2017_2018学年高中数学课时作业8等差数列的性质及简单应用新人教A版必修5 Word版 含答案

合集下载

第二课时等差数列的性质课件-高二数学人教A版(2019)选择性必修第二册

第二课时等差数列的性质课件-高二数学人教A版(2019)选择性必修第二册
(3)



(m, ∈ ∗ ,且m ≠
2.等差中项:由三个数a , A , b组成等差数列,则称A叫做a与b的等差中项.
(1)条件:如果a , A , b成等差数列.
(2)结论:那么A叫做a与b的等差中项.
(3)满足的关系式是: a + b =2 A
1.等差数列实际问题
求证: + = +
分析:利用等差数列的中的两个基本量 1 , ,再根据等差数列的定义
写出 , , , ,即可得证.
证明:设数列 的公差为,则
= 1 +(p − 1) ,
= 1 +(q − 1) ,
= 1 +(s − 1) ,
∴ = 2+(n − 1) 2=2n
所以数列 的通项公式是 =2n
典例
例4. 已知等差数列{an} 的首项a1=2, = 8,在{an} 中每相邻两项之间都插入3
个数,使它们和原数列的数一起构成一个新的等差数列{ }.
(1)求数列{ } 的通项公式.
(2) b29是不是数列{an} 的项?若是,它是{an} 的第几项?若不是 ,请说明理由.
典例
例4. 已知等差数列{an} 的首项a1=2, = 8,在{an} 中每相邻两项之间都插入3
个数,使它们和原数列的数一起构成一个新的等差数列{ }.
(1)求数列{ } 的通项公式.
(2) b29是不是数列{an} 的项?若是,它是{an} 的第几项?若不是 ,请说明理由.
问题1:求数列的通项公式需要知道哪些量? 首项,公差
3.在等差数列{an}中,a1+a5=2,a3+a7=8,则a11+a15=________.

2020-2021学年高中数学人教A版必修5: 2-1-2 数列的性质与递推公式

2020-2021学年高中数学人教A版必修5: 2-1-2 数列的性质与递推公式
数 λ 的最小值是 -3 .
解析:∵an≤an+1,∴n2+λn≤(n+1)2+λ(n+1), 即 λ≥-(2n+1)对任意 n∈N*成立,∴λ≥-3.
15.已知数列{an}满足 an=n+1 1+n+1 2+n+1 3+…+21n.
∴a14=a11+a12-a11+a13-a12+a14-a13 =a11+3×2=8. ∴a11=2,∴a1=12.
(2)由(1)知a1n=a11+a12-a11+a13-a12+…+a1n-an1-1,∴a1n
=2+ ∴a1n=2n,∴an=21n,n∈N+.
——能力提升类——
12.已知数列{an}中,an=n2+n156(n∈N*),则数列{an}的最
自然数均有 xn+1=f(xn),则 x2 014= 1 .
x 12345 f(x) 4 1 3 5 2
解析:x1=f(x0)=f(5)=2, x2=f(x1)=f(2)=1, x3=f(x2)=f(1)=4, x4=f(x3)=f(4)=5=x0, 从而数列{xn}是周期为 4 的数列, 于是 x2 014=x4×503+2=x2=1.
13.已知数列{an},a1=1,lnan+1-lnan=1,则数列{an}的通 项公式是( C )
A.an=n C.an=en-1
B.an=1n D.an=en1-1
解析:∵lnan+1-lnan=1,∴lnaan+n1=1.∴aan+n 1=e. 由累乘法可得 an=en-1.
14.已知数列{an}满足:an≤an+1,an=n2+λn,n∈N*,则实
9.已知数列{an},an=nbn+a c,其中 a,b,c 均为正数,则
此数列是 递增数列 .(填“递增数列”“递减数列”“摆动数

高中数学全程学习方略配套课件:2.3.1等差数列的前n项和(人教A版必修5)

高中数学全程学习方略配套课件:2.3.1等差数列的前n项和(人教A版必修5)

