C-RAN the Road Towards Green Radio Access Network

合集下载

5G网络(接入网+承载网+核心网)

5G网络(接入网+承载网+核心网)
举个例子,如果前传网络为理想传输(有钱,光纤直接到天线那边),那么,CU 与DU可以部署在同一个集中点。如果前传网络为非理想传输(没钱,没那么多光 纤),DU可以采用分布式部署的方式。
再例如,如果是车联网这样的低时延要求场景,你的DU,就要想办法往前 放(靠近AAU部署),你的MEC、边缘云,就要派上用场。
这样,我们的RAN就变成了D-RAN,也就是Distributed RAN(分布式无线接入 网)。
这样做有什么好处呢?
一方面,大大缩短了RRU和天线之间馈线的长度,可以减少信号损耗,也可以 降低馈线的成本。
另一方面,可以让网络规划更加灵活。毕竟RRU加天线比较小,想怎么放,就 怎么放。
说到这里,请大家注意:通信网络 的发展演进,无非就是两个驱动力 ,一是为了更高的性能,二是为了 更低的成本。
另外,拉远之后的RRU搭配天线,可以安装在离用户更近距离的位置。距离近 了,发射功率就低了。
低的发射功率意味着用户终端电池寿命的延长和无线接入网络功耗的降低。说 白了,你手机会更省电,待机时间会更长,运营商那边也更省电、省钱!
更重要一点,除了运营商可以省钱之外,采用C-RAN也会带来很大的社会效益 ,减少大量的碳排放(CO2)。
注意,在图中,EPC(就是4G核心网)被分为New Core(5GC,5G核 心网)和MEC(移动网络边界计算平台)两部分。MEC移动到和CU一 起,就是所谓的“下沉”(离基站更近)。
核心网部分功能下沉
之所以要BBU功能拆分、核心网部分下沉,根本原因,就是为了满足5G不同场景 的需要。
5G是一个“万金油”网络,除了网速快之外,还有很多的特点,例如时延低、支 持海量连接,支持高速移动中的手机,等等。
不同的切片,用于不同 的场景

5g eps fallback信令流程 和vonr信令 -回复

5g eps fallback信令流程 和vonr信令 -回复

5g eps fallback信令流程和vonr信令-回复5G EPS Fallback信令流程和VoNR信令是与5G网络和语音通信相关的重要技术。

本文将一步一步回答关于这两个主题的问题,并详细介绍它们的基本概念、流程以及在5G通信中的应用。

首先,让我们来理解5G EPS Fallback信令流程。

5G EPS Fallback (Evolved Packet System Fallback)是在5G网络中,当用户无法接入5G网络时自动切换到4G网络的一种机制。

这种切换是通过EPS(Evolved Packet System)来实现的。

EPS是移动无线通信技术LTE(Long Term Evolution)的基础,并被用于5G网络的备份和回退。

5G EPS Fallback信令流程涉及到多个实体,包括终端设备(UE,User Equipment)、移动无线接入网(RAN,Radio Access Network)、移动核心网(CN,Core Network)以及移动位置注册(PLMN,Public Land Mobile Network)。

