等式的性质和PPT课件

合集下载

5.1.2等式的性质 课件(共13张PPT) 2024-2025学年人教版数学七年级上册

5.1.2等式的性质 课件(共13张PPT) 2024-2025学年人教版数学七年级上册
第五章 一元一次方程
5.1 方程 5.1.2 等式的性质
教学目标
1.理解等式的性质. 2.会利用等式的性质解简单的一元一次方程. 3.培养学生的观察、分析、概括及逻辑思维能力,形成独立
思考与合作交流的良好学习习惯.
教学重难点
重点∶理解和应用等式的性质. 难点∶应用等式的性质把简单的一元一次方程化成“x=m”的形式.
互动新授
问题2:例3
根据等式的性质填空,并说明依据: (1)如果2x=5-x,那么2x+_x___=5; (2)如果m+2n=5+2n,那么m=__5__
思 考 ∶方程发生了怎样的变 化?利用等式的哪一个性质 可以完成这样的变化?
(3)如果x=-4,那么_-7___·x=28;
(4)如果3m=4n,那么 m=__2____·n
解∶依题意得∶6x-5=3x+1 解得∶ x=2
巩固拓展
2.服装厂用370m布做成人服装和儿童服装,成人服装每套平均
用布3.5m,儿童服装每套平均用布1.5m现已做了80套成人服装,
用余下的布还可以做多少套儿童服装?
探究:根据问题中的数量关系,先设未知数,再建立方程,然后用等式的性质解题。
解∶设余下的布还可以做x套儿童服装
化简得∶ x=9 方程两边乘-3,得
x=-27
互动新授
问题4:
检验例3各个方程所解得的未知数的值是否是各个原方程的解.
思考:如何检验未知数的值是否是方程的解?把这个值带入变形后的方程 检验好吗?
解:(1)将x=-19代入方程x+7=26的左边,得19+7=26,方程的左、右两 边的值相等,所以x=-19是原方程的解.
情境引入
问题1:

《等式的基本性质》PPT课件

《等式的基本性质》PPT课件
2
3
即 3a = 2b .
2.请在括号中写出下列等式变形的理由:
(1)如果 a-3=b+4,那么a=b+7
等式性质1
);
(
等式性质2
);
(3)如果 - 1 x = - 1 y ,那么x=2y (
4
2
等式性质2
);
(2)如果 3x=2y,那么 x = 2 y
3
(
(4)如果2a+3=3b-1,那么2a-6=3b-10 (
平衡状态,那么左右两边的质量就相等了。
游戏一
b b

b
a

在托盘上增加或减少一定数量的砝码,使其平衡
比如,我们去掉一个a和一个b,我们
可以得到一种平衡
b
a

右Leabharlann b=a聪明的你,还有哪些方案呢?
b
a
1
b+1=a+1
1
b
a
x
b+x=a+x
x
你能摆出下列等式吗?
(1)2a+(x-1)=2b+(x-1)
里原来有几个苹果呢?
解:设盘子里原来有x个苹果, 列方程为: x+1=3
2、用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?
解:正方形的边长为xcm, 列方程为: 4x =24
3、2比一个数的四分之一还要大5,求这个数?
1
解:设这个数为x,列方程为:
4
+5=2
知识讲解
用天平测量物体的质量时, 只要天平处于
(2)2a-(3x+1)=2b-(3x+1)
观察上面的等式,你有什么发现?

3.1.2 等式的性质课件(共28张PPT)