故n=13时,Sn有最大值169.
……………………12分
【误区警示】对解答本题时易犯错误的具体分析如下:
1.在等差数列{an}中,已知a1=4,a6=6,则前6项和S6=( )
(A)70 (B)35 (C)30 (D)12
【解析】选C.S6=(6 a1 a6)=6=(340.6)
2
2
2.等差数列{an}的前n项和为Sn,若a3+a17=10,则
1 099 100
11=0 -110190. (
2
11 50
)
故此数列的前110项之和为-110.
方法二:数列S10,S20-S10,S30-S20,…,S100-S90,S110-S100成等差 数列,设其公差为D,前10项和为10S10+102 9·D=S100=10 D=-22,∴S110-S100=S10+(11-1)D =100+10×(-22)=-120.
②若共有2n+1项,则S2n+1=(2n+1)an+1; S偶-S奇=-an+1;S偶∶S奇=n∶(n+1); ③“片段和”性质: 等差数列{an}中,公差为d,前k项的和为Sk,则Sk,S2k-Sk, S3k-S2k,…,Smk-S(m-1)k,…构成公差为k2d的等差数列.
【例2】Sn是等差数列{an}的前n项和,且S10=100,S100=10, 求S110. 【审题指导】题目给出等差数列{an}中的S10=100, S100=10,欲求S110,可由等差数列前n项和公式列出方程 组,求出a1和d,然后求出S110.或由等差数列“片段和”性 质Sk,S2k-Sk,S3k-S2k,…,Smk-S(m-1)k,…构成公差为 k2d的等差数列求出公差,然后求出S110.

等差数列的前n项和的性质及应用 课件高二数学人教A版(2019)选择性必修第二册

等差数列的前n项和的性质及应用 课件高二数学人教A版(2019)选择性必修第二册

;

.
偶 -

(3)设 Sn,S′n 分别为等差数列{an},{bn}的前 n 项和,则 =
-

-
.

(4)数列{an}是等差数列⇔Sn=an +bn(a,b 为常数)⇔数列{ }为等差数列.
2

( + ) ( +-+ )
(5)Sn=

=

取何值时Sn有最大值?并求出最大值.
解:因为 S9=S18,a1=26,
所以 9×26+
×(-)
×(-)


d=18×26+d, Nhomakorabea解得 d=-2.
所以 Sn=26n+

2
(-)


=-(n- ) +

2
×(-2)=-n +27n

*
,所以当 n= 时,Sn 有最大值,又 n∈N ,

(3)已知{an},{bn}均为等差数列,其前 n 项和分别为 Sn,Tn,且 = + ,则 =

.
解析:(3)由等差数列的性质,知


=
+

+

+
×

+
×

=

答案:(3)

×+
= =

+
= .

方法总结
公差为d的等差数列{an}的前n项和Sn的常用性质小结
所以(a5+a6)-(a3+a4)=(a3+a4)-(a1+a2)=4d,

2021年高中数学人教A版必修五第二章数列第二课时 等差数列的前n项和的最值及应用

2021年高中数学人教A版必修五第二章数列第二课时 等差数列的前n项和的最值及应用

5
课前预习
课堂互动
课堂小结
@《创新设计》
知识点2 裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求和.
常见的拆项方法:
(1)n(n1+k)=_1k__1n_-__n_+1__k__;
(2)
1 n+k+
=_1k___n_+___k_-___n__;
n
(3)(2n-1)1(2n+1)=_12_2_n__1-__1_-__2_n_1+__1__.
绕天心石砌9块扇面形石板构成第一环,向外每环依次
增加9块.下一层的第一环比上一层的最后一环多9块.向
外每环依次也增加9块.已知每层环数相同,且下层比中
层多729块,则三层共有扇面形石板(不含天心石)( )
A.3 699块
B.3 474块
C.3 402块
D.3 339块
@《创新设计》
18
课前预习
课堂互动
7
课前预习
课堂互动
@《创新设计》 课堂小结
@《创新设计》
2.数列{an}的通项公式 an=
1 n+
n+1,其前
n
项和
Sn=9,则
n=________.
解析
an=
1 n+
n+1=
n+1-
n,
∴Sn=( 2-1)+( 3- 2)+…+( n+1- n)
= n+1-1=9,∴n=99. 答案 99
8
课前预习
25
课前预习
课堂互动
课堂小结
(1)若{an}是等差数列,则ana1n+1=1da1n-an1+1,ana1n+2=21da1n-an1+2.
(2)n(n1+k)=1k1n-n+1 k.