以下是5G EPS Fallback信令的基本流程:1. UE连接到5G网络并尝试接入,但由于信号弱或其他原因,无法建立5G连接。

2. UE向RAN发送请求,要求将其连接切换到4G网络进行回落。

3. RAN接收到请求后,将其转发给CN。

4. CN根据请求执行切换,并将相关信息返回给RAN。

5. RAN通知UE切换完成,并将UE连接到4G网络上。

6. UE重新与4G网络建立连接,并可以继续进行通信。

通过5G EPS Fallback信令流程,用户可以在无法接入5G网络时无缝切换到4G网络以保持通信连续性。

接下来,让我们了解VoNR(Voice over New Radio)信令。

VoNR是指在5G网络上实现语音通信的技术。

在过去的无线通信技术中,语音通信通常是通过2G(GSM)或3G(UMTS)网络实现的。

通信技术类英文文献

通信技术类英文文献

通信技术类英文文献以下是一篇通信技术类英文文献,供参考:Title: 5G Wireless Communication: The Future of Communication TechnologyAbstract: The fifth-generation (5G) wireless communication is the next-generation technology, which is 100 times faster than the 4G technology and provides a higher bandwidth, low latency, and more reliable and secure communication. The 5G wireless communication aims to provide the flexibility of different services, including multimedia, cloud computing, internet of things (IoT), and virtual reality (VR). This paper provides an overview of the5G wireless communication technology, including its features, architecture, and its applications.Introduction: The rapid growth of wireless communication technology has brought significant changes in the way people interact with each other. The 5G wireless communication technology is the revolutionary technology that aims to provide a higher level of communication, which is 100 times faster than the 4G technology. The 5G wireless communication is expected to be the future of communication technology, which will change the way people interact with each other.Features of 5G Wireless Communication:The 5G wireless communication has various features that provide a higher level of communication. These features are:1. High Bandwidth: The 5G wireless communication provides a high bandwidth, which increases the data transfer rate. This high bandwidth provides a better experience for multimedia services, such as streaming video, music, and gaming.2. Low Latency: The 5G wireless communication provides a lower latency, which improves the response time of the communication. This low latency is ideal for real-time applications such as autonomous vehicles, AR/VR, and remote surgeries.3. Massive IoT: The 5G wireless communication supports a large number of IoT devices with a higher density of devices per unit area. This feature enables the functionality of IoT applications in various industries, such as smart homes, smart cities, and healthcare.4. Network Slicing: The 5G wireless communication provides network slicing, which enables the partitioning of the network into multiple virtual networks. This feature provides the flexibility to provide different services with different requirements such as high speed, low latency, and high reliability.5. Security: The 5G wireless communication provides a higher level of security for communication. This security is provided through various features such as authentication, encryption, and privacy.Architecture of 5G Wireless Communication:The 5G wireless communication has a different architecture thanthe previous generations of wireless communication technology. The architecture of the 5G wireless communication is divided into three layers: the user plane, the control plane, and the management plane.1. User Plane: The user plane is responsible for the transmission and reception of user data. This layer involves the transmission and reception of user data through the radio access network (RAN) and the core network.2. Control Plane: The control plane is responsible for controlling the signaling messages between the user equipment (UE) and the network. This layer involves the control of signaling messages related to call setup, call tear down, and mobility management.3. Management Plane: The management plane is responsible for the management of the network resources and the configuration of the network. This layer includes the management of the network functions such as orchestration, automation, and telemetry.Applications of 5G Wireless Communication:The 5G wireless communication has various applications, which will have a significant impact on different industries. Some of the applications are:1. Smart City: The 5G wireless communication enables the functionality of smart city applications such as smart transport, smart parking, and smart street lighting.2. Healthcare: The 5G wireless communication provides a higher level of healthcare with the use of various applications such as telemedicine, remote surgery, and health monitoring.3. Industrial Internet of Things (IIoT): The 5G wireless communication enables the functionality of IIoT applications such as predictive maintenance, asset tracking, and real-time manufacturing process monitoring.4. Agriculture: The 5G wireless communication provides the functionality of precision agriculture applications such as intelligent irrigation, crop monitoring, and farm automation.Conclusion:The 5G wireless communication is the next-generation technology, which is expected to be the future of communication technology. The 5G wireless communication provides a higher level of communication with its features such as high bandwidth, low latency, and massive IoT. The implementation of the 5G wireless communication will have a significant impact on different industries such as healthcare, smart city, and IIoT.。

Cloud RAN无线网工程技术规范

Cloud RAN无线网工程技术规范

Cloud RAN 无线网工程技术规范 1

Cloud RAN 无线网工程技术规范 1 范围 1.0.1 为规范 Cloud RAN 无线网工程建设,做到技术先进、经济合理、安全适用,便于 建设和维护,制定本规范。 1.0.2 本规范适用于新建、改建和扩建的公众移动通信网 Cloud RAN 无线网工程的规划、 设计、施工、验收。 1.0.3 工程建设应贯彻国家基本建设方针政策和技术经济政策,同时应密切结合通信发 展的实际,合理利用资源。 1.0.4 工程建设应充分调查分析、预测业务需求及运营维护需求,并充分考虑到新业务、 新技术对网络结构、容量及服务质量的影响。 1.0.5 在我国抗震设防烈度 6 度及以上地区进行电信网络建设时应满足抗震设防的要求。 1.0.6 工程建设若使用共享机房,应充分利用共建共享降低工程造价,提高资源利用率。 1.0.7 工程建设应节约土地、能源和原材料的消耗,保护自然环境和景观。 1.0.8 工程建设除应执行本规范外,尚应符合国家现行有关标准的规定。

2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本 适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文 件。 GB 8702《电磁环境控制限值》 GB 50009《建筑结构荷载规范》 GB 50011《建筑抗震设计规范(附条文说明)》 GB 50201《防洪标准(附条文说明)》 GB 50689《通信局(站)防雷与接地工程设计规范》 GB/T 51125《通信局站共建共享技术规范》 GB/T 51216《移动通信基站工程节能技术标准》 2

YD/T 1051《通信局(站)电源系统总技术要求》 YD/T 1821《通信局(站)机房环境条件要求与检测方法》 YD/T 2164《电信基础设施共建共享技术要求》 YD 5003《通信建筑工程设计规范》 YD/T 5026《电信机房铁架安装设计标准》 YD 5039《通信工程建设环境保护技术暂行规定》 YD/T 5040《通信电源设备安装工程设计规范》 YD/T 5054《通信建筑抗震设防分类标准》 YD 5059《电信设备安装抗震设计规范》 YD/T 5060《通信设备安装抗震设计图集》 YD 5083《电信设备抗地震性能检测规范》 YD 5184《通信局(站)节能设计规范》 YD 5191《电信基础设施共建共享工程技术暂行规定》 YD 5201《通信建设工程安全生产操作规范》

