∴a <0,∴b >0,将A (-1,0)代入抛物线的解析式,得a -b +c =0,∴c =b -a >0,∴abc <0,①错误;∵当x =-1时,a -b +c =0得b =a +c ,∴结合抛物线图象可知当x =3时,y <0,∴9a +3b +c =9a+3(a +c )+c =12a +4c =4(3a +c )<0,∴3a +c <0,②正确;a (m -1)+2b =a ×(-b a)+2b =-b +2b =b >0,③正确;a =-1时,c =b -a =b +1, ∴y =-x 2+bx +b +1,∴P (b 2,b +1+b 24),若△P AB 为直角三角形,则△P AB 为等腰直角三角形,∴∠P AB =45°,∴b +1+b 24=b 2+1,解得b =0或b =-2,∵b >0,∴不存在点P 使△P AB 为直角三角形,④错误;故正确结论的序号为②③.2. D 【解析】∵12<x ≤1 ,∴不等式可化为2x 2-x -m >2x ,∴当 12<x ≤1时,2≤2x<4,∵y =2x 2-x -m =2(x -14)2-18-m ,∴当12<x ≤1时,y 随x 的增大而增大,∴当x =12,y 取得最小值,要使2x 2-x -m >2x成立,∴y ≥4,即2(12-14)2-18-m ≥4,解得m ≤-4.课时3 二次函数图象与方程、不等式的关系基础过关1. A 【解析】由二次函数的图象可知对称轴是直线x =2,与x 轴的一个交点坐标(5,0),由二次函数的对称性可知,与x 轴另一个交点是(-1,0),∴ax 2+bx +c <0的解集为x >5或x <-1.2. C 【解析】当x =0时,y =-x 2+4x -4=-4,则抛物线与y 轴的交点坐标为(0,-4),当y =0时,-x 2+4x -4=0,解得x 1=x 2=2,抛物线与x 轴的交点坐标为(2,0),∴抛物线与坐标轴有2个交点.3. A 【解析】如解图所示,关于x 的一元二次方程(x +1)(x -2)=m 的两根即为抛物线y =(x +1)(x -2)与直线y =m (m >0)的交点的横坐标.∵抛物线与x 轴交于点(-1,0),(2,0),观察解图可知x 1<-1<2<x 2.第3题解图4. A5. A 【解析】∵抛物线y =x 2+bx +3的对称轴为直线x =1,∴b =-2,∴y =x 2-2x +3,∴一元二次方程x 2+bx +3-t =0有实数根可以看做抛物线y =x 2-2x +3与函数y =t 的图象有交点,∵方程在-1<x <4的范围内有实数根,当x =-1时,y =6; 当x =4时,y =11,函数y =x 2-2x +3在x =1时有最小值2,∴2≤t <11.6. A7. C 【解析】要求ax 2+c >c x的解集,即求二次函数图象在反比例函数图象上方时x 的取值范围,由题图知x <-32或x >0时满足题意,∴不等式ax 2+c >c x 的解集是x <-32或x >0. 8. (0,6),(3,0) 【解析】联立方程得⎩⎪⎨⎪⎧y =-2x +6y =-2x 2+4x +6,解得⎩⎪⎨⎪⎧x 1=0y 1=6,⎩⎪⎨⎪⎧x 2=3y 2=0,即一次函数与二次函数图象的交点坐标为(0,6),(3,0).9. 74【解析】∵抛物线y =ax 2+4ax +4a +1=a (x +2)2+1(a ≠0),∴顶点为(-2,1),过点A (m ,3),B (n ,3)两点,∴a >0,∵对称轴为直线x =-2,线段AB 的长不大于4,∴4a +1≥3,∴a ≥12,∴a 2+a +1的最小值为:(12)2+12+1=74. 能力提升1. C 【解析】∵抛物线的开口向上,∴a >0,∵抛物线的顶点坐标为(-2,-9a ),∴-b 2a =-2,4ac -b 24a=-9a ,∴b =4a ,c =-5a ,∴抛物线的解析式为y =ax 2+4ax -5a ,∴a -3b +2c =a -12a -10a =-21a <0,故①结论错误;3a -2b -c =3a -8a +5a =0,故②结论正确;∵抛物线y =ax 2+4ax -5a 交x 轴于(-5,0),(1,0),∴若方程a (x +5)(x -1)=-1有两个根x 1和x 2,且x 1<x 2,则-5<x 1<x 2<1,故结论③正确;若方程|ax 2+bx +c |=1有四个根,设方程ax 2+bx +c =-1的两根分别为x 1、x 2,则x 1+x 22=-2,可得x 1+x 2=-4,设方程ax 2+bx +c =1的两根分别为x 3、x 4,则x 3+x 42=-2,可得x 3+x 4=-4.所以这四个根的和为-8,故结论④正确.综上所述,共有2个正确的结论.2. a >1或a <-1 【解析】 当a <0时,令x 2-2ax <0,得2a <x <0,由于y =x -a +1中y 随x 增大而增大,即2a -a +1<0,∴a <-1;同理得a >0时,令x 2-2ax <0,得0<x <2a ,由于y =x -a +1中y 随x 增大而增大,即-a +1<0,∴a >1.综上得,a 的取值范围为a >1或a <-1.3. x 1=-2或x 2=5 【解析】设y 1=a (x -1)2+b (x -1)+c ,将原抛物线ax 2+bx +c 向右平移1个单位得y 1,由题意知当ax 2+bx +c =0的解为x 1=-3,x 2=4,故方程a (x -1)2+b (x -1)+c =0的解为x 1=-2或x 2=5.满分冲关1. C 【解析】当a =0时,∵a ≠b ,∴b ≠0.∴y =(x +a )(x +b )=x (x +b ).它与x 轴的交点为(0,0),(-b ,0)有2个,即M =2.y =(ax +1)(bx +1)=bx +1.它与x 轴的交点为(-1b,0)有1个交点,即N =1.∴M =N +1;当a =-b 时,且a ≠0,∴y =(x +a )(x +b )=(x +a )(x -a ).它与x 轴的交点为(-a ,0),(a ,0),有2个交点,即M =2,y =(ax +1)(bx +1)=(ax +1)(-ax +1).它与x 轴的交点为(-1a ,0),(1a,0),有2个交点,N =2,∴M =N .综上所述,M =N 或M =N +1.2. x <-3或x >1 【解析】∵抛物线y =ax 2+c 与直线y =mx +n 交于A (-1,p ),B (3,q )两点,∴-m +n =p ,3m +n =q ,∴抛物线y =ax 2+c 与直线y =mx +n 交于(1,p ),Q (-3,q )两点.如解图,∴ax 2+mx +c >n 可以转化为ax 2+c >-mx +n ,观察函数图象可知,当x <-3或x >1时,直线y =-mx +n 在抛物线y =ax 2+c 的下方.∴不等式ax 2+mx +c >n 的解集为x <-3或x >1.第2题解图。

