不等式的基本性质的教学课件

合集下载

不等式的基本性质ppt课件

不等式的基本性质ppt课件

(2)能正确应用性质对不等式进行变形;
注意事项
当不等式两边都乘以(或除以)同 一个数 时,一定要看清是正数还是负数;对于未给定 范围的字母,应分情况讨论.
P9:习题2.1 第1、2、3题
1、比较a与a+2的大小;
2、比较2与2+a的大小。
1、解: ∵ 0< 2, ∴ a < a+2 2、解:若a <0,则 2+a <2; 若a > 0,则 2+a > 2; 若a = 0,则 2+a = 2;
§2.1 不等式的基本性质
读书改变命运 !刻苦成就事 业 !!态度决定一切!!!
由a+5=b+5, 能得到a=b?
由a-5=b-5, 能得到a=b? 由5a=5b, 能得到a=b?
由–8a=–8b, 能得的基本性质吗?
等式的性质1:等式的两边都加上(或减去) 同一个整式,等式仍然成立. 等式的性质2:等式的两边都乘以(或除以) 同一个不为0的数,等式仍然成立.
试比较5a与3a 的大小。 解:∵ 5 > 3 ∴ 5a 3a 想想:这种解法对吗?如果正确,说 出它根据的是不等式的哪一条基本性 质;如果不正确,请说明理由。 答:这种解法不正确,因为字母 a的取值范 围我们并不知道。如果 a 0,那么 5a 3a ; 如果 a 0 ,那么 3a 5a 。
(1)掌握不等式的三条性质,尤其是性质3; (2)能正确应用性质对不等式进行变形;
本节重点
(1)掌握不等式的三条性质,尤其是性质3; 不等式的三条性质是: ① 、不等式的两边都加上(或减去)同一 个 数或同一个整式,不等号的方向不变; ② 、不等式的两边都乘以(或除以)同一 个 正数,不等号的方向不变; ③ 、*不等式的两边都乘以(或除以)同 一个负数,不等号的方向要改变 ;

鲁教版(五四制)七年级下册数学 11.2不等式的基本性质 课件

鲁教版(五四制)七年级下册数学 11.2不等式的基本性质 课件

(2)-3x<6
(1)根据_不__等__式_的__基__本__性__质_1, 两边__加__3_得
x-3+3>-2+3 即 x>1
(2)根据_不__等__式__的__基_本__性__质__3,两边除__以__-_3得
x>-2
随堂练习
将下列不等式化为“x>a”或“x<a”的形式:
(1)x+3<-1
x
正误辨析
1、若a>b,则能得到a-m>b-m ( √ )
2、若x-5<-1,则能得到x<4 ( √ )
3、若a>b,则能得到-a>-b
( ×)
4、若-5x<15,则能得到x<- 3 ( × )
5、若a>3,则ac>3c
(× )
五、典例精析
将下列不等式化为“x>a”或“x<a”的形式:
(1)x-3>-2
7+a _>__ 3+a
类比等式基本性质一,一句话概括你的发现。
不等式基本性质1
不等式的两边都加(或减)同一个整式,不 等号的方向不变。
若a>b ,则a±c >b±c 若a<b,则a±c<b±c
探究二:
7>3 7×2 __>__ 3×2 7 ×0.1 __>__ 3×0.1 7 ÷0.1 __>__ 3 ÷ 0.1
(3) - 3 >5
1
(2) x≤3
2
(4)5x<4x-6
六、知识小结
学什么:掌握不等式的基本性质; 做什么:会用不等式的基本性质进行变形; 易错点:注意不等式两边同时乘以或除以 某个数时,需判断是正还是负; 数学思想:类比的学习方法。