3GPP常用英文缩写全称大全

3GPP常用英文缩写全称大全

3GPP常用英文缩写全称大全DCPICH Common Pilot ChannelCPS Common Part SublayerCRC Cyclic Redundancy CheckCRCI CRC IndicatorCRC-N Cyclic Redundancy Check-NCRNC Controlling RNCc-RNTI RNTI allocated by CRNCCS Circuit SwitchedCSES Consecutive Severely Errored SecondCSN Ciphering Sequence NumberCSUM ChecksumCTCH Common Traffic ChannelCTDMA Code Time Division Multiple AccessCTP Connection Termination Point (OAM context)CTP Common Transport Protocol (Protocol context)DBR Deterministic Bit RateDC Dedicated Control (SAP)DCA Dynamic Channel AllocationDCCH Dedicated Control ChannelDCH Dedicated ChannelDCN Data Communication NetworkDL DownLinkDoCoMo Do Communication with MobilesDPCCH Dedicated Physical Control ChannelDPCH Dedicated Physical ChannelDPDCH Dedicated Physical Data ChannelDRAC Dynamic Resource Allocation ControlDRNC Drift RNCDRNS Drift RNSDRX Discontinuous ReceptionDS-CDMA Direct-Sequence Code Division Multiple Access DSCH Downlink Shared ChannelDT Data TransportDTCH Dedicated Traffic ChannelDTX Discontinuous TransmissionEBER Excessive Bit Error RatioECASC Extended Current Summary Alarm ControlEFCI Explicit Forward Congestion IndicationEFD Event Forwarding DiscriminatorEIR Equipment Identity RegisterEIRP Equivalent Isotropic Radiated PowerE-OTD Enhanced OTDES Errored SecondETSI European Telecommunication Standardisation InstituteF8 access link encryption functionFACH Forward Access ChannelFAUSCH Fast Uplink Signalling ChannelFBI Feed Back IndicatorFCS Frame Check SequenceFDD Frequency Division DuplexFDMA Frequency Division Multiple AccessFEC Forward Error CorrectionFEEB Far End Errored BlockFEES Far End Errored SecondFER Frame Erasure RateFESES Far End Severely Errored SecondFFS For Further StudyFM Fault ManagementFP Frame ProtocolFTAM File Transfer Access ManagementFTP File Transfer ProtocolGb Gb interface (between SGSN and BSC)GC General Control (SAP)GCRA Generic Cell Rate AlgorithmGFR Guaranteed RateGGSN Gateway GPRS Serving NodeGMM MM for GPRS servicesGMSK Gaussian Minimum Shift KeyingG-PDU T-PDU plus GTP headerGPRS General Packet Radio ServiceGPRS-CSI GPRS CAMEL Subscription Information GPS Global Positioning SystemGRNC Generic RNCGSM Global System for Mobile communicationsGTP GPRS Tunnelling ProtocolGTP-u GTP user planeHCS Hierarchical Cell StructureHE Home EnvironmentHEC Header Error ControlHFN Hyper Frame NumberHHO Hard HandoverHO HandoverHOP High Order PathHOVC Higher Order Virtual ContainerIBTS uplink Interference signal power level at Node B ICB Inter Carrier BoardICD Interface Control DocumentICH Indicator CHannelICI Inter Carrier InterfaceIE Information ElementIEC Incoming Error CountIETF Internet Engineering Task ForceIK Integrity KeyIMA Inverse Multiplexing for ATMIMEI International Mobile Equipment IdentityIMEISV International Mobile Equipment Identity Software VersionIMSI International Mobile Subscriber Identity (identical for IMUI; used in GSM context)IMUI International Mobile User Identity (identical to IMSI; seems to replace IMSI in UMTS contex t)INI Inter Network InterfaceIP Internet ProtocolISCP Interference Signal Code PowerISDN Integrated Services Digital NetworkISF Incoming Signal FailureIS-FL Idle Slot Forward LinkISID Idle Signal IdentificationISO International Organisation for StandardizationIT Information TechnologyITU International Telecommunication UnionIu Reference point between Access and Serving Network domainsIub Iub interface (between Node B and RNC)Iu-CS Iu towards the Circuit Switched-Service Domain of the Core NetworkIu-PS Iu towards the Packet Switched-Service Domain of the Core NetworkIur Iur interface (between RNC and RNC)IWF Inter Working FunctionIWU Inter Working UnitJD Joint DetectionKbps kilo-bits per secondKSI Key Set IdentifierKsps kilo-symbols per secondL1 Layer 1 (physical layer)L2 Layer 2 (data link layer)L3 Layer 3 (network layer)L3-CE Layer 3 Compression EntityLAC Link Access ControlLAI Location Area IdentityLAN Local Area NetworkLAPD Link Access Protocol for D-channelLB Laser BiasLCAF Location Client Authorisation FunctionLCCF Location Client Control FunctionLCCTF Location Client Coordinate Transformation FunctionLCD Loss of Cell Delineation (transmission context)LCD Low Constrained Delay (traffic context)LCF Location Client FunctionLCS Localisation Client ServiceLDD Low Delay DataLIR Limited IP Routing entity (in the RNC)LLC Link Layer ControlLMT Local Maintenance TerminalLNA Low Noise AmplifierLOF Loss of FrameLOP Low Order PathLOP Loss of PointerLOS Loss of SignalLPA Linear Power AmplifierLSA Localised Service AreaLSB Least Significant BitLSBF Location System Billing FunctionLSCF Location System