二次函数-2023年中考数学第一轮总复习课件(全国通用)

二次函数-2023年中考数学第一轮总复习课件(全国通用)

A.x1=1,x2=-1
B.x1=1,x2=2
C.x1=1,x2=0
D.x1=1,x2=3
(2)如图,二次函数y=ax2+bx+c的图象则不等式的ax2+bx+c<0解集是( C )
A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>3 y
-1 O 3 x
课堂小结
二次函数
知识梳理
强化 训练
二次函数图象与性质
查漏补缺
5.抛物线y=(x+3)(x-1)的对称轴是直线_x_=_-_1___. 6.若抛物线y=x2-8x+c的顶点在x轴上,则c=_-_1____.
7.若抛物线y=x2-4x+k的顶点在x轴下方,则k的取值范围是_k_<__4__.
8.若抛物线yy==xk2x-22-x6+xm+-34与x轴有交点,则m的取值范围是_k_m≤_≤_3_5且__k_≠__0__. 9.若抛物线y=x2+2x+c与坐标轴只有两个交点,则c的值为__0_或__1_.
1.下列关于抛物线的y=ax2-2ax-3a(a≠0)性质中不一定成立的是( C )
A.该图象的顶点为(1,-4a); B.该图象与x轴的交点为(-1,0),(3,0);
C.当x>1时,y随x的增大而增大;D.若该图象经过(-2,5),一定经过(4,5).
2.抛物线y=(x-t)(x-t-2)(t为常数)与x轴交于A,B两点(点A在点B的左边),
当堂训练
二次函数的基本性质
查漏补缺
1.抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为( B )
A.m>1
B.m>0

中考复习第13课时二次函数的图象与性质一课件

中考复习第13课时二次函数的图象与性质一课件

考点聚焦
豫考探究
当堂检测
第13课时┃ 二次函数的图象与性质(一)

