奥数五年级质因数分解题答案
5年级奥数与质数有关的构造题例题解析

【内容概述】与质数有关的构造问题,通过分解质因数求解的整数问题.【例题】1.有人说:“任何7个连续整数中一定有质数.”请你举一个例子,说明这句话是错的.[分析与解]例如连续的7个整数:842、843、844、845、846、847、848分别能被2、3、4、5、6、7、8整除,也就是说它们都不是质数.7!+1,7!+2,........7!+7 5040,5041,5042,. (5048)评注:有些同学可能会说这是怎么找出来的,翻质数表还是…,我们注意到(n+1)!+2,(n+1)!+3,(n+1)!+4,…,(n+1)!+(n+1)这n个数分别能被2、3、4、…、(n+1)整除,它们是连续的n个合数.其中n!表示,从1一直乘到n的积,即1×2×3×…×n.如果换成11呢你能证明么?2.从小到大写出5个质数,使后面的数都比前面的数大12.[分析与解]我们知道12是2、3的倍数,如果开始的质数是2或3,那么后一个数即2或3与12的和一定也是2、3的倍数,将是合数,所以从5开始尝试.有5、17、29、41、53是满足条件的5个质数.尝试法>3.9个连续的自然数,它们都大于80,那么其中质数最多有多少个?[分析与解]大于80的自然数中只要是偶数一定不是质数,于是奇数越多越好,9个连续的自然数中最多只有5个奇数,它们的个位应该为1,3,5,7,9.但是大于80且个位为5的数一定不是质数,所以最多只有4个数.验证101,102,103,104,105,106,107,108,109这9个连续的自然数中101、103、107、109这4个数均是质数.也就是大于80的9个连续自然数,其中质数最多能有4个.4.用l,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那么这9个数字最多能组成多少个质数?[分析与解]要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数67.所以这9个数字最多组成了2、3、5、67、41、89这6个质数.5.3个质数的倒数之和是,则这3个质数之和为多少?[分析与解]设这3个质数从小到大为a、b、c,它们的倒数分别为、、,计算它们的和时需通分,且通分后的分母为a×b×c,求和得到的分数为,如果这个分数能够约分,那么得到的分数的分母为a、b、c或它们之间的积.现在和为,分母1986=2×3×331,所以一定是a=2,b=3,c=331,检验满足.所以这3个质数的和为2+3+331=336.6.已知一个两位数除1477,余数是49.求满足这样条件的所有两位数.[分析与解]有1477÷除数=商……49,有1477-49=除数×商,所以除数×商=1428=2×2×3×7×17.一般情况下有除数大于余数.即除数大于49且整除1428,有84、51、68满足.所以满足题意的两位数有51、68、84.7.有一种最简真分数,它们的分子与分母的乘积都140.如果把所有这样的分数从小到大排列,那么第三个分数是多少?[分析与解]有140=2×2×5×7,因为这些分数的分子与分母的乘积均为140,当分母越大时,分子越小,所以对应的分数也越小。
奥数题植树分解质因数

奥数题植树分解质因数一、什么是分解质因数分解质因数就是把一个合数写成几个质数相乘的形式。
这就好比把一个大礼包(合数)拆分成几个小礼物(质数)的组合。
比如说6这个合数,它可以分解成2×3,这里的2和3就是质数啦。
在植树问题里,有时候就会用到分解质因数的知识来巧妙地解决问题呢。
二、植树问题中的分解质因数1. 两端都种树假设我们要在一条路上种树,这条路的长度可以分解质因数得到一些有用的信息哦。
比如路长30米,30分解质因数是2×3×5。
如果每隔5米种一棵树(这里的5就是质因数中的一个),两端都种的话,树的数量就比间隔数多1。
30÷5 = 6个间隔,那么树的数量就是6 + 1 = 7棵。
2. 一端种树一端不种还是路长30米,按照上面的分解质因数结果。
如果是一端种树一端不种,那么树的数量就和间隔数是一样的,也就是30÷5 = 6棵。
3. 两端都不种树同样路长30米,此时树的数量比间隔数少1,30÷5 - 1 = 5棵。