Control FunctionLSN Local Sub NetworkLSPF Location Subscriber Privacy FunctionLT Laser TemperatureLTOA Latest Time of ArrivalMA Multiple AccessMAC Medium Access ControlMAC-c MAC entity handling common channels (RACH, FACH)MAC-d MAC entity handling dedicated channels (DCH)MAC-I Message Authentication Code used for data Integrity of signalling messages MAC-sh MAC entity handling shared channel (DSCH)MAHO Mobile Assisted HandoverMBS Maximum Burst SizeMCC Mobile Country CodeMCD Manual Configuration DataMcps Mega-chips per secondMD Macro-diversityME Mobile EquipmentMEHO Mobile evaluated handoverMIB Management Information BaseMM Mobility ManagementMNC Mobile Network CodeMNRG Mobile station Not Reachable for GPRS flagMNRR Mobile station Not Reachable ReasonMO Mobile OriginatedMOHO Mobile Originated HandoverMS Multiplex Section (transmission context)MS Mobile Station (GSM or security context)MS-AIS Multiplex Section Alarm Indication SignalMSB Most Significant BitMSC Multi-Slot Cell (MPSR context)MSC Mobile services Switching Centre (Core Network Context) MSID Mobile Station IdentifierMSOH Multiplex Section OverheadMSP Multiplex Section ProtectionMS-RDI Multiplex Section Remote Defect IndicationMS-REI Multiplex Section Remote Error IndicationMSTE Multiplex Section Terminating ElementMT Mobile Terminated (call context)MT Mobile Terminal (equipment context)MTP Message Transfer PartMUI Mobile User IdentifierNAS Non Access StratumNBAP Node B Application PartNCP Node B Control PortNCSES Number of Consecutive Severely Errored SecondNDF New Data FlagNE Network ElementNEHO Network evaluated handoverNEM Network Element ManagerNMC Network Management CentreNNI Network Node Interface (includes INI and ICI interfaces) NP Nectar PilotNPC Network Parameters ControlNRT Non-Real TimeNSS Network Sub SystemNT Nectar TelecomNt Notification (SAP)NW NetworkN-PDU Network PDUO&M Operation and MaintenanceOAM Operation Administration and MaintenanceOCCCH ODMA Common Control ChannelODCCH ODMA Dedicated Control ChannelODCH ODMA Dedicated ChannelODI Outgoing Defect IndicationODMA Opportunity Driven Multiple AccessODTCH ODMA Dedicated Traffic ChannelOEI Outgoing Error IndicationOFS Out of Frame SecondOMC Operation and Maintenance CentreOOF Out of FrameORACH ODMA Random Access ChannelOS Operation SystemOSF Offset FieldOSI Open System InterconnectionOSL Optical Signal LevelOTD Observed Time DifferenceOVSF Orthogonal Variable Spreading FactorPA Power AmplifierPC Power ControlPCCH Paging Control ChannelPCF Positioning Calculation FunctionPCH Paging ChannelPCM Pulse Code ModulationPCR Peak Cell RatePDCP Packet Data Convergence protocolPDH Plesiochronous Digital HierarchyPDN Packet Data NetworkPDP Packet Data ProtocolPDU Protocol Data UnitPG Processing GainPHY Physical layerPhyCH Physical ChannelPI Paging IndicatorPICH Page Indicator ChannelPID Packet IdentificationPJC Pointer Justification CountPJE Pointer Justification EventPkg PackagesPLM Payload MismatchPLMN Public Land Mobile NetworkPM Performance Management/Performance Monitoring PMM MM for PS domainPN Pseudo NoisePOH Path OverheadPPI Plesiochronous Physical InterfacePPM Parts Per MillionPRACH Physical Random Access ChannelPRCF Positioning Radio Co-ordination FunctionPS Packet SwitchedPSAP Presentation Service Access PointPSC Protection Switch CountPSD Protection Switch DurationPSMF Positioning Signal Measurement FunctionPSN Plane Switch NodePSTN Public Switched Telephone NetworkPTE Path Terminating ElementPVC Permanent Virtual ConnectionP-TMSI Packet TMSI (equivalent to P-TMUI, used in GPRS context)P-TMUI Packet TMUI – (equivalent to P-TMSI, new name for it in the UMTS context) PTR PointerPUF Power Up FunctionQE Quality EstimateQoS Quality of ServiceQPSK Quadrature Phase Shift KeyingRA Routing AreaRAB Radio Access BearerRAC Routing Area CodeRAC Radio Admission ControlRACH Random Access ChannelRAI Routing Area Identity (GPRS or Iu-PS context)RAI Remote Alarm Indication (transmission context)RAID Redundant Array of Independent DisksRAN Radio Access NetworkRANAP Radio Access Network Application PartRAND Random ChallengeRB Radio BearerRDI Remote Defect IndicationRDN Relative Distinguished NameREI Remote Error IndicationRF Radio FrequencyRFC Request For CommentRFN Reference Frame NumberRLC Radio Link ControlRLCP Radio Link Control ProtocolRLS Radio Link SetRLs Radio LinksRNC Radio Network ControllerRNCC Radio Network Connection ControlRNS Radio Network SubsystemRNSAP Radio Network Subsystem Application PartRNTI Radio Network Temporary IdentityRP Radio ProcessingRRC Radio Resource ControlRRM Radio Resource ManagementRS Regenerator sectionRSCP Received Signal Code Power