(1)当x=0时,y=-2.∴A点坐标为(0,-2). -2m 抛物线对称轴为x=- =1, 2m ∴B点坐标为(1,0). (2)易得A点关于对称轴的对称点为A1(2,-2), 则直线l经过点A1,B, 设直线l的关系式为y=kx+b(k≠0), 2k+b=-2, k=-2, 则 解得 k+b=0. b=2. ∴直线l的关系式为y=-2x+2.
常数项 c 的意义 c 是抛物线与 y 轴交点的纵坐标,即 x=0 时,y=c
考点聚焦 豫考探究 当堂检测
第13课时┃ 二次函数的图象与性质(一)
考点2
二次函数的关系式
任选以下三个条件中的一个,求二次函数 y=ax2+bx+c 的关系式. ①y 随 x 变化的部分数值规律如下表: x -1 0 1 2 3 y 0 3 4 3 0 ②有序数对(-1,0),(1,4),(3,0)满足 y=ax2+bx+c; ③已知函数 y=ax2+bx+c 的图象的一部 分(如图 13-1 所示).
抛物线开口向下,并向下 无限延伸 b 直线x=- 2a
b 4ac-b2 - , 4a 2a
考点聚焦
豫考探究
当堂检测
第13课时┃ 二次函数的图象与性质(一)
b 2a 时,y 随 x 的增大而增大;在对 b 称轴的右侧,即当 x>- 时, 2a y 随 x 的增大而减小, 简记左增 在对称轴的左侧,即当 x<- 右减 抛物线有最高点,当 x= b - 时,y 有最大值, 2a 4ac-b2 y 最大值= 4a
第13课时 质(一)
考 点 聚 焦
考点1 二次函数的图象与性质

中考数学复习 第13课时 二次函数的图象与性质数学课件

中考数学复习 第13课时 二次函数的图象与性质数学课件
函数值越大
二次函数y=ax2+bx+c(a≠0)
判断 函数 图象
a,决定抛物 线开口方向
a,b决定抛 物线的对称 轴位置
a⑨__>___0 a<0 b=0
a、b同号 a、b异号
开口向上 开口向下 对称轴为y轴 对称轴为y轴⑩_左___侧 对称轴为y轴右侧
二次函数y=ax2+bx+c(a≠0)
c=0
c,决定抛物
判断
线与y轴交点
c>0
函数
的位置
图象
c<0
抛物线过原点
抛物线与y轴交于⑪ ___正___半轴
抛物线与y轴交于⑫ ___负___半轴
二次函数y=ax2+bx+c(a≠0)
判断 函数 图象
b2-4ac,决 定抛物线与x 轴交点个数
b2-4ac=0 b2-4ac>0
与x轴有唯一交点(顶 点)
二次函数y=ax2+bx+c(a≠0) 直接运用公式x=①__ _2_b a____求解
对称轴 注:还可利用x=(其中x1、x2为y值 相等的两个点对应的横坐标)求解
二次函数y=ax2+bx+c(a≠0)
1. 直接运用顶点坐标公式

判断 点
b 4acb2
( ,
)
函数
②_____2_a____4_a_____求解;

性质
2. 运用配方法将一般式转化为顶点式求解;

3. 将对称轴的x值代入函数表达式求得对应y值
二次函数y=ax2+bx+c(a≠0)
判断 函数 性质
a>0时,在对轴左侧 a<0时,在对称轴⑤
,y随x的增大而③ 增减
性 _____减__小_;在对称 轴右侧,y随x的增

中考数学基础复习第13课二次函数的图象与性质课件

中考数学基础复习第13课二次函数的图象与性质课件

【解析】(1)把点P(-2,3)代入y=x2+ax+3中, ∴a=2,∴y=x2+2x+3, ∴顶点坐标为(-1,2); (2)①当m=2时,n=11, ②点Q到y轴的距离小于2, ∴|m|<2,∴-2<m<2,∴2≤n<11.
变式1.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点. (1)求二次函数的表达式; (2)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值 大于二次函数的值.
【考点剖析】
考点1 二次函数表达式的确定
例1.已知抛物线y=- 1 x2+bx+c经过点(1,0), (0,3).
2
2
(1)求该抛物线的函数表达式;
(2)将抛物线y=- 1 x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方
2
法及平移后的函数表达式.
【解析】(1)把(1,0), (0,3) 代入抛物线表达式得:
由图象得,当-1<x<4时一次函数的值大于二次函数的值.
变式2.如图,二次函数y=ax2+bx的图象经过点A(2,4),B(6,0). (1)求a,b的值. (2)若C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),请写出 四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.
∴对称轴x= 1 5=2,即 b b 2,
2
2a 2
∴b=-4.
y=x2-4x+1=x2-4x+4-3=(x-2)2-3.
∴抛物线顶点(2,-3).