北师大版初中数学八年级下册《不等式的基本性质》课件

北师大版初中数学八年级下册《不等式的基本性质》课件
如果a<b,且c>0,则ac<bc 如果a>b,且c>0,则ac>bc
不等式基本性质1:不等式的两边都乘以 (或除以)同一个负数,不等号的方向 改变。
如果a<b,且c<0,则ac>bc
如果a>b,且c<0,则ac<bc
若a>b,用不等号填空 (1)a-3_>___b-3 (2)2a__>__2b (3)-a_<___-b
(2)如果a>b,则ac2 >bc2 (3)如果ac2>bc2,则a>b (4)如果a>b,则a-b>0 (5)如果ax>b且a≠0,则x>b/a
试一试:比较大小 (1)2a和a
教学资料整理
• 仅供参考,
如果a>b,则a+c>b+c(或 a-c>b-c).
如果a<b,则a+c<b+c(或 a-c<b-c).
练习:看谁填得又快又准确 (1)5<7,则5+4_<___7+4 (2)-12<-4,则-12+a_<__-4+a (3)若a>b,则2a__<__a+b
做书上7页填空你发现了什么?讨论总结
不等式基本性质2:不等式的两边都乘以 (或除以)同一个正数,不等号的方向 不变。
无论绳长L取何值,圆的面积 总大于正方形的面积,即
l2
4
> 16
你能用不等式基本性质解释 这一结论吗?
例:将下列不等式化成
X >a或 x<a的形式
(1) x-5 >-1 X >4 (2) -2x >3 x <-1.5 (3) 7x <6x -6 x <-6
随堂练习:
例 下列各题是否正确请说明理由 (1)如果a>b,则ac>bc
北师大版初中数学 八年级下册《不等 式的基本性质》课

还记得等式的基 本性质吗

不等式的基本性质PPT课件

不等式的基本性质PPT课件
事实上,如果a>b, c>0,因为ac-bc=c(ab)>0,所以ac>bc.
(7)将不等式6>-3和-4<-2的两边都乘-3,不等号的 方向是否改变?两边都除以-2呢?
6×3 < (-3)×3; (-4)×3 > (-2)×3; 6÷2 < (-3)÷2; (-4)÷2 > (-2)÷2.
(8)由(7)你发现了什么结论?能用不等式表示 出来吗?
a>b;甲的年龄大,a+c>b+c
(2)在数轴上,点A与点B分别对应实数a,b, 并且点A在点B的右边,请你用不等式表示a, b之间的大小关系.如果同时将点A,B向右(或 向左)沿x轴移动c个单位长度,得到点A′,B ′ (如图).你能用不等式表示点A′,B ′所对应 的数的大小关系吗?
a>b;a+c>b+c;a-c>b-c
判断下列式子是不是不等式:
(1)-3<0

(2)4x+3y>0 是
(3)x=3
不是
(4) x2+xy+y2 不是
(5)x+2>y+5 是
2 不等式的性质
等式具有那些性质? 不等式是否具有这些类似性质?
等式基本性质1:
等式的两边都加上(或减去)同一个整 式,等式仍旧成立
如果a=b,那么a±c=b±c
(3)由(1)(2),你发现了有关不等式的什 么结论呢?你能用不等式表示表示出来吗?
如果a>b,那么a±c>b±c.
也就是说,不等式的两边都加上(或减 去)同一数或同一个整式,不等号的方 向不变。
我们把这一性质作为不等式基本性质1.

人教版必修五数学《基本不等式》PPT课件

人教版必修五数学《基本不等式》PPT课件

人教版必修五数学《基本不等式》PPT课件•课程介绍与目标•基本不等式概念及性质•基本不等式证明方法•基本不等式应用举例目录•拓展与提高:含参数的基本不等式问题•课程总结与回顾01课程介绍与目标人教版必修五数学教材基本不等式章节内容概述与前后知识点的联系教材版本及内容概述教学目标与要求知识与技能目标掌握基本不等式的形式、性质和应用方法,能够运用基本不等式解决简单的最值问题。

过程与方法目标通过探究、归纳、证明等过程,培养学生的数学思维和逻辑推理能力。

情感态度与价值观目标让学生感受数学的美和严谨性,培养学生的数学兴趣和数学素养。

本节课共分为引入、新课、巩固练习、小结四个部分。

课程安排时间分配重点与难点引入部分5分钟,新课部分30分钟,巩固练习部分15分钟,小结部分5分钟。

本节课的重点是基本不等式的形式、性质和应用方法;难点是运用基本不等式解决复杂的最值问题。

030201课程安排与时间02基本不等式概念及性质不等式定义及表示方法不等式的定义用不等号连接两个解析式所组成的数学式子。

不等式的表示方法常见的不等号有“<”、“>”、“≤”、“≥”和“≠”,用于表示两个量之间的大小关系。

对称性传递性可加性同向正值可乘性基本不等式性质探讨01020304当a=b 时,a<b,b>a 同时成立,反之亦然。

若a>b 且b>c ,则a>c ;若a<b且b<c ,则a<c 。

同向不等式可以相加,即若a>b 且c>d ,则a+c>b+d 。

若a>b>0且c>d>0,则ac>bd 。

特殊情况下的基本不等式均值不等式对于任意两个正数a和b,有√(ab)≤(a+b)/2,当且仅当a=b 时取等号。

柯西不等式对于任意两组实数a1, a2, …, an和b1, b2, …, bn,有(a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2)≥(a1b1+a2b2+...+anbn)^2,当且仅当ai/bi为常数时取等号。