after despreadingRSOH Regenerator Section OverheadRSSI Received Signal Strength IndicatorRT Real TimeRU Resource UnitRX ReceiveSAAL Signalling AAL (equivalent to SSCF over SSCOP over AAL5) SACCH Slow Associated Control ChannelSAP Service Access PointSBR Statistical Bit RateSC Service ControlSCCH Synchronization Control ChannelSCCP Signalling Connection Control PartSCD Selective Cell DiscardSCH Synchronization ChannelSCR Sustainable Cell RateSCTP Simple Control Transmission ProtocolSD Supervision Data (context configuration management)SD Signal Degrade (context SDH)SDCCH Stand-Alone Dedicated Control ChannelSDH Synchronous Digital HierarchySDU Service Data UnitSES Severely Errored SecondSF Signal Fail (transmission context)SF Spreading Factor (radio context)SFN System Frame NumberSG Study GroupSGSN Serving GPRS Support NodeSHO Soft Hand OverSIM Subscriber Information ModuleSIR Signal-to-Interference RatioSLM Signal Label MismatchSMS Short Message ServiceSN Serving NetworkSN Sequence NumberSNMP Simple Network Management ProtocolSOH Section OverheadSONET Synchronous Optical NetworkSP Switching PointSPA Signalling Point AccessibleSPI Signalling Point Inaccessible (SS7 context)SPI Synchronous Physical Interface (SDH context)SPROC System PROCessorSRNC Serving RNCSRNS Serving RNSs-RNTI RNTI allocated by SRNCSSA Signalling Subsystem AccessibleSSADT Service Specific Assured Data TransferSSCF Service Specific Coordination FunctionSSCOP Service Specific Connection-Oriented ProtocolSSP Signalling Subsystem ProhibitedSSSAR Service Specific Segmentation And ReassemblySSTED Service Specific Transmission Error DetectionSTF Start FieldSTM Synchronous Transport ModuleSTM(-N) Synchronous Transport Module (-N)STS(-N) Synchronous Transport Signal (-N)STTD Space Time Transmit DiversityTB Transport BlockTBC To Be ConfirmedTBD To Be DefinedTBF Transport Block FormatTBS Transport Block SetTCH Traffic ChannelTCM Tandem Connection MonitoringTCOH Tandem Connection OverheadTCP Transport Control ProtocolTCP Transport Control ProtocolTC-RDI Tandem Connection Remote Defect IndicationTC-REI Tandem Connection Remote Error IndicationTCT Tandem Connection TraceTCTE Tandem Connection Terminating ElementTDD Time Duplex DivisionTE Terminal EquipmentTEID Tunnel Endpoint IDTFCI Transport Format Combination IndicatorTFCS Transport Format Combination SetTFI Transport Format IndicatorTFS Transport Format SetTFT Traffic Flow TemplateTFTP Trivial File Transfer ProtocolTIM Trace Identifier MismatchTLLI Temporary Logical Link IdentifierTM Transparent Mode (of RLC)TMN Telecommunication Management NetworkTMSI Temporary Mobile Subscriber Identity (used in GSM context, equivalent to TMUI) TMUI Temporary Mobile User Identity (new name for TMSI in the UMTS context)TN Termination NodeTOA or ToA Time Of ArrivalTOAWE TOA Window End pointTOAWS TOA Window Start pointTP Termination PointTPC Transmit Power ControlT-PDU Original packet, for example an IP datagram, from UE or an external PDNTR Threshold ResetTRX Transmitter/ReceiverTSID Test Signal IdentificationTSS Telecommunication Standardization SectorTTC Telecommunication Technology CommitteeTTI Time Transmission Interval (Radio Context)TTI Trail Trace Identifier (O&M context)TTP Trusted Third Party (security context)TTP Trail Termination Point (transmission context)TU Tributary UnitTUG Tributary Unit GroupTUG(-n) Tributary Unit Group (-n)TU-n Tributary Unit-nTX TransmitU- User-UARFCN UTRA Absolute Radio Frequency Channel NumberUAS Unavailable SecondUBR Unspecified Bit RateUDD Unconstrained Delay DataUDP User Datagram ProtocolUE User EquipmentUEA UMTS Encryption AlgorithmUEFN User Equipment Frame NumberUIA UMTS Integrity AlgorithmUL UpLinkUM Unacknowledged Mode (of RLC)UMTS Universal Mobile Telecommunication SystemUNEQ UnequippedUNI User to Network InterfaceUP User PlaneUPC Usage Parameters ControlURA User Registration AreaUSCH Uplink Shared CHannelUSIM UMTS Subscriber Identity ModuleUTRA UMTS Terrestrial Radio AccessUTRAN UMTS Terrestrial Radio Access NetworkUu Reference point between User Equipment and Infrastructure domains, UMTS radio interface UUI User to User IndicatorVA Voice Activity (factor)VBR Variable Bit RateVC Virtual ChannelVCC Virtual Channel ConnectionVCI Virtual Channel IdentifierVC-n Virtual Container n (n is 11, 12, 2, 3 or 4)VLR Visitor Location RegisterVP Virtual PathVPC Virtual Path ConnectionVPI Virtual Path IdentifierW-CDMA Wideband CDMAWG Working GroupWG-n Working Group (of 3GPP)WTR Wait-to-RestoreXMAC-I eXpected Message Authentication Code used for data Integrity of signalling messages XOR eXclusive ORXPU AuXiliary Processing UnitXRES Expected Response。