中考数学总复习课时训练(专题(13)二次函数的图象与性质(一)附详细解析参考答案

课时训练(十三)二次函数的图象与性质(一)[限时:分钟]夯实基础1.抛物线y=3(x-2)2+5的顶点坐标是()A.(-2,5)B.(-2,-5)C.(2,5)D.(2,-5)2.下列二次函数中,图象以直线x=2为对称轴,且经过点(0,1)的是()A.y=(x-2)2+1B.y=(x+2)2+1C.y=(x-2)2-3D.y=(x+2)2-33.[2018·河西区结课考]已知函数y=(x-1)2,下列结论正确的是()A.当x>0时,y随x的增大而减小B.当x<0时,y随x的增大而增大C.当x<1时,y随x的增大而减小D.当x<-1时,y随x的增大而增大4.[2021·绍兴]关于二次函数y=2(x-4)2+6的最大值或最小值,下列说法正确的是()A.有最大值4B.有最小值4C.有最大值6D.有最小值65.[2021·上海]将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,以下说法错误的是()A.开口方向不变B.对称轴不变C.y随x的变化情况不变D.与y轴的交点不变6.[2021·泰安]将抛物线y=-x2-2x+3的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过点()A.(-2,2)B.(-1,1)C.(0,6)D.(1,-3)7.[2021·陕西]下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…-2 0 1 3 …y… 6 -4 -6 -4 …下列各选项中,正确的是()A.这个函数的图象开口向下B.这个函数的图象与x轴无交点C.这个函数的最小值小于-6D.当x>1时,y的值随x值的增大而增大8.对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为.9.已知A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,该抛物线的顶点坐标是.10.[2018·河西区一模]请写出一个二次函数的解析式,满足其图象过点(1,0),且与x轴有两个不同的交点:.11.[2021·广东]把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为.12.(1)已知二次函数y=ax2+bx+1的图象经过点(1,3)和(3,-5),求a,b的值.(2)已知二次函数y=-x2+bx+c的图象与x轴的两个交点的横坐标分别为1和2.求这个二次函数的表达式.13.[2021·宁波]如图K13-1,二次函数y=(x-1)(x-a )(a 为常数)的图象的对称轴为直线x=2. (1)求a 的值;(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.图K13-1能力提升14.[2019·河西区二模]已知抛物线y=x 2+2mx-3m (m 是常数),且无论m 取何值,该抛物线都经过某定点H ,则点H 的坐标为 ( ) A .-32,1B .-32,-1C .32,94D .-32,9415.[2021·福建]二次函数y=ax 2-2ax+c (a>0)的图象过A (-3,y 1),B (-1,y 2),C (2,y 3),D (4,y 4)四个点,下列说法一定正确的是( ) A .若y 1y 2>0,则y 3y 4>0 B .若y 1y 4>0,则y 2y 3>0 C .若y 2y 4<0,则y 1y 3<0D .若y 3y 4<0,则y 1y 2<016.如图K13-2,抛物线y=ax 2+bx+c 与x 轴相交于点A ,B (m+2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c ),则点A 的坐标是 .图K13-217.[2021·北京]在平面直角坐标系xOy 中,点(1,m )和点(3,n )在抛物线y=ax 2+bx (a>0)上. (1)若m=3,n=15,求该抛物线的对称轴.(2)已知点(-1,y 1),(2,y 2),(4,y 3)在该抛物线上.若mn<0,比较y 1,y 2,y 3的大小,并说明理由.【参考答案】1.C2.C3.C4.D5.D [解析] 将二次函数图象向下平移,不改变开口方向,故A 正确; 将二次函数图象向下平移,不改变对称轴,故B 正确; 将二次函数图象向下平移,不改变函数的增减性,故C 正确;抛物线y=ax 2+bx+c (a ≠0)与y 轴的交点坐标为(0,c ),将二次函数的图象向下平移两个单位,与y 轴的交点坐标为(0,c-2),改变,故D 错误.6.B [解析] y=-x 2-2x+3=-(x 2+2x )+3=-[(x+1)2-1]+3=-(x+1)2+4, ∵将抛物线y=-x 2-2x+3向右平移1个单位,再向下平移2个单位, ∴得到的抛物线的解析式为y=-x 2+2.将选项中的四个坐标代入可知,只有B 选项中的坐标符合题意.7.C [解析] 设二次函数的解析式为y=ax 2+bx+c ,由题知{6=a ×(-2)2+b ×(-2)+c ,-4=c ,-6=a +b +c ,解得{a =1,b =-3,c =-4,∴二次函数的解析式为y=x 2-3x-4=(x-4)(x+1)=x-322-254,∴函数图象开口向上,∴A 错误;∵图象与x 轴的交点为(4,0)和(-1,0),∴B 错误;∵当x=32时,函数有最小值为-254,∴C 正确;∵函数图象的对称轴为直线x=32,根据图象可知当x>32时,y 的值随x 值的增大而增大,∴D 错误. 8.直线x=2 9.(1,4)10.y=x 2-3x+2(答案不唯一) [解析] ∵抛物线过点(1,0),∴设抛物线的解析式为y=a (x-1)(x-m ). ∵抛物线与x 轴有两个不同的交点,∴m ≠1,取a=1,m=2,则抛物线的解析式为y=(x-1)(x-2)=x 2-3x+2. 11.y=2x 2+4x12.解:(1)将(1,3)和(3,-5)分别代入y=ax 2+bx+1, 得:{a +b +1=3,9a +3b +1=-5,解得:{a =-2,b =4.∴a 的值为-2,b 的值为4.(2)由题意得,二次函数的图象经过点(1,0)和(2,0), 将(1,0)和(2,0)分别代入y=-x 2+bx+c , 得{-1+b +c =0,-4+2b +c =0,解得{b =3,c =-2, ∴这个二次函数的表达式为y=-x 2+3x-2.13.解:(1)由二次函数y=(x-1)(x-a )(a 为常数)知,该抛物线与x 轴的交点坐标是(1,0)和(a ,0). ∵对称轴为直线x=2,∴1+a 2=2.解得a=3.(2)由(1)知a=3,则该抛物线解析式是:y=x 2-4x+3,由抛物线向下平移3个单位后经过原点,得平移后图象所对应的二次函数的表达式是y=x 2-4x. 14.C [解析] 由y=x 2+2mx-3m=x 2+m (2x-3)可知当x=32时,无论m 取何值y 都等于94,∴点H 的坐标为32,94.15.C [解析] ∵y=ax 2-2ax+c=a (x-1)2-a+c ,∴抛物线的对称轴为直线x=1,∴四点中距离对称轴远近关系从远到近排列为:A ,D ,B ,C ,当y 2y 4<0时,一定是y 2<0,y 4>0,根据对称性判断y 3<0,y 1>0,∴y 1y 3<0,因此本题选C .16.(-2,0) [解析] 由C (0,c ),D (m ,c ),得函数图象的对称轴是直线x=m2,设A 点坐标为(x ,0),由A ,B 关于对称轴x=m2对称可得x+m+22=m 2,解得x=-2,即A 点坐标为(-2,0).17.解:(1)∵m=3,n=15, ∴点(1,3),(3,15)在抛物线上,将(1,3),(3,15)的坐标代入y=ax 2+bx 得: {3=a +b ,15=9a +3b ,解得{a =1,b =2,∴y=x 2+2x=(x+1)2-1, ∴抛物线对称轴为直线x=-1.(2)由题意得:抛物线y=ax 2+bx (a>0)始终过定点(0,0),则由mn<0可得:①当m>0,n<0时,由抛物线y=ax 2+bx (a>0)始终过定点(0,0)可得此时的抛物线开口向下,即a<0,与a>0矛盾; ②当m<0,n>0时,∵抛物线y=ax 2+bx (a>0)始终过定点(0,0), ∴此时抛物线的对称轴的范围为12<-b2a <32, ∵点(-1,y 1),(2,y 2),(4,y 3)在该抛物线上,∴它们离抛物线对称轴的距离的范围分别为32<-b2a-(-1)<52,12<2--b2a<32,52<4--b2a<72,∵a>0,开口向上,∴由抛物线的性质可知离对称轴越近y 越小, ∴y 2<y 1<y 3.。