高中数学 第2章 数列 2.1 数列的概念与简单表示法 第2课时 数列的性质和递推公式练习 新人教A

高中数学 第2章 数列 2.1 数列的概念与简单表示法 第2课时 数列的性质和递推公式练习 新人教A

第2课时 数列的性质和递推公式1.已知a n +1-a n -3=0,则数列{a n }是 A.递增数列 B.递减数列 C.常数列D.不能确定解析a n +1-a n =3>0,故数列{a n }为递增数列. 答案A2.数列{a n }满足:a 1=a 2=1,a n +2=a n +1+a n ,则a 6= A.3B.5C.8D.13解析 由条件知a 3=2,a 4=3,a 5=5,a 6=8. 答案C3.已知数列{a n }中,a 1=1,a n +1a n =12,则数列{a n }的通项公式是 A.a n =2n B.a n =12nC.a n =12n -1D.a n =1n2解析a 1=1,a 2=12,a 3=14,a 4=18,观察得a n =12n -1.答案C4.若数列{a n }满足a n +1=2a n -1,且a 8=16,则a 6=________. 解析 由a n +1=2a n -1,得a n =12(a n +1+1),∴a 7=12(a 8+1)=172,a 6=12(a 7+1)=194.答案1945.已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n (n ∈N *),则a 2 018=________.解析a 1=2,由a n +1=1+a n1-a n,得a 2=-3,a 3=-12,a 4=13,a 5=2,∴数列{a n }的周期为4, ∴a 2 018=a 4×504+2=a 2=-3. 答案 -3[限时45分钟;满分80分]一、选择题(每小题5分,共30分)1.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的第4项是A.1B.12C.34D.58解析 由a 1=1,∴a 2=12a 1+12=1,依此类推a 4=12.答案B2.在递减数列{a n }中,a n =kn (k 为常数),则实数k 的取值X 围是 A.RB.(0,+∞)C.(-∞,0)D.(-∞,0]解析 ∵{a n }是递减数列, ∴a n +1-a n =k (n +1)-kn =k <0. 答案C3.数列{a n }的通项公式为a n =3n 2-28n ,则数列{a n }各项中最小项是 A.第4项B.第5项C.第6项D.第7项解析a n =3n 2-28n =3⎝⎛⎭⎪⎫n -1432-1963,故当n =5时,a n 的最小值为a 5=-65. 答案B4.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5等于 A.259B.2516C.6116D.3115解析 由a 1·a 2·a 3·…·a n =n 2,(n ≥2)得a 1·a 2·a 3·…·a n -1=(n -1)2,(n ≥3),∴a n =n 2(n -1)2,(n ≥3),∴a 3=94,a 5=2516,∴a 3+a 5=6116.答案C5.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于 A.-165B.-33C.-30D.-21解析 由已知得a 2=a 1+a 1=2a 1=-6,∴a 1=-3.∴a 10=2a 5=2(a 2+a 3)=2a 2+2(a 1+a 2)=4a 2+2a 1=4×(-6)+2×(-3)=-30. 答案C6.(能力提升)在数列{a n }中,a 1=2,a n +1=a n +lg ⎝⎛⎭⎪⎫1+1n ,则a n =A.2+lg nB.2+(n -1)lg nC.2+n lg nD.1+n +lg n解析 由a n +1=a n +lg ⎝⎛⎭⎪⎫1+1n ⇒a n +1-a n =lg ⎝ ⎛⎭⎪⎫1+1n ,那么a n =a 1+(a 2-a 1)+…+(a n -a n -1)=2+lg 2+lg 32+lg 43+…+lg n n -1=2+lg ⎝ ⎛⎭⎪⎫2×32×43×…×n n -1=2+lg n .答案A二、填空题(每小题5分,共15分)7.若a 1=1,a n +1=a n3a n +1,则给出的数列{a n }的第7项的值为________.解析由数列{a n }的首项和递推公式可以求出a 2=14,a 3=17,…,观察得到通项公式a n =13n -2,所以a 7=119.答案1198.已知函数f (x )的部分对应值如表所示.数列{a n }满足a 1=1,且对任意n ∈N *,点(a n ,a n +1)都在函数f (x )的图象上,则a 2 017的值为________.解析 由题知,a n +1=f (a n ),a 1=1.∴a 2=f (1)=3,a 3=f (a 2)=f (3)=2,a 4=f (a 3)=f (2)=1,…,依次类推,可得{a n }是周期为3的周期数列,∴a 2 017=a 672×3+1=a 1=1.答案 19.(能力提升)设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0,则a n =________.解析 (n +1)a 2n +1-na 2n +a n +1·a n =[(n +1)a n +1-na n ](a n +1+a n )=0, ∵a n >0,∴(n +1)a n +1-na n =0,即a n +1a n =n n +1. 所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ·n -2n -1·n -3n -2·…·12·1=1n. 答案1n三、解答题(本大题共3小题,共35分)10.(11分)已知数列{a n }中,a 1=1,a 2=2,以后各项由a n =a n -1+a n -2(n ≥3)给出. (1)写出此数列的前5项; (2)通过公式b n =a na n +1构造一个新的数列{b n },写出数列{b n }的前4项. 解析 (1)因为a n =a n -1+a n -2(n ≥3), 且a 1=1,a 2=2,所以a 3=a 2+a 1=3,a 4=a 3+a 2=3+2=5,a 5=a 4+a 3=5+3=8. 故数列{a n }的前5项依次为a 1=1,a 2=2,a 3=3,a 4=5,a 5=8.(2)因为b n =a na n +1, 且a 1=1,a 2=2,a 3=3,a 4=5,a 5=8,所以b 1=a 1a 2=12,b 2=a 2a 3=23,b 3=a 3a 4=35,b 4=a 4a 5=58.11.(12分)已知数列{a n }中,a 1=1,a n +1=nn +1a n . (1)写出数列{a n }的前5项; (2)猜想数列{a n }的通项公式; (3)画出数列{a n }的图象.解析 (1)a 1=1,a 2=11+1×1=12,a 3=21+2×12=13,a 4=31+3×13=14,a 5=41+4×14=15.(2)猜想:a n =1n.(3)图象如图所示:12.(12分)已知函数f (x )=1-2x x +1(x ≥1),构造数列a n =f (n )(n ∈N *). (1)求证:a n >-2;(2)数列{a n }是递增数列还是递减数列?为什么?解析 (1)证明 因为f (x )=1-2x x +1=3-2(x +1)x +1=-2+3x +1,所以a n =-2+3n +1.因为n ∈N *,所以a n >-2. (2)数列{a n }为递减数列.因为a n =-2+3n +1, 所以a n +1-a n =⎝⎛⎭⎪⎫-2+3n +2-⎝ ⎛⎭⎪⎫-2+3n +1=3n +2-3n +1=-3(n +2)(n +1)<0, 即a n +1<a n ,所以数列{a n }为递减数列.。