GSM、WCDMA系统接口

GSM、WCDMA系统接口

GSM系统1. Um接口:BTS和MS之间的接口。

2. Abis接口:BSC和BTS之间的接口,Abis接口支持向客户提供的所有服务,并支持对BTS无线设备的控制和无线频率的分配。

3. A接口:BSC与MSC之间的接口,主要传递呼叫处理、移动性管理等信息。

4. B接口:MSC与VLR之间的接口,用于MSC向VLR询问有关移动台当前位置信息,或通知VLR有关移动台的位置更新。

5. C接口:MSC与HLR之间的接口,用于查询用户信息。

6. D接口:HLR与VLR之间的接口,主要交换位置信息和客户信息。

7. E接口:MSC与MSC之间的接口,用于移动台在呼叫期间从一个MSC区移动到另一个MSC区,为保持通话连续而进行局间切换,以及两个MSC间建立客户呼叫接续时传递有关消息。

8. F接口:MSC与EIR之间的接口,用于MSC检验移动台IMEI时使用。

9. G接口:VLR和VLR之间的接口,当移动台以TMSI启动位置更新时VLR使用G接口向前一个VLR获取MS的IMSI。

WCDMA系统UMTS(通用移动通信系统)是采用WCDMA空中接口技术的第三代移动通信系统,通常也就把UMTS系统称为WCDMA通信系统。

UMTS系统采用了与第二代移动通信系统类似的结构,包括无线接入网络(RAN, Radio Access Network)和核心网络(CN, Core Network)。

其中RAN用于处理所有与无线有关的功能,而CN处理UMTS系统内所有的话音呼叫和数据连接,并实现与外部网络的交换和路由功能。

CN从逻辑上分为电路交换域(CS, Circuit SwitchedDomain)和分组交换域(PS, Packet Switched Domain)。

RAN、CN与用户设备(UE, User Equipment)一起构成了整个UMTS 系统,其系统结构如0所示。

UMTS系统结构UTRAN基本结构UTRAN基本结构UTRAN包含一个或几个无线网络子系统(RNS, Radio Network Sub-system)。

第4章-5G无线接入网和接口协议图文图文课件

对于NG-RAN,由gNB-CU和gNB-DU组成的gNB的NG和Xn-C接口(gNB和gNB之间的接 口的控制面)终止于gNB-CU;gNB-CU和连接的gNB-DU仅对其他gNB可见,而5GC仅对 gNB可见。 gNB包括以下功能: · 无线资源管理功能:无线承载控制,无线接纳控制,连接移动性控制,上行链 路和下行链路中UE的动态资源分配及调度; · IP报头压缩,加密和数据完整性保护; · 在UE提供的信息不能确定到AMF的路由时,为UE在UE附着的时候选择AMF; · 将用户面数据路由到UPF; · 提供控制面信息向AMF的路由; 核桃AI
图4-4 gNB逻辑节点和接口
4.2.1 NG接口
NG接口是一个逻辑接口,规范了NG-RAN节点与不同制造商提供的核心网 AMF(Access Mobility Function,接入和移动管理功能)节点和UPF(User Plane Function,用户平面功能)节点的互连,同时分离NG接口无线网络功能和传输网络功 能。
NG接口分为NG-C接口(控制面接口)和NG-U接口(用户面接口)两部分。 从任何一个NG-RAN节点向5GC连接可能存在多个NG-C逻辑接口,然后通过 NAS(Non-Access Stratum,非接入层)节点选择功能确定NG-C接口。从任何一个NGRAN节点向5GC连接也可能存在多个NG-U逻辑接口。NG-U接口的选择在5GC内完成,并 由AMF发信号通知NG-RAN节点。 1.NG-U NG用户面接口(NG-U)在NG-RAN节点和UPF之间定义。NG接口的用户面协议栈如图4-5 所示。传输网络层建立在IP传输层之上,GTP-U用于UDP / IP之上,以承载NG-RAN节 点和UPF之间的用户面PDU(ProtocolDataUnit,协议数据单元)数据。 2.NG-C