【2014中考复习方案】(人教版)中考数学复习权威课件 :13 二次函数的图象及其性质(一)

若已知二次函数图象与x轴的两个交点的坐标为(x1,0), (x2,0),设所求二次函数为y=a(x-x1)(x-x2),将第三点 交点式 (m,n)的坐标(其中m,n为已知数)或其他已知条件代入, 求出待定系数a,最后将解析式化为一般形式
考点聚焦 归类探究 回归教材
第13课时┃二次函数的图象及 其性质(一)
考点聚焦 归类探究 回归教材
a≠0, a≠0, 2 (-1)+c=0,解得b=-2a, ∴a·(-1) +b· a·32+b· c=-3a. 3+c=0,
考点聚焦 归类探究 回归教材
第13课时┃二次函数的图象及 其性质(一)
∴抛物线的解析式为 y=ax2-2ax-3a=a(x2-2x-3)=a(x-1)2 -4a(a≠0), ∴所求抛物线的对称轴为直线 x=1. 方法二:∵抛物线 y=ax2+bx+c 与 x 轴的交点坐标是(-1,0), (3,0), ∴抛物线的方程可设为 y=a(x+1)(x-3)(a≠0), 即 y=a(x2-2x-3)=a(x-1)2-4a(a≠0), ∴抛物线的对称轴为直线 x=1. 方法三: ∵抛物线是关于对称轴对称的, 且其对称轴 x=h 与 x 轴垂直, ∴对称轴必过点(-1,0),(3,0)的中点, -1+3 则 h-(-1)=3-h,得 h= =1. 2 即抛物线的对称轴为直线 x=1.
第13课时
二次函数的图象及 其性质(一)
第13课时┃二次函数的图象及 其性质(一)
考 点 聚 焦
考点1 二次函数的概念 定义:一般地,如果______________(a,b,c是常数, y=ax2+bx+c a≠0),那么y叫做x的二次函数. 考点2
图象
二次函数的图象及画法
二次函数y=ax2+bx+c(a≠0)的图象是以___________