三、相关的奥数题1. 有一条小路长48米,48分解质因数为2×2×2×2×3。
现在要在小路一侧种树,每隔4米种一棵(4是48的质因数组合2×2),两端都种,问一共种多少棵树?先求间隔数:48÷4 = 12个间隔。
因为两端都种,所以树的数量是12+1 = 13棵。
2. 路长56米,56 = 2×2×2×7。
每隔7米种一棵树,一端种一端不种,树有多少棵?间隔数为56÷7 = 8个,因为一端种一端不种,所以树有8棵。
3. 长60米的路,60 = 2×2×3×5。
每隔6米种一棵树(6 = 2×3),两端都不种,树有多少棵?间隔数60÷6 = 10个,树的数量10 - 1 = 9棵。
4. 一个长方形的花园周长是72米,72 = 2×2×2×3×3。
五年级奥数之分解质因数

分解质因数例1:判断269、439是质数还是合数?例2:两个质数的和是40,求这两个质数的乘积的最大值是多少?例3:36的全部因数有多少个?216的全部因数有多少个?例4:36的因数和是多少?216的因数和是多少?例5: 李聪是个中学生,他参加了全市的数学竞赛(满分100分)。
他说:“我的名次、分数和我的年龄乘起来是3738。
”李聪得了多少分,获得了第几名?例6: 小亚、小美和小欧是三个好朋友,他们三人的年龄依次相差2岁,已知他们三人的年龄之积是1680,他们中年龄最大的上了初中,小亚和小欧在同一学校学习,小亚不是年龄最小的,那么三个好朋友的年龄分别是多少?例7: 连续九个自然数中至多有几个质数?为什么?例8:把14、33、35、30、75、39、143、169这八个数平均分成两组,使每组数的乘积相等。
例9:一个整数a与1080的乘积是一个完全平方数,求a的最小值与这个平方数。
例10:有3个自然数a、b、c.已知a×b=6,b×c=15,a×c=10.求a×b×c是多少?应用与拓展1. 两个质数和是45,这两个质数的积是多少?2.一个两位质数,将它们的十位数字和个位数字对调后仍是一个两位质数,这样的数共有几个,求它们的和是多少?3.求100以内所有只有三个因数的自然数的和是多少?4.把1008分解质因数,并求出它们因数的个数及因数和。
5.冬冬参加小学数学竞赛,满分是100分。
他说:“我的分数、我的岁数和我竞赛得的名次乘起来,积是2134。
”你能否求出冬冬的年龄、考试成绩和名次分别是多少?6.a、b、c、d都是不同的质数,a+b+c=d,那么a×b×c×d的最小值是多少?7. 1,2,3,4,5,6,7,8,9九张卡片,甲、乙、丙各拿了三张。
甲拿的三张卡片上的数字乘积是24,乙拿的三张卡片上的数字乘积是48,丙拿的三张卡片上的数字之和是21,丙拿的是哪三张卡?8.在射箭运动中,运动员每射一箭的环数只能是下列数之一:0、1、2、3、4、5、6、7、8、9、10,其中0环表示脱靶,现在甲、乙两名运动员各射了5箭,每人5箭得到的环数的积都是1764。
奥数质数合数分解质因素讲义及答案

奥数质数合数分解质因素讲义及答案数的整除(2)质数、合数、分解质因数教室姓名学号【知识要点】1、质数与合数自然数按其因数的个数可以分成三类:(1)单位1:只含有1这一个因数的自然数。
(2)质数(也称为素数):只含有1与它本身这两个因数的自然数。
(质数有无穷多个,不存在最大的质数,但有最小的质数2,而且2是质数中唯一的偶数。
)(3)合数:含有三个或三个以上因数的自然数。
(4)分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
(5)因数个数定理:例如:1980=22×32×5×11所以:(T表示因数个数)T(1980)=(1+2)×(1+2)×(1+1)×(1+1)=36 (6)因数和的定理:例如:1980=22×32×5×11所以:S(1980)=(02+12+22)×(03+13+23)×(05+15)×(011+111)=7×13×6×12=6552【典型例题】例1、两个质数的和是49,这两个质数的积是多少?解:因为两个质数的和49是奇数,所以必有一个质数是偶数,另一个质数是奇数,而偶数中只有2是质数,于是另一个质数是49-2=47,从而得到它们的积是2×47=94。