新教材高中数学课时跟踪检测四等差数列的性质及其应用新人教A版选择性必修第二册

课时跟踪检测(四) 等差数列的性质及其应用1.在等差数列{a n }中,a 1+a 9=10,则a 5=( ) A .5 B .6 C .8 D .9解析:选A 由等差中项的性质得a 1+a 9=2a 5=10,所以a 5=5. 2.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5 B .8 C .10D .14解析:选B 法一:设等差数列的公差为d ,则a 3+a 5=2a 1+6d =4+6d =10,所以d =1,a 7=a 1+6d =2+6=8.法二:由等差数列的性质可得a 1+a 7=a 3+a 5=10,又a 1=2,所以a 7=8. 3.已知数列{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为( ) A .-12 B .-22 C.12 D .32解析:选A ∵数列{a n }为等差数列,a 1+a 5+a 9=π, ∴a 1+a 5+a 9=3a 5=π,解得a 5=π3,∴a 2+a 8=2a 5=2π3,∴cos(a 2+a 8)=cos 2π3=-cos π3=-12.故选A.4.在等差数列{a n }中,a 2 016=log 27,a 2 022=log 2 17,则a 2 019=( )A .0B .7C .1D .49解析:选A ∵数列{a n }是等差数列,∴由等差数列的性质可知2a 2 019=a 2 016+a 2 022=log 27+log 217=log 21=0,故a 2 019=0.5.在等差数列{a n }中,若a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=( )A .10B .15C .20D .40解析:选B 因为a 1,a 2 019为方程x 2-10x +16=0的两根,所以a 1+a 2 019=10.由等差数列的性质可知,a 1 010=a 1+a 2 0192=5,a 2+a 2 018=a 1+a 2 019=10,所以a 2+a 1 010+a 2 018=10+5=15.故选B.6.某人练习写毛笔字,第一天写了4个大字,以后每天比前一天都多写,且多写的字数相同,第三天写了12个大字,则此人每天比前一天多写________个大字.解析:由题意可知,此人每天所写大字数构成首项为4,第三项为12的等差数列,即a 1=4,a 3=12,所以d =12-43-1=4. 答案:47.设数列{a n },{b n }都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________. 解析:由{a n },{b n }都是等差数列可知{a n +b n }也是等差数列,设{a n +b n }的公差为d , 所以a 3+b 3=(a 1+b 1)+2d , 则2d =21-7,即d =7. 所以a 5+b 5=(a 1+b 1)+4d =35. 答案:358.在等差数列{a n }中,a 1=8,a 5=2,若在数列{a n }中每相邻两项之间插入一个数,使之成为新的等差数列,那么新的等差数列的公差是________.解析:法一:设新的等差数列的公差为d .由a 1=8,a 5=2,得a 3=a 1+a 52=8+22=5,a 2=a 1+a 32=8+52=132,所以d =a 2-a 12=132-82=-34.法二:设新的等差数列为{b n },其公差为d ,则b 1=a 1=8,b 9=a 5=2,所以d =b 9-b 19-1=2-88=-34. 答案:-349.首项为a 1,公差d 为正整数的等差数列{a n }满足下列两个条件: (1)a 3+a 5+a 7=93;(2)满足a n >100的n 的最小值是15. 试求公差d 和首项a 1的值. 解:∵a 3+a 5+a 7=93, ∴3a 5=93,∴a 5=31, ∴a n =a 5+(n -5)d . 令a n >100,得n >69d+5.∵满足a n >100的n 的最小值是15, ∴14≤69d+5<15,∴6910<d ≤723,又d 为正整数,∴d =7,a 1=a 5-4d =3.10.某产品按质量分10个档次,生产最低档次的产品的利润是8元/件,每提高一个档次,利润每件增加2元,同时每提高一个档次,产量减少3件,在相同的时间内,最低档次的产品可生产60件.试问:在相同的时间内,应选择生产第几档次的产品可获得最大利润?(设最低档次为第1档次)解:设在相同的时间内,从低到高每档产品的产量分别为a 1,a 2,…,a 10, 每件产品的利润分别为b 1,b 2,…,b 10,则{a n },{b n }均为等差数列,且a 1=60,d 1=-3,b 1=8,d 2=2, 则a n =60-3(n -1)=-3n +63,b n =8+2(n -1)=2n +6,所以利润f (n )=a n b n =(-3n +63)(2n +6)=-6n 2+108n +378=-6(n -9)2+864. 