IP_RAN网络解决方案概览

IP RAN网络解决方案概览华为技术有限公司目录1 RAN网络的历史演进....................................... 1-11.1 RAN网络的发展............................................... 1-11.2 IP RAN网络概况.............................................. 1-21.2.1 IP RAN网络的出现........................................ 1-21.2.2 IP RAN网络的传送需求.................................... 1-31.2.3 IP RAN网络的组网形式.................................... 1-51.2.4 我司IP RAN网络的设备演进 ................................ 1-82 IP RAN网络解决方案概况................................. 2-112.1 我司IP RAN网络解决方案简介 .................................. 2-113 无线业务需求与IP RAN网络规划设计 ........................ 3-133.1 概述....................................................... 3-133.2 无线业务需求................................................ 3-153.2.1 业务QOS和可靠性 ....................................... 3-153.2.2 流量模型............................................... 3-173.2.3 业务带宽............................................... 3-183.2.4 时间要求............................................... 3-183.2.5 业务安全............................................... 3-193.2.6 业务广覆盖............................................. 3-203.3 物理网络规划设计............................................. 3-203.3.1 设备选型............................................... 3-203.3.2 物理拓扑设计 ........................................... 3-203.4 逻辑网络规划设计............................................. 3-223.4.1 设备/链路/逻辑通道的命名规范.............................. 3-223.4.2 带宽规划............................................... 3-233.4.3 VLAN规划.............................................. 3-24 3.4.4 IP规划................................................ 3-29 3.4.5 IGP路由规划........................................... 3-30 3.4.6 BGP路由规划........................................... 3-37 3.4.7 MPLS规划.............................................. 3-40 3.4.8 VPN规划............................................... 3-44 3.4.9 可靠性规划............................................. 3-52 3.4.10 QOS规划.............................................. 3-61 3.4.11 时钟规划.............................................. 3-68 3.4.12 OAM规划.............................................. 3-76 3.4.13 网络DCN规划.......................................... 3-781 RAN网络的历史演进1.1 RAN网络的发展移动承载网,又名RAN(Radio Access Network),指的是承载从基站到基站控制器之间网络流量的网络。

无线接入网的性能评估和KPI

无线接入网的性能评估和KPIVersion 1.0L Wang15 Oct 2005文档范围本文总结了无线接入网(RAN:radio access network)的性能评估方法,并从各个不同角度阐述了评估的目的。

文档目的撰写本文是为了建立起RAN性能评估和KPI(网络重要性能指标)报告的标准。

1. 简介RAN(radio access network)在享受移动电话网络服务的用户间建立了不可见的连接。

RAN是基于地理分布但对用户来说是不可见的,它随着时间动态变化、建立和维护它需要昂贵的成本。

它是移动电话网和用户之间仅有的联系。

我们有许多方法来测定基于无线传输技术的网络性能,测定方式如下:(1)通过网元管理器(如:OMC)上生成的计数器来测量RAN的运行性能。

这些计数器有呼叫试呼次数、呼叫建立成功次数、拥塞次数、掉话次数、切换次数等等。

(2)在实际的通话场景中进行测量。

测试设备放在进行路测的车辆上或者是由进行建筑物内部测试的人携带着,工程师拿着和测试设备建立了信号连接的测试手机,就可以通过模拟用户实际通话场景进行测试。

(3)通过对BTS/BSC/MSC间的A和 A-bis接口外接探测器,来测量上下行链路的无线信号、解读通信协议的信号、同时追踪在BTS/BSC/MSC网元间产生的所有呼叫。

(4)通过MSC上产生的CDR记录,可以做各种性能测量,这些性能测量的方面有关于每个呼叫用户的、每个用户的手机、呼叫发起或结束的地点、呼叫目的地、甚至有关于呼叫是在内部网络还是对方网络中非正常终止的测量。

下面的图标Figure 1,说明了测量方式原理Abis/IubBSC/TCU RANNode-BMSPSTNOwn networkMSC/GMSC SGSN/GGSNAMS reports recording Call tracingHLR/GMLC/SMLC2. 驱车测量或步行测量这种测量方法是从用户的角度出发,不依赖于设备生产商。

面向智能服务的雾无线接入网络:原理、技术与挑战

2021年3月Chinese Journal of Intelligent Science and Technology March 2021 第3卷第1期智能科学与技术学报V ol.3No.1面向智能服务的雾无线接入网络:原理、技术与挑战刘晨熙,刘炳宏,张贤,龙新南,彭木根(北京邮电大学网络与交换技术国家重点实验室,北京 100876)摘 要:大数据和人工智能的兴起推动了智能服务的蓬勃发展。

然而由于数据管理和模型训练成本高昂,以及用户对时延和隐私等的需求愈加突出,基于现有的集中式网络架构难以实现整体网络的智能化。

为此,提出了一种支持分布式机器学习的基于人工智能的雾无线接入网络(AI-FRAN)架构,并探讨了支撑该架构的基础理论,明确了充分利用雾无线接入网络(F-RAN)中通信资源、计算资源以及缓存资源的关键赋能技术。