例2、有三张卡片,上面分别写着2、3、4三个数字,从中任意抽出一张、两张、三张,按任意顺序排列起来,可以得到不同的一位数、两位数、三位数,写出其中的质数。
解:由于2+3+4=9是3的倍数,所以任意排出的三位数都不是质数。
任意取两张卡片排出的两位数,末尾数字不能是2和4,只能排3.所以用2、3、4三个数字排出两位质数有23和43.取一张卡片排出的质数有2和3.所以最后排出的质数有2、3、23、43这四个。
例3、360这个数的因数有多少个?这些因数的和是多少?解:360=2×2×2×3×3×5=23×32×5,所以360有(3+1)×(2+1)×(1+1)=24个因数。
五年级奥数举一反三第24周分解质因数(二)

五年级奥数举一反三第24周分解质因数[二]专题简析;许多题目’特别是一些竞赛题’初看起来很玄妙’但它们都与乘积有关’对于这类题目’我们可以用分解质因数的方法求解。
因此’掌握并灵活应用分解质因数的知识’能解答许多一般方法不能解答的与积有关的应用题。
例题1 三个质数的和是80’这三个数的积最大可以是多少?分析三个质数相加的和是偶数’必有一个质数是2。
80-2=78’剩下两个质数的和是78’而且要使它的积最大’只能是41和37。
因此’这三个质数是2、37和41。
最大积是2×37×41=3034练习一1’有三个质数’它们的乘积是1001’这三个质数各是多少?2’张明是个初中生’有一次’他参加数学竞赛后’所得的名次、分数和他的岁数三者的积是2910。
求张明的成绩、名次和年龄分别是多少?3’写出若干个连续的自然数’使它们的积是15120。
例题2 长方形的面积是375平方米’已知它的宽比长少10米’长和宽的和是多少米?分析这道题如果用方程来解会比较麻烦’我们可以把375分解质因数看一看。
375=5×5×5×3’因为5×5比5×3正好多10’所以’此长方形的长是5×5=25米’宽是5×3=15米’它们的和是40米。
练习二1’237除以一个两位数’所得的余数是6’请写出适合于这个条件的所有两位数。
2’有4个孩子’恰好一个比一个大1岁’4人的年龄积是3024’这4个孩子中最大的几岁?3’有一块长方形的场地’它是由319块1平方分米的水泥方砖铺成的’求这块长方形场地的周长。
例题3 某班同学在班主任老师带领下去种树’学生恰好平均分成三组’如果师生每人种树一样多’一共种了1073棵’那么’平均每人种了多少棵?分析根据每人种树棵数×参加人数=1073’把1073分解质因数;1073=29×37’再根据学生恰好平均分成三组可知;参加种树的人数是3的倍数多1’由于只有37比3的倍数多1’所以有37人’平均每人种29棵。
【教师版】小学奥数5-3-2 质数与合数(二).专项练习及答案解析

1.掌握质数与合数的定义 2.能够用特殊的偶质数2与质数5解题 3.能够利用质数个位数的特点解题 4. 质数、合数综合运用一、质数与合数 一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.二、判断一个数是否为质数的方法根据定义如果能够找到一个小于p 的质数q (均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.。
模块一、偶质数2 【例 1】 如果,,a b c 都是质数,并且a b c -=,则c 的最小值是_________【考点】偶质数2 【难度】2星 【题型】填空【关键词】希望杯,4年级,初赛,17题【解析】 本题考察的是最小的偶质数2,所以c 最小是2.【答案】2【例 2】 两个质数之和为39,求这两个质数的乘积是多少.【考点】偶质数2 【难度】2星 【题型】解答【解析】 因为和为奇数,所以这两个数必为一奇一偶,所以其中一个是2,另一个是37,例题精讲知识点拨知识框架5-3-2.质数与合数(二)乘积为74.我们要善于抓住此类题的突破口。
小学奥数5-3-4 分解质因数(一).专项练习及答案解析
1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数 【例 1】 分解质因数20034= 。