《不等式的基本性质》PPT

《不等式的基本性质》PPT

例1:设a>b,用“<”或“>”填空 并口答是根据哪一条不等式基本性质。
(1) a - 3_>___b - 3; (2)a÷3__>__b÷3 (3) 0.1a__>__0.1b;
(4) -4a__<__-4b (5) 2a+3__>__2b+3; (6) (m2+1) a __>__ (m2+1)b (m为常数)
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型的享决特文定权档。有下效载期特为权1自个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我I送 清 的P生每 零 设效月 。 置起1自 随5每动 时次月共续 取发享费 消放文, 。一档前次下往,载我持特的续权账有,号效-自
享受60次VIP专享文档下载特权,一 次发放,全年内有效。
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
(2)正确,根据不等式基本性质1.

不等式的基本性质PPT课件


知识小结
不等式的基本性质1 不等式两边加(或减)同一 个数,不等号的方向不变. 不等式的基本性质2 不等式两边乘(或除以)同 一个正数,不等号的方向不变. 不等式的基本性质3 不等式两边乘(或除以)同 一个负数,不等号的方向改变.
1.若m>n,下列不等式不一定成立的是( D )
A.m+可知,不等式的两边都加上 2,不等号的方向不变,所以x-2+2<3+2,即x<5. (2)由不等式的基本性质1可知,不等式的两边都减去5x, 不等号的方向不变,所以6x-5x>5x-1-5x,即x>-1. (3)由不等式的基本性质2可知,不等式的两边都除以-4, 不等号的方向改变,所以x<-1.
(2)如果c>0,那么对于a+c和b+c的大小,你有什么猜想? (a+c>b+c.)
(3)在不等式a>b的两边都减去同一个数或同一个整式,你认为应 该有什么结论? (a-M>b-M(M为数或整式).
3.不等式的基本性质1
不等式两边都加上(或减去)同一个数或同一 个整式,不等号的方向不变.即:不等式的基本 性质1 如果a>b,那么a±c>b±c.
七年级数学·下 新课标[冀教]
第十章 一元一次不等式和一元 一次不等式组
学习新知
检测反馈
问题思考
学习新知
设“▲”“●”“■”分别表示三种不同的物体, 现用天平称两次,情况如图所示,那么▲,●,■这三种 物体按质量从大到小排列顺序是怎样的?
分析:设▲,●,■的质量分别为a,b,c,根据图形,可得 c>a,a=2b,故可得c>a>b.
4.不等式的基本性质2和3. (1)不等式的两边都乘(或除以)同一个正数,不等号的方向不变.即: 不等式的基本性质2 如果a>b,且c>0,那么ac>bc.

不等式的基本性质(优秀公开课课件)

不等式的基本性质
万源市井溪乡中心小学校 伍高兴
回顾旧知
a±c a=b
等式的基本性质:
=
b±c
ac = bc
a÷c = b ÷c (c ≠ 0)
1、等式两边同时加(或减)同一个代数式,结果仍是等式。
2、等式两边同时乘同一个数(或除以同一个不为0的数), 所得结果仍是等式。
不等式的基本性质还是这样吗?
回顾旧知
不等式的定义:
一般地,用符号“<”(或“≤”),“>”(或“≥”)连 接的式子叫做不等式。
我 会 判 断
5x + 3y = 0
m2 m2 > 4 π 16
5x + 3y
6 + 5t ≤ 180
情境引入
通过师生对话,年龄的差异现场生成不等式。你能告 诉我你的年龄吗?你知道老师的年龄吗? 14 < 34
收获新知
不等式的性质2 不等式的两边同时乘(或除以)同一个 正数,不等号的方向不变. 不等式的性质3 不等式的两边同时乘(或除以)同一个 负数,不等号的方向改变.
符号表示为:
如果a<b,c >0那么ac ﹤
bc
(或
如果a<b,c<0那么ac >
a b > ). 如果a>b,c >0那么ac > bc (或 ___ c ac b ﹤ ). 如果a>b,c<0那么ac ﹤ bc (或 ___
乘胜追击
2、不计算,完成下列填空
x>y x-z > y-z
z<0
x z
xz < yz