显然,当n =9时,f (n )max =f (9)=864.即在相同的时间内生产第9档次的产品可以获得最大利润.1.(多选)《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).关于这个问题,下列说法正确的是( )A .甲得钱是戊得钱的2倍B .乙得钱比丁得钱多12钱C .甲、丙得钱的和是乙得钱的2倍D .丁、戊得钱的和比甲得钱多13钱解析:选AC 依题意,设甲、乙、丙、丁、戊所得钱分别为a -2d ,a -d ,a ,a +d ,a +2d ,且a -2d +a -d =a +a +d +a +2d ,即a =-6d ,又a -2d +a -d +a +a +d +a +2d =5a =5,∴a =1,d =-16,即a -2d =1-2×⎝ ⎛⎭⎪⎫-16=43,a -d =1-⎝ ⎛⎭⎪⎫-16=76,a +d =1+⎝ ⎛⎭⎪⎫-16=56,a +2d =1+2×⎝ ⎛⎭⎪⎫-16=23, ∴甲得43钱,乙得76钱,丙得1钱,丁得56钱,戊得23钱,则有如下结论:甲得钱是戊得钱的2倍,故A 正确;乙得钱比丁得钱多76-56=13钱,故B 错误;甲、丙得钱的和是乙得钱的43+176=2倍,故C 正确;丁、戊得钱的和比甲得钱多56+23-43=16钱,故D 错误.故选A 、C.2.[多选]下面是关于公差d >0的等差数列{a n }的四个说法,其中正确的是( ) A .数列{a n }是递增数列 B .数列{na n }是递增数列 C .数列⎩⎨⎧⎭⎬⎫a n n 是递增数列D .数列{a n +3nd }是递增数列解析:选AD a n =a 1+(n -1)d ,d >0,∴a n -a n -1=d >0,A 正确;na n =na 1+n (n -1)d ,∴na n -(n -1)a n -1=a 1+2(n -1)d 与0的大小关系和a 1的取值情况有关. 故数列{na n }不一定递增,B 不正确; 对于C :a n n =a 1n +n -1nd ,∴a n n -a n -1n -1=-a 1+d n n -1,当d -a 1>0,即d >a 1时,数列⎩⎨⎧⎭⎬⎫a n n 递增, 但d >a 1不一定成立,C 不正确; 对于D :设b n =a n +3nd , 则b n +1-b n =a n +1-a n +3d =4d >0. ∴数列{a n +3nd }是递增数列,D 正确.3.设数列{a n }的前n 项和为S n ,写出一个同时满足条件①②的等差数列{a n }的通项公式a n =________.①S n 存在最小值且最小值不等于a 1; ②不存在正整数k ,使得S k >S k +1且S k +1<S k +2.解析:若a 2<0,则满足①,又由不存在正整数k ,使得S k >S k +1且S k +1<S k +2,则可得S n连续两项取得最小值,即存在n 使得a n =0,则可得{a n }的通项公式可以是a n =2n -6.答案:2n -6(答案不唯一)4.已知{a n }是等差数列,且a 1+a 2+a 3=12,a 8=16. (1)求数列{a n }的通项公式;(2)若从数列{a n}中依次取出第2项,第4项,第6项,…,第2n项,按原来的顺序组成一个新数列{b n},试求数列{b n}的通项公式.解:(1)设{a n}的公差为d.∵a1+a2+a3=12,∴a2=4.∵a8=a2+(8-2)d,∴16=4+6d,解得d=2.∴a n=a2+(n-2)d=4+(n-2)×2=2n.(2)a2=4,a4=8,a6=12,a8=16,…,a2n=2×2n=4n.当n>1时,a2n-a2(n-1)=4n-4(n-1)=4.∴{b n}是以4为首项,4为公差的等差数列.∴b n=b1+(n-1)d=4+4(n-1)=4n.5.下表是一个“等差数阵”:ij(1)写出a45的值;(2)写出a ij的计算公式,以及2 020这个数在“等差数阵”中所在的一个位置.解:(1)a45表示数阵中第4行第5列的数.先看第1行,由题意4,7,…,a15,…成等差数列,公差d=7-4=3,则a15=4+(5-1)×3=16.再看第2行,同理可得a25=27.最后看第5列,由题意a15,a25,…,a45成等差数列,∴a45=a15+3d=16+3×(27-16)=49.(2)该“等差数阵”的第1行是首项为4,公差为3的等差数列a1j=4+3(j-1);第2行是首项为7,公差为5的等差数列a2j=7+5(j-1);第i行是首项为4+3(i-1),公差为2i+1的等差数列,∴a ij=4+3(i-1)+(2i+1)(j-1)=2ij+i+j=j(2i+1)+i.要求2 020在该“等差数阵”中的位置,也就是要找正整数i,j,使得j(2i+1)+i =2 020,∴j =2 020-i 2i +1.又∵j ∈N *,∴当i =1时,得j =673.∴2 020在“等差数阵”中的一个位置是第1行第673列.。