【考点】分解质因数 【难度】1星 【题型】填空【关键词】走美杯,决赛,5年级,决赛,第2题,10分【解析】 原式323753=⨯⨯⨯例题精讲知识点拨教学目标5-3-4.分解质因数(一)【答案】3⨯⨯⨯23753【例2】三个连续自然数的乘积是210,求这三个数是多少?【考点】分解质因数【难度】1星【题型】填空【解析】210分解质因数:2102357=⨯⨯⨯,可知这三个数是5、6和7。
五年级奥数专题讲义(基础卷+提高卷)-第24讲 分解质因数(二) 通用版(含答案)
第 24 讲分解质因数(二)基础卷1.如果 A+B=14,A×B=48,那么 A 与 B 的差是多少?A 与B 的差是22.把 247/323 和 46/69 约分。
323-247=76247-76=171171-76=9595-76=1976-19=5757-19=3838-19=19,故最大公约数是19所以为13/17同理第二个为2/33.老师用 100 元去买一种钢笔若干支,如果每支便宜 1 元,那就多买 5 支。
问:钢笔的原价是多少?100÷1=100(支)100+5=105(支)100支×105=105支×100105-100=5(元)4.求 1150 的约数中,除了它本身以外最大的约数是几?用1150除以任何可以整除的数例如1150/2=575 575/5=115 115/5=23那么也就是说1150的约数可以有2,5,5,23,这4个数每两个或三个任意相乘,如果四个数相乘就是1150那么你想要最大的约数就是23*5*5等于5755.一盒棋子共有 48 粒,如果不一次全拿出,也不一粒一粒拿出,但每次拿出的粒数要相同,最后一次正好拿完,共有几种拿法?每次2粒 24次每次3粒 16次每次4粒 12次每次6粒 8次每次8粒 6次每次12粒 4次每次16粒 3次每次24粒 2次共8种拿法6.有三个自然数 a、 b、 c,已知a×b=35,b×c=55,c×a=77,求 a、 b、 c 三个数的乘积。
a×b = 35=5×7,b×c = 55=5×7,c×a = 77=7×11a*b*c=5*7*11=385提高卷1.张爷爷今年 84 岁,他告诉人家:“我有 3 个孙子,他们年龄的乘积和我的年龄一样大,而且两个孙子的年龄和正好是另外一个孙子的年龄。
”问:张爷爷的三个孙子各是多大?设一个孙子的年龄为x岁,一个孙子的年龄为y岁,则另外的一个孙子的年龄为x+y岁,xy(x+y)=84,而(3×4)(3+4)=84,所以x=3,y=4,另外一个孙子的年龄是3+4=7(岁),答:这三个孙子今年分别是3岁、4岁、7岁.2.把一批图书分给三个班,每个班所得的本数一班比一班多 3 本,且各班所得图书的乘积为 910。
五年级奥数分解质因数讲座及练习答案
五年级奥数集训专题讲座(四)——分解质因数把一个合数,用质因数相乘的形式表达出来,叫做分解质因数。
我们课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。
其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题.例1:把18个苹果平均分成若干份,每份大于1个,小于18个,一共有多少种不同的分法?分析:18的约数有1、2、3、6、9、18。
除去1和18,还有4个约数,所以,一共有4种不同的分法.例2:写出若干个连续的自然数,使它的积是15120。
分析:先把15120分解质因数,进而组合因数,使几个因数成为连续的自然数。
15120=2×2×2×2×3×3×3×5×7=5×(2×3)×(2×2×2)×(3×3)=5×6×7×8×9【巩固练习】:有四个孩子,恰好一个比一个大1岁,4人的年龄积是3024,问这4个孩子中最大的几岁?解:3024=2×2×2×2×2×3×3×3×7=8×6×9×7答:这四个孩子中年龄最大的是9岁。
例3:将2、5、×14、24、27、55、56、99八个数平均分成两组,使这两组数的乘积相等。
分析:14=2×7 24=2×2×2×3 27=3×3×3 55=5×1156=2×2×2×7 99=3×3×11 2 5可以看出,这八个数中,共含有八个2,六个3,二个5,二个7和二个11,如果要把这八个数分成两组且积相等,那么,每组数中应含有四个2,三个3,一个5,一个7,一个11。
五年级奥数举一反三-分解质因数(二)
2、5100除以一个三位数,余数是95,这个 三位数最大是多少?