第13讲二次函数图象与性质(课件)-2025年中考数学一轮复习讲练测(全国通用)

2025年中考数学一轮复习讲练测
第13讲
二次函数的图象与性质
目录
C
O
N
T
E
N
T
S
01
02
考情分析
知识建构
03
考点精讲
第一部分
考情分析
考点要求
新课标要求
二次函数的相 ➢ 通过对实际问题的分析,体会二次函
关概念
二次函数的图
象与性质
二次函数与各
项系数的关系
二次函数与方
程、不等式
命题预测
数的意义.
➢ 能画二次函数的图象,通过图象了解
b
时,二次函数取得最小值
2a
4ac−b2
4a
y
当x=x2时,二次函数取得最大值y2
x1
y2
y1
当 x= −
4ac−b2
4a
y
x1≤x≤x2
b
时,二次函数取得最大值
2a
O
x1 O
b
时,二次函数取得最小值
2a
O
x2
x
当x=x1时,二次函数取得最小值y1
考点二 二次函数的图象与性质
备注:自变量的取值为x1≤x≤x2时,且二次项系数a<0的最值情况请自行推导.
a<0
开口向下,顶点是最高点,此时y有最大值.
4ac−b2
【小结】二次函数最小值(或最大值)为0(k或
).
4a

在对称轴的左边y随x的增大而减小,在对称轴的右边y随x
a>0


的增大而增大.
在对称轴的左边y随x的增大而增大,在对称轴的右边y随x
a<0
的增大而减小.

中考数学第一轮系统复习夯实基础第三章函数及其图象第13讲二次函数课件

【解析】二次函数中 a=-14,所以二次函数的开口向下,∵-2ba=2, ∴对称轴为 x=2,当 x=2 时,取得最大值,最大值为-3,所以 B 正 确.
1.将抛物线解析式写成 y=a(x-h)2+k 的形式,则顶点坐标为(h,k), 对称轴为直线 x=h,也可应用对称轴公式 x2.解题时尽可能画出草图.
【解析】如图所示:图象与x轴有两个交点,则b2-4ac>0,故①错 误;根据图象有a>0, b<0, c<0,∴abc>0,故②正确;当x=-1时 ,a-b+c>0,故③错误;二次函数y=ax2+bx+c的顶点坐标纵坐 标为-2,∵关于x的一元二次方程ax2+bx+c-m=0有两个不相等的 实数根,∴m>-2,故④正确.故选B.
二次函数是中考的重点内容: 1.直接考查二次函数的概念、图象和性质等. 2实际情境中构建二次函数模型,利用二次函数的性质来解释、解决实 际问题. 3在动态的几何图形中构建二次函数模型,常与方程、不等式、几何知 识等结合在一起综合考查. 4.体现数形结合思想、转化的思想、方程的思想.
1.(2016·衢州)二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x, y)对应值列表如下:
(2)∵将 x=0 代入 y=12x+32得 y=32,将 x=1 代入得 y=2,∴直线 y=12x +32经过点(0,32),(1,2).直线 y=12x+32的图象如图所示,由函数图象可 知:当 x<-1.5 或 x>1 时,一次函数的值小于二次函数的值 (3)先向上平移54个单位,再向左平移12个单位,平移后的顶点坐标为 P(-1, 1).平移后的表达式为 y=(x+1)2+1,即 y=x2+2x+2.点 P 在 y=12x+32的 函数图象上.理由:∵把 x=-1 代入得 y=1,∴点 P 的坐标符合直线的 解析式,∴点 P 在直线 y=12x+32的函数图象上
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴当b≤x≤b+3时,y随x的增大而减小, ∴当x=b+3时,y最小值=(b+3)2+b(b+3)+b2=3b2+9b+ 9,∴3b2+9b+9=21,即b2+3b-4=0,解得b1=1(舍), b2=-4,∴二次函数解析式为y=x2-4x+16, 综上所述,b= 或 7 b=-4, x7 +7或y=x2-4x+16. ∴此时二次函数的解析式为y=x2+
(3)抛物线y=x2-3kx+2k+ ∵抛物线与x轴的两个交点在y轴的两侧,
∴x1x2<0, 1 2k + c 1 4 ∴x1x2= = <0,即k<- . a 8 1
变式拓展 已知:二次函数y=x2+bx+c(b,c为常数). (1)当b=2,c=-3时,求二次函数的最小值; (2)当c=b2时,若在自变量x的值满足 b≤x≤b+3的情况下, 与其对应的函数值y的最小值为21,求此时二次函数的解析 式.