高中数学人教A版必修五教学课件:第二章 《数列》 2.4 第2课时 等比数列的性质


-6 解析:a4a7=a1· a10= =-2. 3
答案:B
3. 等比数列{an}中, 若 a9=-2, 则此数列前 17 项之积为____________.
解析:由题意得 a1a2a3…a15a16a17 =(a1a17)· (a2a16)· (a3a15)· …· a9
17 17 =a17 9 =(-2) =-2 .
2 ∴a6 =a2· a10,
1 ∴a10=162 × =13 122. 2
2
法三:由公式 ap· aq=ap+k· aq-k 得
2 a2· a10=a2+4· a10-4=a6 .
1 ∴a10=1622× =13 122. 2
答案:13 122
探究二
an+1=can+d(c≠1,cd≠0)的递推关系
利用等比数列的性质解题 (1)基本思路:充分发挥项的 “下标”的指导作用,分析等比数列项 与项之间的关系,选择恰当的性质解题. (2)优缺点:简便快捷,但是适用面窄,有一定的思维含量.
1.在等比数列中,若 a2=2,a6=162,则 a10=________.
解析:法一:∵a6=a2q4,其中 a2=2,a6=162, ∴q4=81, ∴a10=a6q4=162×81=13 122. 法二:∵2,6,10 三数成等差数列, ∴a2,a6,a10 成等比数列.