【例题3】
某班同学在班主任老师带领下去种树,学生 恰好平均分成三组,如果师生每人种树一样 多,一共种了1073棵,那么,平均每人种了 多少棵?
【练习3】
1、老师用216元买一种钢笔若干支,如果每支 钢笔便宜1元钱,那么他就能多买3支。每支 钢笔原价多少元?
分解质因数(二)
专题解析
许多题目,特别是一些竞赛题,初看起来 很玄妙,但它们都与乘积有关,对于这类题目, 我们可以用分解质因数的方法求解。因此,掌 握并灵活应用分解质因数的知识,能解答许多 一般方法不能解答的与积有关的应用题。
精讲精练
【例题1】
三个质数的和是80,这三个数的积最大可以 是多少?
【练习1】
【练习5】
1,求2310的约数中,除它本身以外最大的约数是多少? 2,自然数a乘以2376,所得的积正好是自然数b的平 方,求a最小是多少?
3,将750元奖金平均分给若干个获奖者,如果每人所 得的钱数化成角为单位的数就正好是得钱人数的12倍, 求获奖人数和每人分得的钱数。
1、如果A+B=70,A×B=1161,A比B大,那么A-
B等于多少?
2、长方形的面积是375平方米,已知它的宽 比长少10米,长和宽的和是多少米?
【例题2】
一个两位数除310余37,这个数可以是( )或 ()
【练习2】
1,237除以一个两位数,所得的余数是6,请 写出适合于这个条件的所有两位数。
2、王老师带同学们擦玻璃,同学们恰好平均 分成3组。如果师生每人擦的块数同样多, 一共擦111块,那么,平均每人擦了多少块?
【例题4】
把 155 和 221 约分。 186 187
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分解质因数运用10例
1、已知360xA=BxB,其中A、B均为自然数,求A的最小值是几?
B的又是几?
2、A、B、C均为自然数,已知AxB=132,BxC=156,CxA=143
米。
求AxBxC的值是几?
3、把冷场1厘米的小正方形2100个,堆成一个实心的大长方体,
这个长方体的高为10厘米,并且长、宽均大于高,求这个长
方体的表面积?
4、把一个长16厘米,宽为8厘米,高威4厘米的长方体锯成若
干个小正方体,然偶拼成一个大正方体,求这个大正方体的表
面积?
5、两个自然数的乘积是2835,它们的最他公因数是9,求这两个
数?
6、1x2x3x4x5~~~~x99x100的积,末尾有多少个连续的零?
7、有四个小朋友的年龄一个比一个大一岁,它们的年龄的积石
5040,求它们各是多大?
8、甲数比乙数大9,两输的积是1620,求这两个数。
9、把14、30、33、75、143、169、4445、4953分成两组,每组的
四个数且积相等,求这个两组数。
10、1*2*3*4*5*6*………*a的积的末尾连续有20个0,a最小值是
多少,最大值是多少?。