二次函数y=ax2+bx+c(a≠0) a>0时,当x=⑦ 判断 函数 性质 a<0时,y的最大值
4ac b 2 为⑧________ ; 4a
b 最 ______ 的最小 2a 时,y 4ac b 2 值 值为 ; 4a 离对称轴越近的点函
数值越小
离对称轴越近的点 函数值越大
二次函数y=ax2+bx+c(a≠0) a,决定抛物
特殊 关系 b2-4ac 2a+ b 2a- b
b - 与1比较 2a b - 与-1比较 2a
与x轴交点个数
二次函数y=ax2+bx+c(a≠0) a+ b+ c 判断 特殊 关系 令x=1,看纵坐标
a- b+ c
4a+2b+c
令x=-1,看纵坐标
令x=2,看纵坐标
4a-2b+c
令x=-2,看纵坐标
(3)抛物线与x轴无交点⇔b2-4ac<0⇔方程ax2+bx+c=0 无实数根. 2. 二次函数与不等式的关系 (1)ax2+bx+c>0的解集⇔函数y=ax2+bx+c的图象位于x 轴上方对应的点的横坐标的取值范围; (2)ax2+bx+c<0的解集⇔函数y=ax2+bx+c的图象位于x 轴下方对应的点的横坐标的取值范围.
判断
函数
性质
对称轴
b 直接运用公式x=①________ 求解 2a 注:还可利用x=(其中x1、x2为y值 相等的两个点对应的横坐标)求解
二次函数y=ax2+bx+c(a≠0)
顶 1. 直接运用顶点坐标公式
判断 函数 性质
b 4ac b 2 ( , ) 点 2a 4a ②________________ 求解; 坐 2. 运用配方法将一般式转化为顶点式求解; 标 3. 将对称轴的x值代入函数表达式求得对应y值
二次函数y=ax2+bx+c(a≠0) a>0时,在对轴左侧 a<0时,在对称轴⑤ 判断 函数 性质 增减 ,y随x的增大而③ ________ 减小;在对称 轴右侧,y随x的增 增大 大而④________ 左侧 ,y随x的 ________ 增大而增大;在对 右侧, 称轴⑥______ y随x的增大而减小
解:(1)当b=2,c=-3时,二次函数的解析式为y=x2+2x -3,即y=(x+1)2-4, ∴当x=-1时,二次函数取得最小值-4; (2)当c=b2时,二次函数的解析式为y=x2+bx+b2,其图象 b 是开口向上,对称轴为x=- 的抛物线, 2 b ①若- <b,即b>0, 2 ∴当b≤x≤b+3时,y随x的增大而增大,
(6)根据图象回答:x取何值时,y>0;x取何值时,y<0;x 取何值时,y随x的增大而增大;x取何值时,y随x的增大而 减小? 当x<-1或x>3时,y>0;当-1< x<3时,y<0;当x>1时,y随x的 增大而增大;当x<1时,y随x的增 大而减小.
练习1 已知:抛物线y=x2-3kx+2k+. 0 ; (1)当顶点在y轴上时,k的值为________ 1 1或- ; (2)当顶点在x轴上时,k的值为________ 9 1 (3)当函数图象经过原点时,k的值为________ 8; (4) 当函数图象与 1 x 轴的两个交点在 y 轴的两侧时, k 的取值 k范围为________ 8 .
解法提示: (1)∵抛物线y=x2-3kx+2k+ ∴-3k=0,解得k=0; (2)∵抛物线y=x2-3kx+2k+ ∴b2-4ac=0, ∴(-3k)2-4×1×(2k+
1 顶点在y轴上, 4 1 在x轴上, 4
1 解得k=1或k=- ; 9
1 )=0, 4
1 经过原点, 1 1 4 ∴2k+ =0,解得x=- ; 4 8 1 2 (4)设抛物线y=x -3kx+2k+ 的两个交点坐标为(x1,0), 4 (x2,0),
y=a(x-h-m)2+k 向右平移m个单位 方法二:y=ax2+bx+c左右平移时,给每一个x都加m或减m. 规律: 向左平移m个单位 左+ y=a(x+m)2+b(x+m)+c
向右平移m个单位 右-
y=a(x-m)2+b(x-m)+c