1n-1 4n-1 n-1 第 n 个图形的周长 3 ×(3×4 )=3×3 .
[感悟提高]
(1)解决此类问题,需要抓住变中的不变量,即数据在改
变,但其变化规律不改变,事实上,给出的图形只是问题的载体,我 们只需从“形”中抽象出“数”,即可将问题归结为等比数列.
a1=1, 1 ∴ 或 1 q = . q=2,

高中数学 2.4.2 等比数列的性质课件 新人教A版必修5


6-2log 8 = 0,
= 2,

= 11.
2 + 3log 8 = m.
故存在常数 c=2,使得对任意 n∈N*,an+logcbn 恒为常数 11.
第二十一页,共30页。
问题
(wèntí)导

课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
KETANG HEZUO TANJIU
当堂(dānɡ
tánɡ)检测
三个数或四个数成等比数列的设元技巧:

(1)若三个数成等比数列,可设三个数为 a,aq,aq2 或,a,aq;
(2)若四个数成等比数列,可设 a,aq,aq2,aq3;若四个数均为正(负)数,

可设 3 , ,aq,aq3.

第 2 课时
等比数列的性质
第一页,共30页。
目标(mùbiāo)
导航
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
预习(yùxí)
引导
学习目
记住等比数列的常见性质,并会用这些性质解答一些简单的等比数

列问题.
重点难
重点:等比数列的性质及应用;

难点:对等比数列性质的理解.
已知条件进行推理,从而得出结论.
第十八页,共30页。
问题(wèntí)
导学
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂(dānɡ
tánɡ)检测

高中数学第二章数列2.4等比数列第2课时等比数列的性质优化练习新人教A版必修5(2021年整理)

2017-2018学年高中数学第二章数列2.4 等比数列第2课时等比数列的性质优化练习新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第二章数列2.4 等比数列第2课时等比数列的性质优化练习新人教A版必修5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第二章数列2.4 等比数列第2课时等比数列的性质优化练习新人教A版必修5的全部内容。

第2课时等比数列的性质[课时作业][A组基础巩固]1.如果数列{a n}是等比数列,那么()A.数列{a错误!}是等比数列B.数列{2a n}是等比数列C.数列{lg a n}是等比数列D.数列{na n}是等比数列解析:设b n=a错误!,则错误!=错误!=错误!2=q2,∴{b n}为等比数列;2a n+12a n=2a n+1-a n≠常数;当a n〈0时,lg a n无意义;设c n=na n,则错误!=错误!=错误!·q≠常数.答案:A2.已知等差数列{a n}的公差为3,若a1,a3,a4成等比数列,则a2等于( )A.9 B.3C.-3 D.-9解析:a1=a2-3,a3=a2+3,a4=a2+3×2=a2+6,由于a1,a3,a4成等比数列,a错误!=a1a4,即 (a2+3)2=(a2-3)(a2+6),解得a2=-9。

答案:D3.在正项等比数列{a n}中,a1和a19为方程x2-10x+16=0的两根,则a8·a10·a12等于( )A.16 B.32C.64 D.256解析:由已知,得a1a19=16。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
|
11.有这样一道题:把120个面包分成5份,使每份的面包数成等差数列,且较多的三份之和恰好是较小的两份之和的7倍,则最少的那份面包个数为()
A.4 B.3
C.2 D.1
解析:记这五份面包的个数依次为a1,a2,a3,a4,a5,公差为d.不妨设d>0,