y z
善于观察
3、 x > y,下列不等式一定成立吗?
x-6<y-6
2x >
3y
-2 x > -2y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式的基本性质的教学课件
不等式的基本性质的教学课件
【教学重点与难点】
教学重点:掌握不等式的三条基本性质,尤其是不等式的基本性
质3.
教学难点:正确应用不等式的三条基本性质进行不等式变形.
【教学目标】
1、 探索并掌握不等式的基本性质
2、 会用不等式的基本性质进行化简
【教学方法】
通过观察、分析、讨论,引导学生归纳总结出不等式的三条基本
性质,从具体上升到理论,再由理论指导具体的练习,从而强化学生
对知识的理解与掌握.
【教学过程】
一、创设情境 复习引入
(设计说明:设置以下习题是为了温故而知新,为学习本节内容
提供必要的知识准备.)
问题:1、什么是等式?等式的基本性质是什么?
2、 什么是不等式?
3、 用“>”或“<”填空.
(1)7>3 (2)-1<3
7+5 3+5 -1+2 3+2
7-5 3-5 -1-4 3-4
(教学说明: 复习等式的基本性质后学生自然会联想到,不等式
是否有与等式相类似的性质,从而引起学生的探究欲望.接着问题3为
学生探究不等式的性质提供了载体,通过观察,寻找规律,得出不等
式的性质.)
二、师生互动,探索新知
1、不等式的基本性质
问题1:观察思考问题3,猜想出不等式的性质
先让学生独立思考,后合作交流,通过充分讨论,类比等式性质
得出不等式的.性质.
观察时,引导学生注意不等号的方向,通过(1)题学生容易得出
不等式性质1:
不等式基本性质1 不等式两边加(或减)同一个数(或式子),
不等号的方向不变.
比较(2)、(3)题,注意观察不等号方向,并思考不等号方向
的改变与什么有关?由学生概括总结,教师补充完善得出:
不等式基本性质2 不等式两边乘(或除以)同一个不为零的正数,
不等号的方向不变.
不等式基本性质3 不等式两边乘(或除以)同一个不为零的负数,
不等号的方向改变.
2、图形演示
通过PPT用图形演示不等式的基本性质,让学生更加清楚地认识
不等式的基本性质。
3、拓展及应用
提问:不等式有对称性吗?
不等式有传递性吗?
【学生通过讨论能够比较容易得出结论:不等式有对称性,但要
注意其不等号方向的变化;不等式也有传递性,但要注意的是同向传
递性。】
三、巩固训练,熟练技能:
1、(1) a - 3____b - 3;
(2) a÷3____b÷3
(3) 0.1a____0.1b;
(4) -4a____-4b
(5) 2a+3____2b+3;
(6) (2+1) a ____ (2+1)b (为常数)
【本题目采用提问的方式,因为内容相对简单,所以可以迅速得
到结论。要让提问者说清楚答案,并说明利用不等式的性质几来进行
判定的。】
2、判断下列各题的推导是否正确?为什么
(1)因为7.5>5.7,所以-7.5<-5.7;
(2)因为a+8>4,所以a>-4;
(3)因为4a>4b,所以a>b;
(4)因为-1>-2,所以-a-1>-a-2;
(5)因为3>2,所以3a>2a.
【学生口答,并说明为什么。本题重点是第5小题,要引导学生
总结出a的取值会影响到答案。当a>0时,3a>2a.(不等式基本性
质2)
当 a=0时,3a=2a.当a<0时,3a<2a.(不等式基本性质3) 】
3、独立完成习题
学生自己完成以下题目,之后进行集体讲解。
(1)如果x-5>-1,那么______________________,得:x>4
(2)如果-2x>3,那么那么______________________,得X=______
四、小结
师生共同小结本节课所学重点,不等式的基本性质的具体内容。
五、作业、
习题2.2

相关文档
最新文档