基础点 5
二次函数与一元二次方程、不等式的关系
1.二次函数与一元二次方程的关系 (1)抛物线与 x轴有两个交点 ⇔b2 - 4ac > 0⇔方程 ax2 + bx +c=0有两个不相等的实数根; (2)抛物线与x轴有一个交点⇔b2-4ac=0⇔方程ax2+bx+ c=0有两个相等的实数根;
例2题图
【解析】∵抛物线开口向下,∴a<0,∵抛物线的对称 b 轴为直线x=- =-1<0,∴b=2a,∴b<0,∵抛物 2a 线与y轴的交点在x轴上方,∴c>0,∴abc>0,∴①错误 ;∵x=1时,y<0,∴a+b+c<0,∴②正确;∵抛物线 的对称轴为直线x=-1,抛物线与x轴的一个交点在点(0 ,0)和(1,0)之间,∴抛物线与x轴的另一个交点在点(-3 ,0)和(-2,0)之间,∴当x=-2时,y>0,∴4a-
线与y轴交点
的位置
c>0
c<0
二次函数y=ax2+bx+c(a≠0) 判断
b2-4ac=0
b2-4ac,决 定抛物线与x 轴交点个数 b2-4ac>0
与x轴有唯一交点(顶 点) 两个 与x轴有⑬________
函数
图象
交点 与x轴没有交点
b2-4ac<0
二次函数y=ax2+bx+c(a≠0) 判断
> 0 a㉔____ b> 0 = 0 c㉕____ b2-4ac>0
< 0 a㉖____ > 0 b㉗____ c=0 b2-4ac>0
a> 0 = b㉘____0 c=0 = b2-4ac㉙__0
基础点 3
二次函数表达式的确定
1.表达式的三种形式
(1)一般式:y=ax2+bx+c(a、b、c为常数,a≠0);
x= 1 ; 轴为________ -4 ; 1 时,函数取最小值,最小值为________ (3)当x=____
(0,-3) ,与x轴交点坐标 (4)函数图象与y轴交点坐标为__________ (-1,0),(3,0) ; 为_________________
(5)画出此函数图象;
例1题图
例1题解图
未知,则代入任意一点坐标;若有两个未知,则代入任
意两点坐标;若三个都未知,根据下表所给的点坐标选
择适当的表达式
已知 顶点+其他点 与x轴的两个交点+其他点
与x轴的一个交点+对称轴+其他点
所设表达式 y=a(x-h)2+k
y=a(x-x1)(x-x2)
任意三个点
y=ax2+bx+c
(2)联立方程(组),求得系数或常数项;将所得系数或常数
=a(x-h)2+ka 为常数, a≠0 , (h , k) 为顶点 (2) 顶点式:y ____________(
坐标);
y=a(x-x1)(x-x2) (3)交点式:_________________ (a为常数,a≠0,x1,x2
为抛物线与x轴交点的横坐标);
(4)三种表达式之间的关系 顶点式 配方 一般式 因式分解 交点式,若顶点在原 点,可设为y=ax2. 2.待定系数法求二次函数的表达式: (1)对于二次函数y=ax2+bx+c,若系数a、b、c中有一个
类型
2
二次函数图象与系数a、b、c的关系
例2 已知二次函数y=ax2+bx+c(a≠0)的 图象如图所示,给出以下四个结论:①abc <0;②a+b+c<0;③4a+c>2b;④2a- b=0;⑤m(am+b)+b<a(m≠-1),其中, 正确结论的个数为( C) A. 2 个 B. 3 个 C. 4 个 D. 5 个
项代入表达式即可.
基础点 4
二次函数图象的平移
向上平移m个单位
(1)上加下减: y=ax2+bx+c (2)左加右减: 方法一: y=ax2+bx+c
化为
y=ax2+bx+c+m
y=ax2+bx+c+n
向下平移m个单位
y=a(x-h)2+k
规律: 向左平移m个单位
左+
右-
y=a(x-h+m)2+k
重难点精讲优练
类型 1 二次函数的顶点坐标、对称轴与增减性
例1 在探究二次函数图象性质的过程中,x与y的对应值 如下表: x … -1 0 1 2 3 …
y

0
-3
-4
-3
0

x y
… …
-1 0
0 -3
1 -4
2 -3
3 0
… …
y=x2-2x-3 ; (1)表中二次函数表达式为______________ 上 (1,-4) ,对称 (2)函数图象开口向________ ,顶点坐标为________
2.根据函数图象判断相关结论
> 0 a⑭____ > b⑮____0
c<0
a⑯< ____0
相关文档
最新文档