得解得a1=2.故选C.
答案:C
12.已知数列{an}满足a=a+4,且a1=1,an>0,则பைடு நூலகம்n=________.
又因为a1-a4+a8-a12+a15=2,
所以a8=2,即a3+a13=2a8=2×2=4.
(2)因为{an}是等差数列,可设公差为d.
由a59=a49+10d,知10d=100-80,解得d=2.
又因为a79=a59+20d,所以a79=100+20×2=140.
10.首项为a1,公差d为正整数的等差数列{an}满足下列两个条件:
6.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20=________.
解析:本题考查等差数列的性质及通项公式.∵a1+a3+a5=3a3=105,∴a3=35.∵a2+a4+a6=3a4=99,∴a4=33,∴公差d=a4-a3=-2.∴a20=a4+16d=33+16×(-2)=1.
其中正确的是()
A.p1,p2B.p3,p4
C.p2,p3D.p1,p4
解析:因为an=a1+(n-1)d,d>0,
所以an-an-1=d>0,命题p1正确.
nan=na1+n(n-1)d,
所以nan-(n-1)an-1=a1+2(n-1)d与0的大小和a1的取值情况有关.
故数列{nan}不一定递增,命题p2不正确.
答案:D
2.在等差数列{an}中,a1+3a8+a15=120,则3a9-a11的值为()
A.6 B.12
C.24 D.48
解析:∵a1+a15=2a8,∴a1+3a8+a15=5a8,∴5a8=120,a8=24.而3a9-a11=3(a8+d)-(a8+3d)=2a8=48.故选D.
答案:D
3.在等差数列-5,-3,-2,-,…的每相邻两项插入一个数,使之成为一个新的等差数列,则新的数列的通项为()
答案:6
8.假设某市2017年新建住房400万平方米,预计在今后的若干年内,该市每年新建住房面积均比上一年增加50万平方米.那么该市在________年新建住房的面积开始大于820万平方米.
解析:设从2017年年底开始,n年后该市每年新建住房的面积为an万平方米.由题意,得{an}是等差数列,首项a1=450,公差d=50,所以an=a1+(n-1)d=400+50n.令400+50n>820,解得n>.由于n∈N*,则n≥9.所以该市在2026年新建住房的面积开始大于820万平方米.
A.1升B.升
C.升D.升
解析:设自上而下9节竹子各节的容积构成等差数列{an},其首项为a1,公差为d,由条件得,即解得,所以a5=a1+4d=.
答案:B
5.下面是关于公差d>0的等差数列{an}的四个说法.
p1:数列{an}是递增数列;
p2:数列{nan}是递增数列;
p3:数列是递增数列;
p4:数列{an+3nd}是递增数列.
A.an=n-B.an=-5-(n-1)
C.an=-5-(n-1) D.an=n2-3n
解析:新数列的公差
d==,
∴an=-5+(n-1)·=n-.故选A.
答案:A
4.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为()
解析:由已知a-a=4,
所以{a}是等差数列,且首项a=1,公差d=4,
课时作业8等差数列的性质及简单应用
|
一、选择题(每小题5分,共25分)
1.在等差数列{an}中,a10=30,a20=50,则a40等于()
A.40B.70
C.80 D.90
解析:法一:因为a20=a10+10d,所以50=30+10d,所以d=2,a40=a20+20d=50+20×2=90.
法二:因为2a20=a10+a30,所以2×50=30+a30,所以a30=70,又因为2a30=a20+a40,所以2×70=50+a40,所以a40=90.
(1)a3+a5+a7=93;
(2)满足an>100的n的最小值是15.
试求公差d和首项a1的值.
解析:因为a3+a5+a7=93,
所以3a5=93,所以a5=31,
所以an=a5+(n-5)d>100,所以n>+5.
因为n的最小值是15,所以14≤+5<15,
所以6<d≤7,
又d为正整数,所以d=7,a1=a5-4d=3.
答案:2026
三、解答题(每小题10分,共20分)
9.(1)已知{an}是等差数列,且a1-a4+a8-a12+a15=2,求a3+a13的值;
(2)已知在等差数列{an}中,若a49=80,a59=100,求a79.
解析:(1)因为{an}是等差数列,
所以a1+a15=a4+a12=a3+a13=2a8.
答案:1
7.已知{an}为等差数列,a5+a7=4,a6+a8=-2,则该数列的正数项共有________项.
解析:∵a5+a7=2a6=4,a6+a8=2a7=-2,
∴a6=2,a7=-1,∴d=a7-a6=-3,
∴an=a6+(n-6)d=2+(n-6)×(-3)=-3n+20.
令an≥0,解得n≤,即n=1,2,3,…,6,故该数列的正数项共有6项.
对于p3:=+d,
所以-=,
当d-a1>0,即d>a1时,数列递增,
但d>a1不一定成立,则p3不正确.
对于p4:设bn=an+3nd,
则bn+1-bn=an+1-an+3d=4d>0.
所以数列{an+3nd}是递增数列,p4正确.
综上,正确的命题为p1,p4.
答案:D
二、填空题(每小题5分,共15分)
相关文档
最新文档