3.1.2 等式的性质课件(共28张PPT)
c c
作业: (1)基础作业:教科书习题3.1第4、9、10题. (2)拓展作业:如果a=b =c,那么等式的性质还成 立吗?
随堂练习
用等式的性质解下列方程并检验: (1)x-5=6; (2)0.3x=45; 1 (3)5x+4=0; (4)2 x 3 . 4 解: (1)两边加5,得 x-5+5=6+5. 于是 x=11. 检验: 当x=11时,左边=11-5=6=右边, 所以x=11是原方程的解. 于是 x=150. 检验:当x=150时,左边=0.3×150=45=右边, 所以x=150是原方程的解.
观察思考
下列四个式子有什么相同点?
m+n=n+m, 3× 3+ 1 = 5× 2, x+ 2x= 3x, 3x+ 1= 5y
用等号表示相等关系的式子,叫做等式. 通常可以用a=b表示一般的等式.
探索新知
a
等式的左边
b
等式的右边
等号
把一个等式看作一个天平, 等号两边的式子 看作天平两边的物体,则等式成立可以看作是天 平两边保持平衡.
随堂练习
用等式的性质解下列方程并检验: (1)x-5=6; (2)0.3x=45; 1 (3)5x+4=0; (4)2 x 3 . 4
能力提升
在学习了等式的性质后,小红发现运用等式的性质可以 使复杂的等式变得简洁,这使她异常兴奋,于是她随手写了 一个等式:3a+b-2=7a+b-2,并开始运用等式的性质对这 个等式进行变形,其过程如下:
谁最厉害
以下说法是否正确?如果不对,怎样改正?
如果a b, 那么a b .
2 2
谁最厉害
以下说法是否正确?如果不对,怎样改正?
如果a b , 那么a b.
2 2

初中数学《等式的基本性质》教学PPT课件

初中数学《等式的基本性质》教学PPT课件

x=-23.
(4)方程两边都加上 2x,得 5x-6=-31.
两边都加上 6,得 5x=-25. 两边都除以 5,得 x=-5. 【答案】 (1)x=2 (2)x=-23 (3)y=2 (4)x=-5
反思
要判断解方程时计算有没有错误,只要把求得的解代入原 方程,检验方程左右两边是否相等即可.
【例 2】 根据等式的性质回答下列问题: (1)从 ab=bc 能否得到 a=c?为什么? (2)从ab=bc能否得到 a=c?为什么? (3)从 ab=1 能否得到 a+1=1b+1?为+1.
【例 3】 已知方程 2x+1=3 和关于 x 的方程 2x-a=0 的解相同,则 a 的值是________.
【解析】 题目中给出了两个方程,可先求出只含 x 的方 程的解,再将这个解代入到含 a 的方程中,即可求出 a 的 值.还可观察两个方程的特征,它们都含有 2x,利用这一 点可巧妙求解. 解法一:解方程 2x+1=3,得 x=1. 把 x=1 代入方程 2x-a=0 中,得 2-a=0,∴a=2. 解法二:把方程 2x+1=3 变形为 2x=3-1,即 2x=2. 由 2x-a=0,得 2x=a. ∵两个方程的解相同,∴a=2. 【答案】 2
重要提示
1.利用等式的性质 1 解方程时,必须注意方程两边都要 加上或减去同一个数或式.
2.利用等式的性质 2 解方程时,必须注意方程两边都要 乘或除以同一个数或式(除数不能为 0).
3.解方程的基本思路是根据等式的基本性质,把方程变 形成“x=a(a 为已知数)”的形式.
【例 1】 利用等式的性质解下列方程:
等式的基本性质
知识要点
1.等式的性质 1:等式的两边都加上(或都减去)同一个数 或式,所得结果仍是等式.用字母可以表示为:如果 a =b,那么 a±c=b±c.

5.1.2 等式的性质 课件(共21张PPT) 人教版七年级数学上册

5.1.2   等式的性质 课件(共21张PPT)  人教版七年级数学上册
B
-2y
等式的性质2
-y
等式的性质2
6
等式的性质2
3x
等式的性质1
【题型二】利用等式的性质解方程
等式的性质1
同时减3
-3
1
等式的性质2
同时乘-3
-3
变式:若x=1是关于x的方程3x+2a=7的解,求a的值.
解:将x=1代入方程3x+2a=7,得3+2a=7.两边同时减3,得3+2a-3=7-3,化简,得2a=4,两边同时除以2,得a=2.
5.1 方程
5.1.2 等式的性质
1. 通过观察、操作、猜想、验证、交流、归纳等数学活动,经历探索等式的基本性质的过程,理解等式的基本性质,培养学生的观察、归纳、推理的能力.2.经历自主探究,学生可以运用等式的基本性质解简单的一元一次方程,培养学生的应用意识.教学重难点教学重点,等式的性质.
重点
同学们,你们听过“曹冲称象”的故事吗?小时候的曹冲是多么聪明啊!随着社会的进步,科学水平的发达,我们有越来越多的测量物体质量的方法,你们都知道哪些呢?我们一起来认识一下天平:1.底座2.托盘器3.托盘4.标尺5.平衡螺母6.指针7.分度盘8.游码 如果要让天平平衡应该满足什么条件呢?如果天平在平衡的条件下,左盘放着质量为(2x+3)g的物体,右盘放着质量为3x g的物体,应该如何列式呢?
知识点2:利用等式的性质解简单的一元一次方程(难点)
注:一般地,从方程中解出来未知数的值后,把所求得的未知数的值代入原方程,看这个值能否使方程左、右两边的值相等,即可确定所求的解是否正确.
【题型一】等式的性质
例1:下列运用等式的性质变形正确的是( )A.若x=y,则x-5=y+5 B.若a=b,则ac=bc
同学们再见!