最后,讨论了AI-FRAN未来的发展机遇与挑战。

关键词:智能服务;雾无线接入网;人工智能;分布式机器学习中图分类号:TN929.5文献标识码:Adoi: 10.11959/j.issn.2096−6652.202102Intelligent service oriented fog radio access network:principles, technologies and challengesLIU Chenxi, LIU Binghong, ZHANG Xian, LONG Xinnan, PENG Mugen State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunication, Beijing 100876, ChinaAbstract: Big data and artificial intelligence has promoted the development of intelligent service. However, due to the high cost of data management and model training, as well as the increasing demands of users for latency and privacy, it is difficult to achieve the intelligent network based on the existing centralized network architecture. To address this issue, an artificial intelligence-based fog radio access network (AI-FRAN) architecture that supported distributed machine learning was proposed, and the fundamental principles that support the architecture were discussed. The key enabling techniques were identified that can realize the full utilization of communication resources, computing resources and cache resources in fog radio access network (F-RAN). Finally, the opportunities and challenges of AI-FRAN were discussed.Key words: intelligent service, fog radio access network, artificial intelligence, distributed machine learning1 引言人工智能(artificial intelligence,AI)在语音/图像识别、自然语言处理以及推荐/搜索引擎等领域取得了突破性进展,并由此衍生了包括无人驾驶、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)、智能写作、智能物联网、数字卫生系统、智能搜索引擎以及个性化推送等在内的一系列智能服务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


ALU, Agilent and others are joining

Scalable, Reliable, and Cost Effective system
C-RAN Trials in Commercial Networks - for dense urban city, business street and campus; well suit for HetNet deployment
0 100 200 300
Lower energy consumption Save up to 71% of power compared to traditional RAN system*
*Source: Base on China Mobile research on commercial networks
IT Technology Evolution • Huge IDC, advanced server network technology • Cheap device, high BW, high reliability • Soft switch has replaced traditional switch system • 40 servers = 10M line fixed-line switch • Open platform replaced proprietary platform • x86 systems replaced dedicated servers
Dynamic network load challenge
பைடு நூலகம்
Fast increasing data traffic but slow revenue growth
Big gets Bigger, Small gets Smaller
BBU Pool
Tradition Macro Cell supports 12~36 GSM carriers Covers 0.2~2km radius
Joint R&D on C-RAN with TEM/IT Partners
- IT based wireless platform opens the door to more flexible system
2G/3G terminal 2G/3G/4G RRU 4G test terminal
BBU
BBU
BBU
C-RAN system that support 1000+ LTE carriers and cover 10+ kilometer radius area
RRU
RRU
RRU
RRU RRU RRU RRU
Indoor/hotspot coverage Nano-cell/Femto-cell that has WiFi and LTE carrier for hotspot and indoor
Power consuming surging as BS number increases BS cell site is the major source of power consumption of China Mobile
CAPEX and OPEX associated with cell sites


RRU RRU Distributed RRU RRU RRU RRU RRU
Clean System Target
RRU

Agenda of Today
What’s the Challenge of Operators today? - The mobile internet traffic challenge
C-RAN: the Road Towards Green Radio Access Network
Dr. Chih-Lin I China Mobile Research Institute October, 2012
Agenda of Today
What’s the Challenge of Operators today? - The mobile internet traffic challenge
6.58 5.466.15 2.54
0.1 0
0
8Tx(XXXX)/2Rx
0.078 0.056 0.101 0.047
2Tx (X)/2Rx
8Tx(XXXX)/2Rx
*Source: China Mobile simulation results on 3GPP assumptions
IT Technology Helps Telecom Evolution
8 6 4 2 2.813.01 1.9 2.47 2Tx (X)/2Rx
Ave. cell spectrum efficiency (bps/Hz) SU-MIMO MU-MIMO
0.3 0.2
Cell-edge spectrum efficiency (bps/Hz)
SU-MIMO
MU-MIMO 0.266 0.227 0.183 0.098
Why C-RAN is Important to Mobile Operators? - Cost, performance and industry trends How do We Drive C-RAN in the Future? - Joint requirement, R&D, and deployment
Future: Large Scale, Real Time BBU Pool

2G/3G/4G RAT verified on IT platform Successful OTA demo in 2011 ITU Telecom World, Geneva

Build telecom grade reliable (99.999%) realtime Cloud with cheap building blocks with relatively low reliability (99.9%)
Multi-cell Joint scheduling and processing Target to Open IT platform Consolidate the processing resource into a Cloud Flexible multi-standard operation and migration Less power consuming Lower OPEX Fast system roll-out
Why C-RAN is Important to Mobile Operators? - Cost, performance and industry trends How do We Drive C-RAN in the Future? - Joint requirement, R&D, and application
Operator still has Challenges in Mobile Internet Era
A green evaluation path is need for Radio Access Network deployment and operation, to achieve high capacity, high power efficiency and low cost

Centralized Control and/or Processing

Collaborative Radio

Centralized processing resource pool that can support 10~1000 cells
Real-Time Cloud
High bandwidth optical transport network
Agenda of Today
What’s the Challenge of Operators today? - The mobile internet traffic challenge
Why C-RAN is Important to Mobile Operators? - Cost, performance and industry trends How do We Drive C-RAN in the Future? - Joint requirement, R&D, and deployment
Collaborative Radio Further Improves Performance
Interference has become the major limit E.g. in big cities of China, the distance between BTS is just 100~200m, and interference become a serious challenge Collaborative Radio is the Ultimate Solution Change the interference to useful signals Make better use of TDD channel reciprocity
Centralized Deployment Helps Cost Structure
Lower CAPEX and OPEX Save up to 15% CAPEX and 50% OPEX compared to distributed BTS 3G network*
Faster system roll out Due to simpler remote radio site, system roll out can save up to 1/3 the time*
相关文档
最新文档