等式的性质ppt课件

等式的性质ppt课件

科学实验中的应用
化学反应平衡
在化学实验中,等式性质可用于描述化学反应的平衡状态,确保 实验结果准确可靠。
生物学中的能量平衡
在生物学研究中,等式性质可用于描述生物体内的能量平衡,以了 解生物体的生存和生长状况。
物理学中的力矩平衡
在物理学中,等式性质可用于描述力矩的平衡,以解决与物体运动 相关的问题。
函数图像的对称性
函数图像的对称性
等式在研究函数图像的对称性方面具 有重要作用。通过对等式的分析,我 们可以确定函数的对称轴和对称中心 。
奇偶函数的性质
对称性与周期性的关系
函数的对称性和周期性是密切相关的 ,通过对等式的研究,我们可以深入 了解这种关系。
奇函数和偶函数具有不同的对称性质 ,这些性质可以通过等式进行描述和 证明。
可除性证明
假设a=b且c≠0,那么根据等 式的定义,我们可以得出 a/c=b/c。
02 等式的运算规则
等式的加减法规则
总结词
等式的加减法规则是基本的运算规则,它遵循相同的数学原理。
详细描述
等式的加减法规则是指在进行等式运算时,将等式两边的数值进行加减运算,如 果等式两边同时加上或减去同一个数,等式仍然成立。例如,对于等式 (2 + 3 = 5),如果两边同时加上(2),得到 (4 + 3 = 7),等式仍然成立。
几何图形的等分与对称
几何图形的等分
等式在几何图形中等分方面具有 应用,例如通过等式确定点、线 或面的位置,将图形等分为若干
部分。
图形的对称性
图形的对称性可以通过等式进行 描述和证明,例如平行四边形、
矩形和圆的对称性质。
等分与对称的应用
在几何图形中,等分和对称的应 用非常广泛,例如在建筑设计、 艺术和工程等领域中都有应用。

人教版《等式的性质》_PPT课件

人教版《等式的性质》_PPT课件

课堂练习 【获奖课件ppt】人教版《等式的性质》_ppt课件1-课件分析下载
3.(2013广东)已知实数 a、b ,若a >b ,则 下列结论正确的是( ) A. a-5<b-5 B. 2+a<2+b C.a b D.3a>3b
33
4.(2014汕尾)若 x>y,则下列式子中错误的
是( ) A.x-3>y-3
22 (5) 2a-5 __2 _b_-5
(6) - 3 .5 a + 1 _ _ _ _ 3 .5 b 1
【获奖课件ppt】人教版《等式的性质 》_ppt 课件1- 课件分 析下载
【获奖课件ppt】人教版《等式的性质 》_ppt 课件1- 课件分 析下载
拓展提升
判断正误,并说明理由
(1)由5 ﹥ 4,可得5a ﹥ 4a
联系:不等式性质和等式性质都讨论的是两 边都加上或减去同一个数的情况和两边都乘 以或除以同一个数(除数不为0)的情况, 即研究“形式”一致。
【获奖课件ppt】人教版《等式的性质 》_ppt 课件1- 课件分 析下载
【获奖课件ppt】人教版《等式的性质 》_ppt 课件1- 课件分 析下载
等式性质与不等式性质的主要区别是什么?
0的数,结果仍相等.
那么
ab cc
2.探究新知
问题2 研究等式性质的基本思路是什么?
等式的性质就是从加减乘除运算的角度研 究运算的不变性.
【获奖课件ppt】人教版《等式的性质 》_ppt 课件1- 课件分 析下载
(1) 5>3, 5+2____3+2 ,
5-2____3-2 ;
(2) –1<3 , -1+2____3+2 ,

数学等式的性质人教版(共16张PPT)优秀课件

数学等式的性质人教版(共16张PPT)优秀课件























































































































































凡 事都 是多 棱镜 ,不同 的角 度会 看到 不同 的结 果。若 能把 一些 事看 淡了 ,就会 有个 好心 境, 若把 很多 事看开 了 ,就会 有个 好心 情。 让聚散 离合 犹如 月缺 月圆 那样 寻常,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x=75 检验:把x=75代入原方程。 左边=75-23=52 右边=52 左边=右边 所以x=75是正确的。
学以致用
③解方程 x+38=38 解: x+38-38=38-38
x=0 检验:把x=0代入原方程。 左边=0+38=38 右边=38 左边=右边 所以x=0是正确的。
课堂小结
课件PPT
1、等式两边同时加上或减去同一个数,所 得结果仍然是等式,这是等式的性质。
2、使方程两边相等的未知数的值叫作方程 的解,求方程的解的过程,叫作解方程。
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
五年级 数学 下册
课件PPT
等式的性质和解方程(1)
课件PPT
学习目标
● 1、初步理解“方程的解”、“解方程” 的含义,以及“方程的解”和“解方程” 之间的联系和区别。 ● 2、初步理解等式的基本性质,能用 等式的性质解简易方程。 ● 3、关注由具体到一般的抽象概括的 过程,培养初步的代数思想。
x 10 50
因为50-10=40, 所以X=40。
探索新知
x 10 50
解: x 10 10 50 10 x 40
探索新知
检验:
把 x 40 代入原方程,
左边=40+10=50 右边=50 左边=右边
所以 x 40 是正确的。
使方程两边相等的未知数的值叫作方程的解, 求方程的解的过程,叫作解方程。
You Know, The More Powerful You Will Be
结束语
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
讲师:XXXXXX XX年XX月XX日
等式两边同时减去同一个数,所得结果仍然是等式。
探索新知
等式两边同时加上或减去同一个数, 所得结果仍然是等式,这是等式的性 质。
探索新知
看图列方程,并求出x的值
x 10 50
想:( )+10=50
探索新知
看图列方程,并求出x的值
x 10 50
(40)+10=50 X=40
探索新知
看图列方程,并求出x的值
等式的两边同时加上同一个数,所得结果仍为等式。
探索新知
50 a 50 a
探索新知
50 a a 50 a a
探索新知
x 20 70
探索新知
x 20 20 70 20
探索新知
50 a 50 a
x 20 70
50 a a 50 a a x 20 20 70 20
学以致用
1.解方程,并检验。
75 x 105 x 23 52 x 38 38
学以致用
①解方程 75+x=105 解: 75+x-75=105-75
x=30 检验:把x=30代入原方程。 左边=75+30=105 右边=105 左边=右边 所以x=30是正确的。
学以致用
②解方程 x-23=52 解: x-23+23=52+23
课件PPT
典题精讲
1.解方程。 x 30 80 解: x 30 30 80 30
x 110
方程两边都加上30, 左边只剩下x。
典题精讲
检验: 把 x 110 代入原方程,看看左右两边是否相等。 左边=110-30=80 右边=80 左边=右边
所以 x 110 是正确的。
典题精讲
易错提醒
错误解答:
(1)x+22=78 (x=100,x=56) (2)x-2.5=2.5 (x=0, x=5)
错解分析:使方程两边相等的未 知数的值才是方程的解,把答案 代入方程,看能不能使得方程两 边相等。
易错提醒
正确解答: (1)x+22=78 (x=100,x=56) (2)x-2.5=2.5 (x=0, x=5)
复习导入
课件PPT
什么是程?判断下列各式哪些是等 式,哪些是方程?
9 x 4; 50 30 80
3 x 8; y 17 43
探索新知
用式子表示天平两边物体质量 的大小。
课件PPT
X+50 =
探索新知
探索新知
探索新知
20 20
x 50
20 10 20 10 x 20 50 20
2.根据等式的性质在○里填运算符号,在□里 填数。
x 25 60
x 25 25 60○+ □25
x 18 48
x 18 18 48○- □18
课件PPT
易错提醒
在括号里找出方程的解,并在下面划横线。
(1)x+22=78 (x=100,x=56) (2)x-2.5=2.5 (x=0, x=5)
相关文档
最新文档